freebsd-skq/sys/dev/acpica/acpi_ec.c
2009-06-05 18:44:36 +00:00

1046 lines
30 KiB
C

/*-
* Copyright (c) 2003-2007 Nate Lawson
* Copyright (c) 2000 Michael Smith
* Copyright (c) 2000 BSDi
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include "opt_acpi.h"
#include <sys/param.h>
#include <sys/kernel.h>
#include <sys/bus.h>
#include <sys/lock.h>
#include <sys/malloc.h>
#include <sys/module.h>
#include <sys/sx.h>
#include <machine/bus.h>
#include <machine/resource.h>
#include <sys/rman.h>
#include <contrib/dev/acpica/include/acpi.h>
#include <contrib/dev/acpica/include/accommon.h>
#include <dev/acpica/acpivar.h>
/* Hooks for the ACPI CA debugging infrastructure */
#define _COMPONENT ACPI_EC
ACPI_MODULE_NAME("EC")
/*
* EC_COMMAND:
* -----------
*/
typedef UINT8 EC_COMMAND;
#define EC_COMMAND_UNKNOWN ((EC_COMMAND) 0x00)
#define EC_COMMAND_READ ((EC_COMMAND) 0x80)
#define EC_COMMAND_WRITE ((EC_COMMAND) 0x81)
#define EC_COMMAND_BURST_ENABLE ((EC_COMMAND) 0x82)
#define EC_COMMAND_BURST_DISABLE ((EC_COMMAND) 0x83)
#define EC_COMMAND_QUERY ((EC_COMMAND) 0x84)
/*
* EC_STATUS:
* ----------
* The encoding of the EC status register is illustrated below.
* Note that a set bit (1) indicates the property is TRUE
* (e.g. if bit 0 is set then the output buffer is full).
* +-+-+-+-+-+-+-+-+
* |7|6|5|4|3|2|1|0|
* +-+-+-+-+-+-+-+-+
* | | | | | | | |
* | | | | | | | +- Output Buffer Full?
* | | | | | | +--- Input Buffer Full?
* | | | | | +----- <reserved>
* | | | | +------- Data Register is Command Byte?
* | | | +--------- Burst Mode Enabled?
* | | +----------- SCI Event?
* | +------------- SMI Event?
* +--------------- <reserved>
*
*/
typedef UINT8 EC_STATUS;
#define EC_FLAG_OUTPUT_BUFFER ((EC_STATUS) 0x01)
#define EC_FLAG_INPUT_BUFFER ((EC_STATUS) 0x02)
#define EC_FLAG_DATA_IS_CMD ((EC_STATUS) 0x08)
#define EC_FLAG_BURST_MODE ((EC_STATUS) 0x10)
/*
* EC_EVENT:
* ---------
*/
typedef UINT8 EC_EVENT;
#define EC_EVENT_UNKNOWN ((EC_EVENT) 0x00)
#define EC_EVENT_OUTPUT_BUFFER_FULL ((EC_EVENT) 0x01)
#define EC_EVENT_INPUT_BUFFER_EMPTY ((EC_EVENT) 0x02)
#define EC_EVENT_SCI ((EC_EVENT) 0x20)
#define EC_EVENT_SMI ((EC_EVENT) 0x40)
/* Data byte returned after burst enable indicating it was successful. */
#define EC_BURST_ACK 0x90
/*
* Register access primitives
*/
#define EC_GET_DATA(sc) \
bus_space_read_1((sc)->ec_data_tag, (sc)->ec_data_handle, 0)
#define EC_SET_DATA(sc, v) \
bus_space_write_1((sc)->ec_data_tag, (sc)->ec_data_handle, 0, (v))
#define EC_GET_CSR(sc) \
bus_space_read_1((sc)->ec_csr_tag, (sc)->ec_csr_handle, 0)
#define EC_SET_CSR(sc, v) \
bus_space_write_1((sc)->ec_csr_tag, (sc)->ec_csr_handle, 0, (v))
/* Additional params to pass from the probe routine */
struct acpi_ec_params {
int glk;
int gpe_bit;
ACPI_HANDLE gpe_handle;
int uid;
};
/* Indicate that this device has already been probed via ECDT. */
#define DEV_ECDT(x) (acpi_get_magic(x) == (uintptr_t)&acpi_ec_devclass)
/*
* Driver softc.
