de13c90ff2
mapping from numbers to names is messy for backwards compatibility. E.g., for driver "sd", unit "0": slice 0: omit the slice number for compatibility; names are sd0[a-h]. slice 1: omit the partition letter 'c' because the whole disk device shouldn't have anything to do with partitions; sd0 is the only name. slices 2-31: subtract 1 from slice number to compensate for the compatibility slice 0; names are sd0s[1-30][a-h].
670 lines
20 KiB
C
670 lines
20 KiB
C
#define PRE_DISKSLICE_COMPAT
|
|
#ifndef PRE_DISKSLICE_COMPAT
|
|
#define correct_readdisklabel readdisklabel
|
|
#define correct_writedisklabel writedisklabel
|
|
#endif
|
|
|
|
/*
|
|
* Copyright (c) 1982, 1986, 1988, 1993
|
|
* The Regents of the University of California. All rights reserved.
|
|
* (c) UNIX System Laboratories, Inc.
|
|
* All or some portions of this file are derived from material licensed
|
|
* to the University of California by American Telephone and Telegraph
|
|
* Co. or Unix System Laboratories, Inc. and are reproduced herein with
|
|
* the permission of UNIX System Laboratories, Inc.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 3. All advertising materials mentioning features or use of this software
|
|
* must display the following acknowledgement:
|
|
* This product includes software developed by the University of
|
|
* California, Berkeley and its contributors.
|
|
* 4. Neither the name of the University nor the names of its contributors
|
|
* may be used to endorse or promote products derived from this software
|
|
* without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*
|
|
* @(#)ufs_disksubr.c 8.5 (Berkeley) 1/21/94
|
|
* $Id: ufs_disksubr.c,v 1.8 1994/12/22 04:42:31 bde Exp $
|
|
*/
|
|
|
|
#include <sys/param.h>
|
|
#include <sys/systm.h>
|
|
#include <sys/buf.h>
|
|
#include <sys/disklabel.h>
|
|
#include <sys/diskslice.h>
|
|
#include <sys/dkbad.h>
|
|
#include <sys/syslog.h>
|
|
|
|
/*
|
|
* Seek sort for disks. We depend on the driver which calls us using b_resid
|
|
* as the current cylinder number.
|
|
*
|
|
* The argument ap structure holds a b_actf activity chain pointer on which we
|
|
* keep two queues, sorted in ascending cylinder order. The first queue holds
|
|
* those requests which are positioned after the current cylinder (in the first
|
|
* request); the second holds requests which came in after their cylinder number
|
|
* was passed. Thus we implement a one way scan, retracting after reaching the
|
|
* end of the drive to the first request on the second queue, at which time it
|
|
* becomes the first queue.
|
|
*
|
|
* A one-way scan is natural because of the way UNIX read-ahead blocks are
|
|
* allocated.
|
|
*/
|
|
|
|
/*
|
|
* For portability with historic industry practice, the
|
|
* cylinder number has to be maintained in the `b_resid'
|
|
* field.
|
|
*/
|
|
#define b_cylinder b_resid
|
|
|
|
void
|
|
disksort(ap, bp)
|
|
register struct buf *ap, *bp;
|
|
{
|
|
register struct buf *bq;
|
|
|
|
/* If the queue is empty, then it's easy. */
|
|
if (ap->b_actf == NULL) {
|
|
bp->b_actf = NULL;
|
|
ap->b_actf = bp;
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* If we lie after the first (currently active) request, then we
|
|
* must locate the second request list and add ourselves to it.
|
|
*/
|
|
bq = ap->b_actf;
|
|
if (bp->b_cylinder < bq->b_cylinder) {
|
|
while (bq->b_actf) {
|
|
/*
|
|
* Check for an ``inversion'' in the normally ascending
|
|
* cylinder numbers, indicating the start of the second
|
|
* request list.
|
|
*/
|
|
if (bq->b_actf->b_cylinder < bq->b_cylinder) {
|
|
/*
|
|
* Search the second request list for the first
|
|
* request at a larger cylinder number. We go
|
|
* before that; if there is no such request, we
|
|
* go at end.
