Rafal Jaworowski d1d3233ebd Convert Freescale PowerPC platforms to FDT convention.
The following systems are affected:

  - MPC8555CDS
  - MPC8572DS

This overhaul covers the following major changes:

  - All integrated peripherals drivers for Freescale MPC85XX SoC, which are
    currently in the FreeBSD source tree are reworked and adjusted so they
    derive config data out of the device tree blob (instead of hard coded /
    tabelarized values).

  - This includes: LBC, PCI / PCI-Express, I2C, DS1553, OpenPIC, TSEC, SEC,
    QUICC, UART, CFI.

  - Thanks to the common FDT infrastrucutre (fdtbus, simplebus) we retire
    ocpbus(4) driver, which was based on hard-coded config data.

Note that world for these platforms has to be built WITH_FDT.

Reviewed by:	imp
Sponsored by:	The FreeBSD Foundation
2010-07-11 21:08:29 +00:00

3156 lines
80 KiB
C

/*-
* Copyright (C) 2007-2009 Semihalf, Rafal Jaworowski <raj@semihalf.com>
* Copyright (C) 2006 Semihalf, Marian Balakowicz <m8@semihalf.com>
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN
* NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
* TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
* LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
* NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
* Some hw specific parts of this pmap were derived or influenced
* by NetBSD's ibm4xx pmap module. More generic code is shared with
* a few other pmap modules from the FreeBSD tree.
*/
/*
* VM layout notes:
*
* Kernel and user threads run within one common virtual address space
* defined by AS=0.
*
* Virtual address space layout:
* -----------------------------
* 0x0000_0000 - 0xafff_ffff : user process
* 0xb000_0000 - 0xbfff_ffff : pmap_mapdev()-ed area (PCI/PCIE etc.)
* 0xc000_0000 - 0xc0ff_ffff : kernel reserved
* 0xc000_0000 - data_end : kernel code+data, env, metadata etc.
* 0xc100_0000 - 0xfeef_ffff : KVA
* 0xc100_0000 - 0xc100_3fff : reserved for page zero/copy
* 0xc100_4000 - 0xc200_3fff : reserved for ptbl bufs
* 0xc200_4000 - 0xc200_8fff : guard page + kstack0
* 0xc200_9000 - 0xfeef_ffff : actual free KVA space
* 0xfef0_0000 - 0xffff_ffff : I/O devices region
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include <sys/types.h>
#include <sys/param.h>
#include <sys/malloc.h>
#include <sys/ktr.h>
#include <sys/proc.h>
#include <sys/user.h>
#include <sys/queue.h>
#include <sys/systm.h>
#include <sys/kernel.h>
#include <sys/msgbuf.h>
#include <sys/lock.h>
#include <sys/mutex.h>
#include <sys/smp.h>
#include <sys/vmmeter.h>
#include <vm/vm.h>
#include <vm/vm_page.h>
#include <vm/vm_kern.h>
#include <vm/vm_pageout.h>
#include <vm/vm_extern.h>
#include <vm/vm_object.h>
#include <vm/vm_param.h>
#include <vm/vm_map.h>
#include <vm/vm_pager.h>
#include <vm/uma.h>
#include <machine/cpu.h>
#include <machine/pcb.h>
#include <machine/platform.h>
#include <machine/tlb.h>
#include <machine/spr.h>
#include <machine/vmparam.h>
#include <machine/md_var.h>
#include <machine/mmuvar.h>
#include <machine/pmap.h>
#include <machine/pte.h>
#include "mmu_if.h"
#define DEBUG
#undef DEBUG
#ifdef DEBUG
#define debugf(fmt, args...) printf(fmt, ##args)
#else
#define debugf(fmt, args...)
#endif
#define TODO panic("%s: not implemented", __func__);
#include "opt_sched.h"
#ifndef SCHED_4BSD
#error "e500 only works with SCHED_4BSD which uses a global scheduler lock."
#endif
extern struct mtx sched_lock;
extern int dumpsys_minidump;
extern unsigned char _etext[];
extern unsigned char _end[];
/* Kernel physical load address. */
extern uint32_t kernload;
vm_offset_t kernstart;
vm_size_t kernsize;
/* Message buffer and tables. */
static vm_offset_t data_start;
static vm_size_t data_end;
/* Phys/avail memory regions. */
static struct mem_region *availmem_regions;
static int availmem_regions_sz;
static struct mem_region *physmem_regions;
static int physmem_regions_sz;
/* Reserved KVA space and mutex for mmu_booke_zero_page. */
static vm_offset_t zero_page_va;
static struct mtx zero_page_mutex;
static struct mtx tlbivax_mutex;
/*
* Reserved KVA space for mmu_booke_zero_page_idle. This is used
* by idle thred only, no lock required.
*/
static vm_offset_t zero_page_idle_va;
/* Reserved KVA space and mutex for mmu_booke_copy_page. */
static vm_offset_t copy_page_src_va;
static vm_offset_t copy_page_dst_va;
static struct mtx copy_page_mutex;
/**************************************************************************/
/* PMAP */
/**************************************************************************/
static void mmu_booke_enter_locked(mmu_t, pmap_t, vm_offset_t, vm_page_t,
vm_prot_t, boolean_t);
unsigned int kptbl_min; /* Index of the first kernel ptbl. */
unsigned int kernel_ptbls; /* Number of KVA ptbls. */
/*
* If user pmap is processed with mmu_booke_remove and the resident count
* drops to 0, there are no more pages to remove, so we need not continue.
*/
#define PMAP_REMOVE_DONE(pmap) \
((pmap) != kernel_pmap && (pmap)->pm_stats.resident_count == 0)
extern void tlb_lock(uint32_t *);
extern void tlb_unlock(uint32_t *);
extern void tid_flush(tlbtid_t);
/**************************************************************************/
/* TLB and TID handling */
/**************************************************************************/
/* Translation ID busy table */
static volatile pmap_t tidbusy[MAXCPU][TID_MAX + 1];
/*
* TLB0 capabilities (entry, way numbers etc.). These can vary between e500
* core revisions and should be read from h/w registers during early config.
*/
uint32_t tlb0_entries;
uint32_t tlb0_ways;
uint32_t tlb0_entries_per_way;
#define TLB0_ENTRIES (tlb0_entries)
#define TLB0_WAYS (tlb0_ways)
#define TLB0_ENTRIES_PER_WAY (tlb0_entries_per_way)
#define TLB1_ENTRIES 16
/* In-ram copy of the TLB1 */
static tlb_entry_t tlb1[TLB1_ENTRIES];
/* Next free entry in the TLB1 */
static unsigned int tlb1_idx;
static tlbtid_t tid_alloc(struct pmap *);
static void tlb_print_entry(int, uint32_t, uint32_t, uint32_t, uint32_t);
static int tlb1_set_entry(vm_offset_t, vm_offset_t, vm_size_t, uint32_t);
static void tlb1_write_entry(unsigned int);
static int tlb1_iomapped(int, vm_paddr_t, vm_size_t, vm_offset_t *);
static vm_size_t tlb1_mapin_region(vm_offset_t, vm_offset_t, vm_size_t);
static vm_size_t tsize2size(unsigned int);
static unsigned int size2tsize(vm_size_t);
static unsigned int ilog2(unsigned int);
static void set_mas4_defaults(void);
static inline void tlb0_flush_entry(vm_offset_t);
static inline unsigned int tlb0_tableidx(vm_offset_t, unsigned int);
/**************************************************************************/
/* Page table management */
/**************************************************************************/
/* Data for the pv entry allocation mechanism */
static uma_zone_t pvzone;
static struct vm_object pvzone_obj;
static int pv_entry_count = 0, pv_entry_max = 0, pv_entry_high_water = 0;
#define PV_ENTRY_ZONE_MIN 2048 /* min pv entries in uma zone */
#ifndef PMAP_SHPGPERPROC
#define PMAP_SHPGPERPROC 200
#endif
static void ptbl_init(void);
static struct ptbl_buf *ptbl_buf_alloc(void);
static void ptbl_buf_free(struct ptbl_buf *);
static void ptbl_free_pmap_ptbl(pmap_t, pte_t *);
static pte_t *ptbl_alloc(mmu_t, pmap_t, unsigned int);
static void ptbl_free(mmu_t, pmap_t, unsigned int);
static void ptbl_hold(mmu_t, pmap_t, unsigned int);
static int ptbl_unhold(mmu_t, pmap_t, unsigned int);
static vm_paddr_t pte_vatopa(mmu_t, pmap_t, vm_offset_t);
static pte_t *pte_find(mmu_t, pmap_t, vm_offset_t);
static void pte_enter(mmu_t, pmap_t, vm_page_t, vm_offset_t, uint32_t);
static int pte_remove(mmu_t, pmap_t, vm_offset_t, uint8_t);
static pv_entry_t pv_alloc(void);
static void pv_free(pv_entry_t);
static void pv_insert(pmap_t, vm_offset_t, vm_page_t);
static void pv_remove(pmap_t, vm_offset_t, vm_page_t);
/* Number of kva ptbl buffers, each covering one ptbl (PTBL_PAGES). */
#define PTBL_BUFS (128 * 16)
struct ptbl_buf {
TAILQ_ENTRY(ptbl_buf) link; /* list link */
vm_offset_t kva; /* va of mapping */
};
/* ptbl free list and a lock used for access synchronization. */
static TAILQ_HEAD(, ptbl_buf) ptbl_buf_freelist;
static struct mtx ptbl_buf_freelist_lock;
/* Base address of kva space allocated fot ptbl bufs. */
static vm_offset_t ptbl_buf_pool_vabase;
/* Pointer to ptbl_buf structures. */
static struct ptbl_buf *ptbl_bufs;
void pmap_bootstrap_ap(volatile uint32_t *);
/*
* Kernel MMU interface
*/
static void mmu_booke_change_wiring(mmu_t, pmap_t, vm_offset_t, boolean_t);
static void mmu_booke_clear_modify(mmu_t, vm_page_t);
static void mmu_booke_clear_reference(mmu_t, vm_page_t);
static void mmu_booke_copy(mmu_t, pmap_t, pmap_t, vm_offset_t,
vm_size_t, vm_offset_t);
static void mmu_booke_copy_page(mmu_t, vm_page_t, vm_page_t);
static void mmu_booke_enter(mmu_t, pmap_t, vm_offset_t, vm_page_t,
vm_prot_t, boolean_t);
static void mmu_booke_enter_object(mmu_t, pmap_t, vm_offset_t, vm_offset_t,
vm_page_t, vm_prot_t);
static void mmu_booke_enter_quick(mmu_t, pmap_t, vm_offset_t, vm_page_t,
vm_prot_t);
static vm_paddr_t mmu_booke_extract(mmu_t, pmap_t, vm_offset_t);
static vm_page_t mmu_booke_extract_and_hold(mmu_t, pmap_t, vm_offset_t,
vm_prot_t);
static void mmu_booke_init(mmu_t);
static boolean_t mmu_booke_is_modified(mmu_t, vm_page_t);
static boolean_t mmu_booke_is_prefaultable(mmu_t, pmap_t, vm_offset_t);
static boolean_t mmu_booke_is_referenced(mmu_t, vm_page_t);
static boolean_t mmu_booke_ts_referenced(mmu_t, vm_page_t);
static vm_offset_t mmu_booke_map(mmu_t, vm_offset_t *, vm_offset_t, vm_offset_t,
int);
static int mmu_booke_mincore(mmu_t, pmap_t, vm_offset_t,
