freebsd-skq/sys/pci/if_tlreg.h
wpaul 3e376801df Remove 2.2.x compatibility code and #ifdefs. Once the shakedown period
in -current is over, I'll put a 2.2.x specific version in the RELENG_2_2
branch. If somebody wants a 2.2 version of this driver now, they can check
out the previous version from CVS or ask me via e-mail.

Gee people, I didn't mean to stir up such a controversy. I just wanted
to make sure I could get this thing to work with both kernel versions
and didn't want to have to maintain two separate copies. All ya hadda
do was ask. :)
1998-05-22 15:32:22 +00:00

824 lines
23 KiB
C

/*
* Copyright (c) 1997, 1998
* Bill Paul <wpaul@ctr.columbia.edu>. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by Bill Paul.
* 4. Neither the name of the author nor the names of any co-contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
* THE POSSIBILITY OF SUCH DAMAGE.
*
* $Id: if_tlreg.h,v 1.2 1998/05/21 16:24:05 jkh Exp $
*/
struct tl_type {
u_int16_t tl_vid;
u_int16_t tl_did;
char *tl_name;
};
/*
* ThunderLAN TX/RX list format. The TX and RX lists are pretty much
* identical: the list begins with a 32-bit forward pointer which points
* at the next list in the chain, followed by 16 bits for the total
* frame size, and a 16 bit status field. This is followed by a series
* of 10 32-bit data count/data address pairs that point to the fragments
* that make up the complete frame.
*/
#define TL_MAXFRAGS 10
#define TL_RX_LIST_CNT 10
#define TL_TX_LIST_CNT 10
#define TL_MIN_FRAMELEN 64
struct tl_frag {
u_int32_t tlist_dcnt;
u_int32_t tlist_dadr;
};
struct tl_list {
u_int32_t tlist_fptr; /* phys address of next list */
u_int16_t tlist_cstat; /* status word */
u_int16_t tlist_frsize; /* size of data in frame */
struct tl_frag tl_frag[TL_MAXFRAGS];
};
/*
* This is a special case of an RX list. By setting the One_Frag
* bit in the NETCONFIG register, the driver can force the ThunderLAN
* chip to use only one fragment when DMAing RX frames.
*/
struct tl_list_onefrag {
u_int32_t tlist_fptr;
u_int16_t tlist_cstat;
u_int16_t tlist_frsize;
struct tl_frag tl_frag;
};
struct tl_list_data {
struct tl_list_onefrag tl_rx_list[TL_RX_LIST_CNT];
struct tl_list tl_tx_list[TL_TX_LIST_CNT];
unsigned char tl_pad[TL_MIN_FRAMELEN];
};
struct tl_chain {
struct tl_list *tl_ptr;
struct mbuf *tl_mbuf;
struct tl_chain *tl_next;
};
struct tl_chain_data {
struct tl_chain tl_rx_chain[TL_RX_LIST_CNT];
struct tl_chain tl_tx_chain[TL_TX_LIST_CNT];
struct tl_chain *tl_rx_head;
struct tl_chain *tl_rx_tail;
struct tl_chain *tl_tx_head;
struct tl_chain *tl_tx_tail;
struct tl_chain *tl_tx_free;
};
struct tl_iflist;
struct tl_softc {
struct arpcom arpcom; /* interface info */
struct ifmedia ifmedia; /* media info */
struct tl_csr *csr; /* pointer to register map */
struct tl_type *tl_dinfo; /* ThunderLAN adapter info */
struct tl_type *tl_pinfo; /* PHY info struct */
u_int8_t tl_ctlr; /* chip number */
u_int8_t tl_unit; /* interface number */
u_int8_t tl_phy_addr; /* PHY address */
u_int8_t tl_autoneg; /* autoneg in progress */
u_int16_t tl_phy_sts; /* PHY status */
u_int16_t tl_phy_vid; /* PHY vendor ID */
u_int16_t tl_phy_did; /* PHY device ID */
struct tl_iflist *tl_iflist; /* Pointer to controller list */
caddr_t tl_ldata_ptr;
struct tl_list_data *tl_ldata; /* TX/RX lists and mbufs */
struct tl_chain_data tl_cdata;
int tl_txeoc;
struct callout_handle tl_stat_ch;
};
#define TX_THR 0x00000007
#define TL_FLAG_FORCEDELAY 1
#define TL_FLAG_SCHEDDELAY 2
#define TL_FLAG_DELAYTIMEO 3
/*
* The ThunderLAN supports up to 32 PHYs.