|
|
*/
|
|
do {
|
|
if (bp->b_cylinder <
|
|
bq->b_actf->b_cylinder)
|
|
goto insert;
|
|
if (bp->b_cylinder ==
|
|
bq->b_actf->b_cylinder &&
|
|
bp->b_blkno < bq->b_actf->b_blkno)
|
|
goto insert;
|
|
bq = bq->b_actf;
|
|
} while (bq->b_actf);
|
|
goto insert; /* after last */
|
|
}
|
|
bq = bq->b_actf;
|
|
}
|
|
/*
|
|
* No inversions... we will go after the last, and
|
|
* be the first request in the second request list.
|
|
*/
|
|
goto insert;
|
|
}
|
|
/*
|
|
* Request is at/after the current request...
|
|
* sort in the first request list.
|
|
*/
|
|
while (bq->b_actf) {
|
|
/*
|
|
* We want to go after the current request if there is an
|
|
* inversion after it (i.e. it is the end of the first
|
|
* request list), or if the next request is a larger cylinder
|
|
* than our request.
|
|
*/
|
|
if (bq->b_actf->b_cylinder < bq->b_cylinder ||
|
|
bp->b_cylinder < bq->b_actf->b_cylinder ||
|
|
(bp->b_cylinder == bq->b_actf->b_cylinder &&
|
|
bp->b_blkno < bq->b_actf->b_blkno))
|
|
goto insert;
|
|
bq = bq->b_actf;
|
|
}
|
|
/*
|
|
* Neither a second list nor a larger request... we go at the end of
|
|
* the first list, which is the same as the end of the whole schebang.
|
|
*/
|
|
insert: bp->b_actf = bq->b_actf;
|
|
bq->b_actf = bp;
|
|
}
|
|
|
|
/*
|
|
* Attempt to read a disk label from a device using the indicated stategy
|
|
* routine. The label must be partly set up before this: secpercyl and
|
|
* anything required in the strategy routine (e.g., sector size) must be
|
|
* filled in before calling us. Returns NULL on success and an error
|
|
* string on failure.
|
|
*/
|
|
char *
|
|
correct_readdisklabel(dev, strat, lp)
|
|
dev_t dev;
|
|
d_strategy_t *strat;
|
|
register struct disklabel *lp;
|
|
{
|
|
register struct buf *bp;
|
|
struct disklabel *dlp;
|
|
char *msg = NULL;
|
|
|
|
#if 0
|
|
/*
|
|
* This clobbers valid labels built by drivers. It should fail,
|
|
* except on ancient systems, because it sets lp->d_npartitions
|
|
* to 1 but the label is supposed to be read from the raw partition,
|
|
* which is 0 only on ancient systems. Apparently most drivers
|
|
* don't check lp->d_npartitions.
|
|
*/
|
|
if (lp->d_secperunit == 0)
|
|
lp->d_secperunit = 0x1fffffff;
|
|
lp->d_npartitions = 1;
|
|
if (lp->d_partitions[0].p_size == 0)
|
|
lp->d_partitions[0].p_size = 0x1fffffff;
|
|
lp->d_partitions[0].p_offset = 0;
|
|
#endif
|
|
|
|
bp = geteblk((int)lp->d_secsize);
|
|
bp->b_dev = dev;
|
|
bp->b_blkno = LABELSECTOR;
|
|
bp->b_bcount = lp->d_secsize;
|
|
bp->b_flags = B_BUSY | B_READ;
|
|
bp->b_cylinder = LABELSECTOR / lp->d_secpercyl;
|
|
(*strat)(bp);
|
|
if (biowait(bp))
|
|
msg = "I/O error";
|
|
else for (dlp = (struct disklabel *)bp->b_data;
|
|
dlp <= (struct disklabel *)((char *)bp->b_data +
|
|
DEV_BSIZE - sizeof(*dlp));
|
|
dlp = (struct disklabel *)((char *)dlp + sizeof(long))) {
|
|
if (dlp->d_magic != DISKMAGIC || dlp->d_magic2 != DISKMAGIC) {
|
|
if (msg == NULL)
|
|
msg = "no disk label";
|
|
} else if (dlp->d_npartitions > MAXPARTITIONS ||
|
|
dkcksum(dlp) != 0)
|
|
msg = "disk label corrupted";
|
|
else {
|
|
*lp = *dlp;
|
|
msg = NULL;
|
|
break;
|
|
}
|
|
}
|
|
bp->b_flags = B_INVAL | B_AGE;
|
|
brelse(bp);
|
|
return (msg);
|
|
}
|
|
|
|
#ifdef PRE_DISKSLICE_COMPAT
|
|
/*
|
|
* Attempt to read a disk label from a device using the indicated stategy
|
|
* routine. The label must be partly set up before this: secpercyl and
|
|
* anything required in the strategy routine (e.g., sector size) must be
|
|
* filled in before calling us. Returns NULL on success and an error
|
|
* string on failure.