vm_paddr_t *);
static void mmu_booke_object_init_pt(mmu_t, pmap_t, vm_offset_t,
vm_object_t, vm_pindex_t, vm_size_t);
static boolean_t mmu_booke_page_exists_quick(mmu_t, pmap_t, vm_page_t);
static void mmu_booke_page_init(mmu_t, vm_page_t);
static int mmu_booke_page_wired_mappings(mmu_t, vm_page_t);
static void mmu_booke_pinit(mmu_t, pmap_t);
static void mmu_booke_pinit0(mmu_t, pmap_t);
static void mmu_booke_protect(mmu_t, pmap_t, vm_offset_t, vm_offset_t,
vm_prot_t);
static void mmu_booke_qenter(mmu_t, vm_offset_t, vm_page_t *, int);
static void mmu_booke_qremove(mmu_t, vm_offset_t, int);
static void mmu_booke_release(mmu_t, pmap_t);
static void mmu_booke_remove(mmu_t, pmap_t, vm_offset_t, vm_offset_t);
static void mmu_booke_remove_all(mmu_t, vm_page_t);
static void mmu_booke_remove_write(mmu_t, vm_page_t);
static void mmu_booke_zero_page(mmu_t, vm_page_t);
static void mmu_booke_zero_page_area(mmu_t, vm_page_t, int, int);
static void mmu_booke_zero_page_idle(mmu_t, vm_page_t);
static void mmu_booke_activate(mmu_t, struct thread *);
static void mmu_booke_deactivate(mmu_t, struct thread *);
static void mmu_booke_bootstrap(mmu_t, vm_offset_t, vm_offset_t);
static void *mmu_booke_mapdev(mmu_t, vm_offset_t, vm_size_t);
static void mmu_booke_unmapdev(mmu_t, vm_offset_t, vm_size_t);
static vm_offset_t mmu_booke_kextract(mmu_t, vm_offset_t);
static void mmu_booke_kenter(mmu_t, vm_offset_t, vm_offset_t);
static void mmu_booke_kremove(mmu_t, vm_offset_t);
static boolean_t mmu_booke_dev_direct_mapped(mmu_t, vm_offset_t, vm_size_t);
static void mmu_booke_sync_icache(mmu_t, pmap_t, vm_offset_t,
vm_size_t);
static vm_offset_t mmu_booke_dumpsys_map(mmu_t, struct pmap_md *,
vm_size_t, vm_size_t *);
static void mmu_booke_dumpsys_unmap(mmu_t, struct pmap_md *,
vm_size_t, vm_offset_t);
static struct pmap_md *mmu_booke_scan_md(mmu_t, struct pmap_md *);
static mmu_method_t mmu_booke_methods[] = {
/* pmap dispatcher interface */
MMUMETHOD(mmu_change_wiring, mmu_booke_change_wiring),
MMUMETHOD(mmu_clear_modify, mmu_booke_clear_modify),
MMUMETHOD(mmu_clear_reference, mmu_booke_clear_reference),
MMUMETHOD(mmu_copy, mmu_booke_copy),
MMUMETHOD(mmu_copy_page, mmu_booke_copy_page),
MMUMETHOD(mmu_enter, mmu_booke_enter),
MMUMETHOD(mmu_enter_object, mmu_booke_enter_object),
MMUMETHOD(mmu_enter_quick, mmu_booke_enter_quick),
MMUMETHOD(mmu_extract, mmu_booke_extract),
MMUMETHOD(mmu_extract_and_hold, mmu_booke_extract_and_hold),
MMUMETHOD(mmu_init, mmu_booke_init),
MMUMETHOD(mmu_is_modified, mmu_booke_is_modified),
MMUMETHOD(mmu_is_prefaultable, mmu_booke_is_prefaultable),
MMUMETHOD(mmu_is_referenced, mmu_booke_is_referenced),
MMUMETHOD(mmu_ts_referenced, mmu_booke_ts_referenced),
MMUMETHOD(mmu_map, mmu_booke_map),
MMUMETHOD(mmu_mincore, mmu_booke_mincore),
MMUMETHOD(mmu_object_init_pt, mmu_booke_object_init_pt),
MMUMETHOD(mmu_page_exists_quick,mmu_booke_page_exists_quick),
MMUMETHOD(mmu_page_init, mmu_booke_page_init),
MMUMETHOD(mmu_page_wired_mappings, mmu_booke_page_wired_mappings),
MMUMETHOD(mmu_pinit, mmu_booke_pinit),
MMUMETHOD(mmu_pinit0, mmu_booke_pinit0),
MMUMETHOD(mmu_protect, mmu_booke_protect),
MMUMETHOD(mmu_qenter, mmu_booke_qenter),
MMUMETHOD(mmu_qremove, mmu_booke_qremove),
MMUMETHOD(mmu_release, mmu_booke_release),
MMUMETHOD(mmu_remove, mmu_booke_remove),
MMUMETHOD(mmu_remove_all, mmu_booke_remove_all),
MMUMETHOD(mmu_remove_write, mmu_booke_remove_write),
MMUMETHOD(mmu_sync_icache, mmu_booke_sync_icache),
MMUMETHOD(mmu_zero_page, mmu_booke_zero_page),
MMUMETHOD(mmu_zero_page_area, mmu_booke_zero_page_area),
MMUMETHOD(mmu_zero_page_idle, mmu_booke_zero_page_idle),
MMUMETHOD(mmu_activate, mmu_booke_activate),
MMUMETHOD(mmu_deactivate, mmu_booke_deactivate),
/* Internal interfaces */
MMUMETHOD(mmu_bootstrap, mmu_booke_bootstrap),
MMUMETHOD(mmu_dev_direct_mapped,mmu_booke_dev_direct_mapped),
MMUMETHOD(mmu_mapdev, mmu_booke_mapdev),
MMUMETHOD(mmu_kenter, mmu_booke_kenter),
MMUMETHOD(mmu_kextract, mmu_booke_kextract),
/* MMUMETHOD(mmu_kremove, mmu_booke_kremove), */
MMUMETHOD(mmu_unmapdev, mmu_booke_unmapdev),
/* dumpsys() support */
MMUMETHOD(mmu_dumpsys_map, mmu_booke_dumpsys_map),
MMUMETHOD(mmu_dumpsys_unmap, mmu_booke_dumpsys_unmap),
MMUMETHOD(mmu_scan_md, mmu_booke_scan_md),
{ 0, 0 }
};
static mmu_def_t booke_mmu = {
MMU_TYPE_BOOKE,
mmu_booke_methods,
0
};
MMU_DEF(booke_mmu);
static inline void
tlb_miss_lock(void)
{
#ifdef SMP
struct pcpu *pc;
if (!smp_started)
return;
SLIST_FOREACH(pc, &cpuhead, pc_allcpu) {
if (pc != pcpup) {
CTR3(KTR_PMAP, "%s: tlb miss LOCK of CPU=%d, "
"tlb_lock=%p", __func__, pc->pc_cpuid, pc->pc_booke_tlb_lock);
KASSERT((pc->pc_cpuid != PCPU_GET(cpuid)),
("tlb_miss_lock: tried to lock self"));
tlb_lock(pc->pc_booke_tlb_lock);
CTR1(KTR_PMAP, "%s: locked", __func__);
}
}
#endif
}
static inline void
tlb_miss_unlock(void)
{
#ifdef SMP
struct pcpu *pc;
if (!smp_started)
return;
SLIST_FOREACH(pc, &cpuhead, pc_allcpu) {
if (pc != pcpup) {
CTR2(KTR_PMAP, "%s: tlb miss UNLOCK of CPU=%d",
__func__, pc->pc_cpuid);
tlb_unlock(pc->pc_booke_tlb_lock);
CTR1(KTR_PMAP, "%s: unlocked", __func__);
}
}
#endif
}
/* Return number of entries in TLB0. */
static __inline void
tlb0_get_tlbconf(void)
{
uint32_t tlb0_cfg;
tlb0_cfg = mfspr(SPR_TLB0CFG);
tlb0_entries = tlb0_cfg & TLBCFG_NENTRY_MASK;
tlb0_ways = (tlb0_cfg & TLBCFG_ASSOC_MASK) >> TLBCFG_ASSOC_SHIFT;
tlb0_entries_per_way = tlb0_entries / tlb0_ways;
}
/* Initialize pool of kva ptbl buffers. */
static void
ptbl_init(void)
{
int i;
CTR3(KTR_PMAP, "%s: s (ptbl_bufs = 0x%08x size 0x%08x)", __func__,
(uint32_t)ptbl_bufs, sizeof(struct ptbl_buf) * PTBL_BUFS);
CTR3(KTR_PMAP, "%s: s (ptbl_buf_pool_vabase = 0x%08x size = 0x%08x)",
__func__, ptbl_buf_pool_vabase, PTBL_BUFS * PTBL_PAGES * PAGE_SIZE);
mtx_init(&ptbl_buf_freelist_lock, "ptbl bufs lock", NULL, MTX_DEF);
TAILQ_INIT(&ptbl_buf_freelist);
for (i = 0; i < PTBL_BUFS; i++) {
ptbl_bufs[i].kva = ptbl_buf_pool_vabase + i * PTBL_PAGES * PAGE_SIZE;
TAILQ_INSERT_TAIL(&ptbl_buf_freelist, &ptbl_bufs[i], link);
}
}
/* Get a ptbl_buf from the freelist. */
static struct ptbl_buf *
ptbl_buf_alloc(void)
{
struct ptbl_buf *buf;
mtx_lock(&ptbl_buf_freelist_lock);
buf = TAILQ_FIRST(&ptbl_buf_freelist);
if (buf != NULL)
TAILQ_REMOVE(&ptbl_buf_freelist, buf, link);
mtx_unlock(&ptbl_buf_freelist_lock);
CTR2(KTR_PMAP, "%s: buf = %p", __func__, buf);
return (buf);
}
/* Return ptbl buff to free pool. */
static void
ptbl_buf_free(struct ptbl_buf *buf)
{
CTR2(KTR_PMAP, "%s: buf = %p", __func__, buf);
mtx_lock(&ptbl_buf_freelist_lock);
TAILQ_INSERT_TAIL(&ptbl_buf_freelist, buf, link);
mtx_unlock(&ptbl_buf_freelist_lock);
}
/*
* Search the list of allocated ptbl bufs and find on list of allocated ptbls
*/
static void
ptbl_free_pmap_ptbl(pmap_t pmap, pte_t *ptbl)
{
struct ptbl_buf *pbuf;
CTR2(KTR_PMAP, "%s: ptbl = %p", __func__, ptbl);
PMAP_LOCK_ASSERT(pmap, MA_OWNED);
TAILQ_FOREACH(pbuf, &pmap->pm_ptbl_list, link)
if (pbuf->kva == (vm_offset_t)ptbl) {
/* Remove from pmap ptbl buf list. */
TAILQ_REMOVE(&pmap->pm_ptbl_list, pbuf, link);
/* Free corresponding ptbl buf. */
ptbl_buf_free(pbuf);
break;
}
}
/* Allocate page table. */
static pte_t *
ptbl_alloc(mmu_t mmu, pmap_t pmap, unsigned int pdir_idx)
{
vm_page_t mtbl[PTBL_PAGES];
vm_page_t m;
struct ptbl_buf *pbuf;
unsigned int pidx;
pte_t *ptbl;
int i;
CTR4(KTR_PMAP, "%s: pmap = %p su = %d pdir_idx = %d", __func__, pmap,
(pmap == kernel_pmap), pdir_idx);
KASSERT((pdir_idx <= (VM_MAXUSER_ADDRESS / PDIR_SIZE)),
("ptbl_alloc: invalid pdir_idx"));
KASSERT((pmap->pm_pdir[pdir_idx] == NULL),
("pte_alloc: valid ptbl entry exists!"));
pbuf = ptbl_buf_alloc();
if (pbuf == NULL)
panic("pte_alloc: couldn't alloc kernel virtual memory");
ptbl = (pte_t *)pbuf->kva;
CTR2(KTR_PMAP, "%s: ptbl kva = %p", __func__, ptbl);
/* Allocate ptbl pages, this will sleep! */
for (i = 0; i < PTBL_PAGES; i++) {
pidx = (PTBL_PAGES * pdir_idx) + i;
while ((m = vm_page_alloc(NULL, pidx,
VM_ALLOC_NOOBJ | VM_ALLOC_WIRED)) == NULL) {
PMAP_UNLOCK(pmap);
vm_page_unlock_queues();
VM_WAIT;
vm_page_lock_queues();
PMAP_LOCK(pmap);
}
mtbl[i] = m;
}
/* Map allocated pages into kernel_pmap. */
mmu_booke_qenter(mmu, (vm_offset_t)ptbl, mtbl, PTBL_PAGES);
/* Zero whole ptbl. */
bzero((caddr_t)ptbl, PTBL_PAGES * PAGE_SIZE);
/* Add pbuf to the pmap ptbl bufs list. */
TAILQ_INSERT_TAIL(&pmap->pm_ptbl_list, pbuf, link);
return (ptbl);
}
/* Free ptbl pages and invalidate pdir entry. */
static void
ptbl_free(mmu_t mmu, pmap_t pmap, unsigned int pdir_idx)
{
pte_t *ptbl;
vm_paddr_t pa;
vm_offset_t va;
vm_page_t m;
int i;
CTR4(KTR_PMAP, "%s: pmap = %p su = %d pdir_idx = %d", __func__, pmap,
(pmap == kernel_pmap), pdir_idx);
KASSERT((pdir_idx <= (VM_MAXUSER_ADDRESS / PDIR_SIZE)),
("ptbl_free: invalid pdir_idx"));
ptbl = pmap->pm_pdir[pdir_idx];
CTR2(KTR_PMAP, "%s: ptbl = %p", __func__, ptbl);
KASSERT((ptbl != NULL), ("ptbl_free: null ptbl"));
/*
* Invalidate the pdir entry as soon as possible, so that other CPUs
* don't attempt to look up the page tables we are releasing.
*/
mtx_lock_spin(&tlbivax_mutex);
tlb_miss_lock();
pmap->pm_pdir[pdir_idx] = NULL;
tlb_miss_unlock();
mtx_unlock_spin(&tlbivax_mutex);
for (i = 0; i < PTBL_PAGES; i++) {
va = ((vm_offset_t)ptbl + (i * PAGE_SIZE));
pa = pte_vatopa(mmu, kernel_pmap, va);
m = PHYS_TO_VM_PAGE(pa);
vm_page_free_zero(m);
atomic_subtract_int(&cnt.v_wire_count, 1);
mmu_booke_kremove(mmu, va);
}
ptbl_free_pmap_ptbl(pmap, ptbl);
}
/*
* Decrement ptbl pages hold count and attempt to free ptbl pages.
* Called when removing pte entry from ptbl.
*
* Return 1 if ptbl pages were freed.
