freebsd-skq/sys/dev/nve/if_nve.c

1791 lines
47 KiB
C

/*-
* Copyright (c) 2005 by David E. O'Brien <obrien@FreeBSD.org>.
* Copyright (c) 2003,2004 by Quinton Dolan <q@onthenet.com.au>.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR
* ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* $Id: if_nv.c,v 1.19 2004/08/12 14:00:05 q Exp $
*/
/*
* NVIDIA nForce MCP Networking Adapter driver
*
* This is a port of the NVIDIA MCP Linux ethernet driver distributed by NVIDIA
* through their web site.
*
* All mainstream nForce and nForce2 motherboards are supported. This module
* is as stable, sometimes more stable, than the linux version. (Recent
* Linux stability issues seem to be related to some issues with newer
* distributions using GCC 3.x, however this don't appear to effect FreeBSD
* 5.x).
*
* In accordance with the NVIDIA distribution license it is necessary to
* link this module against the nvlibnet.o binary object included in the
* Linux driver source distribution. The binary component is not modified in
* any way and is simply linked against a FreeBSD equivalent of the nvnet.c
* linux kernel module "wrapper".
*
* The Linux driver uses a common code API that is shared between Win32 and
* i386 Linux. This abstracts the low level driver functions and uses
* callbacks and hooks to access the underlying hardware device. By using
* this same API in a FreeBSD kernel module it is possible to support the
* hardware without breaching the Linux source distributions licensing
* requirements, or obtaining the hardware programming specifications.
*
* Although not conventional, it works, and given the relatively small
* amount of hardware centric code, it's hopefully no more buggy than its
* linux counterpart.
*
* NVIDIA now support the nForce3 AMD64 platform, however I have been
* unable to access such a system to verify support. However, the code is
* reported to work with little modification when compiled with the AMD64
* version of the NVIDIA Linux library. All that should be necessary to make
* the driver work is to link it directly into the kernel, instead of as a
* module, and apply the docs/amd64.diff patch in this source distribution to
* the NVIDIA Linux driver source.
*
* This driver should work on all versions of FreeBSD since 4.9/5.1 as well
* as recent versions of DragonFly.
*
* Written by Quinton Dolan <q@onthenet.com.au>
* Portions based on existing FreeBSD network drivers.
* NVIDIA API usage derived from distributed NVIDIA NVNET driver source files.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/sockio.h>
#include <sys/mbuf.h>
#include <sys/malloc.h>
#include <sys/kernel.h>
#include <sys/socket.h>
#include <sys/sysctl.h>
#include <sys/queue.h>
#include <sys/module.h>
#include <net/if.h>
#include <net/if_arp.h>
#include <net/ethernet.h>
#include <net/if_dl.h>
#include <net/if_media.h>
#include <net/if_types.h>
#include <net/bpf.h>
#include <net/if_vlan_var.h>
#include <machine/bus.h>
#include <machine/resource.h>
#include <vm/vm.h> /* for vtophys */
#include <vm/pmap.h> /* for vtophys */
#include <sys/bus.h>
#include <sys/rman.h>
#include <dev/pci/pcireg.h>
#include <dev/pci/pcivar.h>
#include <dev/mii/mii.h>
#include <dev/mii/miivar.h>
#include "miibus_if.h"
/* Include NVIDIA Linux driver header files */
#include <contrib/dev/nve/nvenet_version.h>
#define linux
#include <contrib/dev/nve/basetype.h>
#include <contrib/dev/nve/phy.h>
#include "os+%DIKED-nve.h"
#include <contrib/dev/nve/drvinfo.h>
#include <contrib/dev/nve/adapter.h>
#undef linux
#include <dev/nve/if_nvereg.h>
MODULE_DEPEND(nve, pci, 1, 1, 1);
MODULE_DEPEND(nve, ether, 1, 1, 1);
MODULE_DEPEND(nve, miibus, 1, 1, 1);
static int nve_probe(device_t);
static int nve_attach(device_t);
static int nve_detach(device_t);
static void nve_init(void *);
static void nve_init_locked(struct nve_softc *);
static void nve_stop(struct nve_softc *);
static int nve_shutdown(device_t);
static int nve_init_rings(struct nve_softc *);
static void nve_free_rings(struct nve_softc *);
static void nve_ifstart(struct ifnet *);
static void nve_ifstart_locked(struct ifnet *);
static int nve_ioctl(struct ifnet *, u_long, caddr_t);
static void nve_intr(void *);
static void nve_tick(void *);
static void nve_setmulti(struct nve_softc *);
static void nve_watchdog(struct nve_softc *);
static void nve_update_stats(struct nve_softc *);
static int nve_ifmedia_upd(struct ifnet *);
static void nve_ifmedia_upd_locked(struct ifnet *);
static void nve_ifmedia_sts(struct ifnet *, struct ifmediareq *);
static int nve_miibus_readreg(device_t, int, int);
static int nve_miibus_writereg(device_t, int, int, int);
static void nve_dmamap_cb(void *, bus_dma_segment_t *, int, int);
static void nve_dmamap_tx_cb(void *, bus_dma_segment_t *, int, bus_size_t, int);
static NV_SINT32 nve_osalloc(PNV_VOID, PMEMORY_BLOCK);
static NV_SINT32 nve_osfree(PNV_VOID, PMEMORY_BLOCK);