|
|
* If Machine Specific Partitions (MSP) are not found, then it will proceed
|
|
* as if the BSD partition starts at 0
|
|
* The MBR on an IBM PC is an example of an MSP.
|
|
*/
|
|
char *
|
|
readdisklabel(dev, strat, lp, dp, bdp)
|
|
dev_t dev;
|
|
void (*strat)();
|
|
register struct disklabel *lp;
|
|
struct dos_partition *dp;
|
|
struct dkbad *bdp;
|
|
{
|
|
register struct buf *bp;
|
|
struct disklabel *dlp;
|
|
char *msgMSP = NULL;
|
|
char *msg = NULL;
|
|
int i;
|
|
int cyl = 0;
|
|
|
|
/*
|
|
* Set up the disklabel as in case there is no MSP.
|
|
* We set the BSD part, but don't need to set the
|
|
* RAW part, because readMSPtolabel() will reset that
|
|
* itself. On return however, if there was no MSP,
|
|
* then we will be looking into OUR part to find the label
|
|
* and we will want that to start at 0, and have at least SOME length.
|
|
*/
|
|
if (lp->d_secperunit == 0)
|
|
lp->d_secperunit = 0x1fffffff;
|
|
lp->d_npartitions = OURPART + 1;
|
|
if (lp->d_partitions[OURPART].p_size == 0)
|
|
lp->d_partitions[OURPART].p_size = 0x100; /*enough for a label*/
|
|
lp->d_partitions[OURPART].p_offset = 0;
|
|
|
|
/*
|
|
* Dig out the Dos MSP.. If we get it, all remaining transfers
|
|
* will be relative to the base of the BSD part.
|
|
*/
|
|
msgMSP = readMSPtolabel(dev, strat, lp, dp, &cyl );
|
|
|
|
/*
|
|
* next, dig out disk label, relative to either the base of the
|
|
* BSD part, or block 0, depending on if an MSP was found.
|
|
*/
|
|
bp = geteblk((int)lp->d_secsize);
|
|
bp->b_blkno = LABELSECTOR;
|
|
bp->b_dev = makedev(major(dev), dkminor(dkunit(dev), OURPART));
|
|
bp->b_bcount = lp->d_secsize;
|
|
bp->b_flags = B_BUSY | B_READ;
|
|
bp->b_cylinder = cyl;
|
|
(*strat)(bp);
|
|
if (biowait(bp))
|
|
msg = "I/O error";
|
|
else for (dlp = (struct disklabel *)bp->b_data;
|
|
dlp <= (struct disklabel *)((char *)bp->b_data +
|
|
DEV_BSIZE - sizeof(*dlp));
|
|
dlp = (struct disklabel *)((char *)dlp + sizeof(long))) {
|
|
if (dlp->d_magic != DISKMAGIC || dlp->d_magic2 != DISKMAGIC) {
|
|
if (msg == NULL)
|
|
msg = "no disk label";
|
|
} else if (dlp->d_npartitions > MAXPARTITIONS ||
|
|
dkcksum(dlp) != 0)
|
|
msg = "disk label corrupted";
|
|
else {
|
|
*lp = *dlp;
|
|
msg = NULL;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (msg && msgMSP) {
|
|
msg = msgMSP;
|
|
goto done;
|
|
}
|
|
|
|
/*
|
|
* Since we had one of the two labels, either one made up from the
|
|
* MSP, one found in the FreeBSD-MSP-partitions sector 2, or even
|
|
* one in sector 2 absolute on the disk, there is not really an error.
