freebsd-skq/sys/rpc/svc_vc.c
dfr 79d2dfdaa6 Add the new kernel-mode NFS Lock Manager. To use it instead of the
user-mode lock manager, build a kernel with the NFSLOCKD option and
add '-k' to 'rpc_lockd_flags' in rc.conf.

Highlights include:

* Thread-safe kernel RPC client - many threads can use the same RPC
  client handle safely with replies being de-multiplexed at the socket
  upcall (typically driven directly by the NIC interrupt) and handed
  off to whichever thread matches the reply. For UDP sockets, many RPC
  clients can share the same socket. This allows the use of a single
  privileged UDP port number to talk to an arbitrary number of remote
  hosts.

* Single-threaded kernel RPC server. Adding support for multi-threaded
  server would be relatively straightforward and would follow
  approximately the Solaris KPI. A single thread should be sufficient
  for the NLM since it should rarely block in normal operation.

* Kernel mode NLM server supporting cancel requests and granted
  callbacks. I've tested the NLM server reasonably extensively - it
  passes both my own tests and the NFS Connectathon locking tests
  running on Solaris, Mac OS X and Ubuntu Linux.

* Userland NLM client supported. While the NLM server doesn't have
  support for the local NFS client's locking needs, it does have to
  field async replies and granted callbacks from remote NLMs that the
  local client has contacted. We relay these replies to the userland
  rpc.lockd over a local domain RPC socket.

* Robust deadlock detection for the local lock manager. In particular
  it will detect deadlocks caused by a lock request that covers more
  than one blocking request. As required by the NLM protocol, all
  deadlock detection happens synchronously - a user is guaranteed that
  if a lock request isn't rejected immediately, the lock will
  eventually be granted. The old system allowed for a 'deferred
  deadlock' condition where a blocked lock request could wake up and
  find that some other deadlock-causing lock owner had beaten them to
  the lock.

* Since both local and remote locks are managed by the same kernel
  locking code, local and remote processes can safely use file locks
  for mutual exclusion. Local processes have no fairness advantage
  compared to remote processes when contending to lock a region that
  has just been unlocked - the local lock manager enforces a strict
  first-come first-served model for both local and remote lockers.

Sponsored by:	Isilon Systems
PR:		95247 107555 115524 116679
MFC after:	2 weeks
2008-03-26 15:23:12 +00:00

747 lines
19 KiB
C

/* $NetBSD: svc_vc.c,v 1.7 2000/08/03 00:01:53 fvdl Exp $ */
/*
* Sun RPC is a product of Sun Microsystems, Inc. and is provided for
* unrestricted use provided that this legend is included on all tape
* media and as a part of the software program in whole or part. Users
* may copy or modify Sun RPC without charge, but are not authorized
* to license or distribute it to anyone else except as part of a product or
* program developed by the user.
*
* SUN RPC IS PROVIDED AS IS WITH NO WARRANTIES OF ANY KIND INCLUDING THE
* WARRANTIES OF DESIGN, MERCHANTIBILITY AND FITNESS FOR A PARTICULAR
* PURPOSE, OR ARISING FROM A COURSE OF DEALING, USAGE OR TRADE PRACTICE.
*
* Sun RPC is provided with no support and without any obligation on the
* part of Sun Microsystems, Inc. to assist in its use, correction,
* modification or enhancement.
*
* SUN MICROSYSTEMS, INC. SHALL HAVE NO LIABILITY WITH RESPECT TO THE
* INFRINGEMENT OF COPYRIGHTS, TRADE SECRETS OR ANY PATENTS BY SUN RPC
* OR ANY PART THEREOF.
*
* In no event will Sun Microsystems, Inc. be liable for any lost revenue
* or profits or other special, indirect and consequential damages, even if
* Sun has been advised of the possibility of such damages.
*
* Sun Microsystems, Inc.