static NV_SINT32 nve_osallocex(PNV_VOID, PMEMORY_BLOCKEX);
static NV_SINT32 nve_osfreeex(PNV_VOID, PMEMORY_BLOCKEX);
static NV_SINT32 nve_osclear(PNV_VOID, PNV_VOID, NV_SINT32);
static NV_SINT32 nve_osdelay(PNV_VOID, NV_UINT32);
static NV_SINT32 nve_osallocrxbuf(PNV_VOID, PMEMORY_BLOCK, PNV_VOID *);
static NV_SINT32 nve_osfreerxbuf(PNV_VOID, PMEMORY_BLOCK, PNV_VOID);
static NV_SINT32 nve_ospackettx(PNV_VOID, PNV_VOID, NV_UINT32);
static NV_SINT32 nve_ospacketrx(PNV_VOID, PNV_VOID, NV_UINT32, NV_UINT8 *, NV_UINT8);
static NV_SINT32 nve_oslinkchg(PNV_VOID, NV_SINT32);
static NV_SINT32 nve_osalloctimer(PNV_VOID, PNV_VOID *);
static NV_SINT32 nve_osfreetimer(PNV_VOID, PNV_VOID);
static NV_SINT32 nve_osinittimer(PNV_VOID, PNV_VOID, PTIMER_FUNC, PNV_VOID);
static NV_SINT32 nve_ossettimer(PNV_VOID, PNV_VOID, NV_UINT32);
static NV_SINT32 nve_oscanceltimer(PNV_VOID, PNV_VOID);
static NV_SINT32 nve_ospreprocpkt(PNV_VOID, PNV_VOID, PNV_VOID *, NV_UINT8 *, NV_UINT8);
static PNV_VOID nve_ospreprocpktnopq(PNV_VOID, PNV_VOID);
static NV_SINT32 nve_osindicatepkt(PNV_VOID, PNV_VOID *, NV_UINT32);
static NV_SINT32 nve_oslockalloc(PNV_VOID, NV_SINT32, PNV_VOID *);
static NV_SINT32 nve_oslockacquire(PNV_VOID, NV_SINT32, PNV_VOID);
static NV_SINT32 nve_oslockrelease(PNV_VOID, NV_SINT32, PNV_VOID);
static PNV_VOID nve_osreturnbufvirt(PNV_VOID, PNV_VOID);
static device_method_t nve_methods[] = {
/* Device interface */
DEVMETHOD(device_probe, nve_probe),
DEVMETHOD(device_attach, nve_attach),
DEVMETHOD(device_detach, nve_detach),
DEVMETHOD(device_shutdown, nve_shutdown),
/* MII interface */
DEVMETHOD(miibus_readreg, nve_miibus_readreg),
DEVMETHOD(miibus_writereg, nve_miibus_writereg),
DEVMETHOD_END
};
static driver_t nve_driver = {
"nve",
nve_methods,
sizeof(struct nve_softc)
};
static devclass_t nve_devclass;
static int nve_pollinterval = 0;
SYSCTL_INT(_hw, OID_AUTO, nve_pollinterval, CTLFLAG_RW,
&nve_pollinterval, 0, "delay between interface polls");
DRIVER_MODULE(nve, pci, nve_driver, nve_devclass, 0, 0);
DRIVER_MODULE(miibus, nve, miibus_driver, miibus_devclass, 0, 0);
static struct nve_type nve_devs[] = {
{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE_LAN,
"NVIDIA nForce MCP Networking Adapter"},
{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE2_LAN,
"NVIDIA nForce2 MCP2 Networking Adapter"},
{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE2_400_LAN1,
"NVIDIA nForce2 400 MCP4 Networking Adapter"},
{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE2_400_LAN2,
"NVIDIA nForce2 400 MCP5 Networking Adapter"},
{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE3_LAN1,
"NVIDIA nForce3 MCP3 Networking Adapter"},
{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE3_250_LAN,
"NVIDIA nForce3 250 MCP6 Networking Adapter"},
{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE3_LAN4,
"NVIDIA nForce3 MCP7 Networking Adapter"},
{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE4_LAN1,
"NVIDIA nForce4 CK804 MCP8 Networking Adapter"},
{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE4_LAN2,
"NVIDIA nForce4 CK804 MCP9 Networking Adapter"},
{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP04_LAN1,
"NVIDIA nForce MCP04 Networking Adapter"}, // MCP10
{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP04_LAN2,
"NVIDIA nForce MCP04 Networking Adapter"}, // MCP11
{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE430_LAN1,
"NVIDIA nForce 430 MCP12 Networking Adapter"},
{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE430_LAN2,
"NVIDIA nForce 430 MCP13 Networking Adapter"},
{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP55_LAN1,
"NVIDIA nForce MCP55 Networking Adapter"},
{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP55_LAN2,
"NVIDIA nForce MCP55 Networking Adapter"},
{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP61_LAN1,
"NVIDIA nForce MCP61 Networking Adapter"},
{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP61_LAN2,
"NVIDIA nForce MCP61 Networking Adapter"},
{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP61_LAN3,
"NVIDIA nForce MCP61 Networking Adapter"},
{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP61_LAN4,
"NVIDIA nForce MCP61 Networking Adapter"},
{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP65_LAN1,
"NVIDIA nForce MCP65 Networking Adapter"},
{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP65_LAN2,
"NVIDIA nForce MCP65 Networking Adapter"},
{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP65_LAN3,
"NVIDIA nForce MCP65 Networking Adapter"},
{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP65_LAN4,
"NVIDIA nForce MCP65 Networking Adapter"},
{0, 0, NULL}
};
/* DMA MEM map callback function to get data segment physical address */
static void
nve_dmamap_cb(void *arg, bus_dma_segment_t * segs, int nsegs, int error)
{
if (error)
return;
KASSERT(nsegs == 1,
("Too many DMA segments returned when mapping DMA memory"));
*(bus_addr_t *)arg = segs->ds_addr;
