440 lines
13 KiB
C
440 lines
13 KiB
C
/* Help friends in C++.
|
|
Copyright (C) 1997, 1998, 1999, 2000, 2001 Free Software Foundation, Inc.
|
|
|
|
This file is part of GNU CC.
|
|
|
|
GNU CC is free software; you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation; either version 2, or (at your option)
|
|
any later version.
|
|
|
|
GNU CC is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with GNU CC; see the file COPYING. If not, write to
|
|
the Free Software Foundation, 59 Temple Place - Suite 330,
|
|
Boston, MA 02111-1307, USA. */
|
|
|
|
#include "config.h"
|
|
#include "system.h"
|
|
#include "tree.h"
|
|
#include "rtl.h"
|
|
#include "expr.h"
|
|
#include "cp-tree.h"
|
|
#include "flags.h"
|
|
#include "output.h"
|
|
#include "toplev.h"
|
|
|
|
/* Friend data structures are described in cp-tree.h. */
|
|
|
|
/* Returns non-zero if SUPPLICANT is a friend of TYPE. */
|
|
|
|
int
|
|
is_friend (type, supplicant)
|
|
tree type, supplicant;
|
|
{
|
|
int declp;
|
|
register tree list;
|
|
tree context;
|
|
|
|
if (supplicant == NULL_TREE || type == NULL_TREE)
|
|
return 0;
|
|
|
|
declp = DECL_P (supplicant);
|
|
|
|
if (declp)
|
|
/* It's a function decl. */
|
|
{
|
|
tree list = DECL_FRIENDLIST (TYPE_MAIN_DECL (type));
|
|
tree name = DECL_NAME (supplicant);
|
|
|
|
for (; list ; list = TREE_CHAIN (list))
|
|
{
|
|
if (name == FRIEND_NAME (list))
|
|
{
|
|
tree friends = FRIEND_DECLS (list);
|
|
for (; friends ; friends = TREE_CHAIN (friends))
|
|
{
|
|
if (TREE_VALUE (friends) == NULL_TREE)
|
|
continue;
|
|
|
|
if (supplicant == TREE_VALUE (friends))
|
|
return 1;
|
|
|
|
/* Temporarily, we are more lenient to deal with
|
|
nested friend functions, for which there can be
|
|
more than one FUNCTION_DECL, despite being the
|
|
same function. When that's fixed, this bit can
|
|
go. */
|
|
if (DECL_FUNCTION_MEMBER_P (supplicant)
|
|
&& same_type_p (TREE_TYPE (supplicant),
|
|
TREE_TYPE (TREE_VALUE (friends))))
|
|
return 1;
|
|
|
|
if (TREE_CODE (TREE_VALUE (friends)) == TEMPLATE_DECL
|
|
&& is_specialization_of (supplicant,
|
|
TREE_VALUE (friends)))
|
|
return 1;
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
else
|
|
/* It's a type. */
|
|
{
|
|
/* Nested classes are implicitly friends of their enclosing types, as
|
|
per core issue 45 (this is a change from the standard). */
|
|
for (context = supplicant;
|
|
context && TYPE_P (context);
|
|
context = TYPE_CONTEXT (context))
|
|
if (type == context)
|
|
return 1;
|
|
|
|
list = CLASSTYPE_FRIEND_CLASSES (TREE_TYPE (TYPE_MAIN_DECL (type)));
|
|
for (; list ; list = TREE_CHAIN (list))
|
|
{
|
|
tree t = TREE_VALUE (list);
|
|
|
|
if (TREE_CODE (t) == TEMPLATE_DECL ?
|
|
is_specialization_of (TYPE_MAIN_DECL (supplicant), t) :
|
|
same_type_p (supplicant, t))
|
|
return 1;
|
|
}
|
|
}
|
|
|
|
if (declp && DECL_FUNCTION_MEMBER_P (supplicant))
|
|
context = DECL_CONTEXT (supplicant);
|
|
else if (! declp)
|
|
/* Local classes have the same access as the enclosing function. */
|
|
context = decl_function_context (TYPE_MAIN_DECL (supplicant));
|
|
else
|
|
context = NULL_TREE;
|
|
|
|
/* A namespace is not friend to anybody. */
|
|
if (context && TREE_CODE (context) == NAMESPACE_DECL)
|
|
context = NULL_TREE;
|
|
|
|
if (context)
|
|
return is_friend (type, context);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Add a new friend to the friends of the aggregate type TYPE.