* 2550 Garcia Avenue
* Mountain View, California 94043
*/
#if defined(LIBC_SCCS) && !defined(lint)
static char *sccsid2 = "@(#)svc_tcp.c 1.21 87/08/11 Copyr 1984 Sun Micro";
static char *sccsid = "@(#)svc_tcp.c 2.2 88/08/01 4.0 RPCSRC";
#endif
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
/*
* svc_vc.c, Server side for Connection Oriented based RPC.
*
* Actually implements two flavors of transporter -
* a tcp rendezvouser (a listner and connection establisher)
* and a record/tcp stream.
*/
#include <sys/param.h>
#include <sys/lock.h>
#include <sys/kernel.h>
#include <sys/malloc.h>
#include <sys/mbuf.h>
#include <sys/mutex.h>
#include <sys/protosw.h>
#include <sys/queue.h>
#include <sys/socket.h>
#include <sys/socketvar.h>
#include <sys/systm.h>
#include <sys/uio.h>
#include <netinet/tcp.h>
#include <rpc/rpc.h>
#include "rpc_com.h"
static bool_t svc_vc_rendezvous_recv(SVCXPRT *, struct rpc_msg *);
static enum xprt_stat svc_vc_rendezvous_stat(SVCXPRT *);
static void svc_vc_rendezvous_destroy(SVCXPRT *);
static bool_t svc_vc_null(void);
static void svc_vc_destroy(SVCXPRT *);
static enum xprt_stat svc_vc_stat(SVCXPRT *);
static bool_t svc_vc_recv(SVCXPRT *, struct rpc_msg *);
static bool_t svc_vc_getargs(SVCXPRT *, xdrproc_t, void *);
static bool_t svc_vc_freeargs(SVCXPRT *, xdrproc_t, void *);
static bool_t svc_vc_reply(SVCXPRT *, struct rpc_msg *);
static bool_t svc_vc_control(SVCXPRT *xprt, const u_int rq, void *in);
static bool_t svc_vc_rendezvous_control (SVCXPRT *xprt, const u_int rq,
void *in);
static SVCXPRT *svc_vc_create_conn(SVCPOOL *pool, struct socket *so,
struct sockaddr *raddr);
static int svc_vc_accept(struct socket *head, struct socket **sop);
static void svc_vc_soupcall(struct socket *so, void *arg, int waitflag);
static struct xp_ops svc_vc_rendezvous_ops = {
.xp_recv = svc_vc_rendezvous_recv,
.xp_stat = svc_vc_rendezvous_stat,
.xp_getargs = (bool_t (*)(SVCXPRT *, xdrproc_t, void *))svc_vc_null,
.xp_reply = (bool_t (*)(SVCXPRT *, struct rpc_msg *))svc_vc_null,
.xp_freeargs = (bool_t (*)(SVCXPRT *, xdrproc_t, void *))svc_vc_null,
.xp_destroy = svc_vc_rendezvous_destroy,
.xp_control = svc_vc_rendezvous_control
};
static struct xp_ops svc_vc_ops = {
.xp_recv = svc_vc_recv,
.xp_stat = svc_vc_stat,
.xp_getargs = svc_vc_getargs,
.xp_reply = svc_vc_reply,
.xp_freeargs = svc_vc_freeargs,
.xp_destroy = svc_vc_destroy,
.xp_control = svc_vc_control
};
struct cf_conn { /* kept in xprt->xp_p1 for actual connection */
enum xprt_stat strm_stat;
struct mbuf *mpending; /* unparsed data read from the socket */
struct mbuf *mreq; /* current record being built from mpending */
uint32_t resid; /* number of bytes needed for fragment */
bool_t eor; /* reading last fragment of current record */
};
/*
* Usage:
* xprt = svc_vc_create(sock, send_buf_size, recv_buf_size);
*
* Creates, registers, and returns a (rpc) tcp based transporter.
* Once *xprt is initialized, it is registered as a transporter
* see (svc.h, xprt_register). This routine returns
* a NULL if a problem occurred.