}
/* DMA RX map callback function to get data segment physical address */
static void
nve_dmamap_rx_cb(void *arg, bus_dma_segment_t * segs, int nsegs,
bus_size_t mapsize, int error)
{
if (error)
return;
*(bus_addr_t *)arg = segs->ds_addr;
}
/*
* DMA TX buffer callback function to allocate fragment data segment
* addresses
*/
static void
nve_dmamap_tx_cb(void *arg, bus_dma_segment_t * segs, int nsegs, bus_size_t mapsize, int error)
{
struct nve_tx_desc *info;
info = arg;
if (error)
return;
KASSERT(nsegs < NV_MAX_FRAGS,
("Too many DMA segments returned when mapping mbuf"));
info->numfrags = nsegs;
bcopy(segs, info->frags, nsegs * sizeof(bus_dma_segment_t));
}
/* Probe for supported hardware ID's */
static int
nve_probe(device_t dev)
{
struct nve_type *t;
t = nve_devs;
/* Check for matching PCI DEVICE ID's */
while (t->name != NULL) {
if ((pci_get_vendor(dev) == t->vid_id) &&
(pci_get_device(dev) == t->dev_id)) {
device_set_desc(dev, t->name);
return (BUS_PROBE_LOW_PRIORITY);
}
t++;
}
return (ENXIO);
}
/* Attach driver and initialise hardware for use */
static int
nve_attach(device_t dev)
{
u_char eaddr[ETHER_ADDR_LEN];
struct nve_softc *sc;
struct ifnet *ifp;
OS_API *osapi;
ADAPTER_OPEN_PARAMS OpenParams;
int error = 0, i, rid;
if (bootverbose)
device_printf(dev, "nvenetlib.o version %s\n", DRIVER_VERSION);
DEBUGOUT(NVE_DEBUG_INIT, "nve: nve_attach - entry\n");
sc = device_get_softc(dev);
/* Allocate mutex */
mtx_init(&sc->mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
MTX_DEF);
callout_init_mtx(&sc->stat_callout, &sc->mtx, 0);
sc->dev = dev;
/* Preinitialize data structures */
bzero(&OpenParams, sizeof(ADAPTER_OPEN_PARAMS));
/* Enable bus mastering */
pci_enable_busmaster(dev);
/* Allocate memory mapped address space */
rid = NV_RID;
sc->res = bus_alloc_resource(dev, SYS_RES_MEMORY, &rid, 0, ~0, 1,
RF_ACTIVE);
if (sc->res == NULL) {
device_printf(dev, "couldn't map memory\n");
error = ENXIO;
goto fail;
}
sc->sc_st = rman_get_bustag(sc->res);
sc->sc_sh = rman_get_bushandle(sc->res);
/* Allocate interrupt */
rid = 0;
sc->irq = bus_alloc_resource(dev, SYS_RES_IRQ, &rid, 0, ~0, 1,
RF_SHAREABLE | RF_ACTIVE);
if (sc->irq == NULL) {
device_printf(dev, "couldn't map interrupt\n");
error = ENXIO;
goto fail;
}
/* Allocate DMA tags */
error = bus_dma_tag_create(bus_get_dma_tag(dev),
4, 0, BUS_SPACE_MAXADDR_32BIT,
BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES * NV_MAX_FRAGS,
NV_MAX_FRAGS, MCLBYTES, 0,
busdma_lock_mutex, &Giant,
&sc->mtag);
if (error) {
device_printf(dev, "couldn't allocate dma tag\n");
goto fail;
}
error = bus_dma_tag_create(bus_get_dma_tag(dev),
4, 0, BUS_SPACE_MAXADDR_32BIT,
BUS_SPACE_MAXADDR, NULL, NULL,
sizeof(struct nve_rx_desc) * RX_RING_SIZE, 1,
sizeof(struct nve_rx_desc) * RX_RING_SIZE, 0,
busdma_lock_mutex, &Giant,
&sc->rtag);
if (error) {
device_printf(dev, "couldn't allocate dma tag\n");
goto fail;
}
error = bus_dma_tag_create(bus_get_dma_tag(dev),
4, 0, BUS_SPACE_MAXADDR_32BIT,
BUS_SPACE_MAXADDR, NULL, NULL,
sizeof(struct nve_tx_desc) * TX_RING_SIZE, 1,
sizeof(struct nve_tx_desc) * TX_RING_SIZE, 0,
busdma_lock_mutex, &Giant,
&sc->ttag);
if (error) {
device_printf(dev, "couldn't allocate dma tag\n");
goto fail;
}
/* Allocate DMA safe memory and get the DMA addresses. */
error = bus_dmamem_alloc(sc->ttag, (void **)&sc->tx_desc,
BUS_DMA_WAITOK, &sc->tmap);
if (error) {
device_printf(dev, "couldn't allocate dma memory\n");
goto fail;
}
bzero(sc->tx_desc, sizeof(struct nve_tx_desc) * TX_RING_SIZE);
error = bus_dmamap_load(sc->ttag, sc->tmap, sc->tx_desc,
sizeof(struct nve_tx_desc) * TX_RING_SIZE, nve_dmamap_cb,
&sc->tx_addr, 0);
if (error) {
device_printf(dev, "couldn't map dma memory\n");
goto fail;
}
error = bus_dmamem_alloc(sc->rtag, (void **)&sc->rx_desc,
BUS_DMA_WAITOK, &sc->rmap);
if (error) {
device_printf(dev, "couldn't allocate dma memory\n");
goto fail;
}
bzero(sc->rx_desc, sizeof(struct nve_rx_desc) * RX_RING_SIZE);
error = bus_dmamap_load(sc->rtag, sc->rmap, sc->rx_desc,
sizeof(struct nve_rx_desc) * RX_RING_SIZE, nve_dmamap_cb,
&sc->rx_addr, 0);
if (error) {
device_printf(dev, "couldn't map dma memory\n");
goto fail;
}
/* Initialize rings. */
if (nve_init_rings(sc)) {
device_printf(dev, "failed to init rings\n");
error = ENXIO;
goto fail;
}
/* Setup NVIDIA API callback routines */
osapi = &sc->osapi;
osapi->pOSCX = sc;
osapi->pfnAllocMemory = nve_osalloc;
osapi->pfnFreeMemory = nve_osfree;
osapi->pfnAllocMemoryEx = nve_osallocex;
osapi->pfnFreeMemoryEx = nve_osfreeex;
osapi->pfnClearMemory = nve_osclear;
osapi->pfnStallExecution = nve_osdelay;
osapi->pfnAllocReceiveBuffer = nve_osallocrxbuf;
osapi->pfnFreeReceiveBuffer = nve_osfreerxbuf;
osapi->pfnPacketWasSent = nve_ospackettx;
osapi->pfnPacketWasReceived = nve_ospacketrx;
osapi->pfnLinkStateHasChanged = nve_oslinkchg;
osapi->pfnAllocTimer = nve_osalloctimer;
osapi->pfnFreeTimer = nve_osfreetimer;