|
|
DECL is the FUNCTION_DECL of the friend being added. */
|
|
|
|
void
|
|
add_friend (type, decl)
|
|
tree type, decl;
|
|
{
|
|
tree typedecl;
|
|
tree list;
|
|
tree name;
|
|
|
|
if (decl == error_mark_node)
|
|
return;
|
|
|
|
typedecl = TYPE_MAIN_DECL (type);
|
|
list = DECL_FRIENDLIST (typedecl);
|
|
name = DECL_NAME (decl);
|
|
type = TREE_TYPE (typedecl);
|
|
|
|
while (list)
|
|
{
|
|
if (name == FRIEND_NAME (list))
|
|
{
|
|
tree friends = FRIEND_DECLS (list);
|
|
for (; friends ; friends = TREE_CHAIN (friends))
|
|
{
|
|
if (decl == TREE_VALUE (friends))
|
|
{
|
|
warning ("`%D' is already a friend of class `%T'",
|
|
decl, type);
|
|
cp_warning_at ("previous friend declaration of `%D'",
|
|
TREE_VALUE (friends));
|
|
return;
|
|
}
|
|
}
|
|
TREE_VALUE (list) = tree_cons (error_mark_node, decl,
|
|
TREE_VALUE (list));
|
|
return;
|
|
}
|
|
list = TREE_CHAIN (list);
|
|
}
|
|
|
|
DECL_FRIENDLIST (typedecl)
|
|
= tree_cons (DECL_NAME (decl), build_tree_list (error_mark_node, decl),
|
|
DECL_FRIENDLIST (typedecl));
|
|
if (!uses_template_parms (type))
|
|
DECL_BEFRIENDING_CLASSES (decl)
|
|
= tree_cons (NULL_TREE, type,
|
|
DECL_BEFRIENDING_CLASSES (decl));
|
|
}
|
|
|
|
/* Make FRIEND_TYPE a friend class to TYPE. If FRIEND_TYPE has already
|
|
been defined, we make all of its member functions friends of
|
|
TYPE. If not, we make it a pending friend, which can later be added
|
|
when its definition is seen. If a type is defined, then its TYPE_DECL's
|
|
DECL_UNDEFINED_FRIENDS contains a (possibly empty) list of friend
|
|
classes that are not defined. If a type has not yet been defined,
|
|
then the DECL_WAITING_FRIENDS contains a list of types
|
|
waiting to make it their friend. Note that these two can both
|
|
be in use at the same time! */
|
|
|
|
void
|
|
make_friend_class (type, friend_type)
|
|
tree type, friend_type;
|
|
{
|
|
tree classes;
|
|
int is_template_friend;
|
|
|
|
if (! IS_AGGR_TYPE (friend_type))
|
|
{
|
|
error ("invalid type `%T' declared `friend'", friend_type);
|
|
return;
|
|
}
|
|
|
|
if (CLASS_TYPE_P (friend_type)
|
|
&& CLASSTYPE_TEMPLATE_SPECIALIZATION (friend_type)
|
|
&& uses_template_parms (friend_type))
|
|
{
|
|
/* [temp.friend]
|
|
|
|
Friend declarations shall not declare partial
|
|
specializations. */
|
|
error ("partial specialization `%T' declared `friend'",
|
|
friend_type);
|
|
return;
|
|
}
|
|
|
|
if (processing_template_decl > template_class_depth (type))
|
|
/* If the TYPE is a template then it makes sense for it to be
|
|
friends with itself; this means that each instantiation is
|
|
friends with all other instantiations. */
|
|
is_template_friend = 1;
|
|
else if (same_type_p (type, friend_type))
|
|
{
|
|
pedwarn ("class `%T' is implicitly friends with itself",
|
|
type);
|
|
return;
|
|
}
|
|
else
|
|
is_template_friend = 0;
|
|
|
|
/* [temp.friend]
|
|
|
|
A friend of a class or class template can be a function or
|
|
class template, a specialization of a function template or
|
|
class template, or an ordinary (nontemplate) function or
|
|
class. */
|
|
if (!is_template_friend)
|
|
;/* ok */
|
|
else if (TREE_CODE (friend_type) == TYPENAME_TYPE)
|
|
{
|
|
/* template <class T> friend typename S<T>::X; */
|
|
error ("typename type `%#T' declared `friend'", friend_type);
|
|
return;
|
|
}
|
|
else if (TREE_CODE (friend_type) == TEMPLATE_TYPE_PARM)
|
|
{
|
|
/* template <class T> friend class T; */
|
|
error ("template parameter type `%T' declared `friend'", friend_type);
|
|
return;
|
|
}
|
|
else if (!CLASSTYPE_TEMPLATE_INFO (friend_type))
|
|
{
|
|
/* template <class T> friend class A; where A is not a template */
|
|
error ("`%#T' is not a template", friend_type);
|
|
return;
|
|
}
|
|
|
|
if (is_template_friend)
|
|
friend_type = CLASSTYPE_TI_TEMPLATE (friend_type);
|
|
|
|
classes = CLASSTYPE_FRIEND_CLASSES (type);
|
|
while (classes
|
|
/* Stop if we find the same type on the list. */
|
|
&& !(TREE_CODE (TREE_VALUE (classes)) == TEMPLATE_DECL ?