*
* The filedescriptor passed in is expected to refer to a bound, but
* not yet connected socket.
*
* Since streams do buffered io similar to stdio, the caller can specify
* how big the send and receive buffers are via the second and third parms;
* 0 => use the system default.
*/
SVCXPRT *
svc_vc_create(SVCPOOL *pool, struct socket *so, size_t sendsize,
size_t recvsize)
{
SVCXPRT *xprt;
struct sockaddr* sa;
int error;
xprt = mem_alloc(sizeof(SVCXPRT));
mtx_init(&xprt->xp_lock, "xprt->xp_lock", NULL, MTX_DEF);
xprt->xp_pool = pool;
xprt->xp_socket = so;
xprt->xp_p1 = NULL;
xprt->xp_p2 = NULL;
xprt->xp_p3 = NULL;
xprt->xp_verf = _null_auth;
xprt->xp_ops = &svc_vc_rendezvous_ops;
error = so->so_proto->pr_usrreqs->pru_sockaddr(so, &sa);
if (error)
goto cleanup_svc_vc_create;
xprt->xp_ltaddr.buf = mem_alloc(sizeof (struct sockaddr_storage));
xprt->xp_ltaddr.maxlen = sizeof (struct sockaddr_storage);
xprt->xp_ltaddr.len = sa->sa_len;
memcpy(xprt->xp_ltaddr.buf, sa, sa->sa_len);
free(sa, M_SONAME);
xprt->xp_rtaddr.maxlen = 0;
xprt_register(xprt);
solisten(so, SOMAXCONN, curthread);
SOCKBUF_LOCK(&so->so_rcv);
so->so_upcallarg = xprt;
so->so_upcall = svc_vc_soupcall;
so->so_rcv.sb_flags |= SB_UPCALL;
SOCKBUF_UNLOCK(&so->so_rcv);
return (xprt);
cleanup_svc_vc_create:
if (xprt)
mem_free(xprt, sizeof(*xprt));
return (NULL);
}
/*
* Create a new transport for a socket optained via soaccept().
*/
SVCXPRT *
svc_vc_create_conn(SVCPOOL *pool, struct socket *so, struct sockaddr *raddr)
{
SVCXPRT *xprt = NULL;
struct cf_conn *cd = NULL;
struct sockaddr* sa = NULL;
int error;
cd = mem_alloc(sizeof(*cd));
cd->strm_stat = XPRT_IDLE;
xprt = mem_alloc(sizeof(SVCXPRT));
mtx_init(&xprt->xp_lock, "xprt->xp_lock", NULL, MTX_DEF);
xprt->xp_pool = pool;
xprt->xp_socket = so;
xprt->xp_p1 = cd;
xprt->xp_p2 = NULL;
xprt->xp_p3 = NULL;
xprt->xp_verf = _null_auth;
xprt->xp_ops = &svc_vc_ops;
xprt->xp_rtaddr.buf = mem_alloc(sizeof (struct sockaddr_storage));
xprt->xp_rtaddr.maxlen = sizeof (struct sockaddr_storage);
xprt->xp_rtaddr.len = raddr->sa_len;
memcpy(xprt->xp_rtaddr.buf, raddr, raddr->sa_len);
error = so->so_proto->pr_usrreqs->pru_sockaddr(so, &sa);
if (error)
goto cleanup_svc_vc_create;
xprt->xp_ltaddr.buf = mem_alloc(sizeof (struct sockaddr_storage));
xprt->xp_ltaddr.maxlen = sizeof (struct sockaddr_storage);
xprt->xp_ltaddr.len = sa->sa_len;
memcpy(xprt->xp_ltaddr.buf, sa, sa->sa_len);
free(sa, M_SONAME);
xprt_register(xprt);
SOCKBUF_LOCK(&so->so_rcv);
so->so_upcallarg = xprt;
so->so_upcall = svc_vc_soupcall;
so->so_rcv.sb_flags |= SB_UPCALL;
SOCKBUF_UNLOCK(&so->so_rcv);
/*
* Throw the transport into the active list in case it already
* has some data buffered.