*/
#define TL_PHYADDR_MIN 0x00
#define TL_PHYADDR_MAX 0x1F
#define PHY_UNKNOWN 6
struct tl_iflist {
struct tl_csr *csr; /* Register map */
struct tl_type *tl_dinfo;
int tl_active_phy; /* # of active PHY */
int tlc_unit; /* TLAN chip # */
struct tl_softc *tl_sc[TL_PHYADDR_MAX]; /* pointers to PHYs */
pcici_t tl_config_id;
struct tl_iflist *tl_next;
};
#define TL_PHYS_IDLE -1
/*
* General constants that are fun to know.
*
* The ThunderLAN controller is made by Texas Instruments. The
* manual indicates that if the EEPROM checksum fails, the PCI
* vendor and device ID registers will be loaded with TI-specific
* values.
*/
#define TI_VENDORID 0x104C
#define TI_DEVICEID_THUNDERLAN 0x0500
/*
* Known PHY Ids. According to the Level 1 documentation (which is
* very nice, incidentally), here's how they work:
*
* The PHY identifier register #1 is composed of bits 3 through 18
* of the OUI. (First 16-bit word.)
* The PHY identifier register #2 is composed of bits 19 through 24
* if the OUI.
* This is followed by 6 bits containing the manufacturer's model
* number.
* Lastly, there are 4 bits for the manufacturer's revision number.
*
* Honestly, there are a lot of these that don't make any sense; the
* only way to be really sure is to look at the data sheets.
*/
/*
* Texas Instruments PHY identifiers
*
* The ThunderLAN manual has a curious and confusing error in it.
* In chapter 7, which describes PHYs, it says that TI PHYs have
* the following ID codes, where xx denotes a revision:
*
* 0x4000501xx internal 10baseT PHY
* 0x4000502xx TNETE211 100VG-AnyLan PMI
*
* The problem here is that these are not valid 32-bit hex numbers:
* there's one digit too many. My guess is that they mean the internal
* 10baseT PHY is 0x4000501x and the TNETE211 is 0x4000502x since these
* are the only numbers that make sense.
*/
#define TI_PHY_VENDORID 0x4000
#define TI_PHY_10BT 0x501F
#define TI_PHY_100VGPMI 0x502F
/*
* These ID values are for the NS DP83840A 10/100 PHY
*/
#define NS_PHY_VENDORID 0x2000
#define NS_PHY_83840A 0x5C0F
/*
* Level 1 10/100 PHY
*/
#define LEVEL1_PHY_VENDORID 0x7810
#define LEVEL1_PHY_LXT970 0x000F
/*
* Intel 82555 10/100 PHY
*/
#define INTEL_PHY_VENDORID 0x0A28
#define INTEL_PHY_82555 0x015F
/*
* SEEQ 80220 10/100 PHY
*/
#define SEEQ_PHY_VENDORID 0x0016
#define SEEQ_PHY_80220 0xF83F
/*
* These are the PCI vendor and device IDs for Compaq ethernet
* adapters based on the ThunderLAN controller.