*/
struct acpi_ec_softc {
device_t ec_dev;
ACPI_HANDLE ec_handle;
int ec_uid;
ACPI_HANDLE ec_gpehandle;
UINT8 ec_gpebit;
int ec_data_rid;
struct resource *ec_data_res;
bus_space_tag_t ec_data_tag;
bus_space_handle_t ec_data_handle;
int ec_csr_rid;
struct resource *ec_csr_res;
bus_space_tag_t ec_csr_tag;
bus_space_handle_t ec_csr_handle;
int ec_glk;
int ec_glkhandle;
int ec_burstactive;
int ec_sci_pend;
u_int ec_gencount;
int ec_suspending;
};
/*
* XXX njl
* I couldn't find it in the spec but other implementations also use a
* value of 1 ms for the time to acquire global lock.
*/
#define EC_LOCK_TIMEOUT 1000
/* Default delay in microseconds between each run of the status polling loop. */
#define EC_POLL_DELAY 5
/* Total time in ms spent waiting for a response from EC. */
#define EC_TIMEOUT 750
#define EVENT_READY(event, status) \
(((event) == EC_EVENT_OUTPUT_BUFFER_FULL && \
((status) & EC_FLAG_OUTPUT_BUFFER) != 0) || \
((event) == EC_EVENT_INPUT_BUFFER_EMPTY && \
((status) & EC_FLAG_INPUT_BUFFER) == 0))
ACPI_SERIAL_DECL(ec, "ACPI embedded controller");
SYSCTL_DECL(_debug_acpi);
SYSCTL_NODE(_debug_acpi, OID_AUTO, ec, CTLFLAG_RD, NULL, "EC debugging");
static int ec_burst_mode;
TUNABLE_INT("debug.acpi.ec.burst", &ec_burst_mode);
SYSCTL_INT(_debug_acpi_ec, OID_AUTO, burst, CTLFLAG_RW, &ec_burst_mode, 0,
"Enable use of burst mode (faster for nearly all systems)");
static int ec_polled_mode;
TUNABLE_INT("debug.acpi.ec.polled", &ec_polled_mode);
SYSCTL_INT(_debug_acpi_ec, OID_AUTO, polled, CTLFLAG_RW, &ec_polled_mode, 0,
"Force use of polled mode (only if interrupt mode doesn't work)");
static int ec_timeout = EC_TIMEOUT;
TUNABLE_INT("debug.acpi.ec.timeout", &ec_timeout);
SYSCTL_INT(_debug_acpi_ec, OID_AUTO, timeout, CTLFLAG_RW, &ec_timeout,
EC_TIMEOUT, "Total time spent waiting for a response (poll+sleep)");
static ACPI_STATUS
EcLock(struct acpi_ec_softc *sc)
{
ACPI_STATUS status;
/* If _GLK is non-zero, acquire the global lock. */
status = AE_OK;
if (sc->ec_glk) {
status = AcpiAcquireGlobalLock(EC_LOCK_TIMEOUT, &sc->ec_glkhandle);
if (ACPI_FAILURE(status))
return (status);
}
ACPI_SERIAL_BEGIN(ec);
return (status);
}
static void
EcUnlock(struct acpi_ec_softc *sc)
{
ACPI_SERIAL_END(ec);
if (sc->ec_glk)
AcpiReleaseGlobalLock(sc->ec_glkhandle);
}
static uint32_t EcGpeHandler(void *Context);
static ACPI_STATUS EcSpaceSetup(ACPI_HANDLE Region, UINT32 Function,
void *Context, void **return_Context);
static ACPI_STATUS EcSpaceHandler(UINT32 Function,
ACPI_PHYSICAL_ADDRESS Address,
UINT32 width, ACPI_INTEGER *Value,
void *Context, void *RegionContext);
static ACPI_STATUS EcWaitEvent(struct acpi_ec_softc *sc, EC_EVENT Event,
u_int gen_count);
static ACPI_STATUS EcCommand(struct acpi_ec_softc *sc, EC_COMMAND cmd);
static ACPI_STATUS EcRead(struct acpi_ec_softc *sc, UINT8 Address,
UINT8 *Data);
static ACPI_STATUS EcWrite(struct acpi_ec_softc *sc, UINT8 Address,
UINT8 *Data);
static int acpi_ec_probe(device_t dev);
static int acpi_ec_attach(device_t dev);
static int acpi_ec_suspend(device_t dev);
static int acpi_ec_resume(device_t dev);
static int acpi_ec_shutdown(device_t dev);
static int acpi_ec_read_method(device_t dev, u_int addr,
ACPI_INTEGER *val, int width);
static int acpi_ec_write_method(device_t dev, u_int addr,
ACPI_INTEGER val, int width);
static device_method_t acpi_ec_methods[] = {
/* Device interface */
DEVMETHOD(device_probe, acpi_ec_probe),
DEVMETHOD(device_attach, acpi_ec_attach),
DEVMETHOD(device_suspend, acpi_ec_suspend),
DEVMETHOD(device_resume, acpi_ec_resume),
DEVMETHOD(device_shutdown, acpi_ec_shutdown),
/* Embedded controller interface */
DEVMETHOD(acpi_ec_read, acpi_ec_read_method),
DEVMETHOD(acpi_ec_write, acpi_ec_write_method),
{0, 0}
};
static driver_t acpi_ec_driver = {
"acpi_ec",
acpi_ec_methods,
sizeof(struct acpi_ec_softc),
};
static devclass_t acpi_ec_devclass;
DRIVER_MODULE(acpi_ec, acpi, acpi_ec_driver, acpi_ec_devclass, 0, 0);
MODULE_DEPEND(acpi_ec, acpi, 1, 1, 1);
/*
* Look for an ECDT and if we find one, set up default GPE and
* space handlers to catch attempts to access EC space before
* we have a real driver instance in place.