osapi->pfnInitializeTimer = nve_osinittimer;
osapi->pfnSetTimer = nve_ossettimer;
osapi->pfnCancelTimer = nve_oscanceltimer;
osapi->pfnPreprocessPacket = nve_ospreprocpkt;
osapi->pfnPreprocessPacketNopq = nve_ospreprocpktnopq;
osapi->pfnIndicatePackets = nve_osindicatepkt;
osapi->pfnLockAlloc = nve_oslockalloc;
osapi->pfnLockAcquire = nve_oslockacquire;
osapi->pfnLockRelease = nve_oslockrelease;
osapi->pfnReturnBufferVirtual = nve_osreturnbufvirt;
sc->linkup = FALSE;
sc->max_frame_size = ETHERMTU + ETHER_HDR_LEN + FCS_LEN;
/* TODO - We don't support hardware offload yet */
sc->hwmode = 1;
sc->media = 0;
/* Set NVIDIA API startup parameters */
OpenParams.MaxDpcLoop = 2;
OpenParams.MaxRxPkt = RX_RING_SIZE;
OpenParams.MaxTxPkt = TX_RING_SIZE;
OpenParams.SentPacketStatusSuccess = 1;
OpenParams.SentPacketStatusFailure = 0;
OpenParams.MaxRxPktToAccumulate = 6;
OpenParams.ulPollInterval = nve_pollinterval;
OpenParams.SetForcedModeEveryNthRxPacket = 0;
OpenParams.SetForcedModeEveryNthTxPacket = 0;
OpenParams.RxForcedInterrupt = 0;
OpenParams.TxForcedInterrupt = 0;
OpenParams.pOSApi = osapi;
OpenParams.pvHardwareBaseAddress = rman_get_virtual(sc->res);
OpenParams.bASFEnabled = 0;
OpenParams.ulDescriptorVersion = sc->hwmode;
OpenParams.ulMaxPacketSize = sc->max_frame_size;
OpenParams.DeviceId = pci_get_device(dev);
/* Open NVIDIA Hardware API */
error = ADAPTER_Open(&OpenParams, (void **)&(sc->hwapi), &sc->phyaddr);
if (error) {
device_printf(dev,
"failed to open NVIDIA Hardware API: 0x%x\n", error);
goto fail;
}
/* TODO - Add support for MODE2 hardware offload */
bzero(&sc->adapterdata, sizeof(sc->adapterdata));
sc->adapterdata.ulMediaIF = sc->media;
sc->adapterdata.ulModeRegTxReadCompleteEnable = 1;
sc->hwapi->pfnSetCommonData(sc->hwapi->pADCX, &sc->adapterdata);
/* MAC is loaded backwards into h/w reg */
sc->hwapi->pfnGetNodeAddress(sc->hwapi->pADCX, sc->original_mac_addr);
for (i = 0; i < 6; i++) {
eaddr[i] = sc->original_mac_addr[5 - i];
}
sc->hwapi->pfnSetNodeAddress(sc->hwapi->pADCX, eaddr);
/* Display ethernet address ,... */
device_printf(dev, "Ethernet address %6D\n", eaddr, ":");
/* Allocate interface structures */
ifp = sc->ifp = if_alloc(IFT_ETHER);
if (ifp == NULL) {
device_printf(dev, "can not if_alloc()\n");
error = ENOSPC;
goto fail;
}
/* Setup interface parameters */
ifp->if_softc = sc;
if_initname(ifp, device_get_name(dev), device_get_unit(dev));
ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
ifp->if_ioctl = nve_ioctl;
ifp->if_start = nve_ifstart;
ifp->if_init = nve_init;
ifp->if_baudrate = IF_Mbps(100);
IFQ_SET_MAXLEN(&ifp->if_snd, TX_RING_SIZE - 1);
ifp->if_snd.ifq_drv_maxlen = TX_RING_SIZE - 1;
IFQ_SET_READY(&ifp->if_snd);
ifp->if_capabilities |= IFCAP_VLAN_MTU;
ifp->if_capenable |= IFCAP_VLAN_MTU;
/* Attach device for MII interface to PHY */
DEBUGOUT(NVE_DEBUG_INIT, "nve: do mii_attach\n");
error = mii_attach(dev, &sc->miibus, ifp, nve_ifmedia_upd,
nve_ifmedia_sts, BMSR_DEFCAPMASK, MII_PHY_ANY, MII_OFFSET_ANY, 0);
if (error != 0) {
device_printf(dev, "attaching PHYs failed\n");
goto fail;
}
/* Attach to OS's managers. */
ether_ifattach(ifp, eaddr);
/* Activate our interrupt handler. - attach last to avoid lock */
error = bus_setup_intr(dev, sc->irq, INTR_TYPE_NET | INTR_MPSAFE,
NULL, nve_intr, sc, &sc->sc_ih);
if (error) {
device_printf(dev, "couldn't set up interrupt handler\n");
goto fail;
}
DEBUGOUT(NVE_DEBUG_INIT, "nve: nve_attach - exit\n");
fail:
if (error)
nve_detach(dev);
return (error);
}
/* Detach interface for module unload */
static int
nve_detach(device_t dev)
{
struct nve_softc *sc = device_get_softc(dev);
struct ifnet *ifp;
KASSERT(mtx_initialized(&sc->mtx), ("mutex not initialized"));
DEBUGOUT(NVE_DEBUG_DEINIT, "nve: nve_detach - entry\n");
ifp = sc->ifp;
if (device_is_attached(dev)) {
ether_ifdetach(ifp);
NVE_LOCK(sc);
nve_stop(sc);
NVE_UNLOCK(sc);
callout_drain(&sc->stat_callout);
}
if (sc->miibus)
device_delete_child(dev, sc->miibus);
bus_generic_detach(dev);
/* Reload unreversed address back into MAC in original state */
if (sc->original_mac_addr)
sc->hwapi->pfnSetNodeAddress(sc->hwapi->pADCX,
sc->original_mac_addr);
DEBUGOUT(NVE_DEBUG_DEINIT, "nve: do pfnClose\n");
/* Detach from NVIDIA hardware API */
if (sc->hwapi->pfnClose)
sc->hwapi->pfnClose(sc->hwapi->pADCX, FALSE);
/* Release resources */
if (sc->sc_ih)
bus_teardown_intr(sc->dev, sc->irq, sc->sc_ih);
if (sc->irq)
bus_release_resource(sc->dev, SYS_RES_IRQ, 0, sc->irq);
if (sc->res)
bus_release_resource(sc->dev, SYS_RES_MEMORY, NV_RID, sc->res);
nve_free_rings(sc);
if (sc->tx_desc) {
bus_dmamap_unload(sc->rtag, sc->rmap);
bus_dmamem_free(sc->rtag, sc->rx_desc, sc->rmap);
bus_dmamap_destroy(sc->rtag, sc->rmap);
}
if (sc->mtag)
bus_dma_tag_destroy(sc->mtag);
if (sc->ttag)
bus_dma_tag_destroy(sc->ttag);
if (sc->rtag)
bus_dma_tag_destroy(sc->rtag);
if (ifp)
if_free(ifp);
mtx_destroy(&sc->mtx);
DEBUGOUT(NVE_DEBUG_DEINIT, "nve: nve_detach - exit\n");