|
|
*/
|
|
|
|
msg = NULL;
|
|
|
|
/* obtain bad sector table if requested and present */
|
|
if (bdp && (lp->d_flags & D_BADSECT)) {
|
|
struct dkbad *db;
|
|
|
|
printf("d_secsize: %ld\n", lp->d_secsize);
|
|
i = 0;
|
|
do {
|
|
/* read a bad sector table */
|
|
bp->b_flags = B_BUSY | B_READ;
|
|
bp->b_blkno = lp->d_secperunit - lp->d_nsectors + i;
|
|
if (lp->d_secsize > DEV_BSIZE)
|
|
bp->b_blkno *= lp->d_secsize / DEV_BSIZE;
|
|
else
|
|
bp->b_blkno /= DEV_BSIZE / lp->d_secsize;
|
|
bp->b_bcount = lp->d_secsize;
|
|
bp->b_cylinder = lp->d_ncylinders - 1;
|
|
(*strat)(bp);
|
|
|
|
/* if successful, validate, otherwise try another */
|
|
if (biowait(bp)) {
|
|
msg = "bad sector table I/O error";
|
|
} else {
|
|
db = (struct dkbad *)(bp->b_un.b_addr);
|
|
#define DKBAD_MAGIC 0x4321
|
|
if (db->bt_mbz == 0
|
|
&& db->bt_flag == DKBAD_MAGIC) {
|
|
msg = NULL;
|
|
*bdp = *db;
|
|
break;
|
|
} else
|
|
msg = "bad sector table corrupted";
|
|
}
|
|
} while ((bp->b_flags & B_ERROR) && (i += 2) < 10 &&
|
|
i < lp->d_nsectors);
|
|
}
|
|
|
|
done:
|
|
bp->b_flags = B_INVAL | B_AGE;
|
|
brelse(bp);
|
|
return (msg);
|
|
}
|
|
#endif /* PRE_DISKSLICE_COMPAT */
|
|
|
|
/*
|
|
* Check new disk label for sensibility before setting it.
|
|
*/
|
|
int
|
|
setdisklabel(olp, nlp, openmask)
|
|
register struct disklabel *olp, *nlp;
|
|
u_long openmask;
|
|
{
|
|
register i;
|
|
register struct partition *opp, *npp;
|
|
|
|
/*
|
|
* Check it is actually a disklabel we are looking at.
|
|
*/
|
|
if (nlp->d_magic != DISKMAGIC || nlp->d_magic2 != DISKMAGIC ||
|
|
dkcksum(nlp) != 0)
|
|
return (EINVAL);
|
|
/*
|
|
* For each partition that we think is open,
|
|
*/
|
|
while ((i = ffs((long)openmask)) != 0) {
|
|
i--;
|
|
/*
|
|
* Check it is not changing....
|
|
*/
|
|
openmask &= ~(1 << i);
|
|
if (nlp->d_npartitions <= i)
|
|
return (EBUSY);
|
|
opp = &olp->d_partitions[i];
|
|
npp = &nlp->d_partitions[i];
|
|
if (npp->p_offset != opp->p_offset || npp->p_size < opp->p_size)
|
|
return (EBUSY);
|
|
/*
|
|
* Copy internally-set partition information
|
|
* if new label doesn't include it. XXX
|
|
* (If we are using it then we had better stay the same type)
|
|
* This is possibly dubious, as someone else noted (XXX)
|
|
*/
|
|
if (npp->p_fstype == FS_UNUSED && opp->p_fstype != FS_UNUSED) {
|
|
npp->p_fstype = opp->p_fstype;
|
|
npp->p_fsize = opp->p_fsize;
|
|
npp->p_frag = opp->p_frag;
|
|
npp->p_cpg = opp->p_cpg;
|
|
}
|
|
}
|
|
nlp->d_checksum = 0;
|
|
nlp->d_checksum = dkcksum(nlp);
|
|
*olp = *nlp;
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Write disk label back to device after modification.