*/
#define COMPAQ_VENDORID 0x0E11
#define COMPAQ_DEVICEID_NETEL_10_100 0xAE32
#define COMPAQ_DEVICEID_NETEL_10 0xAE34
#define COMPAQ_DEVICEID_NETFLEX_3P_INTEGRATED 0xAE35
#define COMPAQ_DEVICEID_NETEL_10_100_DUAL 0xAE40
#define COMPAQ_DEVICEID_NETEL_10_100_PROLIANT 0xAE43
#define COMPAQ_DEVICEID_DESKPRO_4000_5233MMX 0xB011
#define COMPAQ_DEVICEID_NETFLEX_3P 0xF130
#define COMPAQ_DEVICEID_NETFLEX_3P_BNC 0xF150
/*
* PCI low memory base and low I/O base
*/
#define TL_PCI_LOIO 0x10
#define TL_PCI_LOMEM 0x14
/*
* ThunderLAN host register layout
*/
struct tl_regbytes {
volatile u_int8_t byte0;
volatile u_int8_t byte1;
volatile u_int8_t byte2;
volatile u_int8_t byte3;
};
struct tl_regwords {
volatile u_int16_t word0;
volatile u_int16_t word1;
};
struct tl_csr {
volatile u_int32_t tl_host_cmd;
volatile u_int32_t tl_ch_parm;
volatile u_int16_t tl_dio_addr;
volatile u_int16_t tl_host_int;
union {
volatile u_int32_t tl_dio_data;
volatile struct tl_regwords tl_dio_words;
volatile struct tl_regbytes tl_dio_bytes;
} u;
};
/*
* The DIO access macros allow us to read and write the ThunderLAN's
* internal registers. The ThunderLAN manual gives examples using PIO.
* This driver uses memory mapped I/O, which allows us to totally avoid
* the use of inb/outb & friends. Memory mapped registers are keen.
*
* Note that the set/clr macros go to the trouble of reading the registers
* back after they've been written. During initial development of this
* driver, I discovered that the EEPROM access routines wouldn't work
* properly unless I did this. I'm not sure why, though I suspect it
* may have something to do with defeating the cache on the processor.
*/
/* Select a register */
#define DIO_SEL(x) csr->tl_dio_addr = (u_int16_t)x
/*
* Set/clear/get a bit in the selected byte register
*/
#define DIO_BYTE0_SET(x) { \
int f; \
csr->u.tl_dio_bytes.byte0 |= \
(u_int8_t)x; \
f = csr->u.tl_dio_bytes.byte0; \
}
#define DIO_BYTE0_CLR(x) { \
int f; \
csr->u.tl_dio_bytes.byte0 &= \
(u_int8_t)~x; \
f = csr->u.tl_dio_bytes.byte0; \
}
#define DIO_BYTE0_GET(x) csr->u.tl_dio_bytes.byte0 & (u_int8_t)x
#define DIO_BYTE1_SET(x) { \
int f; \
csr->u.tl_dio_bytes.byte1 |= \
(u_int8_t)x; \
f = csr->u.tl_dio_bytes.byte1; \
}
#define DIO_BYTE1_CLR(x) { \
int f; \
csr->u.tl_dio_bytes.byte1 &= \
(u_int8_t)~x; \
f = csr->u.tl_dio_bytes.byte1; \
}
#define DIO_BYTE1_GET(x) csr->u.tl_dio_bytes.byte1 & (u_int8_t)x
#define DIO_BYTE2_SET(x) { \
int f; \
csr->u.tl_dio_bytes.byte2 |= \
(u_int8_t)x; \
f = csr->u.tl_dio_bytes.byte2; \
}
#define DIO_BYTE2_CLR(x) { \
int f; \
csr->u.tl_dio_bytes.byte2 &= \
(u_int8_t)~x; \
f = csr->u.tl_dio_bytes.byte2; \
}
#define DIO_BYTE2_GET(x) csr->u.tl_dio_bytes.byte2 & (u_int8_t)x
