freebsd-skq/contrib/gcc/cp/friend.c

440 lines
13 KiB
C

/* Help friends in C++.
Copyright (C) 1997, 1998, 1999, 2000, 2001 Free Software Foundation, Inc.
This file is part of GNU CC.
GNU CC is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2, or (at your option)
any later version.
GNU CC is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with GNU CC; see the file COPYING. If not, write to
the Free Software Foundation, 59 Temple Place - Suite 330,
Boston, MA 02111-1307, USA. */
#include "config.h"
#include "system.h"
#include "tree.h"
#include "rtl.h"
#include "expr.h"
#include "cp-tree.h"
#include "flags.h"
#include "output.h"
#include "toplev.h"
/* Friend data structures are described in cp-tree.h. */
/* Returns non-zero if SUPPLICANT is a friend of TYPE. */
int
is_friend (type, supplicant)
tree type, supplicant;
{
int declp;
register tree list;
tree context;
if (supplicant == NULL_TREE || type == NULL_TREE)
return 0;
declp = DECL_P (supplicant);
if (declp)
/* It's a function decl. */
{
tree list = DECL_FRIENDLIST (TYPE_MAIN_DECL (type));
tree name = DECL_NAME (supplicant);
for (; list ; list = TREE_CHAIN (list))
{
if (name == FRIEND_NAME (list))
{
tree friends = FRIEND_DECLS (list);
for (; friends ; friends = TREE_CHAIN (friends))
{
if (TREE_VALUE (friends) == NULL_TREE)
continue;
if (supplicant == TREE_VALUE (friends))
return 1;
/* Temporarily, we are more lenient to deal with
nested friend functions, for which there can be
more than one FUNCTION_DECL, despite being the
same function. When that's fixed, this bit can
go. */
if (DECL_FUNCTION_MEMBER_P (supplicant)
&& same_type_p (TREE_TYPE (supplicant),
TREE_TYPE (TREE_VALUE (friends))))
return 1;
if (TREE_CODE (TREE_VALUE (friends)) == TEMPLATE_DECL
&& is_specialization_of (supplicant,
TREE_VALUE (friends)))
return 1;
}
break;
}
}
}
else
/* It's a type. */
{
/* Nested classes are implicitly friends of their enclosing types, as
per core issue 45 (this is a change from the standard). */
for (context = supplicant;
context && TYPE_P (context);
context = TYPE_CONTEXT (context))
if (type == context)
return 1;
list = CLASSTYPE_FRIEND_CLASSES (TREE_TYPE (TYPE_MAIN_DECL (type)));
for (; list ; list = TREE_CHAIN (list))
{
tree t = TREE_VALUE (list);
if (TREE_CODE (t) == TEMPLATE_DECL ?
is_specialization_of (TYPE_MAIN_DECL (supplicant), t) :
same_type_p (supplicant, t))
return 1;
}
}
if (declp && DECL_FUNCTION_MEMBER_P (supplicant))
context = DECL_CONTEXT (supplicant);
else if (! declp)
/* Local classes have the same access as the enclosing function. */
context = decl_function_context (TYPE_MAIN_DECL (supplicant));
else
context = NULL_TREE;
/* A namespace is not friend to anybody. */
if (context && TREE_CODE (context) == NAMESPACE_DECL)
context = NULL_TREE;
if (context)
return is_friend (type, context);
return 0;
}
/* Add a new friend to the friends of the aggregate type TYPE.