*
* TODO: Some old Gateway laptops need us to fake up an ECDT or
* otherwise attach early so that _REG methods can run.
*/
void
acpi_ec_ecdt_probe(device_t parent)
{
ACPI_TABLE_ECDT *ecdt;
ACPI_STATUS status;
device_t child;
ACPI_HANDLE h;
struct acpi_ec_params *params;
ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__);
/* Find and validate the ECDT. */
status = AcpiGetTable(ACPI_SIG_ECDT, 1, (ACPI_TABLE_HEADER **)&ecdt);
if (ACPI_FAILURE(status) ||
ecdt->Control.BitWidth != 8 ||
ecdt->Data.BitWidth != 8) {
return;
}
/* Create the child device with the given unit number. */
child = BUS_ADD_CHILD(parent, 0, "acpi_ec", ecdt->Uid);
if (child == NULL) {
printf("%s: can't add child\n", __func__);
return;
}
/* Find and save the ACPI handle for this device. */
status = AcpiGetHandle(NULL, ecdt->Id, &h);
if (ACPI_FAILURE(status)) {
device_delete_child(parent, child);
printf("%s: can't get handle\n", __func__);
return;
}
acpi_set_handle(child, h);
/* Set the data and CSR register addresses. */
bus_set_resource(child, SYS_RES_IOPORT, 0, ecdt->Data.Address,
/*count*/1);
bus_set_resource(child, SYS_RES_IOPORT, 1, ecdt->Control.Address,
/*count*/1);
/*
* Store values for the probe/attach routines to use. Store the
* ECDT GPE bit and set the global lock flag according to _GLK.
* Note that it is not perfectly correct to be evaluating a method
* before initializing devices, but in practice this function
* should be safe to call at this point.
*/
params = malloc(sizeof(struct acpi_ec_params), M_TEMP, M_WAITOK | M_ZERO);
params->gpe_handle = NULL;
params->gpe_bit = ecdt->Gpe;
params->uid = ecdt->Uid;
acpi_GetInteger(h, "_GLK", &params->glk);
acpi_set_private(child, params);
acpi_set_magic(child, (uintptr_t)&acpi_ec_devclass);
/* Finish the attach process. */
if (device_probe_and_attach(child) != 0)
device_delete_child(parent, child);
}
static int
acpi_ec_probe(device_t dev)
{
ACPI_BUFFER buf;
ACPI_HANDLE h;
ACPI_OBJECT *obj;
ACPI_STATUS status;
device_t peer;
char desc[64];
int ret;
struct acpi_ec_params *params;
static char *ec_ids[] = { "PNP0C09", NULL };
/* Check that this is a device and that EC is not disabled. */
if (acpi_get_type(dev) != ACPI_TYPE_DEVICE || acpi_disabled("ec"))
return (ENXIO);
/*
* If probed via ECDT, set description and continue. Otherwise,
* we can access the namespace and make sure this is not a
* duplicate probe.
*/
ret = ENXIO;
params = NULL;
buf.Pointer = NULL;
buf.Length = ACPI_ALLOCATE_BUFFER;
if (DEV_ECDT(dev)) {
params = acpi_get_private(dev);
ret = 0;
} else if (!acpi_disabled("ec") &&
ACPI_ID_PROBE(device_get_parent(dev), dev, ec_ids)) {
params = malloc(sizeof(struct acpi_ec_params), M_TEMP,
M_WAITOK | M_ZERO);
h = acpi_get_handle(dev);
/*
* Read the unit ID to check for duplicate attach and the
* global lock value to see if we should acquire it when
* accessing the EC.