#define DIO_BYTE3_SET(x) { \
int f; \
csr->u.tl_dio_bytes.byte3 |= \
(u_int8_t)x; \
f = csr->u.tl_dio_bytes.byte3; \
}
#define DIO_BYTE3_CLR(x) { \
int f; \
csr->u.tl_dio_bytes.byte3 &= \
(u_int8_t)~x; \
f = csr->u.tl_dio_bytes.byte3; \
}
#define DIO_BYTE3_GET(x) csr->u.tl_dio_bytes.byte3 & (u_int8_t)x
/*
* Read/write 16-bit word
*/
#define DIO_WORD0_SET(x) { \
int f; \
csr->u.tl_dio_words.word0 |= \
(u_int16_t)x; \
f = csr->u.tl_dio_words.word0; \
}
#define DIO_WORD0_CLR(x) { \
int f; \
csr->u.tl_dio_words.word0 &= \
~(u_int16_t)x; \
f = csr->u.tl_dio_words.word0; \
}
#define DIO_WORD0_GET(x) (csr->u.tl_dio_words.word0 & x)
#define DIO_WORD1_SET(x) { \
int f; \
csr->u.tl_dio_words.word1 |= \
(u_int16_t)x; \
f = csr->u.tl_dio_words.word1; \
}
#define DIO_WORD1_CLR(x) { \
int f; \
csr->u.tl_dio_words.word1 &= \
~(u_int16_t)x; \
f = csr->u.tl_dio_words.word1; \
}
#define DIO_WORD1_GET(x) (csr->u.tl_dio_words.word1 & x)
/*
* Read/write 32-bit word
*/
#define DIO_LONG_GET(x) x = csr->u.tl_dio_data
#define DIO_LONG_PUT(x) csr->u.tl_dio_data = (u_int32_t)x
#define TL_DIO_ADDR_INC 0x8000 /* Increment addr on each read */
#define TL_DIO_RAM_SEL 0x4000 /* RAM address select */
#define TL_DIO_ADDR_MASK 0x3FFF /* address bits mask */
/*
* Interrupt types
*/
#define TL_INTR_INVALID 0x0
#define TL_INTR_TXEOF 0x1
#define TL_INTR_STATOFLOW 0x2
#define TL_INTR_RXEOF 0x3
#define TL_INTR_DUMMY 0x4
#define TL_INTR_TXEOC 0x5
#define TL_INTR_ADCHK 0x6
#define TL_INTR_RXEOC 0x7
#define TL_INT_MASK 0x001C
#define TL_VEC_MASK 0x1FE0
/*
* Host command register bits
*/
#define TL_CMD_GO 0x80000000
#define TL_CMD_STOP 0x40000000
#define TL_CMD_ACK 0x20000000
#define TL_CMD_CHSEL7 0x10000000
#define TL_CMD_CHSEL6 0x08000000
#define TL_CMD_CHSEL5 0x04000000
#define TL_CMD_CHSEL4 0x02000000
#define TL_CMD_CHSEL3 0x01000000
#define TL_CMD_CHSEL2 0x00800000
#define TL_CMD_CHSEL1 0x00400000
#define TL_CMD_CHSEL0 0x00200000
#define TL_CMD_EOC 0x00100000
#define TL_CMD_RT 0x00080000
#define TL_CMD_NES 0x00040000
#define TL_CMD_ZERO0 0x00020000
#define TL_CMD_ZERO1 0x00010000
#define TL_CMD_ADRST 0x00008000
#define TL_CMD_LDTMR 0x00004000
#define TL_CMD_LDTHR 0x00002000
#define TL_CMD_REQINT 0x00001000
#define TL_CMD_INTSOFF 0x00000800
#define TL_CMD_INTSON 0x00000400
#define TL_CMD_RSVD0 0x00000200
#define TL_CMD_RSVD1 0x00000100
#define TL_CMD_ACK7 0x00000080
#define TL_CMD_ACK6 0x00000040
#define TL_CMD_ACK5 0x00000020
#define TL_CMD_ACK4 0x00000010
#define TL_CMD_ACK3 0x00000008
#define TL_CMD_ACK2 0x00000004
#define TL_CMD_ACK1 0x00000002
#define TL_CMD_ACK0 0x00000001
#define TL_CMD_CHSEL_MASK 0x01FE0000
#define TL_CMD_ACK_MASK 0xFF
/*
* EEPROM address where station address resides.