*/
mtx_lock(&xprt->xp_lock);
xprt_active(xprt);
mtx_unlock(&xprt->xp_lock);
return (xprt);
cleanup_svc_vc_create:
if (xprt) {
if (xprt->xp_ltaddr.buf)
mem_free(xprt->xp_ltaddr.buf,
sizeof(struct sockaddr_storage));
if (xprt->xp_rtaddr.buf)
mem_free(xprt->xp_rtaddr.buf,
sizeof(struct sockaddr_storage));
mem_free(xprt, sizeof(*xprt));
}
if (cd)
mem_free(cd, sizeof(*cd));
return (NULL);
}
/*
* This does all of the accept except the final call to soaccept. The
* caller will call soaccept after dropping its locks (soaccept may
* call malloc).
*/
int
svc_vc_accept(struct socket *head, struct socket **sop)
{
int error = 0;
struct socket *so;
if ((head->so_options & SO_ACCEPTCONN) == 0) {
error = EINVAL;
goto done;
}
#ifdef MAC
SOCK_LOCK(head);
error = mac_socket_check_accept(td->td_ucred, head);
SOCK_UNLOCK(head);
if (error != 0)
goto done;
#endif
ACCEPT_LOCK();
if (TAILQ_EMPTY(&head->so_comp)) {
ACCEPT_UNLOCK();
error = EWOULDBLOCK;
goto done;
}
so = TAILQ_FIRST(&head->so_comp);
KASSERT(!(so->so_qstate & SQ_INCOMP), ("svc_vc_accept: so SQ_INCOMP"));
KASSERT(so->so_qstate & SQ_COMP, ("svc_vc_accept: so not SQ_COMP"));
/*
* Before changing the flags on the socket, we have to bump the
* reference count. Otherwise, if the protocol calls sofree(),
* the socket will be released due to a zero refcount.
* XXX might not need soref() since this is simpler than kern_accept.
*/
SOCK_LOCK(so); /* soref() and so_state update */
soref(so); /* file descriptor reference */
TAILQ_REMOVE(&head->so_comp, so, so_list);
head->so_qlen--;
so->so_state |= (head->so_state & SS_NBIO);
so->so_qstate &= ~SQ_COMP;
so->so_head = NULL;
SOCK_UNLOCK(so);
ACCEPT_UNLOCK();
*sop = so;
/* connection has been removed from the listen queue */
KNOTE_UNLOCKED(&head->so_rcv.sb_sel.si_note, 0);
done:
return (error);
}
/*ARGSUSED*/
static bool_t
svc_vc_rendezvous_recv(SVCXPRT *xprt, struct rpc_msg *msg)
{
struct socket *so = NULL;
struct sockaddr *sa = NULL;
struct sockopt opt;
int one = 1;
int error;
/*
* The socket upcall calls xprt_active() which will eventually
* cause the server to call us here. We attempt to accept a
* connection from the socket and turn it into a new
* transport. If the accept fails, we have drained all pending
* connections so we call xprt_inactive().
*
* The lock protects us in the case where a new connection arrives
* on the socket after our call to accept fails with
* EWOULDBLOCK - the call to xprt_active() in the upcall will
* happen only after our call to xprt_inactive() which ensures
* that we will remain active. It might be possible to use
* SOCKBUF_LOCK for this - its not clear to me what locks are
* held during the upcall.