|
|
*/
|
|
int
|
|
correct_writedisklabel(dev, strat, lp)
|
|
dev_t dev;
|
|
d_strategy_t *strat;
|
|
register struct disklabel *lp;
|
|
{
|
|
struct buf *bp;
|
|
struct disklabel *dlp;
|
|
int labelpart;
|
|
int error = 0;
|
|
|
|
labelpart = dkpart(dev);
|
|
if (lp->d_partitions[labelpart].p_offset != 0) {
|
|
if (lp->d_partitions[0].p_offset != 0)
|
|
return (EXDEV); /* not quite right */
|
|
labelpart = 0;
|
|
}
|
|
bp = geteblk((int)lp->d_secsize);
|
|
bp->b_dev = dkmodpart(dev, labelpart);
|
|
bp->b_blkno = LABELSECTOR;
|
|
bp->b_bcount = lp->d_secsize;
|
|
bp->b_flags = B_READ;
|
|
(*strat)(bp);
|
|
error = biowait(bp);
|
|
if (error)
|
|
goto done;
|
|
for (dlp = (struct disklabel *)bp->b_data;
|
|
dlp <= (struct disklabel *)
|
|
((char *)bp->b_data + lp->d_secsize - sizeof(*dlp));
|
|
dlp = (struct disklabel *)((char *)dlp + sizeof(long))) {
|
|
if (dlp->d_magic == DISKMAGIC && dlp->d_magic2 == DISKMAGIC &&
|
|
dkcksum(dlp) == 0) {
|
|
*dlp = *lp;
|
|
bp->b_flags = B_WRITE;
|
|
(*strat)(bp);
|
|
error = biowait(bp);
|
|
goto done;
|
|
}
|
|
}
|
|
error = ESRCH;
|
|
done:
|
|
brelse(bp);
|
|
return (error);
|
|
}
|
|
|
|
#ifdef PRE_DISKSLICE_COMPAT
|
|
/*
|
|
* Write disk label back to device after modification.
|
|
* For FreeBSD 2.0(x86) this routine will refuse to install a label if
|
|
* there is no DOS MSP. (this can be changed)
|
|
*
|
|
* Assumptions for THIS VERSION:
|
|
* The given disklabel pointer is actually that which is controlling this
|
|
* Device, so that by fiddling it, readMSPtolabel() can ensure that
|
|
* it can read from the MSP if it exists,
|
|
* This assumption will cease as soon as ther is a better way of ensuring
|
|
* that a read is done to the whole raw device.
|
|
* MSP defines a BSD part, label is in block 1 (2nd block) of this
|
|
*/
|
|
int
|
|
writedisklabel(dev, strat, lp)
|
|
dev_t dev;
|
|
void (*strat)();
|
|
register struct disklabel *lp;
|
|
{
|
|
struct buf *bp = NULL;
|
|
struct disklabel *dlp;
|
|
int error = 0;
|
|
struct disklabel label;
|
|
char *msg;
|
|
int BSDstart,BSDlen;
|
|
int cyl; /* dummy arg for readMSPtolabel() */
|
|
|
|
/*
|
|
* Save the label (better be the real one)
|
|
* because we are going to play funny games with the disklabel
|
|
* controlling this device..
|
|
*/
|
|
bcopy(lp,&label,sizeof(label));
|
|
/*
|
|
* Unlike the read, we will trust the parameters given to us
|
|
* about the disk, in the new disklabel but will simply
|
|
* force OURPART to start at block 0 as a default in case there is NO
|
|
* MSP.