*/
#define TL_EEPROM_EADDR 0x83
#define TL_EEPROM_EADDR2 0x99
#define TL_EEPROM_EADDR3 0xAF
/*
* ThunderLAN host command register offsets.
* (Can be accessed either by IO ports or memory map.)
*/
#define TL_HOSTCMD 0x00
#define TL_CH_PARM 0x04
#define TL_DIO_ADDR 0x08
#define TL_HOST_INT 0x0A
#define TL_DIO_DATA 0x0C
/*
* ThunderLAN internal registers
*/
#define TL_NETCMD 0x00
#define TL_NETSIO 0x01
#define TL_NETSTS 0x02
#define TL_NETMASK 0x03
#define TL_NETCONFIG 0x04
#define TL_MANTEST 0x06
#define TL_VENID_LSB 0x08
#define TL_VENID_MSB 0x09
#define TL_DEVID_LSB 0x0A
#define TL_DEVID_MSB 0x0B
#define TL_REVISION 0x0C
#define TL_SUBCLASS 0x0D
#define TL_MINLAT 0x0E
#define TL_MAXLAT 0x0F
#define TL_AREG0_B5 0x10
#define TL_AREG0_B4 0x11
#define TL_AREG0_B3 0x12
#define TL_AREG0_B2 0x13
#define TL_AREG0_B1 0x14
#define TL_AREG0_B0 0x15
#define TL_AREG1_B5 0x16
#define TL_AREG1_B4 0x17
#define TL_AREG1_B3 0x18
#define TL_AREG1_B2 0x19
#define TL_AREG1_B1 0x1A
#define TL_AREG1_B0 0x1B
#define TL_AREG2_B5 0x1C
#define TL_AREG2_B4 0x1D
#define TL_AREG2_B3 0x1E
#define TL_AREG2_B2 0x1F
#define TL_AREG2_B1 0x20
#define TL_AREG2_B0 0x21
#define TL_AREG3_B5 0x22
#define TL_AREG3_B4 0x23
#define TL_AREG3_B3 0x24
#define TL_AREG3_B2 0x25
#define TL_AREG3_B1 0x26
#define TL_AREG3_B0 0x27
#define TL_HASH1 0x28
#define TL_HASH2 0x2C
#define TL_TXGOODFRAMES 0x30
#define TL_TXUNDERRUN 0x33
#define TL_RXGOODFRAMES 0x34
#define TL_RXOVERRUN 0x37
#define TL_DEFEREDTX 0x38
#define TL_CRCERROR 0x3A
#define TL_CODEERROR 0x3B
#define TL_MULTICOLTX 0x3C
#define TL_SINGLECOLTX 0x3E
#define TL_EXCESSIVECOL 0x40
#define TL_LATECOL 0x41
#define TL_CARRIERLOSS 0x42
#define TL_ACOMMIT 0x43
#define TL_LDREG 0x44
#define TL_BSIZEREG 0x45
#define TL_MAXRX 0x46
/*
* ThunderLAN SIO register bits
*/
#define TL_SIO_MINTEN 0x80
#define TL_SIO_ECLOK 0x40
#define TL_SIO_ETXEN 0x20
#define TL_SIO_EDATA 0x10
#define TL_SIO_NMRST 0x08
#define TL_SIO_MCLK 0x04
#define TL_SIO_MTXEN 0x02
#define TL_SIO_MDATA 0x01
/*
* Thunderlan NETCONFIG bits
*/
#define TL_CFG_RCLKTEST 0x8000
#define TL_CFG_TCLKTEST 0x4000
#define TL_CFG_BITRATE 0x2000
#define TL_CFG_RXCRC 0x1000
#define TL_CFG_PEF 0x0800
#define TL_CFG_ONEFRAG 0x0400
#define TL_CFG_ONECHAN 0x0200