return (0);
}
/* Initialise interface and start it "RUNNING" */
static void
nve_init(void *xsc)
{
struct nve_softc *sc = xsc;
NVE_LOCK(sc);
nve_init_locked(sc);
NVE_UNLOCK(sc);
}
static void
nve_init_locked(struct nve_softc *sc)
{
struct ifnet *ifp;
int error;
NVE_LOCK_ASSERT(sc);
DEBUGOUT(NVE_DEBUG_INIT, "nve: nve_init - entry (%d)\n", sc->linkup);
ifp = sc->ifp;
/* Do nothing if already running */
if (ifp->if_drv_flags & IFF_DRV_RUNNING)
return;
nve_stop(sc);
DEBUGOUT(NVE_DEBUG_INIT, "nve: do pfnInit\n");
nve_ifmedia_upd_locked(ifp);
/* Setup Hardware interface and allocate memory structures */
error = sc->hwapi->pfnInit(sc->hwapi->pADCX,
0, /* force speed */
0, /* force full duplex */
0, /* force mode */
0, /* force async mode */
&sc->linkup);
if (error) {
device_printf(sc->dev,
"failed to start NVIDIA Hardware interface\n");
return;
}
/* Set the MAC address */
sc->hwapi->pfnSetNodeAddress(sc->hwapi->pADCX, IF_LLADDR(sc->ifp));
sc->hwapi->pfnEnableInterrupts(sc->hwapi->pADCX);
sc->hwapi->pfnStart(sc->hwapi->pADCX);
/* Setup multicast filter */
nve_setmulti(sc);
/* Update interface parameters */
ifp->if_drv_flags |= IFF_DRV_RUNNING;
ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
callout_reset(&sc->stat_callout, hz, nve_tick, sc);
DEBUGOUT(NVE_DEBUG_INIT, "nve: nve_init - exit\n");
return;
}
/* Stop interface activity ie. not "RUNNING" */
static void
nve_stop(struct nve_softc *sc)
{
struct ifnet *ifp;
NVE_LOCK_ASSERT(sc);
DEBUGOUT(NVE_DEBUG_RUNNING, "nve: nve_stop - entry\n");
ifp = sc->ifp;
sc->tx_timer = 0;
/* Cancel tick timer */
callout_stop(&sc->stat_callout);
/* Stop hardware activity */
sc->hwapi->pfnDisableInterrupts(sc->hwapi->pADCX);
sc->hwapi->pfnStop(sc->hwapi->pADCX, 0);
DEBUGOUT(NVE_DEBUG_DEINIT, "nve: do pfnDeinit\n");
/* Shutdown interface and deallocate memory buffers */
if (sc->hwapi->pfnDeinit)
sc->hwapi->pfnDeinit(sc->hwapi->pADCX, 0);
sc->linkup = 0;
sc->cur_rx = 0;
sc->pending_rxs = 0;
sc->pending_txs = 0;
ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
DEBUGOUT(NVE_DEBUG_RUNNING, "nve: nve_stop - exit\n");
return;
}
/* Shutdown interface for unload/reboot */
static int
nve_shutdown(device_t dev)
{
struct nve_softc *sc;
DEBUGOUT(NVE_DEBUG_DEINIT, "nve: nve_shutdown\n");
sc = device_get_softc(dev);
/* Stop hardware activity */
NVE_LOCK(sc);
nve_stop(sc);
NVE_UNLOCK(sc);
return (0);
}
/* Allocate TX ring buffers */
static int
nve_init_rings(struct nve_softc *sc)
{
int error, i;
DEBUGOUT(NVE_DEBUG_INIT, "nve: nve_init_rings - entry\n");
sc->cur_rx = sc->cur_tx = sc->pending_rxs = sc->pending_txs = 0;
/* Initialise RX ring */
for (i = 0; i < RX_RING_SIZE; i++) {
struct nve_rx_desc *desc = sc->rx_desc + i;
struct nve_map_buffer *buf = &desc->buf;
buf->mbuf = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
if (buf->mbuf == NULL) {
device_printf(sc->dev, "couldn't allocate mbuf\n");
nve_free_rings(sc);
return (ENOBUFS);
}
buf->mbuf->m_len = buf->mbuf->m_pkthdr.len = MCLBYTES;
m_adj(buf->mbuf, ETHER_ALIGN);
error = bus_dmamap_create(sc->mtag, 0, &buf->map);
if (error) {
device_printf(sc->dev, "couldn't create dma map\n");
nve_free_rings(sc);
return (error);
}
error = bus_dmamap_load_mbuf(sc->mtag, buf->map, buf->mbuf,
nve_dmamap_rx_cb, &desc->paddr, 0);
if (error) {
device_printf(sc->dev, "couldn't dma map mbuf\n");
nve_free_rings(sc);
return (error);
}
bus_dmamap_sync(sc->mtag, buf->map, BUS_DMASYNC_PREREAD);
desc->buflength = buf->mbuf->m_len;
desc->vaddr = mtod(buf->mbuf, caddr_t);
}
bus_dmamap_sync(sc->rtag, sc->rmap,
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
/* Initialize TX ring */
for (i = 0; i < TX_RING_SIZE; i++) {
struct nve_tx_desc *desc = sc->tx_desc + i;
struct nve_map_buffer *buf = &desc->buf;
buf->mbuf = NULL;
error = bus_dmamap_create(sc->mtag, 0, &buf->map);
if (error) {
device_printf(sc->dev, "couldn't create dma map\n");
nve_free_rings(sc);
return (error);
}
}
bus_dmamap_sync(sc->ttag, sc->tmap,
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
DEBUGOUT(NVE_DEBUG_INIT, "nve: nve_init_rings - exit\n");
return (error);
}
/* Free the TX ring buffers */
static void
nve_free_rings(struct nve_softc *sc)
{
int i;
DEBUGOUT(NVE_DEBUG_DEINIT, "nve: nve_free_rings - entry\n");
for (i = 0; i < RX_RING_SIZE; i++) {
struct nve_rx_desc *desc = sc->rx_desc + i;
struct nve_map_buffer *buf = &desc->buf;
if (buf->mbuf) {
bus_dmamap_unload(sc->mtag, buf->map);
bus_dmamap_destroy(sc->mtag, buf->map);
m_freem(buf->mbuf);
}
buf->mbuf = NULL;
}
for (i = 0; i < TX_RING_SIZE; i++) {
struct nve_tx_desc *desc = sc->tx_desc + i;
struct nve_map_buffer *buf = &desc->buf;
if (buf->mbuf) {
bus_dmamap_unload(sc->mtag, buf->map);
bus_dmamap_destroy(sc->mtag, buf->map);
m_freem(buf->mbuf);
}
buf->mbuf = NULL;
}
DEBUGOUT(NVE_DEBUG_DEINIT, "nve: nve_free_rings - exit\n");
}
/* Main loop for sending packets from OS to interface */
static void
nve_ifstart(struct ifnet *ifp)