*/
mtx_lock(&xprt->xp_lock);
error = svc_vc_accept(xprt->xp_socket, &so);
if (error == EWOULDBLOCK) {
xprt_inactive(xprt);
mtx_unlock(&xprt->xp_lock);
return (FALSE);
}
if (error) {
SOCKBUF_LOCK(&xprt->xp_socket->so_rcv);
xprt->xp_socket->so_upcallarg = NULL;
xprt->xp_socket->so_upcall = NULL;
xprt->xp_socket->so_rcv.sb_flags &= ~SB_UPCALL;
SOCKBUF_UNLOCK(&xprt->xp_socket->so_rcv);
xprt_inactive(xprt);
mtx_unlock(&xprt->xp_lock);
return (FALSE);
}
mtx_unlock(&xprt->xp_lock);
sa = 0;
error = soaccept(so, &sa);
if (!error) {
bzero(&opt, sizeof(struct sockopt));
opt.sopt_dir = SOPT_SET;
opt.sopt_level = IPPROTO_TCP;
opt.sopt_name = TCP_NODELAY;
opt.sopt_val = &one;
opt.sopt_valsize = sizeof(one);
error = sosetopt(so, &opt);
}
if (error) {
/*
* XXX not sure if I need to call sofree or soclose here.
*/
if (sa)
free(sa, M_SONAME);
return (FALSE);
}
/*
* svc_vc_create_conn will call xprt_register - we don't need
* to do anything with the new connection.
*/
svc_vc_create_conn(xprt->xp_pool, so, sa);
free(sa, M_SONAME);
return (FALSE); /* there is never an rpc msg to be processed */
}
/*ARGSUSED*/
static enum xprt_stat
svc_vc_rendezvous_stat(SVCXPRT *xprt)
{
return (XPRT_IDLE);
}
static void
svc_vc_destroy_common(SVCXPRT *xprt)
{
SOCKBUF_LOCK(&xprt->xp_socket->so_rcv);
xprt->xp_socket->so_upcallarg = NULL;
xprt->xp_socket->so_upcall = NULL;
xprt->xp_socket->so_rcv.sb_flags &= ~SB_UPCALL;
SOCKBUF_UNLOCK(&xprt->xp_socket->so_rcv);
xprt_unregister(xprt);
mtx_destroy(&xprt->xp_lock);
if (xprt->xp_socket)
(void)soclose(xprt->xp_socket);
if (xprt->xp_rtaddr.buf)
(void) mem_free(xprt->xp_rtaddr.buf, xprt->xp_rtaddr.maxlen);
if (xprt->xp_ltaddr.buf)
(void) mem_free(xprt->xp_ltaddr.buf, xprt->xp_ltaddr.maxlen);
(void) mem_free(xprt, sizeof (SVCXPRT));
}
static void
svc_vc_rendezvous_destroy(SVCXPRT *xprt)
{
svc_vc_destroy_common(xprt);
}
static void
svc_vc_destroy(SVCXPRT *xprt)
{
struct cf_conn *cd = (struct cf_conn *)xprt->xp_p1;
svc_vc_destroy_common(xprt);
if (cd->mreq)
m_freem(cd->mreq);
if (cd->mpending)
m_freem(cd->mpending);
mem_free(cd, sizeof(*cd));
}
/*ARGSUSED*/
static bool_t
svc_vc_control(SVCXPRT *xprt, const u_int rq, void *in)
{
return (FALSE);
}
static bool_t
svc_vc_rendezvous_control(SVCXPRT *xprt, const u_int rq, void *in)
{
return (FALSE);
}
static enum xprt_stat
svc_vc_stat(SVCXPRT *xprt)
{
struct cf_conn *cd;
struct mbuf *m;
size_t n;
cd = (struct cf_conn *)(xprt->xp_p1);
if (cd->strm_stat == XPRT_DIED)
return (XPRT_DIED);
/*
* Return XPRT_MOREREQS if we have buffered data and we are
* mid-record or if we have enough data for a record marker.