#define TL_CFG_MTEST 0x0100
#define TL_CFG_PHYEN 0x0080
#define TL_CFG_MACSEL6 0x0040
#define TL_CFG_MACSEL5 0x0020
#define TL_CFG_MACSEL4 0x0010
#define TL_CFG_MACSEL3 0x0008
#define TL_CFG_MACSEL2 0x0004
#define TL_CFG_MACSEL1 0x0002
#define TL_CFG_MACSEL0 0x0001
/*
* ThunderLAN NETSTS bits
*/
#define TL_STS_MIRQ 0x80
#define TL_STS_HBEAT 0x40
#define TL_STS_TXSTOP 0x20
#define TL_STS_RXSTOP 0x10
/*
* ThunderLAN NETCMD bits
*/
#define TL_CMD_NRESET 0x80
#define TL_CMD_NWRAP 0x40
#define TL_CMD_CSF 0x20
#define TL_CMD_CAF 0x10
#define TL_CMD_NOBRX 0x08
#define TL_CMD_DUPLEX 0x04
#define TL_CMD_TRFRAM 0x02
#define TL_CMD_TXPACE 0x01
/*
* ThunderLAN NETMASK bits
*/
#define TL_MASK_MASK7 0x80
#define TL_MASK_MASK6 0x40
#define TL_MASK_MASK5 0x20
#define TL_MASK_MASK4 0x10
/*
* MII frame format
*/
#ifdef ANSI_DOESNT_ALLOW_BITFIELDS
struct tl_mii_frame {
u_int16_t mii_stdelim:2,
mii_opcode:2,
mii_phyaddr:5,
mii_regaddr:5,
mii_turnaround:2;
u_int16_t mii_data;
};
#else
struct tl_mii_frame {
u_int8_t mii_stdelim;
u_int8_t mii_opcode;
u_int8_t mii_phyaddr;
u_int8_t mii_regaddr;
u_int8_t mii_turnaround;
u_int16_t mii_data;
};
#endif
/*
* MII constants
*/
#define TL_MII_STARTDELIM 0x01
#define TL_MII_READOP 0x02
#define TL_MII_WRITEOP 0x01
#define TL_MII_TURNAROUND 0x02
#define TL_LAST_FRAG 0x80000000
#define TL_CSTAT_UNUSED 0x8000
#define TL_CSTAT_FRAMECMP 0x4000
#define TL_CSTAT_READY 0x3000
#define TL_CSTAT_UNUSED13 0x2000
#define TL_CSTAT_UNUSED12 0x1000
#define TL_CSTAT_EOC 0x0800
#define TL_CSTAT_RXERROR 0x0400
#define TL_CSTAT_PASSCRC 0x0200
#define TL_CSTAT_DPRIO 0x0100
#define TL_FRAME_MASK 0x00FFFFFF
#define tl_tx_goodframes(x) (x.tl_txstat & TL_FRAME_MASK)
#define tl_tx_underrun(x) ((x.tl_txstat & ~TL_FRAME_MASK) >> 24)
#define tl_rx_goodframes(x) (x.tl_rxstat & TL_FRAME_MASK)
#define tl_rx_overrun(x) ((x.tl_rxstat & ~TL_FRAME_MASK) >> 24)
struct tl_stats {
u_int32_t tl_txstat;
u_int32_t tl_rxstat;
u_int16_t tl_deferred;
u_int8_t tl_crc_errors;
u_int8_t tl_code_errors;
u_int16_t tl_tx_multi_collision;
u_int16_t tl_tx_single_collision;
u_int8_t tl_excessive_collision;
u_int8_t tl_late_collision;
u_int8_t tl_carrier_loss;
u_int8_t acommit;
};
/*
* These are the register definitions for the PHY (physical layer
* interface chip).