{
struct nve_softc *sc = ifp->if_softc;
NVE_LOCK(sc);
nve_ifstart_locked(ifp);
NVE_UNLOCK(sc);
}
static void
nve_ifstart_locked(struct ifnet *ifp)
{
struct nve_softc *sc = ifp->if_softc;
struct nve_map_buffer *buf;
struct mbuf *m0, *m;
struct nve_tx_desc *desc;
ADAPTER_WRITE_DATA txdata;
int error, i;
DEBUGOUT(NVE_DEBUG_RUNNING, "nve: nve_ifstart - entry\n");
NVE_LOCK_ASSERT(sc);
/* If link is down/busy or queue is empty do nothing */
if (ifp->if_drv_flags & IFF_DRV_OACTIVE ||
IFQ_DRV_IS_EMPTY(&ifp->if_snd))
return;
/* Transmit queued packets until sent or TX ring is full */
while (sc->pending_txs < TX_RING_SIZE) {
desc = sc->tx_desc + sc->cur_tx;
buf = &desc->buf;
/* Get next packet to send. */
IFQ_DRV_DEQUEUE(&ifp->if_snd, m0);
/* If nothing to send, return. */
if (m0 == NULL)
return;
/*
* On nForce4, the chip doesn't interrupt on transmit,
* so try to flush transmitted packets from the queue
* if it's getting large (see note in nve_watchdog).
*/
if (sc->pending_txs > TX_RING_SIZE/2) {
sc->hwapi->pfnDisableInterrupts(sc->hwapi->pADCX);
sc->hwapi->pfnHandleInterrupt(sc->hwapi->pADCX);
sc->hwapi->pfnEnableInterrupts(sc->hwapi->pADCX);
}
/* Map MBUF for DMA access */
error = bus_dmamap_load_mbuf(sc->mtag, buf->map, m0,
nve_dmamap_tx_cb, desc, BUS_DMA_NOWAIT);
if (error && error != EFBIG) {
m_freem(m0);
sc->tx_errors++;
continue;
}
/*
* Packet has too many fragments - defrag into new mbuf
* cluster
*/
if (error) {
m = m_defrag(m0, M_DONTWAIT);
if (m == NULL) {
m_freem(m0);
sc->tx_errors++;
continue;
}
m0 = m;
error = bus_dmamap_load_mbuf(sc->mtag, buf->map, m,
nve_dmamap_tx_cb, desc, BUS_DMA_NOWAIT);
if (error) {
m_freem(m);
sc->tx_errors++;
continue;
}
}
/* Do sync on DMA bounce buffer */
bus_dmamap_sync(sc->mtag, buf->map, BUS_DMASYNC_PREWRITE);
buf->mbuf = m0;
txdata.ulNumberOfElements = desc->numfrags;
txdata.pvID = (PVOID)desc;
/* Put fragments into API element list */
txdata.ulTotalLength = buf->mbuf->m_len;
for (i = 0; i < desc->numfrags; i++) {
txdata.sElement[i].ulLength =
(ulong)desc->frags[i].ds_len;
txdata.sElement[i].pPhysical =
(PVOID)desc->frags[i].ds_addr;
}
/* Send packet to Nvidia API for transmission */
error = sc->hwapi->pfnWrite(sc->hwapi->pADCX, &txdata);
switch (error) {
case ADAPTERERR_NONE:
/* Packet was queued in API TX queue successfully */
sc->pending_txs++;
sc->cur_tx = (sc->cur_tx + 1) % TX_RING_SIZE;
break;
case ADAPTERERR_TRANSMIT_QUEUE_FULL:
/* The API TX queue is full - requeue the packet */
device_printf(sc->dev,
"nve_ifstart: transmit queue is full\n");
ifp->if_drv_flags |= IFF_DRV_OACTIVE;
bus_dmamap_unload(sc->mtag, buf->map);
IFQ_DRV_PREPEND(&ifp->if_snd, buf->mbuf);
buf->mbuf = NULL;
return;
default:
/* The API failed to queue/send the packet so dump it */
device_printf(sc->dev, "nve_ifstart: transmit error\n");
bus_dmamap_unload(sc->mtag, buf->map);
m_freem(buf->mbuf);
buf->mbuf = NULL;
sc->tx_errors++;
return;
}
/* Set watchdog timer. */
sc->tx_timer = 8;
/* Copy packet to BPF tap */
BPF_MTAP(ifp, m0);
}
ifp->if_drv_flags |= IFF_DRV_OACTIVE;
DEBUGOUT(NVE_DEBUG_RUNNING, "nve: nve_ifstart - exit\n");
}
/* Handle IOCTL events */
static int
nve_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
{
struct nve_softc *sc = ifp->if_softc;
struct ifreq *ifr = (struct ifreq *) data;
struct mii_data *mii;
int error = 0;
DEBUGOUT(NVE_DEBUG_IOCTL, "nve: nve_ioctl - entry\n");
switch (command) {
case SIOCSIFMTU:
/* Set MTU size */
NVE_LOCK(sc);
if (ifp->if_mtu == ifr->ifr_mtu) {
NVE_UNLOCK(sc);
break;
}
if (ifr->ifr_mtu + ifp->if_hdrlen <= MAX_PACKET_SIZE_1518) {
ifp->if_mtu = ifr->ifr_mtu;
nve_stop(sc);
nve_init_locked(sc);
} else
error = EINVAL;
NVE_UNLOCK(sc);
break;
case SIOCSIFFLAGS:
/* Setup interface flags */
NVE_LOCK(sc);
if (ifp->if_flags & IFF_UP) {
if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) {
nve_init_locked(sc);
NVE_UNLOCK(sc);
break;
}
} else {
if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
nve_stop(sc);
NVE_UNLOCK(sc);
break;
}
}
/* Handle IFF_PROMISC and IFF_ALLMULTI flags. */
nve_setmulti(sc);
NVE_UNLOCK(sc);
break;
case SIOCADDMULTI:
case SIOCDELMULTI:
/* Setup multicast filter */
NVE_LOCK(sc);
if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
nve_setmulti(sc);
}
NVE_UNLOCK(sc);
break;
case SIOCGIFMEDIA:
case SIOCSIFMEDIA:
/* Get/Set interface media parameters */
mii = device_get_softc(sc->miibus);
error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
break;
default:
/* Everything else we forward to generic ether ioctl */
error = ether_ioctl(ifp, command, data);
break;
}
DEBUGOUT(NVE_DEBUG_IOCTL, "nve: nve_ioctl - exit\n");
return (error);
}
/* Interrupt service routine */
static void
nve_intr(void *arg)
{
struct nve_softc *sc = arg;
struct ifnet *ifp = sc->ifp;
DEBUGOUT(NVE_DEBUG_INTERRUPT, "nve: nve_intr - entry\n");
NVE_LOCK(sc);
if (!ifp->if_flags & IFF_UP) {
nve_stop(sc);
NVE_UNLOCK(sc);
return;
}
/* Handle interrupt event */