|
|
friend_type == TREE_VALUE (classes) :
|
|
same_type_p (TREE_VALUE (classes), friend_type)))
|
|
classes = TREE_CHAIN (classes);
|
|
if (classes)
|
|
warning ("`%T' is already a friend of `%T'",
|
|
TREE_VALUE (classes), type);
|
|
else
|
|
{
|
|
CLASSTYPE_FRIEND_CLASSES (type)
|
|
= tree_cons (NULL_TREE, friend_type, CLASSTYPE_FRIEND_CLASSES (type));
|
|
if (is_template_friend)
|
|
friend_type = TREE_TYPE (friend_type);
|
|
if (!uses_template_parms (type))
|
|
CLASSTYPE_BEFRIENDING_CLASSES (friend_type)
|
|
= tree_cons (NULL_TREE, type,
|
|
CLASSTYPE_BEFRIENDING_CLASSES (friend_type));
|
|
}
|
|
}
|
|
|
|
/* Main friend processor. This is large, and for modularity purposes,
|
|
has been removed from grokdeclarator. It returns `void_type_node'
|
|
to indicate that something happened, though a FIELD_DECL is
|
|
not returned.
|
|
|
|
CTYPE is the class this friend belongs to.
|
|
|
|
DECLARATOR is the name of the friend.
|
|
|
|
DECL is the FUNCTION_DECL that the friend is.
|
|
|
|
In case we are parsing a friend which is part of an inline
|
|
definition, we will need to store PARM_DECL chain that comes
|
|
with it into the DECL_ARGUMENTS slot of the FUNCTION_DECL.
|
|
|
|
FLAGS is just used for `grokclassfn'.
|
|
|
|
QUALS say what special qualifies should apply to the object
|
|
pointed to by `this'. */
|
|
|
|
tree
|
|
do_friend (ctype, declarator, decl, parmdecls, attrlist,
|
|
flags, quals, funcdef_flag)
|
|
tree ctype, declarator, decl, parmdecls, attrlist;
|
|
enum overload_flags flags;
|
|
tree quals;
|
|
int funcdef_flag;
|
|
{
|
|
int is_friend_template = 0;
|
|
|
|
/* Every decl that gets here is a friend of something. */
|
|
DECL_FRIEND_P (decl) = 1;
|
|
|
|
if (TREE_CODE (declarator) == TEMPLATE_ID_EXPR)
|
|
{
|
|
declarator = TREE_OPERAND (declarator, 0);
|
|
if (TREE_CODE (declarator) == LOOKUP_EXPR)
|
|
declarator = TREE_OPERAND (declarator, 0);
|
|
if (is_overloaded_fn (declarator))
|
|
declarator = DECL_NAME (get_first_fn (declarator));
|
|
}
|
|
|
|
if (TREE_CODE (decl) != FUNCTION_DECL)
|
|
abort ();
|
|
|
|
is_friend_template = PROCESSING_REAL_TEMPLATE_DECL_P ();
|
|
|
|
if (ctype)
|
|
{
|
|
tree cname = TYPE_NAME (ctype);
|
|
if (TREE_CODE (cname) == TYPE_DECL)
|
|
cname = DECL_NAME (cname);
|
|
|
|
/* A method friend. */
|
|
if (flags == NO_SPECIAL && ctype && declarator == cname)
|
|
DECL_CONSTRUCTOR_P (decl) = 1;
|
|
|
|
/* This will set up DECL_ARGUMENTS for us. */
|
|
grokclassfn (ctype, decl, flags, quals);
|
|
|
|
if (is_friend_template)
|
|
decl = DECL_TI_TEMPLATE (push_template_decl (decl));
|
|
else if (template_class_depth (current_class_type))
|
|
decl = push_template_decl_real (decl, /*is_friend=*/1);
|
|
|
|
/* We can't do lookup in a type that involves template
|
|
parameters. Instead, we rely on tsubst_friend_function
|
|
to check the validity of the declaration later. */
|
|
if (processing_template_decl)
|
|
add_friend (current_class_type, decl);
|
|
/* A nested class may declare a member of an enclosing class
|
|
to be a friend, so we do lookup here even if CTYPE is in
|
|
the process of being defined. */
|
|
else if (COMPLETE_TYPE_P (ctype) || TYPE_BEING_DEFINED (ctype))
|
|
{
|
|
decl = check_classfn (ctype, decl);
|
|
|
|
if (decl)
|
|
add_friend (current_class_type, decl);
|
|
}
|
|
else
|
|
error ("member `%D' declared as friend before type `%T' defined",
|
|
decl, ctype);
|
|
}
|
|
/* A global friend.