* The ThunderLAN chip has a built-in 10Mb/sec PHY which may be used
* in some configurations. The Compaq 10/100 cards based on the ThunderLAN
* use a National Semiconductor DP83840A PHY. The generic BMCR and BMSR
* layouts for both PHYs are identical, however some of the bits are not
* used by the ThunderLAN's internal PHY (most notably those dealing with
* switching between 10 and 100Mb/sec speeds). Since Both PHYs use the
* same bits, we #define them with generic names here.
*/
/*
* PHY BMCR Basic Mode Control Register
*/
#define PHY_BMCR 0x00
#define PHY_BMCR_RESET 0x8000
#define PHY_BMCR_LOOPBK 0x4000
#define PHY_BMCR_SPEEDSEL 0x2000
#define PHY_BMCR_AUTONEGENBL 0x1000
#define PHY_BMCR_RSVD0 0x0800 /* write as zero */
#define PHY_BMCR_ISOLATE 0x0400
#define PHY_BMCR_AUTONEGRSTR 0x0200
#define PHY_BMCR_DUPLEX 0x0100
#define PHY_BMCR_COLLTEST 0x0080
#define PHY_BMCR_RSVD1 0x0040 /* write as zero, don't care */
#define PHY_BMCR_RSVD2 0x0020 /* write as zero, don't care */
#define PHY_BMCR_RSVD3 0x0010 /* write as zero, don't care */
#define PHY_BMCR_RSVD4 0x0008 /* write as zero, don't care */
#define PHY_BMCR_RSVD5 0x0004 /* write as zero, don't care */
#define PHY_BMCR_RSVD6 0x0002 /* write as zero, don't care */
#define PHY_BMCR_RSVD7 0x0001 /* write as zero, don't care */
/*
* RESET: 1 == software reset, 0 == normal operation
* Resets status and control registers to default values.
* Relatches all hardware config values.
*
* LOOPBK: 1 == loopback operation enabled, 0 == normal operation
*
* SPEEDSEL: 1 == 100Mb/s, 0 == 10Mb/s
* Link speed is selected byt his bit or if auto-negotiation if bit
* 12 (AUTONEGENBL) is set (in which case the value of this register
* is ignored).
*
* AUTONEGENBL: 1 == Autonegotiation enabled, 0 == Autonegotiation disabled
* Bits 8 and 13 are ignored when autoneg is set, otherwise bits 8 and 13
* determine speed and mode. Should be cleared and then set if PHY configured
* for no autoneg on startup.
*
* ISOLATE: 1 == isolate PHY from MII, 0 == normal operation
*
* AUTONEGRSTR: 1 == restart autonegotiation, 0 = normal operation
*
* DUPLEX: 1 == full duplex mode, 0 == half duplex mode
*
* COLLTEST: 1 == collision test enabled, 0 == normal operation
*/
/*
* PHY, BMSR Basic Mode Status Register
*/
#define PHY_BMSR 0x01
#define PHY_BMSR_100BT4 0x8000
#define PHY_BMSR_100BTXFULL 0x4000
#define PHY_BMSR_100BTXHALF 0x2000
#define PHY_BMSR_10BTFULL 0x1000
#define PHY_BMSR_10BTHALF 0x0800
#define PHY_BMSR_RSVD1 0x0400 /* write as zero, don't care */
#define PHY_BMSR_RSVD2 0x0200 /* write as zero, don't care */
#define PHY_BMSR_RSVD3 0x0100 /* write as zero, don't care */