|
|
* readMSPtolabel() will reset it to start at the start of the BSD
|
|
* part if it exists
|
|
* At this time this is an error contition but I've left support for it
|
|
*/
|
|
lp->d_npartitions = OURPART + 1;
|
|
if (lp->d_partitions[OURPART].p_size == 0)
|
|
lp->d_partitions[OURPART].p_size = 0x1fffffff;
|
|
lp->d_partitions[OURPART].p_offset = 0;
|
|
|
|
msg = readMSPtolabel(dev, strat, lp, 0, &cyl );
|
|
/*
|
|
* If we want to be able to install without an Machine Specific
|
|
* Partitioning , then
|
|
* the failure of readMSPtolabel() should be made non fatal.
|
|
*/
|
|
if(msg) {
|
|
printf("writedisklabel:%s\n",msg);
|
|
error = ENXIO;
|
|
goto done;
|
|
}
|
|
/*
|
|
* If we had MSP (no message) but there
|
|
* was no BSD part in it
|
|
* then balk.. they should use fdisk to make one first or smash it..
|
|
* This may just be me being paranoid, but it's my choice for now..
|
|
* note we test for !msg, because the test above might be changed
|
|
* as a valid option..
|
|
*/
|
|
if((!msg) && (!(lp->d_subtype & DSTYPE_INDOSPART))) {
|
|
printf("writedisklabel: MSP with no BSD part\n");
|
|
}
|
|
|
|
/*
|
|
* get all the other bits back from the good new disklabel
|
|
* (the user wouldn't try confuse us would he?)
|
|
* With the exception of the OURPART which now points to the
|
|
* BSD partition.
|
|
*/
|
|
BSDstart = lp->d_partitions[OURPART].p_offset;
|
|
BSDlen = lp->d_partitions[OURPART].p_size;
|
|
bcopy(&label,lp,sizeof(label));
|
|
lp->d_partitions[OURPART].p_offset = BSDstart;
|
|
lp->d_partitions[OURPART].p_size = BSDlen;
|
|
|
|
bp = geteblk((int)lp->d_secsize);
|
|
bp->b_dev = makedev(major(dev), dkminor(dkunit(dev), OURPART));
|
|
bp->b_blkno = LABELSECTOR;
|
|
bp->b_bcount = lp->d_secsize;
|
|
#ifdef STUPID
|
|
/*
|
|
* We read the label first to see if it's there,
|
|
* in which case we will put ours at the same offset into the block..
|
|
* (I think this is stupid [Julian])
|
|
* Note that you can't write a label out over a corrupted label!
|
|
* (also stupid.. how do you write the first one? by raw writes?)
|
|
*/
|
|
bp->b_flags = B_READ;
|
|
(*strat)(bp);
|
|
error = biowait(bp);
|
|
if (error)
|
|
goto done;
|
|
for (dlp = (struct disklabel *)bp->b_data;
|
|
dlp <= (struct disklabel *)
|
|
((char *)bp->b_data + lp->d_secsize - sizeof(*dlp));
|
|
dlp = (struct disklabel *)((char *)dlp + sizeof(long))) {
|
|
if (dlp->d_magic == DISKMAGIC && dlp->d_magic2 == DISKMAGIC &&
|
|
dkcksum(dlp) == 0) {
|
|
bcopy(&label,dlp,sizeof(label));
|
|
bp->b_flags = B_WRITE;
|
|
(*strat)(bp);
|
|
error = biowait(bp);
|
|
goto done;
|
|
}
|
|
}
|
|
error = ESRCH;
|
|
#else /* Stupid */
|
|
dlp = (struct disklabel *)bp->b_data;
|
|
bcopy(&label,dlp,sizeof(label));
|
|
bp->b_flags = B_WRITE;
|
|
(*strat)(bp);
|
|
error = biowait(bp);
|
|
#endif /* Stupid */
|
|
done:
|
|
bcopy(&label,lp,sizeof(label)); /* start using the new label again */
|
|
if(bp)
|
|
brelse(bp);
|
|
return (error);
|
|
}
|
|
#endif /* PRE_DISKSLICE_COMPAT */
|
|
|
|
/*
|
|
* Compute checksum for disk label.