*/
static int
ptbl_unhold(mmu_t mmu, pmap_t pmap, unsigned int pdir_idx)
{
pte_t *ptbl;
vm_paddr_t pa;
vm_page_t m;
int i;
CTR4(KTR_PMAP, "%s: pmap = %p su = %d pdir_idx = %d", __func__, pmap,
(pmap == kernel_pmap), pdir_idx);
KASSERT((pdir_idx <= (VM_MAXUSER_ADDRESS / PDIR_SIZE)),
("ptbl_unhold: invalid pdir_idx"));
KASSERT((pmap != kernel_pmap),
("ptbl_unhold: unholding kernel ptbl!"));
ptbl = pmap->pm_pdir[pdir_idx];
//debugf("ptbl_unhold: ptbl = 0x%08x\n", (u_int32_t)ptbl);
KASSERT(((vm_offset_t)ptbl >= VM_MIN_KERNEL_ADDRESS),
("ptbl_unhold: non kva ptbl"));
/* decrement hold count */
for (i = 0; i < PTBL_PAGES; i++) {
pa = pte_vatopa(mmu, kernel_pmap,
(vm_offset_t)ptbl + (i * PAGE_SIZE));
m = PHYS_TO_VM_PAGE(pa);
m->wire_count--;
}
/*
* Free ptbl pages if there are no pte etries in this ptbl.
* wire_count has the same value for all ptbl pages, so check the last
* page.
*/
if (m->wire_count == 0) {
ptbl_free(mmu, pmap, pdir_idx);
//debugf("ptbl_unhold: e (freed ptbl)\n");
return (1);
}
return (0);
}
/*
* Increment hold count for ptbl pages. This routine is used when a new pte
* entry is being inserted into the ptbl.
*/
static void
ptbl_hold(mmu_t mmu, pmap_t pmap, unsigned int pdir_idx)
{
vm_paddr_t pa;
pte_t *ptbl;
vm_page_t m;
int i;
CTR3(KTR_PMAP, "%s: pmap = %p pdir_idx = %d", __func__, pmap,
pdir_idx);
KASSERT((pdir_idx <= (VM_MAXUSER_ADDRESS / PDIR_SIZE)),
("ptbl_hold: invalid pdir_idx"));
KASSERT((pmap != kernel_pmap),
("ptbl_hold: holding kernel ptbl!"));
ptbl = pmap->pm_pdir[pdir_idx];
KASSERT((ptbl != NULL), ("ptbl_hold: null ptbl"));
for (i = 0; i < PTBL_PAGES; i++) {
pa = pte_vatopa(mmu, kernel_pmap,
(vm_offset_t)ptbl + (i * PAGE_SIZE));
m = PHYS_TO_VM_PAGE(pa);
m->wire_count++;
}
}
/* Allocate pv_entry structure. */
pv_entry_t
pv_alloc(void)
{
pv_entry_t pv;
pv_entry_count++;
if (pv_entry_count > pv_entry_high_water)
pagedaemon_wakeup();
pv = uma_zalloc(pvzone, M_NOWAIT);
return (pv);
}
/* Free pv_entry structure. */
static __inline void
pv_free(pv_entry_t pve)
{
pv_entry_count--;
uma_zfree(pvzone, pve);
}
/* Allocate and initialize pv_entry structure. */
static void
pv_insert(pmap_t pmap, vm_offset_t va, vm_page_t m)
{
pv_entry_t pve;
//int su = (pmap == kernel_pmap);
//debugf("pv_insert: s (su = %d pmap = 0x%08x va = 0x%08x m = 0x%08x)\n", su,
// (u_int32_t)pmap, va, (u_int32_t)m);
pve = pv_alloc();
if (pve == NULL)
panic("pv_insert: no pv entries!");
pve->pv_pmap = pmap;
pve->pv_va = va;
/* add to pv_list */
PMAP_LOCK_ASSERT(pmap, MA_OWNED);
mtx_assert(&vm_page_queue_mtx, MA_OWNED);
TAILQ_INSERT_TAIL(&m->md.pv_list, pve, pv_link);
//debugf("pv_insert: e\n");
}
/* Destroy pv entry. */
static void
pv_remove(pmap_t pmap, vm_offset_t va, vm_page_t m)
{
pv_entry_t pve;
//int su = (pmap == kernel_pmap);
//debugf("pv_remove: s (su = %d pmap = 0x%08x va = 0x%08x)\n", su, (u_int32_t)pmap, va);
PMAP_LOCK_ASSERT(pmap, MA_OWNED);
mtx_assert(&vm_page_queue_mtx, MA_OWNED);
/* find pv entry */
TAILQ_FOREACH(pve, &m->md.pv_list, pv_link) {
if ((pmap == pve->pv_pmap) && (va == pve->pv_va)) {
/* remove from pv_list */
TAILQ_REMOVE(&m->md.pv_list, pve, pv_link);
if (TAILQ_EMPTY(&m->md.pv_list))
vm_page_flag_clear(m, PG_WRITEABLE);
/* free pv entry struct */
pv_free(pve);
break;
}
}
//debugf("pv_remove: e\n");
}
/*
* Clean pte entry, try to free page table page if requested.
*
* Return 1 if ptbl pages were freed, otherwise return 0.
*/
static int
pte_remove(mmu_t mmu, pmap_t pmap, vm_offset_t va, uint8_t flags)
{
unsigned int pdir_idx = PDIR_IDX(va);
unsigned int ptbl_idx = PTBL_IDX(va);
vm_page_t m;
pte_t *ptbl;
pte_t *pte;
//int su = (pmap == kernel_pmap);
//debugf("pte_remove: s (su = %d pmap = 0x%08x va = 0x%08x flags = %d)\n",
// su, (u_int32_t)pmap, va, flags);
ptbl = pmap->pm_pdir[pdir_idx];
KASSERT(ptbl, ("pte_remove: null ptbl"));
pte = &ptbl[ptbl_idx];
if (pte == NULL || !PTE_ISVALID(pte))
return (0);
if (PTE_ISWIRED(pte))
pmap->pm_stats.wired_count--;
/* Handle managed entry. */
if (PTE_ISMANAGED(pte)) {
/* Get vm_page_t for mapped pte. */
m = PHYS_TO_VM_PAGE(PTE_PA(pte));
if (PTE_ISMODIFIED(pte))
vm_page_dirty(m);
if (PTE_ISREFERENCED(pte))
vm_page_flag_set(m, PG_REFERENCED);
pv_remove(pmap, va, m);
}
mtx_lock_spin(&tlbivax_mutex);
tlb_miss_lock();
tlb0_flush_entry(va);
pte->flags = 0;
pte->rpn = 0;
tlb_miss_unlock();
mtx_unlock_spin(&tlbivax_mutex);
pmap->pm_stats.resident_count--;
if (flags & PTBL_UNHOLD) {
//debugf("pte_remove: e (unhold)\n");
return (ptbl_unhold(mmu, pmap, pdir_idx));
}
//debugf("pte_remove: e\n");
return (0);
}
/*
* Insert PTE for a given page and virtual address.
*/
static void
pte_enter(mmu_t mmu, pmap_t pmap, vm_page_t m, vm_offset_t va, uint32_t flags)
{
unsigned int pdir_idx = PDIR_IDX(va);
unsigned int ptbl_idx = PTBL_IDX(va);
pte_t *ptbl, *pte;
CTR4(KTR_PMAP, "%s: su = %d pmap = %p va = %p", __func__,
pmap == kernel_pmap, pmap, va);
/* Get the page table pointer. */
ptbl = pmap->pm_pdir[pdir_idx];
if (ptbl == NULL) {
/* Allocate page table pages. */
ptbl = ptbl_alloc(mmu, pmap, pdir_idx);
} else {
/*
* Check if there is valid mapping for requested
* va, if there is, remove it.
*/
pte = &pmap->pm_pdir[pdir_idx][ptbl_idx];
if (PTE_ISVALID(pte)) {
pte_remove(mmu, pmap, va, PTBL_HOLD);
} else {
/*
* pte is not used, increment hold count
* for ptbl pages.
*/
if (pmap != kernel_pmap)
ptbl_hold(mmu, pmap, pdir_idx);
}
}
/*
* Insert pv_entry into pv_list for mapped page if part of managed
* memory.
*/
if ((m->flags & PG_FICTITIOUS) == 0) {
if ((m->flags & PG_UNMANAGED) == 0) {
flags |= PTE_MANAGED;
/* Create and insert pv entry. */
pv_insert(pmap, va, m);
}
}
pmap->pm_stats.resident_count++;
mtx_lock_spin(&tlbivax_mutex);
tlb_miss_lock();
tlb0_flush_entry(va);
if (pmap->pm_pdir[pdir_idx] == NULL) {
/*
* If we just allocated a new page table, hook it in
* the pdir.
*/
pmap->pm_pdir[pdir_idx] = ptbl;
}
pte = &(pmap->pm_pdir[pdir_idx][ptbl_idx]);
pte->rpn = VM_PAGE_TO_PHYS(m) & ~PTE_PA_MASK;
pte->flags |= (PTE_VALID | flags);
tlb_miss_unlock();
mtx_unlock_spin(&tlbivax_mutex);
}
/* Return the pa for the given pmap/va. */
static vm_paddr_t
pte_vatopa(mmu_t mmu, pmap_t pmap, vm_offset_t va)
{
vm_paddr_t pa = 0;
pte_t *pte;
pte = pte_find(mmu, pmap, va);
if ((pte != NULL) && PTE_ISVALID(pte))
pa = (PTE_PA(pte) | (va & PTE_PA_MASK));
return (pa);
}
/* Get a pointer to a PTE in a page table. */
static pte_t *
pte_find(mmu_t mmu, pmap_t pmap, vm_offset_t va)
{
unsigned int pdir_idx = PDIR_IDX(va);
unsigned int ptbl_idx = PTBL_IDX(va);
KASSERT((pmap != NULL), ("pte_find: invalid pmap"));
if (pmap->pm_pdir[pdir_idx])
return (&(pmap->pm_pdir[pdir_idx][ptbl_idx]));
return (NULL);
}
/**************************************************************************/
/* PMAP related */
/**************************************************************************/
/*
* This is called during e500_init, before the system is really initialized.
*/
static void
mmu_booke_bootstrap(mmu_t mmu, vm_offset_t start, vm_offset_t kernelend)
{
vm_offset_t phys_kernelend;
struct mem_region *mp, *mp1;
int cnt, i, j;
u_int s, e, sz;
u_int phys_avail_count;
vm_size_t physsz, hwphyssz, kstack0_sz;
vm_offset_t kernel_pdir, kstack0, va;
vm_paddr_t kstack0_phys;
void *dpcpu;
pte_t *pte;
debugf("mmu_booke_bootstrap: entered\n");
/* Initialize invalidation mutex */
mtx_init(&tlbivax_mutex, "tlbivax", NULL, MTX_SPIN);
/* Read TLB0 size and associativity. */
tlb0_get_tlbconf();
/* Align kernel start and end address (kernel image). */
kernstart = trunc_page(start);
data_start = round_page(kernelend);
kernsize = data_start - kernstart;
data_end = data_start;
/* Allocate space for the message buffer. */
msgbufp = (struct msgbuf *)data_end;
data_end += MSGBUF_SIZE;
debugf(" msgbufp at 0x%08x end = 0x%08x\n", (uint32_t)msgbufp,
data_end);
data_end = round_page(data_end);
/* Allocate the dynamic per-cpu area. */
dpcpu = (void *)data_end;
data_end += DPCPU_SIZE;
dpcpu_init(dpcpu, 0);
/* Allocate space for ptbl_bufs. */
ptbl_bufs = (struct ptbl_buf *)data_end;
data_end += sizeof(struct ptbl_buf) * PTBL_BUFS;
debugf(" ptbl_bufs at 0x%08x end = 0x%08x\n", (uint32_t)ptbl_bufs,
data_end);
data_end = round_page(data_end);
/* Allocate PTE tables for kernel KVA. */
kernel_pdir = data_end;
kernel_ptbls = (VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS +
PDIR_SIZE - 1) / PDIR_SIZE;
data_end += kernel_ptbls * PTBL_PAGES * PAGE_SIZE;
debugf(" kernel ptbls: %d\n", kernel_ptbls);
debugf(" kernel pdir at 0x%08x end = 0x%08x\n", kernel_pdir, data_end);
debugf(" data_end: 0x%08x\n", data_end);
if (data_end - kernstart > 0x1000000) {
data_end = (data_end + 0x3fffff) & ~0x3fffff;
tlb1_mapin_region(kernstart + 0x1000000,
kernload + 0x1000000, data_end - kernstart - 0x1000000);
} else
data_end = (data_end + 0xffffff) & ~0xffffff;
debugf(" updated data_end: 0x%08x\n", data_end);
kernsize += data_end - data_start;
/*
* Clear the structures - note we can only do it safely after the
* possible additional TLB1 translations are in place (above) so that
* all range up to the currently calculated 'data_end' is covered.