if (sc->hwapi->pfnQueryInterrupt(sc->hwapi->pADCX)) {
sc->hwapi->pfnHandleInterrupt(sc->hwapi->pADCX);
sc->hwapi->pfnEnableInterrupts(sc->hwapi->pADCX);
}
if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
nve_ifstart_locked(ifp);
/* If no pending packets we don't need a timeout */
if (sc->pending_txs == 0)
sc->tx_timer = 0;
NVE_UNLOCK(sc);
DEBUGOUT(NVE_DEBUG_INTERRUPT, "nve: nve_intr - exit\n");
return;
}
/* Setup multicast filters */
static void
nve_setmulti(struct nve_softc *sc)
{
struct ifnet *ifp;
struct ifmultiaddr *ifma;
PACKET_FILTER hwfilter;
int i;
u_int8_t andaddr[6], oraddr[6];
NVE_LOCK_ASSERT(sc);
DEBUGOUT(NVE_DEBUG_RUNNING, "nve: nve_setmulti - entry\n");
ifp = sc->ifp;
/* Initialize filter */
hwfilter.ulFilterFlags = 0;
for (i = 0; i < 6; i++) {
hwfilter.acMulticastAddress[i] = 0;
hwfilter.acMulticastMask[i] = 0;
}
if (ifp->if_flags & (IFF_PROMISC | IFF_ALLMULTI)) {
/* Accept all packets */
hwfilter.ulFilterFlags |= ACCEPT_ALL_PACKETS;
sc->hwapi->pfnSetPacketFilter(sc->hwapi->pADCX, &hwfilter);
return;
}
/* Setup multicast filter */
if_maddr_rlock(ifp);
TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
u_char *addrp;
if (ifma->ifma_addr->sa_family != AF_LINK)
continue;
addrp = LLADDR((struct sockaddr_dl *) ifma->ifma_addr);
for (i = 0; i < 6; i++) {
u_int8_t mcaddr = addrp[i];
andaddr[i] &= mcaddr;
oraddr[i] |= mcaddr;
}
}
if_maddr_runlock(ifp);
for (i = 0; i < 6; i++) {
hwfilter.acMulticastAddress[i] = andaddr[i] & oraddr[i];
hwfilter.acMulticastMask[i] = andaddr[i] | (~oraddr[i]);
}
/* Send filter to NVIDIA API */
sc->hwapi->pfnSetPacketFilter(sc->hwapi->pADCX, &hwfilter);
DEBUGOUT(NVE_DEBUG_RUNNING, "nve: nve_setmulti - exit\n");
return;
}
/* Change the current media/mediaopts */
static int
nve_ifmedia_upd(struct ifnet *ifp)
{
struct nve_softc *sc = ifp->if_softc;
NVE_LOCK(sc);
nve_ifmedia_upd_locked(ifp);
NVE_UNLOCK(sc);
return (0);
}
static void
nve_ifmedia_upd_locked(struct ifnet *ifp)
{
struct nve_softc *sc = ifp->if_softc;
struct mii_data *mii;
struct mii_softc *miisc;
DEBUGOUT(NVE_DEBUG_MII, "nve: nve_ifmedia_upd\n");
NVE_LOCK_ASSERT(sc);
mii = device_get_softc(sc->miibus);
LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
PHY_RESET(miisc);
mii_mediachg(mii);
}
/* Update current miibus PHY status of media */
static void
nve_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
{
struct nve_softc *sc;
struct mii_data *mii;
DEBUGOUT(NVE_DEBUG_MII, "nve: nve_ifmedia_sts\n");
sc = ifp->if_softc;
NVE_LOCK(sc);
mii = device_get_softc(sc->miibus);
mii_pollstat(mii);
ifmr->ifm_active = mii->mii_media_active;
ifmr->ifm_status = mii->mii_media_status;
NVE_UNLOCK(sc);
return;
}
/* miibus tick timer - maintain link status */
static void
nve_tick(void *xsc)
{
struct nve_softc *sc = xsc;
struct mii_data *mii;
struct ifnet *ifp;
NVE_LOCK_ASSERT(sc);
ifp = sc->ifp;
nve_update_stats(sc);
mii = device_get_softc(sc->miibus);
mii_tick(mii);
if (mii->mii_media_status & IFM_ACTIVE &&
IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
nve_ifstart_locked(ifp);
}
if (sc->tx_timer > 0 && --sc->tx_timer == 0)
nve_watchdog(sc);
callout_reset(&sc->stat_callout, hz, nve_tick, sc);
return;
}
/* Update ifnet data structure with collected interface stats from API */
static void
nve_update_stats(struct nve_softc *sc)
{
struct ifnet *ifp = sc->ifp;
ADAPTER_STATS stats;
NVE_LOCK_ASSERT(sc);
if (sc->hwapi) {
sc->hwapi->pfnGetStatistics(sc->hwapi->pADCX, &stats);
ifp->if_ipackets = stats.ulSuccessfulReceptions;
ifp->if_ierrors = stats.ulMissedFrames +
stats.ulFailedReceptions +
stats.ulCRCErrors +
stats.ulFramingErrors +
stats.ulOverFlowErrors;
ifp->if_opackets = stats.ulSuccessfulTransmissions;
ifp->if_oerrors = sc->tx_errors +
stats.ulFailedTransmissions +
stats.ulRetryErrors +
stats.ulUnderflowErrors +
stats.ulLossOfCarrierErrors +
stats.ulLateCollisionErrors;
ifp->if_collisions = stats.ulLateCollisionErrors;
}
return;
}
/* miibus Read PHY register wrapper - calls Nvidia API entry point */
static int
nve_miibus_readreg(device_t dev, int phy, int reg)
{
struct nve_softc *sc = device_get_softc(dev);
ULONG data;
DEBUGOUT(NVE_DEBUG_MII, "nve: nve_miibus_readreg - entry\n");
ADAPTER_ReadPhy(sc->hwapi->pADCX, phy, reg, &data);
DEBUGOUT(NVE_DEBUG_MII, "nve: nve_miibus_readreg - exit\n");
return (data);
}
/* miibus Write PHY register wrapper - calls Nvidia API entry point */
static int
nve_miibus_writereg(device_t dev, int phy, int reg, int data)
{
struct nve_softc *sc = device_get_softc(dev);
DEBUGOUT(NVE_DEBUG_MII, "nve: nve_miibus_writereg - entry\n");
ADAPTER_WritePhy(sc->hwapi->pADCX, phy, reg, (ulong)data);
DEBUGOUT(NVE_DEBUG_MII, "nve: nve_miibus_writereg - exit\n");
return 0;
}
/* Watchdog timer to prevent PHY lockups */
static void
nve_watchdog(struct nve_softc *sc)
{
struct ifnet *ifp;
int pending_txs_start;
NVE_LOCK_ASSERT(sc);
ifp = sc->ifp;
/*
* The nvidia driver blob defers tx completion notifications.