DECL is the FUNCTION_DECL of the friend being added. */
void
add_friend (type, decl)
tree type, decl;
{
tree typedecl;
tree list;
tree name;
if (decl == error_mark_node)
return;
typedecl = TYPE_MAIN_DECL (type);
list = DECL_FRIENDLIST (typedecl);
name = DECL_NAME (decl);
type = TREE_TYPE (typedecl);
while (list)
{
if (name == FRIEND_NAME (list))
{
tree friends = FRIEND_DECLS (list);
for (; friends ; friends = TREE_CHAIN (friends))
{
if (decl == TREE_VALUE (friends))
{
warning ("`%D' is already a friend of class `%T'",
decl, type);
cp_warning_at ("previous friend declaration of `%D'",
TREE_VALUE (friends));
return;
}
}
TREE_VALUE (list) = tree_cons (error_mark_node, decl,
TREE_VALUE (list));
return;
}
list = TREE_CHAIN (list);
}
DECL_FRIENDLIST (typedecl)
= tree_cons (DECL_NAME (decl), build_tree_list (error_mark_node, decl),
DECL_FRIENDLIST (typedecl));
if (!uses_template_parms (type))
DECL_BEFRIENDING_CLASSES (decl)
= tree_cons (NULL_TREE, type,
DECL_BEFRIENDING_CLASSES (decl));
}
/* Make FRIEND_TYPE a friend class to TYPE. If FRIEND_TYPE has already
been defined, we make all of its member functions friends of
TYPE. If not, we make it a pending friend, which can later be added
when its definition is seen. If a type is defined, then its TYPE_DECL's
DECL_UNDEFINED_FRIENDS contains a (possibly empty) list of friend
classes that are not defined. If a type has not yet been defined,
then the DECL_WAITING_FRIENDS contains a list of types
waiting to make it their friend. Note that these two can both
be in use at the same time! */
void
make_friend_class (type, friend_type)
tree type, friend_type;
{
tree classes;
int is_template_friend;
if (! IS_AGGR_TYPE (friend_type))
{
error ("invalid type `%T' declared `friend'", friend_type);
return;
}
if (CLASS_TYPE_P (friend_type)
&& CLASSTYPE_TEMPLATE_SPECIALIZATION (friend_type)
&& uses_template_parms (friend_type))
{
/* [temp.friend]
Friend declarations shall not declare partial
specializations. */
error ("partial specialization `%T' declared `friend'",
friend_type);
return;
}
if (processing_template_decl > template_class_depth (type))
/* If the TYPE is a template then it makes sense for it to be
friends with itself; this means that each instantiation is
friends with all other instantiations. */
is_template_friend = 1;
else if (same_type_p (type, friend_type))
{
pedwarn ("class `%T' is implicitly friends with itself",
type);
return;
}
else
is_template_friend = 0;
/* [temp.friend]
A friend of a class or class template can be a function or
class template, a specialization of a function template or
class template, or an ordinary (nontemplate) function or
class. */
if (!is_template_friend)
;/* ok */
else if (TREE_CODE (friend_type) == TYPENAME_TYPE)
{
/* template <class T> friend typename S<T>::X; */
error ("typename type `%#T' declared `friend'", friend_type);
return;
}
else if (TREE_CODE (friend_type) == TEMPLATE_TYPE_PARM)
{
/* template <class T> friend class T; */
error ("template parameter type `%T' declared `friend'", friend_type);
return;
}
else if (!CLASSTYPE_TEMPLATE_INFO (friend_type))
{
/* template <class T> friend class A; where A is not a template */
error ("`%#T' is not a template", friend_type);
return;
}
if (is_template_friend)
friend_type = CLASSTYPE_TI_TEMPLATE (friend_type);
classes = CLASSTYPE_FRIEND_CLASSES (type);
while (classes
/* Stop if we find the same type on the list. */
&& !(TREE_CODE (TREE_VALUE (classes)) == TEMPLATE_DECL ?
friend_type == TREE_VALUE (classes) :
same_type_p (TREE_VALUE (classes), friend_type)))
classes = TREE_CHAIN (classes);
if (classes)
warning ("`%T' is already a friend of `%T'",
TREE_VALUE (classes), type);
else
{
CLASSTYPE_FRIEND_CLASSES (type)
= tree_cons (NULL_TREE, friend_type, CLASSTYPE_FRIEND_CLASSES (type));
if (is_template_friend)
friend_type = TREE_TYPE (friend_type);
if (!uses_template_parms (type))
CLASSTYPE_BEFRIENDING_CLASSES (friend_type)
= tree_cons (NULL_TREE, type,
CLASSTYPE_BEFRIENDING_CLASSES (friend_type));
}
}
/* Main friend processor. This is large, and for modularity purposes,
has been removed from grokdeclarator. It returns `void_type_node'
to indicate that something happened, though a FIELD_DECL is
not returned.
CTYPE is the class this friend belongs to.
DECLARATOR is the name of the friend.
DECL is the FUNCTION_DECL that the friend is.
In case we are parsing a friend which is part of an inline
definition, we will need to store PARM_DECL chain that comes
with it into the DECL_ARGUMENTS slot of the FUNCTION_DECL.
FLAGS is just used for `grokclassfn'.