*/
memset((void *)ptbl_bufs, 0, sizeof(struct ptbl_buf) * PTBL_SIZE);
memset((void *)kernel_pdir, 0, kernel_ptbls * PTBL_PAGES * PAGE_SIZE);
/*******************************************************/
/* Set the start and end of kva. */
/*******************************************************/
virtual_avail = round_page(data_end);
virtual_end = VM_MAX_KERNEL_ADDRESS;
/* Allocate KVA space for page zero/copy operations. */
zero_page_va = virtual_avail;
virtual_avail += PAGE_SIZE;
zero_page_idle_va = virtual_avail;
virtual_avail += PAGE_SIZE;
copy_page_src_va = virtual_avail;
virtual_avail += PAGE_SIZE;
copy_page_dst_va = virtual_avail;
virtual_avail += PAGE_SIZE;
debugf("zero_page_va = 0x%08x\n", zero_page_va);
debugf("zero_page_idle_va = 0x%08x\n", zero_page_idle_va);
debugf("copy_page_src_va = 0x%08x\n", copy_page_src_va);
debugf("copy_page_dst_va = 0x%08x\n", copy_page_dst_va);
/* Initialize page zero/copy mutexes. */
mtx_init(&zero_page_mutex, "mmu_booke_zero_page", NULL, MTX_DEF);
mtx_init(&copy_page_mutex, "mmu_booke_copy_page", NULL, MTX_DEF);
/* Allocate KVA space for ptbl bufs. */
ptbl_buf_pool_vabase = virtual_avail;
virtual_avail += PTBL_BUFS * PTBL_PAGES * PAGE_SIZE;
debugf("ptbl_buf_pool_vabase = 0x%08x end = 0x%08x\n",
ptbl_buf_pool_vabase, virtual_avail);
/* Calculate corresponding physical addresses for the kernel region. */
phys_kernelend = kernload + kernsize;
debugf("kernel image and allocated data:\n");
debugf(" kernload = 0x%08x\n", kernload);
debugf(" kernstart = 0x%08x\n", kernstart);
debugf(" kernsize = 0x%08x\n", kernsize);
if (sizeof(phys_avail) / sizeof(phys_avail[0]) < availmem_regions_sz)
panic("mmu_booke_bootstrap: phys_avail too small");
/*
* Remove kernel physical address range from avail regions list. Page
* align all regions. Non-page aligned memory isn't very interesting
* to us. Also, sort the entries for ascending addresses.
*/
/* Retrieve phys/avail mem regions */
mem_regions(&physmem_regions, &physmem_regions_sz,
&availmem_regions, &availmem_regions_sz);
sz = 0;
cnt = availmem_regions_sz;
debugf("processing avail regions:\n");
for (mp = availmem_regions; mp->mr_size; mp++) {
s = mp->mr_start;
e = mp->mr_start + mp->mr_size;
debugf(" %08x-%08x -> ", s, e);
/* Check whether this region holds all of the kernel. */
if (s < kernload && e > phys_kernelend) {
availmem_regions[cnt].mr_start = phys_kernelend;
availmem_regions[cnt++].mr_size = e - phys_kernelend;
e = kernload;
}
/* Look whether this regions starts within the kernel. */
if (s >= kernload && s < phys_kernelend) {
if (e <= phys_kernelend)
goto empty;
s = phys_kernelend;
}
/* Now look whether this region ends within the kernel. */
if (e > kernload && e <= phys_kernelend) {
if (s >= kernload)
goto empty;
e = kernload;
}
/* Now page align the start and size of the region. */
s = round_page(s);
e = trunc_page(e);
if (e < s)
e = s;
sz = e - s;
debugf("%08x-%08x = %x\n", s, e, sz);
/* Check whether some memory is left here. */
if (sz == 0) {
empty:
memmove(mp, mp + 1,
(cnt - (mp - availmem_regions)) * sizeof(*mp));
cnt--;
mp--;
continue;
}
/* Do an insertion sort. */
for (mp1 = availmem_regions; mp1 < mp; mp1++)
if (s < mp1->mr_start)
break;
if (mp1 < mp) {
memmove(mp1 + 1, mp1, (char *)mp - (char *)mp1);
mp1->mr_start = s;
mp1->mr_size = sz;
} else {
mp->mr_start = s;
mp->mr_size = sz;
}
}
availmem_regions_sz = cnt;
/*******************************************************/
/* Steal physical memory for kernel stack from the end */
/* of the first avail region */
/*******************************************************/
kstack0_sz = KSTACK_PAGES * PAGE_SIZE;
kstack0_phys = availmem_regions[0].mr_start +
availmem_regions[0].mr_size;
kstack0_phys -= kstack0_sz;
availmem_regions[0].mr_size -= kstack0_sz;
/*******************************************************/
/* Fill in phys_avail table, based on availmem_regions */
/*******************************************************/
phys_avail_count = 0;
physsz = 0;
hwphyssz = 0;
TUNABLE_ULONG_FETCH("hw.physmem", (u_long *) &hwphyssz);
debugf("fill in phys_avail:\n");
for (i = 0, j = 0; i < availmem_regions_sz; i++, j += 2) {
debugf(" region: 0x%08x - 0x%08x (0x%08x)\n",
availmem_regions[i].mr_start,
availmem_regions[i].mr_start +
availmem_regions[i].mr_size,
availmem_regions[i].mr_size);
if (hwphyssz != 0 &&
(physsz + availmem_regions[i].mr_size) >= hwphyssz) {
debugf(" hw.physmem adjust\n");
if (physsz < hwphyssz) {
phys_avail[j] = availmem_regions[i].mr_start;
phys_avail[j + 1] =
availmem_regions[i].mr_start +
hwphyssz - physsz;
physsz = hwphyssz;
phys_avail_count++;
}
break;
}
phys_avail[j] = availmem_regions[i].mr_start;
phys_avail[j + 1] = availmem_regions[i].mr_start +
availmem_regions[i].mr_size;
phys_avail_count++;
physsz += availmem_regions[i].mr_size;
}
physmem = btoc(physsz);
/* Calculate the last available physical address. */
for (i = 0; phys_avail[i + 2] != 0; i += 2)
;
Maxmem = powerpc_btop(phys_avail[i + 1]);
debugf("Maxmem = 0x%08lx\n", Maxmem);
debugf("phys_avail_count = %d\n", phys_avail_count);
debugf("physsz = 0x%08x physmem = %ld (0x%08lx)\n", physsz, physmem,
physmem);
/*******************************************************/
/* Initialize (statically allocated) kernel pmap. */
/*******************************************************/
PMAP_LOCK_INIT(kernel_pmap);
kptbl_min = VM_MIN_KERNEL_ADDRESS / PDIR_SIZE;
debugf("kernel_pmap = 0x%08x\n", (uint32_t)kernel_pmap);
debugf("kptbl_min = %d, kernel_ptbls = %d\n", kptbl_min, kernel_ptbls);
debugf("kernel pdir range: 0x%08x - 0x%08x\n",
kptbl_min * PDIR_SIZE, (kptbl_min + kernel_ptbls) * PDIR_SIZE - 1);
/* Initialize kernel pdir */
for (i = 0; i < kernel_ptbls; i++)
kernel_pmap->pm_pdir[kptbl_min + i] =
(pte_t *)(kernel_pdir + (i * PAGE_SIZE * PTBL_PAGES));
for (i = 0; i < MAXCPU; i++) {
kernel_pmap->pm_tid[i] = TID_KERNEL;
/* Initialize each CPU's tidbusy entry 0 with kernel_pmap */
tidbusy[i][0] = kernel_pmap;
}
/*
* Fill in PTEs covering kernel code and data. They are not required
* for address translation, as this area is covered by static TLB1
* entries, but for pte_vatopa() to work correctly with kernel area
* addresses.
*/
for (va = KERNBASE; va < data_end; va += PAGE_SIZE) {
pte = &(kernel_pmap->pm_pdir[PDIR_IDX(va)][PTBL_IDX(va)]);
pte->rpn = kernload + (va - KERNBASE);
pte->flags = PTE_M | PTE_SR | PTE_SW | PTE_SX | PTE_WIRED |
PTE_VALID;
}
/* Mark kernel_pmap active on all CPUs */
kernel_pmap->pm_active = ~0;
/*******************************************************/
/* Final setup */
/*******************************************************/
/* Enter kstack0 into kernel map, provide guard page */
kstack0 = virtual_avail + KSTACK_GUARD_PAGES * PAGE_SIZE;
thread0.td_kstack = kstack0;
thread0.td_kstack_pages = KSTACK_PAGES;
debugf("kstack_sz = 0x%08x\n", kstack0_sz);
debugf("kstack0_phys at 0x%08x - 0x%08x\n",
kstack0_phys, kstack0_phys + kstack0_sz);
debugf("kstack0 at 0x%08x - 0x%08x\n", kstack0, kstack0 + kstack0_sz);
virtual_avail += KSTACK_GUARD_PAGES * PAGE_SIZE + kstack0_sz;
for (i = 0; i < KSTACK_PAGES; i++) {
mmu_booke_kenter(mmu, kstack0, kstack0_phys);
kstack0 += PAGE_SIZE;
kstack0_phys += PAGE_SIZE;
}
debugf("virtual_avail = %08x\n", virtual_avail);
debugf("virtual_end = %08x\n", virtual_end);
debugf("mmu_booke_bootstrap: exit\n");
}
void
pmap_bootstrap_ap(volatile uint32_t *trcp __unused)
{
int i;
/*
* Finish TLB1 configuration: the BSP already set up its TLB1 and we
* have the snapshot of its contents in the s/w tlb1[] table, so use
* these values directly to (re)program AP's TLB1 hardware.
*/
for (i = 0; i < tlb1_idx; i ++) {
/* Skip invalid entries */
if (!(tlb1[i].mas1 & MAS1_VALID))
continue;
tlb1_write_entry(i);
}
set_mas4_defaults();
}
/*
* Get the physical page address for the given pmap/virtual address.
*/
static vm_paddr_t
mmu_booke_extract(mmu_t mmu, pmap_t pmap, vm_offset_t va)
{
vm_paddr_t pa;
PMAP_LOCK(pmap);
pa = pte_vatopa(mmu, pmap, va);
PMAP_UNLOCK(pmap);
return (pa);
}
/*
* Extract the physical page address associated with the given
* kernel virtual address.
*/
static vm_paddr_t
mmu_booke_kextract(mmu_t mmu, vm_offset_t va)
{
return (pte_vatopa(mmu, kernel_pmap, va));
}
/*
* Initialize the pmap module.
* Called by vm_init, to initialize any structures that the pmap
* system needs to map virtual memory.
*/
static void
mmu_booke_init(mmu_t mmu)
{
int shpgperproc = PMAP_SHPGPERPROC;
/*
* Initialize the address space (zone) for the pv entries. Set a
* high water mark so that the system can recover from excessive
* numbers of pv entries.
*/
pvzone = uma_zcreate("PV ENTRY", sizeof(struct pv_entry), NULL, NULL,
NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_VM | UMA_ZONE_NOFREE);
TUNABLE_INT_FETCH("vm.pmap.shpgperproc", &shpgperproc);
pv_entry_max = shpgperproc * maxproc + cnt.v_page_count;
TUNABLE_INT_FETCH("vm.pmap.pv_entries", &pv_entry_max);
pv_entry_high_water = 9 * (pv_entry_max / 10);
uma_zone_set_obj(pvzone, &pvzone_obj, pv_entry_max);
/* Pre-fill pvzone with initial number of pv entries. */
uma_prealloc(pvzone, PV_ENTRY_ZONE_MIN);
/* Initialize ptbl allocation. */
ptbl_init();
}
/*
* Map a list of wired pages into kernel virtual address space. This is
* intended for temporary mappings which do not need page modification or
* references recorded. Existing mappings in the region are overwritten.
*/
static void
mmu_booke_qenter(mmu_t mmu, vm_offset_t sva, vm_page_t *m, int count)
{
vm_offset_t va;
va = sva;
while (count-- > 0) {
mmu_booke_kenter(mmu, va, VM_PAGE_TO_PHYS(*m));
va += PAGE_SIZE;
m++;
}
}
/*
* Remove page mappings from kernel virtual address space. Intended for
* temporary mappings entered by mmu_booke_qenter.
*/
static void
mmu_booke_qremove(mmu_t mmu, vm_offset_t sva, int count)
{
vm_offset_t va;
va = sva;
while (count-- > 0) {
mmu_booke_kremove(mmu, va);
va += PAGE_SIZE;
}
}
/*
* Map a wired page into kernel virtual address space.
*/
static void
mmu_booke_kenter(mmu_t mmu, vm_offset_t va, vm_offset_t pa)
{
unsigned int pdir_idx = PDIR_IDX(va);
unsigned int ptbl_idx = PTBL_IDX(va);
uint32_t flags;
pte_t *pte;
KASSERT(((va >= VM_MIN_KERNEL_ADDRESS) &&
(va <= VM_MAX_KERNEL_ADDRESS)), ("mmu_booke_kenter: invalid va"));
flags = 0;
flags |= (PTE_SR | PTE_SW | PTE_SX | PTE_WIRED | PTE_VALID);
flags |= PTE_M;
pte = &(kernel_pmap->pm_pdir[pdir_idx][ptbl_idx]);
mtx_lock_spin(&tlbivax_mutex);
tlb_miss_lock();
if (PTE_ISVALID(pte)) {
CTR1(KTR_PMAP, "%s: replacing entry!", __func__);
/* Flush entry from TLB0 */
tlb0_flush_entry(va);
}
pte->rpn = pa & ~PTE_PA_MASK;
pte->flags = flags;
//debugf("mmu_booke_kenter: pdir_idx = %d ptbl_idx = %d va=0x%08x "
// "pa=0x%08x rpn=0x%08x flags=0x%08x\n",
// pdir_idx, ptbl_idx, va, pa, pte->rpn, pte->flags);
/* Flush the real memory from the instruction cache. */
if ((flags & (PTE_I | PTE_G)) == 0) {
__syncicache((void *)va, PAGE_SIZE);
}
tlb_miss_unlock();
mtx_unlock_spin(&tlbivax_mutex);
}
/*
* Remove a page from kernel page table.