*/
if (cd->mpending) {
if (cd->resid)
return (XPRT_MOREREQS);
n = 0;
m = cd->mpending;
while (m && n < sizeof(uint32_t)) {
n += m->m_len;
m = m->m_next;
}
if (n >= sizeof(uint32_t))
return (XPRT_MOREREQS);
}
return (XPRT_IDLE);
}
static bool_t
svc_vc_recv(SVCXPRT *xprt, struct rpc_msg *msg)
{
struct cf_conn *cd = (struct cf_conn *) xprt->xp_p1;
struct uio uio;
struct mbuf *m;
int error, rcvflag;
for (;;) {
/*
* If we have an mbuf chain in cd->mpending, try to parse a
* record from it, leaving the result in cd->mreq. If we don't
* have a complete record, leave the partial result in
* cd->mreq and try to read more from the socket.
*/
if (cd->mpending) {
/*
* If cd->resid is non-zero, we have part of the
* record already, otherwise we are expecting a record
* marker.
*/
if (!cd->resid) {
/*
* See if there is enough data buffered to
* make up a record marker. Make sure we can
* handle the case where the record marker is
* split across more than one mbuf.
*/
size_t n = 0;
uint32_t header;
m = cd->mpending;
while (n < sizeof(uint32_t) && m) {
n += m->m_len;
m = m->m_next;
}
if (n < sizeof(uint32_t))
goto readmore;
cd->mpending = m_pullup(cd->mpending, sizeof(uint32_t));
memcpy(&header, mtod(cd->mpending, uint32_t *),
sizeof(header));
header = ntohl(header);
cd->eor = (header & 0x80000000) != 0;
cd->resid = header & 0x7fffffff;
m_adj(cd->mpending, sizeof(uint32_t));
}
/*
* Start pulling off mbufs from cd->mpending
* until we either have a complete record or
* we run out of data. We use m_split to pull
* data - it will pull as much as possible and
* split the last mbuf if necessary.
*/
while (cd->mpending && cd->resid) {
m = cd->mpending;
cd->mpending = m_split(cd->mpending, cd->resid,
M_WAIT);
if (cd->mreq)
m_last(cd->mreq)->m_next = m;
else
cd->mreq = m;
while (m) {
cd->resid -= m->m_len;
m = m->m_next;
}
}
/*
* If cd->resid is zero now, we have managed to
* receive a record fragment from the stream. Check
* for the end-of-record mark to see if we need more.
*/
if (cd->resid == 0) {
if (!cd->eor)
continue;
/*
* Success - we have a complete record in
* cd->mreq.
*/
xdrmbuf_create(&xprt->xp_xdrreq, cd->mreq, XDR_DECODE);
cd->mreq = NULL;
if (! xdr_callmsg(&xprt->xp_xdrreq, msg)) {
XDR_DESTROY(&xprt->xp_xdrreq);
return (FALSE);
}
xprt->xp_xid = msg->rm_xid;
return (TRUE);
}
}
readmore:
/*
* The socket upcall calls xprt_active() which will eventually
* cause the server to call us here. We attempt to
* read as much as possible from the socket and put
* the result in cd->mpending. If the read fails,
* we have drained both cd->mpending and the socket so
* we can call xprt_inactive().
*
* The lock protects us in the case where a new packet arrives
* on the socket after our call to soreceive fails with
* EWOULDBLOCK - the call to xprt_active() in the upcall will
* happen only after our call to xprt_inactive() which ensures
* that we will remain active. It might be possible to use
* SOCKBUF_LOCK for this - its not clear to me what locks are
* held during the upcall.
*/
mtx_lock(&xprt->xp_lock);
uio.uio_resid = 1000000000;
uio.uio_td = curthread;
m = NULL;
rcvflag = MSG_DONTWAIT;
error = soreceive(xprt->xp_socket, NULL, &uio, &m, NULL,
&rcvflag);
if (error == EWOULDBLOCK) {
xprt_inactive(xprt);
mtx_unlock(&xprt->xp_lock);
return (FALSE);
}
if (error) {
SOCKBUF_LOCK(&xprt->xp_socket->so_rcv);
xprt->xp_socket->so_upcallarg = NULL;
xprt->xp_socket->so_upcall = NULL;
xprt->xp_socket->so_rcv.sb_flags &= ~SB_UPCALL;
SOCKBUF_UNLOCK(&xprt->xp_socket->so_rcv);
xprt_inactive(xprt);
cd->strm_stat = XPRT_DIED;
mtx_unlock(&xprt->xp_lock);
return (FALSE);
}
if (!m) {
/*
* EOF - the other end has closed the socket.