QUALS say what special qualifies should apply to the object
pointed to by `this'. */
tree
do_friend (ctype, declarator, decl, parmdecls, attrlist,
flags, quals, funcdef_flag)
tree ctype, declarator, decl, parmdecls, attrlist;
enum overload_flags flags;
tree quals;
int funcdef_flag;
{
int is_friend_template = 0;
/* Every decl that gets here is a friend of something. */
DECL_FRIEND_P (decl) = 1;
if (TREE_CODE (declarator) == TEMPLATE_ID_EXPR)
{
declarator = TREE_OPERAND (declarator, 0);
if (TREE_CODE (declarator) == LOOKUP_EXPR)
declarator = TREE_OPERAND (declarator, 0);
if (is_overloaded_fn (declarator))
declarator = DECL_NAME (get_first_fn (declarator));
}
if (TREE_CODE (decl) != FUNCTION_DECL)
abort ();
is_friend_template = PROCESSING_REAL_TEMPLATE_DECL_P ();
if (ctype)
{
tree cname = TYPE_NAME (ctype);
if (TREE_CODE (cname) == TYPE_DECL)
cname = DECL_NAME (cname);
/* A method friend. */
if (flags == NO_SPECIAL && ctype && declarator == cname)
DECL_CONSTRUCTOR_P (decl) = 1;
/* This will set up DECL_ARGUMENTS for us. */
grokclassfn (ctype, decl, flags, quals);
if (is_friend_template)
decl = DECL_TI_TEMPLATE (push_template_decl (decl));
else if (template_class_depth (current_class_type))
decl = push_template_decl_real (decl, /*is_friend=*/1);
/* We can't do lookup in a type that involves template
parameters. Instead, we rely on tsubst_friend_function
to check the validity of the declaration later. */
if (processing_template_decl)
add_friend (current_class_type, decl);
/* A nested class may declare a member of an enclosing class
to be a friend, so we do lookup here even if CTYPE is in
the process of being defined. */
else if (COMPLETE_TYPE_P (ctype) || TYPE_BEING_DEFINED (ctype))
{
decl = check_classfn (ctype, decl);
if (decl)
add_friend (current_class_type, decl);
}
else
error ("member `%D' declared as friend before type `%T' defined",
decl, ctype);
}
/* A global friend.
@@ or possibly a friend from a base class ?!? */
else if (TREE_CODE (decl) == FUNCTION_DECL)
{
/* Friends must all go through the overload machinery,
even though they may not technically be overloaded.
Note that because classes all wind up being top-level
in their scope, their friend wind up in top-level scope as well. */
DECL_ARGUMENTS (decl) = parmdecls;
if (funcdef_flag)
SET_DECL_FRIEND_CONTEXT (decl, current_class_type);
if (! DECL_USE_TEMPLATE (decl))
{
/* We must check whether the decl refers to template
arguments before push_template_decl_real adds a
reference to the containing template class. */
int warn = (warn_nontemplate_friend
&& ! funcdef_flag && ! is_friend_template
&& current_template_parms
&& uses_template_parms (decl));
if (is_friend_template
|| template_class_depth (current_class_type) != 0)
/* We can't call pushdecl for a template class, since in
general, such a declaration depends on template
parameters. Instead, we call pushdecl when the class
is instantiated. */
decl = push_template_decl_real (decl, /*is_friend=*/1);
else if (current_function_decl)
/* This must be a local class, so pushdecl will be ok, and
insert an unqualified friend into the local scope
(rather than the containing namespace scope, which the
next choice will do). */
decl = pushdecl (decl);
else
{
/* We can't use pushdecl, as we might be in a template
class specialization, and pushdecl will insert an
unqualified friend decl into the template parameter
scope, rather than the namespace containing it. */
tree ns = decl_namespace_context (decl);
push_nested_namespace (ns);
decl = pushdecl_namespace_level (decl);
pop_nested_namespace (ns);
}
if (warn)
{
static int explained;
warning ("friend declaration `%#D' declares a non-template function", decl);
if (! explained)
{
warning ("(if this is not what you intended, make sure the function template has already been declared and add <> after the function name here) -Wno-non-template-friend disables this warning");
explained = 1;
}
}
}
add_friend (current_class_type,
is_friend_template ? DECL_TI_TEMPLATE (decl) : decl);
DECL_FRIEND_P (decl) = 1;
}
/* Unfortunately, we have to handle attributes here. Normally we would
handle them in start_decl_1, but since this is a friend decl start_decl_1
never gets to see it. */
/* Set attributes here so if duplicate decl, will have proper attributes. */
cplus_decl_attributes (&decl, attrlist, 0);
return decl;
}