*/
static void
mmu_booke_kremove(mmu_t mmu, vm_offset_t va)
{
unsigned int pdir_idx = PDIR_IDX(va);
unsigned int ptbl_idx = PTBL_IDX(va);
pte_t *pte;
// CTR2(KTR_PMAP,("%s: s (va = 0x%08x)\n", __func__, va));
KASSERT(((va >= VM_MIN_KERNEL_ADDRESS) &&
(va <= VM_MAX_KERNEL_ADDRESS)),
("mmu_booke_kremove: invalid va"));
pte = &(kernel_pmap->pm_pdir[pdir_idx][ptbl_idx]);
if (!PTE_ISVALID(pte)) {
CTR1(KTR_PMAP, "%s: invalid pte", __func__);
return;
}
mtx_lock_spin(&tlbivax_mutex);
tlb_miss_lock();
/* Invalidate entry in TLB0, update PTE. */
tlb0_flush_entry(va);
pte->flags = 0;
pte->rpn = 0;
tlb_miss_unlock();
mtx_unlock_spin(&tlbivax_mutex);
}
/*
* Initialize pmap associated with process 0.
*/
static void
mmu_booke_pinit0(mmu_t mmu, pmap_t pmap)
{
mmu_booke_pinit(mmu, pmap);
PCPU_SET(curpmap, pmap);
}
/*
* Initialize a preallocated and zeroed pmap structure,
* such as one in a vmspace structure.
*/
static void
mmu_booke_pinit(mmu_t mmu, pmap_t pmap)
{
int i;
CTR4(KTR_PMAP, "%s: pmap = %p, proc %d '%s'", __func__, pmap,
curthread->td_proc->p_pid, curthread->td_proc->p_comm);
KASSERT((pmap != kernel_pmap), ("pmap_pinit: initializing kernel_pmap"));
PMAP_LOCK_INIT(pmap);
for (i = 0; i < MAXCPU; i++)
pmap->pm_tid[i] = TID_NONE;
pmap->pm_active = 0;
bzero(&pmap->pm_stats, sizeof(pmap->pm_stats));
bzero(&pmap->pm_pdir, sizeof(pte_t *) * PDIR_NENTRIES);
TAILQ_INIT(&pmap->pm_ptbl_list);
}
/*
* Release any resources held by the given physical map.
* Called when a pmap initialized by mmu_booke_pinit is being released.
* Should only be called if the map contains no valid mappings.
*/
static void
mmu_booke_release(mmu_t mmu, pmap_t pmap)
{
KASSERT(pmap->pm_stats.resident_count == 0,
("pmap_release: pmap resident count %ld != 0",
pmap->pm_stats.resident_count));
PMAP_LOCK_DESTROY(pmap);
}
/*
* Insert the given physical page at the specified virtual address in the
* target physical map with the protection requested. If specified the page
* will be wired down.
*/
static void
mmu_booke_enter(mmu_t mmu, pmap_t pmap, vm_offset_t va, vm_page_t m,
vm_prot_t prot, boolean_t wired)
{
vm_page_lock_queues();
PMAP_LOCK(pmap);
mmu_booke_enter_locked(mmu, pmap, va, m, prot, wired);
vm_page_unlock_queues();
PMAP_UNLOCK(pmap);
}
static void
mmu_booke_enter_locked(mmu_t mmu, pmap_t pmap, vm_offset_t va, vm_page_t m,
vm_prot_t prot, boolean_t wired)
{
pte_t *pte;
vm_paddr_t pa;
uint32_t flags;
int su, sync;
pa = VM_PAGE_TO_PHYS(m);
su = (pmap == kernel_pmap);
sync = 0;
//debugf("mmu_booke_enter_locked: s (pmap=0x%08x su=%d tid=%d m=0x%08x va=0x%08x "
// "pa=0x%08x prot=0x%08x wired=%d)\n",
// (u_int32_t)pmap, su, pmap->pm_tid,
// (u_int32_t)m, va, pa, prot, wired);
if (su) {
KASSERT(((va >= virtual_avail) &&
(va <= VM_MAX_KERNEL_ADDRESS)),
("mmu_booke_enter_locked: kernel pmap, non kernel va"));
} else {
KASSERT((va <= VM_MAXUSER_ADDRESS),
("mmu_booke_enter_locked: user pmap, non user va"));
}
KASSERT((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) != 0 ||
(m->oflags & VPO_BUSY) != 0 || VM_OBJECT_LOCKED(m->object),
("mmu_booke_enter_locked: page %p is not busy", m));
PMAP_LOCK_ASSERT(pmap, MA_OWNED);
/*
* If there is an existing mapping, and the physical address has not
* changed, must be protection or wiring change.
*/
if (((pte = pte_find(mmu, pmap, va)) != NULL) &&
(PTE_ISVALID(pte)) && (PTE_PA(pte) == pa)) {
/*
* Before actually updating pte->flags we calculate and
* prepare its new value in a helper var.
*/
flags = pte->flags;
flags &= ~(PTE_UW | PTE_UX | PTE_SW | PTE_SX | PTE_MODIFIED);
/* Wiring change, just update stats. */
if (wired) {
if (!PTE_ISWIRED(pte)) {
flags |= PTE_WIRED;
pmap->pm_stats.wired_count++;
}
} else {
if (PTE_ISWIRED(pte)) {
flags &= ~PTE_WIRED;
pmap->pm_stats.wired_count--;
}
}
if (prot & VM_PROT_WRITE) {
/* Add write permissions. */
flags |= PTE_SW;
if (!su)
flags |= PTE_UW;
if ((flags & PTE_MANAGED) != 0)
vm_page_flag_set(m, PG_WRITEABLE);
} else {
/* Handle modified pages, sense modify status. */
/*
* The PTE_MODIFIED flag could be set by underlying
* TLB misses since we last read it (above), possibly
* other CPUs could update it so we check in the PTE
* directly rather than rely on that saved local flags
* copy.
*/
if (PTE_ISMODIFIED(pte))
vm_page_dirty(m);
}
if (prot & VM_PROT_EXECUTE) {
flags |= PTE_SX;
if (!su)
flags |= PTE_UX;
/*
* Check existing flags for execute permissions: if we
* are turning execute permissions on, icache should
* be flushed.
*/
if ((pte->flags & (PTE_UX | PTE_SX)) == 0)
sync++;
}
flags &= ~PTE_REFERENCED;
/*
* The new flags value is all calculated -- only now actually
* update the PTE.
*/
mtx_lock_spin(&tlbivax_mutex);
tlb_miss_lock();
tlb0_flush_entry(va);
pte->flags = flags;
tlb_miss_unlock();
mtx_unlock_spin(&tlbivax_mutex);
} else {
/*
* If there is an existing mapping, but it's for a different
* physical address, pte_enter() will delete the old mapping.
*/
//if ((pte != NULL) && PTE_ISVALID(pte))
// debugf("mmu_booke_enter_locked: replace\n");
//else
// debugf("mmu_booke_enter_locked: new\n");
/* Now set up the flags and install the new mapping. */
flags = (PTE_SR | PTE_VALID);
flags |= PTE_M;
if (!su)
flags |= PTE_UR;
if (prot & VM_PROT_WRITE) {
flags |= PTE_SW;
if (!su)
flags |= PTE_UW;
if ((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) == 0)
vm_page_flag_set(m, PG_WRITEABLE);
}
if (prot & VM_PROT_EXECUTE) {
flags |= PTE_SX;
if (!su)
flags |= PTE_UX;
}
/* If its wired update stats. */
if (wired) {
pmap->pm_stats.wired_count++;
flags |= PTE_WIRED;
}
pte_enter(mmu, pmap, m, va, flags);
/* Flush the real memory from the instruction cache. */
if (prot & VM_PROT_EXECUTE)
sync++;
}
if (sync && (su || pmap == PCPU_GET(curpmap))) {
__syncicache((void *)va, PAGE_SIZE);
sync = 0;
}
}
/*
* Maps a sequence of resident pages belonging to the same object.
* The sequence begins with the given page m_start. This page is
* mapped at the given virtual address start. Each subsequent page is
* mapped at a virtual address that is offset from start by the same
* amount as the page is offset from m_start within the object. The
* last page in the sequence is the page with the largest offset from
* m_start that can be mapped at a virtual address less than the given
* virtual address end. Not every virtual page between start and end
* is mapped; only those for which a resident page exists with the
* corresponding offset from m_start are mapped.
*/
static void
mmu_booke_enter_object(mmu_t mmu, pmap_t pmap, vm_offset_t start,
vm_offset_t end, vm_page_t m_start, vm_prot_t prot)
{
vm_page_t m;
vm_pindex_t diff, psize;
psize = atop(end - start);
m = m_start;
vm_page_lock_queues();
PMAP_LOCK(pmap);
while (m != NULL && (diff = m->pindex - m_start->pindex) < psize) {
mmu_booke_enter_locked(mmu, pmap, start + ptoa(diff), m,
prot & (VM_PROT_READ | VM_PROT_EXECUTE), FALSE);
m = TAILQ_NEXT(m, listq);
}
vm_page_unlock_queues();
PMAP_UNLOCK(pmap);
}
static void
mmu_booke_enter_quick(mmu_t mmu, pmap_t pmap, vm_offset_t va, vm_page_t m,
vm_prot_t prot)
{
vm_page_lock_queues();
PMAP_LOCK(pmap);
mmu_booke_enter_locked(mmu, pmap, va, m,
prot & (VM_PROT_READ | VM_PROT_EXECUTE), FALSE);
vm_page_unlock_queues();
PMAP_UNLOCK(pmap);
}
/*
* Remove the given range of addresses from the specified map.
*
* It is assumed that the start and end are properly rounded to the page size.
*/
static void
mmu_booke_remove(mmu_t mmu, pmap_t pmap, vm_offset_t va, vm_offset_t endva)
{
pte_t *pte;
uint8_t hold_flag;
int su = (pmap == kernel_pmap);
//debugf("mmu_booke_remove: s (su = %d pmap=0x%08x tid=%d va=0x%08x endva=0x%08x)\n",
// su, (u_int32_t)pmap, pmap->pm_tid, va, endva);
if (su) {
KASSERT(((va >= virtual_avail) &&
(va <= VM_MAX_KERNEL_ADDRESS)),
("mmu_booke_remove: kernel pmap, non kernel va"));
} else {
KASSERT((va <= VM_MAXUSER_ADDRESS),
("mmu_booke_remove: user pmap, non user va"));
}
if (PMAP_REMOVE_DONE(pmap)) {
//debugf("mmu_booke_remove: e (empty)\n");
return;
}
hold_flag = PTBL_HOLD_FLAG(pmap);
//debugf("mmu_booke_remove: hold_flag = %d\n", hold_flag);
vm_page_lock_queues();
PMAP_LOCK(pmap);
for (; va < endva; va += PAGE_SIZE) {
pte = pte_find(mmu, pmap, va);
if ((pte != NULL) && PTE_ISVALID(pte))
pte_remove(mmu, pmap, va, hold_flag);
}
PMAP_UNLOCK(pmap);
vm_page_unlock_queues();
//debugf("mmu_booke_remove: e\n");
}
/*
* Remove physical page from all pmaps in which it resides.
*/
static void
mmu_booke_remove_all(mmu_t mmu, vm_page_t m)
{
pv_entry_t pv, pvn;
uint8_t hold_flag;
vm_page_lock_queues();
for (pv = TAILQ_FIRST(&m->md.pv_list); pv != NULL; pv = pvn) {
pvn = TAILQ_NEXT(pv, pv_link);
PMAP_LOCK(pv->pv_pmap);
hold_flag = PTBL_HOLD_FLAG(pv->pv_pmap);
pte_remove(mmu, pv->pv_pmap, pv->pv_va, hold_flag);
PMAP_UNLOCK(pv->pv_pmap);
}
vm_page_flag_clear(m, PG_WRITEABLE);
vm_page_unlock_queues();
}
/*
* Map a range of physical addresses into kernel virtual address space.
*/
static vm_offset_t
mmu_booke_map(mmu_t mmu, vm_offset_t *virt, vm_offset_t pa_start,
vm_offset_t pa_end, int prot)
{
vm_offset_t sva = *virt;
vm_offset_t va = sva;
//debugf("mmu_booke_map: s (sva = 0x%08x pa_start = 0x%08x pa_end = 0x%08x)\n",
// sva, pa_start, pa_end);
while (pa_start < pa_end) {
mmu_booke_kenter(mmu, va, pa_start);
va += PAGE_SIZE;
pa_start += PAGE_SIZE;
}
*virt = va;
//debugf("mmu_booke_map: e (va = 0x%08x)\n", va);
return (sva);
}
/*
* The pmap must be activated before it's address space can be accessed in any
* way.