|
|
*/
|
|
u_int
|
|
dkcksum(lp)
|
|
register struct disklabel *lp;
|
|
{
|
|
register u_short *start, *end;
|
|
register u_short sum = 0;
|
|
|
|
start = (u_short *)lp;
|
|
end = (u_short *)&lp->d_partitions[lp->d_npartitions];
|
|
while (start < end)
|
|
sum ^= *start++;
|
|
return (sum);
|
|
}
|
|
|
|
/*
|
|
* Disk error is the preface to plaintive error messages
|
|
* about failing disk transfers. It prints messages of the form
|
|
|
|
hp0g: hard error reading fsbn 12345 of 12344-12347 (hp0 bn %d cn %d tn %d sn %d)
|
|
|
|
* if the offset of the error in the transfer and a disk label
|
|
* are both available. blkdone should be -1 if the position of the error
|
|
* is unknown; the disklabel pointer may be null from drivers that have not
|
|
* been converted to use them. The message is printed with printf
|
|
* if pri is LOG_PRINTF, otherwise it uses log at the specified priority.
|
|
* The message should be completed (with at least a newline) with printf
|
|
* or addlog, respectively. There is no trailing space.
|
|
*/
|
|
void
|
|
diskerr(bp, dname, what, pri, blkdone, lp)
|
|
register struct buf *bp;
|
|
char *dname, *what;
|
|
int pri, blkdone;
|
|
register struct disklabel *lp;
|
|
{
|
|
int unit = dkunit(bp->b_dev);
|
|
int slice = dkslice(bp->b_dev);
|
|
int part = dkpart(bp->b_dev);
|
|
register void (*pr) __P((const char *, ...));
|
|
char partname[2];
|
|
char slicename[32];
|
|
int sn;
|
|
|
|
if (pri != LOG_PRINTF) {
|
|
log(pri, "");
|
|
pr = addlog;
|
|
} else
|
|
pr = printf;
|
|
slicename[0] = partname[0] = '\0';
|
|
if (slice != WHOLE_DISK_SLICE || part != RAW_PART) {
|
|
partname[0] = 'a' + part;
|
|
partname[1] = '\0';
|
|
if (slice != COMPATIBILITY_SLICE)
|
|
sprintf(slicename, "s%d", slice - 1);
|
|
}
|
|
(*pr)("%s%d%s%s: %s %sing fsbn ", dname, unit, slicename, partname,
|
|
what, bp->b_flags & B_READ ? "read" : "writ");
|
|
sn = bp->b_blkno;
|
|
if (bp->b_bcount <= DEV_BSIZE)
|
|
(*pr)("%d", sn);
|
|
else {
|
|
if (blkdone >= 0) {
|
|
sn += blkdone;
|
|
(*pr)("%d of ", sn);
|
|
}
|
|
(*pr)("%d-%d", bp->b_blkno,
|
|
bp->b_blkno + (bp->b_bcount - 1) / DEV_BSIZE);
|
|
}
|
|
if (lp && (blkdone >= 0 || bp->b_bcount <= lp->d_secsize)) {
|
|
#ifdef tahoe
|
|
sn *= DEV_BSIZE / lp->d_secsize; /* XXX */
|
|
#endif
|
|
sn += lp->d_partitions[part].p_offset;
|
|
/*
|
|
* XXX should add slice offset and not print the slice,
|
|
* but we don't know the slice pointer.
|
|
* XXX should print bp->b_pblkno so that this will work
|
|
* independent of slices, labels and bad sector remapping,
|
|
* but some drivers don't set bp->b_pblkno.
|
|
*/
|
|
(*pr)(" (%s%d%s bn %d; cn %d", dname, unit, slicename, sn,
|
|
sn / lp->d_secpercyl);
|
|
sn %= lp->d_secpercyl;
|
|
(*pr)(" tn %d sn %d)", sn / lp->d_nsectors, sn % lp->d_nsectors);
|
|
}
|
|
}
|