*/
status = acpi_GetInteger(h, "_UID", &params->uid);
if (ACPI_FAILURE(status))
params->uid = 0;
status = acpi_GetInteger(h, "_GLK", &params->glk);
if (ACPI_FAILURE(status))
params->glk = 0;
/*
* Evaluate the _GPE method to find the GPE bit used by the EC to
* signal status (SCI). If it's a package, it contains a reference
* and GPE bit, similar to _PRW.
*/
status = AcpiEvaluateObject(h, "_GPE", NULL, &buf);
if (ACPI_FAILURE(status)) {
device_printf(dev, "can't evaluate _GPE - %s\n",
AcpiFormatException(status));
goto out;
}
obj = (ACPI_OBJECT *)buf.Pointer;
if (obj == NULL)
goto out;
switch (obj->Type) {
case ACPI_TYPE_INTEGER:
params->gpe_handle = NULL;
params->gpe_bit = obj->Integer.Value;
break;
case ACPI_TYPE_PACKAGE:
if (!ACPI_PKG_VALID(obj, 2))
goto out;
params->gpe_handle =
acpi_GetReference(NULL, &obj->Package.Elements[0]);
if (params->gpe_handle == NULL ||
acpi_PkgInt32(obj, 1, &params->gpe_bit) != 0)
goto out;
break;
default:
device_printf(dev, "_GPE has invalid type %d\n", obj->Type);
goto out;
}
/* Store the values we got from the namespace for attach. */
acpi_set_private(dev, params);
/*
* Check for a duplicate probe. This can happen when a probe
* via ECDT succeeded already. If this is a duplicate, disable
* this device.
*/
peer = devclass_get_device(acpi_ec_devclass, params->uid);
if (peer == NULL || !device_is_alive(peer))
ret = 0;
else
device_disable(dev);
}
out:
if (ret == 0) {
snprintf(desc, sizeof(desc), "Embedded Controller: GPE %#x%s%s",
params->gpe_bit, (params->glk) ? ", GLK" : "",
DEV_ECDT(dev) ? ", ECDT" : "");
device_set_desc_copy(dev, desc);
}
if (ret > 0 && params)
free(params, M_TEMP);
if (buf.Pointer)
AcpiOsFree(buf.Pointer);
return (ret);
}
static int
acpi_ec_attach(device_t dev)
{
struct acpi_ec_softc *sc;
struct acpi_ec_params *params;
ACPI_STATUS Status;
ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__);
/* Fetch/initialize softc (assumes softc is pre-zeroed). */
sc = device_get_softc(dev);
params = acpi_get_private(dev);
sc->ec_dev = dev;
sc->ec_handle = acpi_get_handle(dev);
/* Retrieve previously probed values via device ivars. */
sc->ec_glk = params->glk;
sc->ec_gpebit = params->gpe_bit;
sc->ec_gpehandle = params->gpe_handle;
sc->ec_uid = params->uid;
sc->ec_suspending = FALSE;
free(params, M_TEMP);
/* Attach bus resources for data and command/status ports. */
sc->ec_data_rid = 0;
sc->ec_data_res = bus_alloc_resource_any(sc->ec_dev, SYS_RES_IOPORT,
&sc->ec_data_rid, RF_ACTIVE);
if (sc->ec_data_res == NULL) {
device_printf(dev, "can't allocate data port\n");
goto error;
}
sc->ec_data_tag = rman_get_bustag(sc->ec_data_res);
sc->ec_data_handle = rman_get_bushandle(sc->ec_data_res);
sc->ec_csr_rid = 1;
sc->ec_csr_res = bus_alloc_resource_any(sc->ec_dev, SYS_RES_IOPORT,
&sc->ec_csr_rid, RF_ACTIVE);
if (sc->ec_csr_res == NULL) {
device_printf(dev, "can't allocate command/status port\n");
goto error;
}
sc->ec_csr_tag = rman_get_bustag(sc->ec_csr_res);
sc->ec_csr_handle = rman_get_bushandle(sc->ec_csr_res);
/*
* Install a handler for this EC's GPE bit. We want edge-triggered
* behavior.