*/
static void
mmu_booke_activate(mmu_t mmu, struct thread *td)
{
pmap_t pmap;
pmap = &td->td_proc->p_vmspace->vm_pmap;
CTR5(KTR_PMAP, "%s: s (td = %p, proc = '%s', id = %d, pmap = 0x%08x)",
__func__, td, td->td_proc->p_comm, td->td_proc->p_pid, pmap);
KASSERT((pmap != kernel_pmap), ("mmu_booke_activate: kernel_pmap!"));
mtx_lock_spin(&sched_lock);
atomic_set_int(&pmap->pm_active, PCPU_GET(cpumask));
PCPU_SET(curpmap, pmap);
if (pmap->pm_tid[PCPU_GET(cpuid)] == TID_NONE)
tid_alloc(pmap);
/* Load PID0 register with pmap tid value. */
mtspr(SPR_PID0, pmap->pm_tid[PCPU_GET(cpuid)]);
__asm __volatile("isync");
mtx_unlock_spin(&sched_lock);
CTR3(KTR_PMAP, "%s: e (tid = %d for '%s')", __func__,
pmap->pm_tid[PCPU_GET(cpuid)], td->td_proc->p_comm);
}
/*
* Deactivate the specified process's address space.
*/
static void
mmu_booke_deactivate(mmu_t mmu, struct thread *td)
{
pmap_t pmap;
pmap = &td->td_proc->p_vmspace->vm_pmap;
CTR5(KTR_PMAP, "%s: td=%p, proc = '%s', id = %d, pmap = 0x%08x",
__func__, td, td->td_proc->p_comm, td->td_proc->p_pid, pmap);
atomic_clear_int(&pmap->pm_active, PCPU_GET(cpumask));
PCPU_SET(curpmap, NULL);
}
/*
* Copy the range specified by src_addr/len
* from the source map to the range dst_addr/len
* in the destination map.
*
* This routine is only advisory and need not do anything.
*/
static void
mmu_booke_copy(mmu_t mmu, pmap_t dst_pmap, pmap_t src_pmap,
vm_offset_t dst_addr, vm_size_t len, vm_offset_t src_addr)
{
}
/*
* Set the physical protection on the specified range of this map as requested.
*/
static void
mmu_booke_protect(mmu_t mmu, pmap_t pmap, vm_offset_t sva, vm_offset_t eva,
vm_prot_t prot)
{
vm_offset_t va;
vm_page_t m;
pte_t *pte;
if ((prot & VM_PROT_READ) == VM_PROT_NONE) {
mmu_booke_remove(mmu, pmap, sva, eva);
return;
}
if (prot & VM_PROT_WRITE)
return;
vm_page_lock_queues();
PMAP_LOCK(pmap);
for (va = sva; va < eva; va += PAGE_SIZE) {
if ((pte = pte_find(mmu, pmap, va)) != NULL) {
if (PTE_ISVALID(pte)) {
m = PHYS_TO_VM_PAGE(PTE_PA(pte));
mtx_lock_spin(&tlbivax_mutex);
tlb_miss_lock();
/* Handle modified pages. */
if (PTE_ISMODIFIED(pte) && PTE_ISMANAGED(pte))
vm_page_dirty(m);
tlb0_flush_entry(va);
pte->flags &= ~(PTE_UW | PTE_SW | PTE_MODIFIED);
tlb_miss_unlock();
mtx_unlock_spin(&tlbivax_mutex);
}
}
}
PMAP_UNLOCK(pmap);
vm_page_unlock_queues();
}
/*
* Clear the write and modified bits in each of the given page's mappings.
*/
static void
mmu_booke_remove_write(mmu_t mmu, vm_page_t m)
{
pv_entry_t pv;
pte_t *pte;
KASSERT((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) == 0,
("mmu_booke_remove_write: page %p is not managed", m));
/*
* If the page is not VPO_BUSY, then PG_WRITEABLE cannot be set by
* another thread while the object is locked. Thus, if PG_WRITEABLE
* is clear, no page table entries need updating.
*/
VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
if ((m->oflags & VPO_BUSY) == 0 &&
(m->flags & PG_WRITEABLE) == 0)
return;
vm_page_lock_queues();
TAILQ_FOREACH(pv, &m->md.pv_list, pv_link) {
PMAP_LOCK(pv->pv_pmap);
if ((pte = pte_find(mmu, pv->pv_pmap, pv->pv_va)) != NULL) {
if (PTE_ISVALID(pte)) {
m = PHYS_TO_VM_PAGE(PTE_PA(pte));
mtx_lock_spin(&tlbivax_mutex);
tlb_miss_lock();
/* Handle modified pages. */
if (PTE_ISMODIFIED(pte))
vm_page_dirty(m);
/* Flush mapping from TLB0. */
pte->flags &= ~(PTE_UW | PTE_SW | PTE_MODIFIED);
tlb_miss_unlock();
mtx_unlock_spin(&tlbivax_mutex);
}
}
PMAP_UNLOCK(pv->pv_pmap);
}
vm_page_flag_clear(m, PG_WRITEABLE);
vm_page_unlock_queues();
}
static void
mmu_booke_sync_icache(mmu_t mmu, pmap_t pm, vm_offset_t va, vm_size_t sz)
{
pte_t *pte;
pmap_t pmap;
vm_page_t m;
vm_offset_t addr;
vm_paddr_t pa;
int active, valid;
va = trunc_page(va);
sz = round_page(sz);
vm_page_lock_queues();
pmap = PCPU_GET(curpmap);
active = (pm == kernel_pmap || pm == pmap) ? 1 : 0;
while (sz > 0) {
PMAP_LOCK(pm);
pte = pte_find(mmu, pm, va);
valid = (pte != NULL && PTE_ISVALID(pte)) ? 1 : 0;
if (valid)
pa = PTE_PA(pte);
PMAP_UNLOCK(pm);
if (valid) {
if (!active) {
/* Create a mapping in the active pmap. */
addr = 0;
m = PHYS_TO_VM_PAGE(pa);
PMAP_LOCK(pmap);
pte_enter(mmu, pmap, m, addr,
PTE_SR | PTE_VALID | PTE_UR);
__syncicache((void *)addr, PAGE_SIZE);
pte_remove(mmu, pmap, addr, PTBL_UNHOLD);
PMAP_UNLOCK(pmap);
} else
__syncicache((void *)va, PAGE_SIZE);
}
va += PAGE_SIZE;
sz -= PAGE_SIZE;
}
vm_page_unlock_queues();
}
/*
* Atomically extract and hold the physical page with the given
* pmap and virtual address pair if that mapping permits the given
* protection.
*/
static vm_page_t
mmu_booke_extract_and_hold(mmu_t mmu, pmap_t pmap, vm_offset_t va,
vm_prot_t prot)
{
pte_t *pte;
vm_page_t m;
uint32_t pte_wbit;
vm_paddr_t pa;
m = NULL;
pa = 0;
PMAP_LOCK(pmap);
retry:
pte = pte_find(mmu, pmap, va);
if ((pte != NULL) && PTE_ISVALID(pte)) {
if (pmap == kernel_pmap)
pte_wbit = PTE_SW;
else
pte_wbit = PTE_UW;
if ((pte->flags & pte_wbit) || ((prot & VM_PROT_WRITE) == 0)) {
if (vm_page_pa_tryrelock(pmap, PTE_PA(pte), &pa))
goto retry;
m = PHYS_TO_VM_PAGE(PTE_PA(pte));
vm_page_hold(m);
}
}
PA_UNLOCK_COND(pa);
PMAP_UNLOCK(pmap);
return (m);
}
/*
* Initialize a vm_page's machine-dependent fields.
*/
static void
mmu_booke_page_init(mmu_t mmu, vm_page_t m)
{
TAILQ_INIT(&m->md.pv_list);
}
/*
* mmu_booke_zero_page_area zeros the specified hardware page by
* mapping it into virtual memory and using bzero to clear
* its contents.
*
* off and size must reside within a single page.
*/
static void
mmu_booke_zero_page_area(mmu_t mmu, vm_page_t m, int off, int size)
{
vm_offset_t va;
/* XXX KASSERT off and size are within a single page? */
mtx_lock(&zero_page_mutex);
va = zero_page_va;
mmu_booke_kenter(mmu, va, VM_PAGE_TO_PHYS(m));
bzero((caddr_t)va + off, size);
mmu_booke_kremove(mmu, va);
mtx_unlock(&zero_page_mutex);
}
/*
* mmu_booke_zero_page zeros the specified hardware page.
*/
static void
mmu_booke_zero_page(mmu_t mmu, vm_page_t m)
{
mmu_booke_zero_page_area(mmu, m, 0, PAGE_SIZE);
}
/*
* mmu_booke_copy_page copies the specified (machine independent) page by
* mapping the page into virtual memory and using memcopy to copy the page,
* one machine dependent page at a time.
*/
static void
mmu_booke_copy_page(mmu_t mmu, vm_page_t sm, vm_page_t dm)
{
vm_offset_t sva, dva;
sva = copy_page_src_va;
dva = copy_page_dst_va;
mtx_lock(&copy_page_mutex);
mmu_booke_kenter(mmu, sva, VM_PAGE_TO_PHYS(sm));
mmu_booke_kenter(mmu, dva, VM_PAGE_TO_PHYS(dm));
memcpy((caddr_t)dva, (caddr_t)sva, PAGE_SIZE);
mmu_booke_kremove(mmu, dva);
mmu_booke_kremove(mmu, sva);
mtx_unlock(&copy_page_mutex);
}
/*
* mmu_booke_zero_page_idle zeros the specified hardware page by mapping it
* into virtual memory and using bzero to clear its contents. This is intended
* to be called from the vm_pagezero process only and outside of Giant. No
* lock is required.
*/
static void
mmu_booke_zero_page_idle(mmu_t mmu, vm_page_t m)
{
vm_offset_t va;
va = zero_page_idle_va;
mmu_booke_kenter(mmu, va, VM_PAGE_TO_PHYS(m));
bzero((caddr_t)va, PAGE_SIZE);
mmu_booke_kremove(mmu, va);
}
/*
* Return whether or not the specified physical page was modified
* in any of physical maps.
*/
static boolean_t
mmu_booke_is_modified(mmu_t mmu, vm_page_t m)
{
pte_t *pte;
pv_entry_t pv;
boolean_t rv;
KASSERT((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) == 0,
("mmu_booke_is_modified: page %p is not managed", m));
rv = FALSE;
/*
* If the page is not VPO_BUSY, then PG_WRITEABLE cannot be
* concurrently set while the object is locked. Thus, if PG_WRITEABLE
* is clear, no PTEs can be modified.
*/
VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
if ((m->oflags & VPO_BUSY) == 0 &&
(m->flags & PG_WRITEABLE) == 0)
return (rv);
vm_page_lock_queues();
TAILQ_FOREACH(pv, &m->md.pv_list, pv_link) {
PMAP_LOCK(pv->pv_pmap);
if ((pte = pte_find(mmu, pv->pv_pmap, pv->pv_va)) != NULL &&
PTE_ISVALID(pte)) {
if (PTE_ISMODIFIED(pte))
rv = TRUE;
}
PMAP_UNLOCK(pv->pv_pmap);
if (rv)
break;
}
vm_page_unlock_queues();
return (rv);
}
/*
* Return whether or not the specified virtual address is eligible
* for prefault.
*/
static boolean_t
mmu_booke_is_prefaultable(mmu_t mmu, pmap_t pmap, vm_offset_t addr)
{
return (FALSE);
}
/*
* Return whether or not the specified physical page was referenced
* in any physical maps.
*/
static boolean_t
mmu_booke_is_referenced(mmu_t mmu, vm_page_t m)
{
pte_t *pte;
pv_entry_t pv;
boolean_t rv;
KASSERT((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) == 0,
("mmu_booke_is_referenced: page %p is not managed", m));
rv = FALSE;
vm_page_lock_queues();
TAILQ_FOREACH(pv, &m->md.pv_list, pv_link) {
PMAP_LOCK(pv->pv_pmap);
if ((pte = pte_find(mmu, pv->pv_pmap, pv->pv_va)) != NULL &&
PTE_ISVALID(pte)) {
if (PTE_ISREFERENCED(pte))
rv = TRUE;
}
PMAP_UNLOCK(pv->pv_pmap);
if (rv)
break;
}
vm_page_unlock_queues();
return (rv);
}
/*
* Clear the modify bits on the specified physical page.
*/
static void
mmu_booke_clear_modify(mmu_t mmu, vm_page_t m)
{
pte_t *pte;
pv_entry_t pv;
KASSERT((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) == 0,
("mmu_booke_clear_modify: page %p is not managed", m));
VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
KASSERT((m->oflags & VPO_BUSY) == 0,
("mmu_booke_clear_modify: page %p is busy", m));
/*
* If the page is not PG_WRITEABLE, then no PTEs can be modified.
* If the object containing the page is locked and the page is not
* VPO_BUSY, then PG_WRITEABLE cannot be concurrently set.
*/
if ((m->flags & PG_WRITEABLE) == 0)
return;
vm_page_lock_queues();
TAILQ_FOREACH(pv, &m->md.pv_list, pv_link) {
PMAP_LOCK(pv->pv_pmap);
if ((pte = pte_find(mmu, pv->pv_pmap, pv->pv_va)) != NULL &&
PTE_ISVALID(pte)) {
mtx_lock_spin(&tlbivax_mutex);
tlb_miss_lock();
if (pte->flags & (PTE_SW | PTE_UW | PTE_MODIFIED)) {
tlb0_flush_entry(pv->pv_va);
pte->flags &= ~(PTE_SW | PTE_UW | PTE_MODIFIED |
PTE_REFERENCED);
}
tlb_miss_unlock();
mtx_unlock_spin(&tlbivax_mutex);
}
PMAP_UNLOCK(pv->pv_pmap);
}
vm_page_unlock_queues();
}
/*
* Return a count of reference bits for a page, clearing those bits.