|
|
@@ or possibly a friend from a base class ?!? */
|
|
else if (TREE_CODE (decl) == FUNCTION_DECL)
|
|
{
|
|
/* Friends must all go through the overload machinery,
|
|
even though they may not technically be overloaded.
|
|
|
|
Note that because classes all wind up being top-level
|
|
in their scope, their friend wind up in top-level scope as well. */
|
|
DECL_ARGUMENTS (decl) = parmdecls;
|
|
if (funcdef_flag)
|
|
SET_DECL_FRIEND_CONTEXT (decl, current_class_type);
|
|
|
|
if (! DECL_USE_TEMPLATE (decl))
|
|
{
|
|
/* We must check whether the decl refers to template
|
|
arguments before push_template_decl_real adds a
|
|
reference to the containing template class. */
|
|
int warn = (warn_nontemplate_friend
|
|
&& ! funcdef_flag && ! is_friend_template
|
|
&& current_template_parms
|
|
&& uses_template_parms (decl));
|
|
|
|
if (is_friend_template
|
|
|| template_class_depth (current_class_type) != 0)
|
|
/* We can't call pushdecl for a template class, since in
|
|
general, such a declaration depends on template
|
|
parameters. Instead, we call pushdecl when the class
|
|
is instantiated. */
|
|
decl = push_template_decl_real (decl, /*is_friend=*/1);
|
|
else if (current_function_decl)
|
|
/* This must be a local class, so pushdecl will be ok, and
|
|
insert an unqualified friend into the local scope
|
|
(rather than the containing namespace scope, which the
|
|
next choice will do). */
|
|
decl = pushdecl (decl);
|
|
else
|
|
{
|
|
/* We can't use pushdecl, as we might be in a template
|
|
class specialization, and pushdecl will insert an
|
|
unqualified friend decl into the template parameter
|
|
scope, rather than the namespace containing it. */
|
|
tree ns = decl_namespace_context (decl);
|
|
|
|
push_nested_namespace (ns);
|
|
decl = pushdecl_namespace_level (decl);
|
|
pop_nested_namespace (ns);
|
|
}
|
|
|
|
if (warn)
|
|
{
|
|
static int explained;
|
|
warning ("friend declaration `%#D' declares a non-template function", decl);
|
|
if (! explained)
|
|
{
|
|
warning ("(if this is not what you intended, make sure the function template has already been declared and add <> after the function name here) -Wno-non-template-friend disables this warning");
|
|
explained = 1;
|
|
}
|
|
}
|
|
}
|
|
|
|
add_friend (current_class_type,
|
|
is_friend_template ? DECL_TI_TEMPLATE (decl) : decl);
|
|
DECL_FRIEND_P (decl) = 1;
|
|
}
|
|
|
|
/* Unfortunately, we have to handle attributes here. Normally we would
|
|
handle them in start_decl_1, but since this is a friend decl start_decl_1
|
|
never gets to see it. */
|
|
|
|
/* Set attributes here so if duplicate decl, will have proper attributes. */
|
|
cplus_decl_attributes (&decl, attrlist, 0);
|
|
|
|
return decl;
|
|
}
|