*/
ACPI_DEBUG_PRINT((ACPI_DB_RESOURCES, "attaching GPE handler\n"));
Status = AcpiInstallGpeHandler(sc->ec_gpehandle, sc->ec_gpebit,
ACPI_GPE_EDGE_TRIGGERED, &EcGpeHandler, sc);
if (ACPI_FAILURE(Status)) {
device_printf(dev, "can't install GPE handler for %s - %s\n",
acpi_name(sc->ec_handle), AcpiFormatException(Status));
goto error;
}
/*
* Install address space handler
*/
ACPI_DEBUG_PRINT((ACPI_DB_RESOURCES, "attaching address space handler\n"));
Status = AcpiInstallAddressSpaceHandler(sc->ec_handle, ACPI_ADR_SPACE_EC,
&EcSpaceHandler, &EcSpaceSetup, sc);
if (ACPI_FAILURE(Status)) {
device_printf(dev, "can't install address space handler for %s - %s\n",
acpi_name(sc->ec_handle), AcpiFormatException(Status));
goto error;
}
/* Enable runtime GPEs for the handler. */
Status = AcpiSetGpeType(sc->ec_gpehandle, sc->ec_gpebit,
ACPI_GPE_TYPE_RUNTIME);
if (ACPI_FAILURE(Status)) {
device_printf(dev, "AcpiSetGpeType failed: %s\n",
AcpiFormatException(Status));
goto error;
}
Status = AcpiEnableGpe(sc->ec_gpehandle, sc->ec_gpebit, ACPI_NOT_ISR);
if (ACPI_FAILURE(Status)) {
device_printf(dev, "AcpiEnableGpe failed: %s\n",
AcpiFormatException(Status));
goto error;
}
ACPI_DEBUG_PRINT((ACPI_DB_RESOURCES, "acpi_ec_attach complete\n"));
return (0);
error:
AcpiRemoveGpeHandler(sc->ec_gpehandle, sc->ec_gpebit, &EcGpeHandler);
AcpiRemoveAddressSpaceHandler(sc->ec_handle, ACPI_ADR_SPACE_EC,
EcSpaceHandler);
if (sc->ec_csr_res)
bus_release_resource(sc->ec_dev, SYS_RES_IOPORT, sc->ec_csr_rid,
sc->ec_csr_res);
if (sc->ec_data_res)
bus_release_resource(sc->ec_dev, SYS_RES_IOPORT, sc->ec_data_rid,
sc->ec_data_res);
return (ENXIO);
}
static int
acpi_ec_suspend(device_t dev)
{
struct acpi_ec_softc *sc;
sc = device_get_softc(dev);
sc->ec_suspending = TRUE;
return (0);
}
static int
acpi_ec_resume(device_t dev)
{
struct acpi_ec_softc *sc;
sc = device_get_softc(dev);
sc->ec_suspending = FALSE;
return (0);
}
static int
acpi_ec_shutdown(device_t dev)
{
struct acpi_ec_softc *sc;
/* Disable the GPE so we don't get EC events during shutdown. */
sc = device_get_softc(dev);
AcpiDisableGpe(sc->ec_gpehandle, sc->ec_gpebit, ACPI_NOT_ISR);
return (0);
}
/* Methods to allow other devices (e.g., smbat) to read/write EC space. */
static int
acpi_ec_read_method(device_t dev, u_int addr, ACPI_INTEGER *val, int width)
{
struct acpi_ec_softc *sc;
ACPI_STATUS status;
sc = device_get_softc(dev);
status = EcSpaceHandler(ACPI_READ, addr, width * 8, val, sc, NULL);
if (ACPI_FAILURE(status))
return (ENXIO);
return (0);
}
static int
acpi_ec_write_method(device_t dev, u_int addr, ACPI_INTEGER val, int width)
{
struct acpi_ec_softc *sc;
ACPI_STATUS status;
sc = device_get_softc(dev);
status = EcSpaceHandler(ACPI_WRITE, addr, width * 8, &val, sc, NULL);
if (ACPI_FAILURE(status))
return (ENXIO);
return (0);
}
static void
EcGpeQueryHandler(void *Context)
{
struct acpi_ec_softc *sc = (struct acpi_ec_softc *)Context;
UINT8 Data;
ACPI_STATUS Status;
char qxx[5];
ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__);
KASSERT(Context != NULL, ("EcGpeQueryHandler called with NULL"));
/* Serialize user access with EcSpaceHandler(). */
Status = EcLock(sc);
if (ACPI_FAILURE(Status)) {
device_printf(sc->ec_dev, "GpeQuery lock error: %s\n",
AcpiFormatException(Status));
return;
}
/*
* Send a query command to the EC to find out which _Qxx call it
* wants to make. This command clears the SCI bit and also the
* interrupt source since we are edge-triggered. To prevent the GPE
* that may arise from running the query from causing another query
* to be queued, we clear the pending flag only after running it.
*/
Status = EcCommand(sc, EC_COMMAND_QUERY);
sc->ec_sci_pend = FALSE;
if (ACPI_FAILURE(Status)) {
EcUnlock(sc);
device_printf(sc->ec_dev, "GPE query failed: %s\n",
AcpiFormatException(Status));
return;
}
Data = EC_GET_DATA(sc);
/*
* We have to unlock before running the _Qxx method below since that
* method may attempt to read/write from EC address space, causing
* recursive acquisition of the lock.