* It is not necessary for every reference bit to be cleared, but it
* is necessary that 0 only be returned when there are truly no
* reference bits set.
*
* XXX: The exact number of bits to check and clear is a matter that
* should be tested and standardized at some point in the future for
* optimal aging of shared pages.
*/
static int
mmu_booke_ts_referenced(mmu_t mmu, vm_page_t m)
{
pte_t *pte;
pv_entry_t pv;
int count;
KASSERT((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) == 0,
("mmu_booke_ts_referenced: page %p is not managed", m));
count = 0;
vm_page_lock_queues();
TAILQ_FOREACH(pv, &m->md.pv_list, pv_link) {
PMAP_LOCK(pv->pv_pmap);
if ((pte = pte_find(mmu, pv->pv_pmap, pv->pv_va)) != NULL &&
PTE_ISVALID(pte)) {
if (PTE_ISREFERENCED(pte)) {
mtx_lock_spin(&tlbivax_mutex);
tlb_miss_lock();
tlb0_flush_entry(pv->pv_va);
pte->flags &= ~PTE_REFERENCED;
tlb_miss_unlock();
mtx_unlock_spin(&tlbivax_mutex);
if (++count > 4) {
PMAP_UNLOCK(pv->pv_pmap);
break;
}
}
}
PMAP_UNLOCK(pv->pv_pmap);
}
vm_page_unlock_queues();
return (count);
}
/*
* Clear the reference bit on the specified physical page.
*/
static void
mmu_booke_clear_reference(mmu_t mmu, vm_page_t m)
{
pte_t *pte;
pv_entry_t pv;
KASSERT((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) == 0,
("mmu_booke_clear_reference: page %p is not managed", m));
vm_page_lock_queues();
TAILQ_FOREACH(pv, &m->md.pv_list, pv_link) {
PMAP_LOCK(pv->pv_pmap);
if ((pte = pte_find(mmu, pv->pv_pmap, pv->pv_va)) != NULL &&
PTE_ISVALID(pte)) {
if (PTE_ISREFERENCED(pte)) {
mtx_lock_spin(&tlbivax_mutex);
tlb_miss_lock();
tlb0_flush_entry(pv->pv_va);
pte->flags &= ~PTE_REFERENCED;
tlb_miss_unlock();
mtx_unlock_spin(&tlbivax_mutex);
}
}
PMAP_UNLOCK(pv->pv_pmap);
}
vm_page_unlock_queues();
}
/*
* Change wiring attribute for a map/virtual-address pair.
*/
static void
mmu_booke_change_wiring(mmu_t mmu, pmap_t pmap, vm_offset_t va, boolean_t wired)
{
pte_t *pte;
PMAP_LOCK(pmap);
if ((pte = pte_find(mmu, pmap, va)) != NULL) {
if (wired) {
if (!PTE_ISWIRED(pte)) {
pte->flags |= PTE_WIRED;
pmap->pm_stats.wired_count++;
}
} else {
if (PTE_ISWIRED(pte)) {
pte->flags &= ~PTE_WIRED;
pmap->pm_stats.wired_count--;
}
}
}
PMAP_UNLOCK(pmap);
}
/*
* Return true if the pmap's pv is one of the first 16 pvs linked to from this
* page. This count may be changed upwards or downwards in the future; it is
* only necessary that true be returned for a small subset of pmaps for proper
* page aging.
*/
static boolean_t
mmu_booke_page_exists_quick(mmu_t mmu, pmap_t pmap, vm_page_t m)
{
pv_entry_t pv;
int loops;
boolean_t rv;
KASSERT((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) == 0,
("mmu_booke_page_exists_quick: page %p is not managed", m));
loops = 0;
rv = FALSE;
vm_page_lock_queues();
TAILQ_FOREACH(pv, &m->md.pv_list, pv_link) {
if (pv->pv_pmap == pmap) {
rv = TRUE;
break;
}
if (++loops >= 16)
break;
}
vm_page_unlock_queues();
return (rv);
}
/*
* Return the number of managed mappings to the given physical page that are
* wired.
*/
static int
mmu_booke_page_wired_mappings(mmu_t mmu, vm_page_t m)
{
pv_entry_t pv;
pte_t *pte;
int count = 0;
if ((m->flags & PG_FICTITIOUS) != 0)
return (count);
vm_page_lock_queues();
TAILQ_FOREACH(pv, &m->md.pv_list, pv_link) {
PMAP_LOCK(pv->pv_pmap);
if ((pte = pte_find(mmu, pv->pv_pmap, pv->pv_va)) != NULL)
if (PTE_ISVALID(pte) && PTE_ISWIRED(pte))
count++;
PMAP_UNLOCK(pv->pv_pmap);
}
vm_page_unlock_queues();
return (count);
}
static int
mmu_booke_dev_direct_mapped(mmu_t mmu, vm_offset_t pa, vm_size_t size)
{
int i;
vm_offset_t va;
/*
* This currently does not work for entries that
* overlap TLB1 entries.
*/
for (i = 0; i < tlb1_idx; i ++) {
if (tlb1_iomapped(i, pa, size, &va) == 0)
return (0);
}
return (EFAULT);
}
vm_offset_t
mmu_booke_dumpsys_map(mmu_t mmu, struct pmap_md *md, vm_size_t ofs,
vm_size_t *sz)
{
vm_paddr_t pa, ppa;
vm_offset_t va;
vm_size_t gran;
/* Raw physical memory dumps don't have a virtual address. */
if (md->md_vaddr == ~0UL) {
/* We always map a 256MB page at 256M. */
gran = 256 * 1024 * 1024;
pa = md->md_paddr + ofs;
ppa = pa & ~(gran - 1);
ofs = pa - ppa;
va = gran;
tlb1_set_entry(va, ppa, gran, _TLB_ENTRY_IO);
if (*sz > (gran - ofs))
*sz = gran - ofs;
return (va + ofs);
}
/* Minidumps are based on virtual memory addresses. */
va = md->md_vaddr + ofs;
if (va >= kernstart + kernsize) {
gran = PAGE_SIZE - (va & PAGE_MASK);
if (*sz > gran)
*sz = gran;
}
return (va);
}
void
mmu_booke_dumpsys_unmap(mmu_t mmu, struct pmap_md *md, vm_size_t ofs,
vm_offset_t va)
{
/* Raw physical memory dumps don't have a virtual address. */
if (md->md_vaddr == ~0UL) {
tlb1_idx--;
tlb1[tlb1_idx].mas1 = 0;
tlb1[tlb1_idx].mas2 = 0;
tlb1[tlb1_idx].mas3 = 0;
tlb1_write_entry(tlb1_idx);
return;
}
/* Minidumps are based on virtual memory addresses. */
/* Nothing to do... */
}
struct pmap_md *
mmu_booke_scan_md(mmu_t mmu, struct pmap_md *prev)
{
static struct pmap_md md;
pte_t *pte;
vm_offset_t va;
if (dumpsys_minidump) {
md.md_paddr = ~0UL; /* Minidumps use virtual addresses. */
if (prev == NULL) {
/* 1st: kernel .data and .bss. */
md.md_index = 1;
md.md_vaddr = trunc_page((uintptr_t)_etext);
md.md_size = round_page((uintptr_t)_end) - md.md_vaddr;
return (&md);
}
switch (prev->md_index) {
case 1:
/* 2nd: msgbuf and tables (see pmap_bootstrap()). */
md.md_index = 2;
md.md_vaddr = data_start;
md.md_size = data_end - data_start;
break;
case 2:
/* 3rd: kernel VM. */
va = prev->md_vaddr + prev->md_size;
/* Find start of next chunk (from va). */
while (va < virtual_end) {
/* Don't dump the buffer cache. */
if (va >= kmi.buffer_sva &&
va < kmi.buffer_eva) {
va = kmi.buffer_eva;
continue;
}
pte = pte_find(mmu, kernel_pmap, va);
if (pte != NULL && PTE_ISVALID(pte))
break;
va += PAGE_SIZE;
}
if (va < virtual_end) {
md.md_vaddr = va;
va += PAGE_SIZE;
/* Find last page in chunk. */
while (va < virtual_end) {
/* Don't run into the buffer cache. */
if (va == kmi.buffer_sva)
break;
pte = pte_find(mmu, kernel_pmap, va);
if (pte == NULL || !PTE_ISVALID(pte))
break;
va += PAGE_SIZE;
}
md.md_size = va - md.md_vaddr;
break;
}
md.md_index = 3;
/* FALLTHROUGH */
default:
return (NULL);
}
} else { /* minidumps */
mem_regions(&physmem_regions, &physmem_regions_sz,
&availmem_regions, &availmem_regions_sz);
if (prev == NULL) {
/* first physical chunk. */
md.md_paddr = physmem_regions[0].mr_start;
md.md_size = physmem_regions[0].mr_size;
md.md_vaddr = ~0UL;
md.md_index = 1;
} else if (md.md_index < physmem_regions_sz) {
md.md_paddr = physmem_regions[md.md_index].mr_start;
md.md_size = physmem_regions[md.md_index].mr_size;
md.md_vaddr = ~0UL;
md.md_index++;
} else {
/* There's no next physical chunk. */
return (NULL);
}
}
return (&md);
}
/*
* Map a set of physical memory pages into the kernel virtual address space.
* Return a pointer to where it is mapped. This routine is intended to be used
* for mapping device memory, NOT real memory.
*/
static void *
mmu_booke_mapdev(mmu_t mmu, vm_offset_t pa, vm_size_t size)
{
void *res;
uintptr_t va;
vm_size_t sz;
va = (pa >= 0x80000000) ? pa : (0xe2000000 + pa);
res = (void *)va;
do {
sz = 1 << (ilog2(size) & ~1);
if (bootverbose)
printf("Wiring VA=%x to PA=%x (size=%x), "
"using TLB1[%d]\n", va, pa, sz, tlb1_idx);
tlb1_set_entry(va, pa, sz, _TLB_ENTRY_IO);
size -= sz;
pa += sz;
va += sz;
} while (size > 0);
return (res);
}
/*
* 'Unmap' a range mapped by mmu_booke_mapdev().
*/
static void
mmu_booke_unmapdev(mmu_t mmu, vm_offset_t va, vm_size_t size)
{
vm_offset_t base, offset;
/*
* Unmap only if this is inside kernel virtual space.
*/
if ((va >= VM_MIN_KERNEL_ADDRESS) && (va <= VM_MAX_KERNEL_ADDRESS)) {
base = trunc_page(va);
offset = va & PAGE_MASK;
size = roundup(offset + size, PAGE_SIZE);
kmem_free(kernel_map, base, size);
}
}
/*
* mmu_booke_object_init_pt preloads the ptes for a given object into the
* specified pmap. This eliminates the blast of soft faults on process startup
* and immediately after an mmap.
*/
static void
mmu_booke_object_init_pt(mmu_t mmu, pmap_t pmap, vm_offset_t addr,
vm_object_t object, vm_pindex_t pindex, vm_size_t size)
{
VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
KASSERT(object->type == OBJT_DEVICE || object->type == OBJT_SG,
("mmu_booke_object_init_pt: non-device object"));
}
/*
* Perform the pmap work for mincore.
*/
static int
mmu_booke_mincore(mmu_t mmu, pmap_t pmap, vm_offset_t addr,
vm_paddr_t *locked_pa)
{
TODO;
return (0);
}
/**************************************************************************/
/* TID handling */
/**************************************************************************/
/*
* Allocate a TID. If necessary, steal one from someone else.
* The new TID is flushed from the TLB before returning.
*/
static tlbtid_t
tid_alloc(pmap_t pmap)
{
tlbtid_t tid;
int thiscpu;
KASSERT((pmap != kernel_pmap), ("tid_alloc: kernel pmap"));
CTR2(KTR_PMAP, "%s: s (pmap = %p)", __func__, pmap);
thiscpu = PCPU_GET(cpuid);
tid = PCPU_GET(tid_next);
if (tid > TID_MAX)
tid = TID_MIN;
PCPU_SET(tid_next, tid + 1);
/* If we are stealing TID then clear the relevant pmap's field */
if (tidbusy[thiscpu][tid] != NULL) {
CTR2(KTR_PMAP, "%s: warning: stealing tid %d", __func__, tid);
tidbusy[thiscpu][tid]->pm_tid[thiscpu] = TID_NONE;
/* Flush all entries from TLB0 matching this TID. */
tid_flush(tid);
}
tidbusy[thiscpu][tid] = pmap;
pmap->pm_tid[thiscpu] = tid;
__asm __volatile("msync; isync");
CTR3(KTR_PMAP, "%s: e (%02d next = %02d)", __func__, tid,
PCPU_GET(tid_next));
return (tid);
}
/**************************************************************************/
/* TLB0 handling */
/**************************************************************************/
static void
tlb_print_entry(int i, uint32_t mas1, uint32_t mas2, uint32_t mas3,
uint32_t mas7)
{
int as;
char desc[3];
tlbtid_t tid;
vm_size_t size;
unsigned int tsize;
desc[2] = '\0';
if (mas1 & MAS1_VALID)
desc[0] = 'V';
else
desc[0] = ' ';
if (mas1 & MAS1_IPROT)
desc[1] = 'P';
else
desc[1] = ' ';
as = (mas1 & MAS1_TS_MASK) ? 1 : 0;
tid = MAS1_GETTID(mas1);
tsize = (mas1 & MAS1_TSIZE_MASK) >> MAS1_TSIZE_SHIFT;
size = 0;
if (tsize)
size = tsize2size(tsize);
debugf("%3d: (%s) [AS=%d] "
"sz = 0x%08x tsz = %d tid = %d mas1 = 0x%08x "
"mas2(va) = 0x%08x mas3(pa) = 0x%08x mas7 = 0x%08x\n",
i, desc, as, size, tsize, tid, mas1, mas2, mas3, mas7);
}
/* Convert TLB0 va and way number to tlb0[] table index. */
static inline unsigned int
tlb0_tableidx(vm_offset_t va, unsigned int way)
{
unsigned int idx;
idx = (way * TLB0_ENTRIES_PER_WAY);
idx += (va & MAS2_TLB0_ENTRY_IDX_MASK) >> MAS2_TLB0_ENTRY_IDX_SHIFT;
return (idx);
}
/*
* Invalidate TLB0 entry.