#define PHY_BMSR_RSVD4 0x0080 /* write as zero, don't care */
#define PHY_BMSR_MFPRESUP 0x0040
#define PHY_BMSR_AUTONEGCOMP 0x0020
#define PHY_BMSR_REMFAULT 0x0010
#define PHY_BMSR_CANAUTONEG 0x0008
#define PHY_BMSR_LINKSTAT 0x0004
#define PHY_BMSR_JABBER 0x0002
#define PHY_BMSR_EXTENDED 0x0001
#define PHY_CTL_IGLINK 0x8000
#define PHY_CTL_SWAPOL 0x4000
#define PHY_CTL_AUISEL 0x2000
#define PHY_CTL_SQEEN 0x1000
#define PHY_CTL_MTEST 0x0800
#define PHY_CTL_NFEW 0x0004
#define PHY_CTL_INTEN 0x0002
#define PHY_CTL_TINT 0x0001
#define TL_PHY_GENCTL 0x00
#define TL_PHY_GENSTS 0x01
/*
* PHY Generic Identifier Register, hi bits
*/
#define TL_PHY_VENID 0x02
/*
* PHY Generic Identifier Register, lo bits
*/
#define TL_PHY_DEVID 0x03
#define TL_PHY_ANAR 0x04
#define TL_PHY_LPAR 0x05
#define TL_PHY_ANEXP 0x06
#define TL_PHY_PHYID 0x10
#define TL_PHY_CTL 0x11
#define TL_PHY_STS 0x12
#define TL_LPAR_RMFLT 0x2000
#define TL_LPAR_RSVD0 0x1000
#define TL_LPAR_RSVD1 0x0800
#define TL_LPAR_100BT4 0x0400
#define TL_LPAR_100BTXFULL 0x0200
#define TL_LPAR_100BTXHALF 0x0100
#define TL_LPAR_10BTFULL 0x0080
#define TL_LPAR_10BTHALF 0x0040
/*
* PHY Antoneg advertisement register.
*/
#define PHY_ANAR TL_PHY_ANAR
#define PHY_ANAR_NEXTPAGE 0x8000
#define PHY_ANAR_RSVD0 0x4000
#define PHY_ANAR_TLRFLT 0x2000
#define PHY_ANAR_RSVD1 0x1000
#define PHY_RSVD_RSDV2 0x0800
#define PHY_RSVD_RSVD3 0x0400
#define PHY_ANAR_100BT4 0x0200
#define PHY_ANAR_100BTXFULL 0x0100
#define PHY_ANAR_100BTXHALF 0x0080
#define PHY_ANAR_10BTFULL 0x0040
#define PHY_ANAR_10BTHALF 0x0020
#define PHY_ANAR_PROTO4 0x0010
#define PHY_ANAR_PROTO3 0x0008
#define PHY_ANAR_PROTO2 0x0004
#define PHY_AHAR_PROTO1 0x0002
#define PHY_AHAR_PROTO0 0x0001
/*
* DP83840 PHY, PCS Confifguration Register
*/
#define TL_DP83840_PCS 0x17
#define TL_DP83840_PCS_LED4_MODE 0x0002
#define TL_DP83840_PCS_F_CONNECT 0x0020
#define TL_DP83840_PCS_BIT8 0x0100
#define TL_DP83840_PCS_BIT10 0x0400
/*
* DP83840 PHY, PAR register
*/
#define TL_DP83840_PAR 0x19
#define PAR_RSVD0 0x8000
#define PAR_RSVD1 0x4000
#define PAR_RSVD2 0x2000
#define PAR_RSVD3 0x1000
#define PAR_DIS_CRS_JAB 0x0800
#define PAR_AN_EN_STAT 0x0400
#define PAR_RSVD4 0x0200
#define PAR_FEFI_EN 0x0100
#define PAR_DUPLEX_STAT 0x0080
#define PAR_SPEED_10 0x0040
#define PAR_CIM_STATUS 0x0020
#define PAR_PHYADDR4 0x0010
#define PAR_PHYADDR3 0x0008
#define PAR_PHYADDR2 0x0004
#define PAR_PHYADDR1 0x0002
#define PAR_PHYADDR0 0x0001
/*
* Microchip Technology 24Cxx EEPROM control bytes
*/
#define EEPROM_CTL_READ 0xA1 /* 0101 0001 */
#define EEPROM_CTL_WRITE 0xA0 /* 0101 0000 */