*/
EcUnlock(sc);
/* Ignore the value for "no outstanding event". (13.3.5) */
CTR2(KTR_ACPI, "ec query ok,%s running _Q%02X", Data ? "" : " not", Data);
if (Data == 0)
return;
/* Evaluate _Qxx to respond to the controller. */
snprintf(qxx, sizeof(qxx), "_Q%02X", Data);
AcpiUtStrupr(qxx);
Status = AcpiEvaluateObject(sc->ec_handle, qxx, NULL, NULL);
if (ACPI_FAILURE(Status) && Status != AE_NOT_FOUND) {
device_printf(sc->ec_dev, "evaluation of query method %s failed: %s\n",
qxx, AcpiFormatException(Status));
}
}
/*
* The GPE handler is called when IBE/OBF or SCI events occur. We are
* called from an unknown lock context.
*/
static uint32_t
EcGpeHandler(void *Context)
{
struct acpi_ec_softc *sc = Context;
ACPI_STATUS Status;
EC_STATUS EcStatus;
KASSERT(Context != NULL, ("EcGpeHandler called with NULL"));
CTR0(KTR_ACPI, "ec gpe handler start");
/*
* Notify EcWaitEvent() that the status register is now fresh. If we
* didn't do this, it wouldn't be possible to distinguish an old IBE
* from a new one, for example when doing a write transaction (writing
* address and then data values.)
*/
atomic_add_int(&sc->ec_gencount, 1);
wakeup(&sc->ec_gencount);
/*
* If the EC_SCI bit of the status register is set, queue a query handler.
* It will run the query and _Qxx method later, under the lock.
*/
EcStatus = EC_GET_CSR(sc);
if ((EcStatus & EC_EVENT_SCI) && !sc->ec_sci_pend) {
CTR0(KTR_ACPI, "ec gpe queueing query handler");
Status = AcpiOsExecute(OSL_GPE_HANDLER, EcGpeQueryHandler, Context);
if (ACPI_SUCCESS(Status))
sc->ec_sci_pend = TRUE;
else
printf("EcGpeHandler: queuing GPE query handler failed\n");
}
return (0);
}
static ACPI_STATUS
EcSpaceSetup(ACPI_HANDLE Region, UINT32 Function, void *Context,
void **RegionContext)
{
ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__);
/*
* If deactivating a region, always set the output to NULL. Otherwise,
* just pass the context through.
*/
if (Function == ACPI_REGION_DEACTIVATE)
*RegionContext = NULL;
else
*RegionContext = Context;
return_ACPI_STATUS (AE_OK);
}
static ACPI_STATUS
EcSpaceHandler(UINT32 Function, ACPI_PHYSICAL_ADDRESS Address, UINT32 width,
ACPI_INTEGER *Value, void *Context, void *RegionContext)
{
struct acpi_ec_softc *sc = (struct acpi_ec_softc *)Context;
ACPI_STATUS Status;
UINT8 EcAddr, EcData;
int i;
ACPI_FUNCTION_TRACE_U32((char *)(uintptr_t)__func__, (UINT32)Address);
if (width % 8 != 0 || Value == NULL || Context == NULL)
return_ACPI_STATUS (AE_BAD_PARAMETER);
if (Address + (width / 8) - 1 > 0xFF)
return_ACPI_STATUS (AE_BAD_ADDRESS);
if (Function == ACPI_READ)
*Value = 0;
EcAddr = Address;
Status = AE_ERROR;
/*
* If booting, check if we need to run the query handler. If so, we
* we call it directly here since our thread taskq is not active yet.