*/
static inline void
tlb0_flush_entry(vm_offset_t va)
{
CTR2(KTR_PMAP, "%s: s va=0x%08x", __func__, va);
mtx_assert(&tlbivax_mutex, MA_OWNED);
__asm __volatile("tlbivax 0, %0" :: "r"(va & MAS2_EPN_MASK));
__asm __volatile("isync; msync");
__asm __volatile("tlbsync; msync");
CTR1(KTR_PMAP, "%s: e", __func__);
}
/* Print out contents of the MAS registers for each TLB0 entry */
void
tlb0_print_tlbentries(void)
{
uint32_t mas0, mas1, mas2, mas3, mas7;
int entryidx, way, idx;
debugf("TLB0 entries:\n");
for (way = 0; way < TLB0_WAYS; way ++)
for (entryidx = 0; entryidx < TLB0_ENTRIES_PER_WAY; entryidx++) {
mas0 = MAS0_TLBSEL(0) | MAS0_ESEL(way);
mtspr(SPR_MAS0, mas0);
__asm __volatile("isync");
mas2 = entryidx << MAS2_TLB0_ENTRY_IDX_SHIFT;
mtspr(SPR_MAS2, mas2);
__asm __volatile("isync; tlbre");
mas1 = mfspr(SPR_MAS1);
mas2 = mfspr(SPR_MAS2);
mas3 = mfspr(SPR_MAS3);
mas7 = mfspr(SPR_MAS7);
idx = tlb0_tableidx(mas2, way);
tlb_print_entry(idx, mas1, mas2, mas3, mas7);
}
}
/**************************************************************************/
/* TLB1 handling */
/**************************************************************************/
/*
* TLB1 mapping notes:
*
* TLB1[0] CCSRBAR
* TLB1[1] Kernel text and data.
* TLB1[2-15] Additional kernel text and data mappings (if required), PCI
* windows, other devices mappings.
*/
/*
* Write given entry to TLB1 hardware.
* Use 32 bit pa, clear 4 high-order bits of RPN (mas7).
*/
static void
tlb1_write_entry(unsigned int idx)
{
uint32_t mas0, mas7;
//debugf("tlb1_write_entry: s\n");
/* Clear high order RPN bits */
mas7 = 0;
/* Select entry */
mas0 = MAS0_TLBSEL(1) | MAS0_ESEL(idx);
//debugf("tlb1_write_entry: mas0 = 0x%08x\n", mas0);
mtspr(SPR_MAS0, mas0);
__asm __volatile("isync");
mtspr(SPR_MAS1, tlb1[idx].mas1);
__asm __volatile("isync");
mtspr(SPR_MAS2, tlb1[idx].mas2);
__asm __volatile("isync");
mtspr(SPR_MAS3, tlb1[idx].mas3);
__asm __volatile("isync");
mtspr(SPR_MAS7, mas7);
__asm __volatile("isync; tlbwe; isync; msync");
//debugf("tlb1_write_entry: e\n");
}
/*
* Return the largest uint value log such that 2^log <= num.
*/
static unsigned int
ilog2(unsigned int num)
{
int lz;
__asm ("cntlzw %0, %1" : "=r" (lz) : "r" (num));
return (31 - lz);
}
/*
* Convert TLB TSIZE value to mapped region size.
*/
static vm_size_t
tsize2size(unsigned int tsize)
{
/*
* size = 4^tsize KB
* size = 4^tsize * 2^10 = 2^(2 * tsize - 10)
*/
return ((1 << (2 * tsize)) * 1024);
}
/*
* Convert region size (must be power of 4) to TLB TSIZE value.
*/
static unsigned int
size2tsize(vm_size_t size)
{
return (ilog2(size) / 2 - 5);
}
/*
* Register permanent kernel mapping in TLB1.
*
* Entries are created starting from index 0 (current free entry is
* kept in tlb1_idx) and are not supposed to be invalidated.
*/
static int
tlb1_set_entry(vm_offset_t va, vm_offset_t pa, vm_size_t size,
uint32_t flags)
{
uint32_t ts, tid;
int tsize;
if (tlb1_idx >= TLB1_ENTRIES) {
printf("tlb1_set_entry: TLB1 full!\n");
return (-1);
}
/* Convert size to TSIZE */
tsize = size2tsize(size);
tid = (TID_KERNEL << MAS1_TID_SHIFT) & MAS1_TID_MASK;
/* XXX TS is hard coded to 0 for now as we only use single address space */
ts = (0 << MAS1_TS_SHIFT) & MAS1_TS_MASK;
/* XXX LOCK tlb1[] */
tlb1[tlb1_idx].mas1 = MAS1_VALID | MAS1_IPROT | ts | tid;
tlb1[tlb1_idx].mas1 |= ((tsize << MAS1_TSIZE_SHIFT) & MAS1_TSIZE_MASK);
tlb1[tlb1_idx].mas2 = (va & MAS2_EPN_MASK) | flags;
/* Set supervisor RWX permission bits */
tlb1[tlb1_idx].mas3 = (pa & MAS3_RPN) | MAS3_SR | MAS3_SW | MAS3_SX;
tlb1_write_entry(tlb1_idx++);
/* XXX UNLOCK tlb1[] */
/*
* XXX in general TLB1 updates should be propagated between CPUs,
* since current design assumes to have the same TLB1 set-up on all
* cores.
*/
return (0);
}
static int
tlb1_entry_size_cmp(const void *a, const void *b)
{
const vm_size_t *sza;
const vm_size_t *szb;
sza = a;
szb = b;
if (*sza > *szb)
return (-1);
else if (*sza < *szb)
return (1);
else
return (0);
}
/*
* Map in contiguous RAM region into the TLB1 using maximum of
* KERNEL_REGION_MAX_TLB_ENTRIES entries.
*
* If necessary round up last entry size and return total size
* used by all allocated entries.
*/
vm_size_t
tlb1_mapin_region(vm_offset_t va, vm_offset_t pa, vm_size_t size)
{
vm_size_t entry_size[KERNEL_REGION_MAX_TLB_ENTRIES];
vm_size_t mapped_size, sz, esz;
unsigned int log;
int i;
CTR4(KTR_PMAP, "%s: region size = 0x%08x va = 0x%08x pa = 0x%08x",
__func__, size, va, pa);
mapped_size = 0;
sz = size;
memset(entry_size, 0, sizeof(entry_size));
/* Calculate entry sizes. */
for (i = 0; i < KERNEL_REGION_MAX_TLB_ENTRIES && sz > 0; i++) {
/* Largest region that is power of 4 and fits within size */
log = ilog2(sz) / 2;
esz = 1 << (2 * log);
/* If this is last entry cover remaining size. */
if (i == KERNEL_REGION_MAX_TLB_ENTRIES - 1) {
while (esz < sz)
esz = esz << 2;
}
entry_size[i] = esz;
mapped_size += esz;
if (esz < sz)
sz -= esz;
else
sz = 0;
}
/* Sort entry sizes, required to get proper entry address alignment. */
qsort(entry_size, KERNEL_REGION_MAX_TLB_ENTRIES,
sizeof(vm_size_t), tlb1_entry_size_cmp);
/* Load TLB1 entries. */
for (i = 0; i < KERNEL_REGION_MAX_TLB_ENTRIES; i++) {
esz = entry_size[i];
if (!esz)
break;
CTR5(KTR_PMAP, "%s: entry %d: sz = 0x%08x (va = 0x%08x "
"pa = 0x%08x)", __func__, tlb1_idx, esz, va, pa);
tlb1_set_entry(va, pa, esz, _TLB_ENTRY_MEM);
va += esz;
pa += esz;
}
CTR3(KTR_PMAP, "%s: mapped size 0x%08x (wasted space 0x%08x)",
__func__, mapped_size, mapped_size - size);
return (mapped_size);
}
/*
* TLB1 initialization routine, to be called after the very first
* assembler level setup done in locore.S.
*/
void
tlb1_init(vm_offset_t ccsrbar)
{
uint32_t mas0;
/* TLB1[1] is used to map the kernel. Save that entry. */
mas0 = MAS0_TLBSEL(1) | MAS0_ESEL(1);
mtspr(SPR_MAS0, mas0);
__asm __volatile("isync; tlbre");
tlb1[1].mas1 = mfspr(SPR_MAS1);
tlb1[1].mas2 = mfspr(SPR_MAS2);
tlb1[1].mas3 = mfspr(SPR_MAS3);
/* Map in CCSRBAR in TLB1[0] */
tlb1_idx = 0;
tlb1_set_entry(CCSRBAR_VA, ccsrbar, CCSRBAR_SIZE, _TLB_ENTRY_IO);
/*
* Set the next available TLB1 entry index. Note TLB[1] is reserved
* for initial mapping of kernel text+data, which was set early in
* locore, we need to skip this [busy] entry.
*/
tlb1_idx = 2;
/* Setup TLB miss defaults */
set_mas4_defaults();
}
/*
* Setup MAS4 defaults.
* These values are loaded to MAS0-2 on a TLB miss.
*/
static void
set_mas4_defaults(void)
{
uint32_t mas4;
/* Defaults: TLB0, PID0, TSIZED=4K */
mas4 = MAS4_TLBSELD0;
mas4 |= (TLB_SIZE_4K << MAS4_TSIZED_SHIFT) & MAS4_TSIZED_MASK;
#ifdef SMP
mas4 |= MAS4_MD;
#endif
mtspr(SPR_MAS4, mas4);
__asm __volatile("isync");
}
/*
* Print out contents of the MAS registers for each TLB1 entry
*/
void
tlb1_print_tlbentries(void)
{
uint32_t mas0, mas1, mas2, mas3, mas7;
int i;
debugf("TLB1 entries:\n");
for (i = 0; i < TLB1_ENTRIES; i++) {
mas0 = MAS0_TLBSEL(1) | MAS0_ESEL(i);
mtspr(SPR_MAS0, mas0);
__asm __volatile("isync; tlbre");
mas1 = mfspr(SPR_MAS1);
mas2 = mfspr(SPR_MAS2);
mas3 = mfspr(SPR_MAS3);
mas7 = mfspr(SPR_MAS7);
tlb_print_entry(i, mas1, mas2, mas3, mas7);
}
}
/*
* Print out contents of the in-ram tlb1 table.
*/
void
tlb1_print_entries(void)
{
int i;
debugf("tlb1[] table entries:\n");
for (i = 0; i < TLB1_ENTRIES; i++)
tlb_print_entry(i, tlb1[i].mas1, tlb1[i].mas2, tlb1[i].mas3, 0);
}
/*
* Return 0 if the physical IO range is encompassed by one of the
* the TLB1 entries, otherwise return related error code.
*/
static int
tlb1_iomapped(int i, vm_paddr_t pa, vm_size_t size, vm_offset_t *va)
{
uint32_t prot;
vm_paddr_t pa_start;
vm_paddr_t pa_end;
unsigned int entry_tsize;
vm_size_t entry_size;
*va = (vm_offset_t)NULL;
/* Skip invalid entries */
if (!(tlb1[i].mas1 & MAS1_VALID))
return (EINVAL);
/*
* The entry must be cache-inhibited, guarded, and r/w
* so it can function as an i/o page
*/
prot = tlb1[i].mas2 & (MAS2_I | MAS2_G);
if (prot != (MAS2_I | MAS2_G))
return (EPERM);
prot = tlb1[i].mas3 & (MAS3_SR | MAS3_SW);
if (prot != (MAS3_SR | MAS3_SW))
return (EPERM);
/* The address should be within the entry range. */
entry_tsize = (tlb1[i].mas1 & MAS1_TSIZE_MASK) >> MAS1_TSIZE_SHIFT;
KASSERT((entry_tsize), ("tlb1_iomapped: invalid entry tsize"));
entry_size = tsize2size(entry_tsize);
pa_start = tlb1[i].mas3 & MAS3_RPN;
pa_end = pa_start + entry_size - 1;
if ((pa < pa_start) || ((pa + size) > pa_end))
return (ERANGE);
/* Return virtual address of this mapping. */
*va = (tlb1[i].mas2 & MAS2_EPN_MASK) + (pa - pa_start);
return (0);
}