*/
cd->strm_stat = XPRT_DIED;
mtx_unlock(&xprt->xp_lock);
return (FALSE);
}
if (cd->mpending)
m_last(cd->mpending)->m_next = m;
else
cd->mpending = m;
mtx_unlock(&xprt->xp_lock);
}
}
static bool_t
svc_vc_getargs(SVCXPRT *xprt, xdrproc_t xdr_args, void *args_ptr)
{
return (xdr_args(&xprt->xp_xdrreq, args_ptr));
}
static bool_t
svc_vc_freeargs(SVCXPRT *xprt, xdrproc_t xdr_args, void *args_ptr)
{
XDR xdrs;
/*
* Free the request mbuf here - this allows us to handle
* protocols where not all requests have replies
* (i.e. NLM). Note that xdrmbuf_destroy handles being called
* twice correctly - the mbuf will only be freed once.
*/
XDR_DESTROY(&xprt->xp_xdrreq);
xdrs.x_op = XDR_FREE;
return (xdr_args(&xdrs, args_ptr));
}
static bool_t
svc_vc_reply(SVCXPRT *xprt, struct rpc_msg *msg)
{
struct mbuf *mrep;
bool_t stat = FALSE;
int error;
/*
* Leave space for record mark.
*/
MGETHDR(mrep, M_WAIT, MT_DATA);
MCLGET(mrep, M_WAIT);
mrep->m_len = 0;
mrep->m_data += sizeof(uint32_t);
xdrmbuf_create(&xprt->xp_xdrrep, mrep, XDR_ENCODE);
msg->rm_xid = xprt->xp_xid;
if (xdr_replymsg(&xprt->xp_xdrrep, msg)) {
m_fixhdr(mrep);
/*
* Prepend a record marker containing the reply length.
*/
M_PREPEND(mrep, sizeof(uint32_t), M_WAIT);
*mtod(mrep, uint32_t *) =
htonl(0x80000000 | (mrep->m_pkthdr.len
- sizeof(uint32_t)));
error = sosend(xprt->xp_socket, NULL, NULL, mrep, NULL,
0, curthread);
if (!error) {
stat = TRUE;
}
} else {
m_freem(mrep);
}
/*
* This frees the request mbuf chain as well. The reply mbuf
* chain was consumed by sosend.
*/
XDR_DESTROY(&xprt->xp_xdrreq);
XDR_DESTROY(&xprt->xp_xdrrep);
xprt->xp_p2 = NULL;
return (stat);
}
static bool_t
svc_vc_null()
{
return (FALSE);
}
static void
svc_vc_soupcall(struct socket *so, void *arg, int waitflag)
{
SVCXPRT *xprt = (SVCXPRT *) arg;
mtx_lock(&xprt->xp_lock);
xprt_active(xprt);
mtx_unlock(&xprt->xp_lock);
}
#if 0
/*
* Get the effective UID of the sending process. Used by rpcbind, keyserv
* and rpc.yppasswdd on AF_LOCAL.
*/
int
__rpc_get_local_uid(SVCXPRT *transp, uid_t *uid) {
int sock, ret;
gid_t egid;
uid_t euid;
struct sockaddr *sa;
sock = transp->xp_fd;
sa = (struct sockaddr *)transp->xp_rtaddr.buf;
if (sa->sa_family == AF_LOCAL) {
ret = getpeereid(sock, &euid, &egid);
if (ret == 0)
*uid = euid;
return (ret);
} else
return (-1);
}
#endif