*/
if (cold || rebooting || sc->ec_suspending) {
if ((EC_GET_CSR(sc) & EC_EVENT_SCI)) {
CTR0(KTR_ACPI, "ec running gpe handler directly");
EcGpeQueryHandler(sc);
}
}
/* Serialize with EcGpeQueryHandler() at transaction granularity. */
Status = EcLock(sc);
if (ACPI_FAILURE(Status))
return_ACPI_STATUS (Status);
/* Perform the transaction(s), based on width. */
for (i = 0; i < width; i += 8, EcAddr++) {
switch (Function) {
case ACPI_READ:
Status = EcRead(sc, EcAddr, &EcData);
if (ACPI_SUCCESS(Status))
*Value |= ((ACPI_INTEGER)EcData) << i;
break;
case ACPI_WRITE:
EcData = (UINT8)((*Value) >> i);
Status = EcWrite(sc, EcAddr, &EcData);
break;
default:
device_printf(sc->ec_dev, "invalid EcSpaceHandler function %d\n",
Function);
Status = AE_BAD_PARAMETER;
break;
}
if (ACPI_FAILURE(Status))
break;
}
EcUnlock(sc);
return_ACPI_STATUS (Status);
}
static ACPI_STATUS
EcCheckStatus(struct acpi_ec_softc *sc, const char *msg, EC_EVENT event)
{
ACPI_STATUS status;
EC_STATUS ec_status;
status = AE_NO_HARDWARE_RESPONSE;
ec_status = EC_GET_CSR(sc);
if (sc->ec_burstactive && !(ec_status & EC_FLAG_BURST_MODE)) {
CTR1(KTR_ACPI, "ec burst disabled in waitevent (%s)", msg);
sc->ec_burstactive = FALSE;
}
if (EVENT_READY(event, ec_status)) {
CTR2(KTR_ACPI, "ec %s wait ready, status %#x", msg, ec_status);
status = AE_OK;
}
return (status);
}
static ACPI_STATUS
EcWaitEvent(struct acpi_ec_softc *sc, EC_EVENT Event, u_int gen_count)
{
ACPI_STATUS Status;
int count, i, slp_ival;
ACPI_SERIAL_ASSERT(ec);
Status = AE_NO_HARDWARE_RESPONSE;
int need_poll = cold || rebooting || ec_polled_mode || sc->ec_suspending;
/*
* The main CPU should be much faster than the EC. So the status should
* be "not ready" when we start waiting. But if the main CPU is really
* slow, it's possible we see the current "ready" response. Since that
* can't be distinguished from the previous response in polled mode,
* this is a potential issue. We really should have interrupts enabled
* during boot so there is no ambiguity in polled mode.
*
* If this occurs, we add an additional delay before actually entering
* the status checking loop, hopefully to allow the EC to go to work
* and produce a non-stale status.
*/
if (need_poll) {
static int once;
if (EcCheckStatus(sc, "pre-check", Event) == AE_OK) {
if (!once) {
device_printf(sc->ec_dev,
"warning: EC done before starting event wait\n");
once = 1;
}
AcpiOsStall(10);
}
}
/* Wait for event by polling or GPE (interrupt). */
if (need_poll) {
count = (ec_timeout * 1000) / EC_POLL_DELAY;
if (count == 0)
count = 1;
for (i = 0; i < count; i++) {
Status = EcCheckStatus(sc, "poll", Event);
if (Status == AE_OK)
break;
AcpiOsStall(EC_POLL_DELAY);
}
} else {
slp_ival = hz / 1000;
if (slp_ival != 0) {
count = ec_timeout;
} else {
/* hz has less than 1 ms resolution so scale timeout. */
slp_ival = 1;
count = ec_timeout / (1000 / hz);
}
/*
* Wait for the GPE to signal the status changed, checking the
* status register each time we get one. It's possible to get a
* GPE for an event we're not interested in here (i.e., SCI for
* EC query).
*/
for (i = 0; i < count; i++) {
if (gen_count != sc->ec_gencount) {
/*
* Record new generation count. It's possible the GPE was
* just to notify us that a query is needed and we need to
* wait for a second GPE to signal the completion of the
* event we are actually waiting for.
*/
gen_count = sc->ec_gencount;
Status = EcCheckStatus(sc, "sleep", Event);
if (Status == AE_OK)
break;
}
tsleep(&sc->ec_gencount, PZERO, "ecgpe", slp_ival);
}
/*
* We finished waiting for the GPE and it never arrived. Try to
* read the register once and trust whatever value we got. This is
* the best we can do at this point. Then, force polled mode on
* since this system doesn't appear to generate GPEs.
*/
if (Status != AE_OK) {
Status = EcCheckStatus(sc, "sleep_end", Event);
device_printf(sc->ec_dev,
"wait timed out (%sresponse), forcing polled mode\n",
Status == AE_OK ? "" : "no ");
ec_polled_mode = TRUE;
}
}
if (Status != AE_OK)
CTR0(KTR_ACPI, "error: ec wait timed out");
return (Status);
}
static ACPI_STATUS
EcCommand(struct acpi_ec_softc *sc, EC_COMMAND cmd)
{
ACPI_STATUS status;
EC_EVENT event;
EC_STATUS ec_status;
u_int gen_count;
ACPI_SERIAL_ASSERT(ec);
/* Don't use burst mode if user disabled it. */
if (!ec_burst_mode && cmd == EC_COMMAND_BURST_ENABLE)
return (AE_ERROR);
/* Decide what to wait for based on command type. */
switch (cmd) {
case EC_COMMAND_READ:
case EC_COMMAND_WRITE:
case EC_COMMAND_BURST_DISABLE:
event = EC_EVENT_INPUT_BUFFER_EMPTY;
break;
case EC_COMMAND_QUERY:
case EC_COMMAND_BURST_ENABLE:
event = EC_EVENT_OUTPUT_BUFFER_FULL;
break;
default:
device_printf(sc->ec_dev, "EcCommand: invalid command %#x\n", cmd);
return (AE_BAD_PARAMETER);
}
/* Run the command and wait for the chosen event. */
CTR1(KTR_ACPI, "ec running command %#x", cmd);
gen_count = sc->ec_gencount;
EC_SET_CSR(sc, cmd);
status = EcWaitEvent(sc, event, gen_count);
if (ACPI_SUCCESS(status)) {
/* If we succeeded, burst flag should now be present. */
if (cmd == EC_COMMAND_BURST_ENABLE) {
ec_status = EC_GET_CSR(sc);
if ((ec_status & EC_FLAG_BURST_MODE) == 0)
status = AE_ERROR;
}
} else
device_printf(sc->ec_dev, "EcCommand: no response to %#x\n", cmd);
return (status);
}
static ACPI_STATUS
EcRead(struct acpi_ec_softc *sc, UINT8 Address, UINT8 *Data)
{
ACPI_STATUS status;
UINT8 data;
u_int gen_count;
ACPI_SERIAL_ASSERT(ec);
CTR1(KTR_ACPI, "ec read from %#x", Address);
/* If we can't start burst mode, continue anyway. */
status = EcCommand(sc, EC_COMMAND_BURST_ENABLE);
if (status == AE_OK) {
data = EC_GET_DATA(sc);
if (data == EC_BURST_ACK) {
CTR0(KTR_ACPI, "ec burst enabled");
sc->ec_burstactive = TRUE;
}
}
status = EcCommand(sc, EC_COMMAND_READ);
if (ACPI_FAILURE(status))
return (status);
gen_count = sc->ec_gencount;
EC_SET_DATA(sc, Address);
status = EcWaitEvent(sc, EC_EVENT_OUTPUT_BUFFER_FULL, gen_count);
if (ACPI_FAILURE(status)) {
device_printf(sc->ec_dev, "EcRead: failed waiting to get data\n");
return (status);
}
*Data = EC_GET_DATA(sc);
if (sc->ec_burstactive) {
sc->ec_burstactive = FALSE;
status = EcCommand(sc, EC_COMMAND_BURST_DISABLE);
if (ACPI_FAILURE(status))
return (status);
CTR0(KTR_ACPI, "ec disabled burst ok");
}
return (AE_OK);
}
static ACPI_STATUS
EcWrite(struct acpi_ec_softc *sc, UINT8 Address, UINT8 *Data)
{
ACPI_STATUS status;
UINT8 data;
u_int gen_count;
ACPI_SERIAL_ASSERT(ec);
CTR2(KTR_ACPI, "ec write to %#x, data %#x", Address, *Data);
/* If we can't start burst mode, continue anyway. */
status = EcCommand(sc, EC_COMMAND_BURST_ENABLE);
if (status == AE_OK) {
data = EC_GET_DATA(sc);
if (data == EC_BURST_ACK) {
CTR0(KTR_ACPI, "ec burst enabled");
sc->ec_burstactive = TRUE;
}
}
status = EcCommand(sc, EC_COMMAND_WRITE);
if (ACPI_FAILURE(status))
return (status);
gen_count = sc->ec_gencount;
EC_SET_DATA(sc, Address);
status = EcWaitEvent(sc, EC_EVENT_INPUT_BUFFER_EMPTY, gen_count);
if (ACPI_FAILURE(status)) {
device_printf(sc->ec_dev, "EcRead: failed waiting for sent address\n");
return (status);
}
gen_count = sc->ec_gencount;
EC_SET_DATA(sc, *Data);
status = EcWaitEvent(sc, EC_EVENT_INPUT_BUFFER_EMPTY, gen_count);
if (ACPI_FAILURE(status)) {
device_printf(sc->ec_dev, "EcWrite: failed waiting for sent data\n");
return (status);
}
if (sc->ec_burstactive) {
sc->ec_burstactive = FALSE;
status = EcCommand(sc, EC_COMMAND_BURST_DISABLE);
if (ACPI_FAILURE(status))
return (status);
CTR0(KTR_ACPI, "ec disabled burst ok");
}
return (AE_OK);
}