* Thus, sometimes the watchdog timer will go off when the
* tx engine is fine, but the tx completions are just deferred.
* Try kicking the driver blob to clear out any pending tx
* completions. If that clears up any of the pending tx
* operations, then just return without printing the warning
* message or resetting the adapter, as we can then conclude
* the chip hasn't actually crashed (it's still sending packets).
*/
pending_txs_start = sc->pending_txs;
sc->hwapi->pfnDisableInterrupts(sc->hwapi->pADCX);
sc->hwapi->pfnHandleInterrupt(sc->hwapi->pADCX);
sc->hwapi->pfnEnableInterrupts(sc->hwapi->pADCX);
if (sc->pending_txs < pending_txs_start)
return;
device_printf(sc->dev, "device timeout (%d)\n", sc->pending_txs);
sc->tx_errors++;
nve_stop(sc);
nve_init_locked(sc);
if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
nve_ifstart_locked(ifp);
}
/* --- Start of NVOSAPI interface --- */
/* Allocate DMA enabled general use memory for API */
static NV_SINT32
nve_osalloc(PNV_VOID ctx, PMEMORY_BLOCK mem)
{
struct nve_softc *sc;
bus_addr_t mem_physical;
DEBUGOUT(NVE_DEBUG_API, "nve: nve_osalloc - %d\n", mem->uiLength);
sc = (struct nve_softc *)ctx;
mem->pLogical = (PVOID)contigmalloc(mem->uiLength, M_DEVBUF,
M_NOWAIT | M_ZERO, 0, 0xffffffff, PAGE_SIZE, 0);
if (!mem->pLogical) {
device_printf(sc->dev, "memory allocation failed\n");
return (0);
}
memset(mem->pLogical, 0, (ulong)mem->uiLength);
mem_physical = vtophys(mem->pLogical);
mem->pPhysical = (PVOID)mem_physical;
DEBUGOUT(NVE_DEBUG_API, "nve: nve_osalloc 0x%x/0x%x - %d\n",
(uint)mem->pLogical, (uint)mem->pPhysical, (uint)mem->uiLength);
return (1);
}
/* Free allocated memory */
static NV_SINT32
nve_osfree(PNV_VOID ctx, PMEMORY_BLOCK mem)
{
DEBUGOUT(NVE_DEBUG_API, "nve: nve_osfree - 0x%x - %d\n",
(uint)mem->pLogical, (uint) mem->uiLength);
contigfree(mem->pLogical, PAGE_SIZE, M_DEVBUF);
return (1);
}
/* Copied directly from nvnet.c */
static NV_SINT32
nve_osallocex(PNV_VOID ctx, PMEMORY_BLOCKEX mem_block_ex)
{
MEMORY_BLOCK mem_block;
DEBUGOUT(NVE_DEBUG_API, "nve: nve_osallocex\n");
mem_block_ex->pLogical = NULL;
mem_block_ex->uiLengthOrig = mem_block_ex->uiLength;
if ((mem_block_ex->AllocFlags & ALLOC_MEMORY_ALIGNED) &&
(mem_block_ex->AlignmentSize > 1)) {
DEBUGOUT(NVE_DEBUG_API, " aligning on %d\n",
mem_block_ex->AlignmentSize);
mem_block_ex->uiLengthOrig += mem_block_ex->AlignmentSize;
}
mem_block.uiLength = mem_block_ex->uiLengthOrig;
if (nve_osalloc(ctx, &mem_block) == 0) {
return (0);
}
mem_block_ex->pLogicalOrig = mem_block.pLogical;
mem_block_ex->pPhysicalOrigLow = (unsigned long)mem_block.pPhysical;
mem_block_ex->pPhysicalOrigHigh = 0;
mem_block_ex->pPhysical = mem_block.pPhysical;
mem_block_ex->pLogical = mem_block.pLogical;
if (mem_block_ex->uiLength != mem_block_ex->uiLengthOrig) {
unsigned int offset;
offset = mem_block_ex->pPhysicalOrigLow &
(mem_block_ex->AlignmentSize - 1);
if (offset) {
mem_block_ex->pPhysical =
(PVOID)((ulong)mem_block_ex->pPhysical +
mem_block_ex->AlignmentSize - offset);
mem_block_ex->pLogical =
(PVOID)((ulong)mem_block_ex->pLogical +
mem_block_ex->AlignmentSize - offset);
} /* if (offset) */
} /* if (mem_block_ex->uiLength != *mem_block_ex->uiLengthOrig) */
return (1);
}
/* Copied directly from nvnet.c */
static NV_SINT32
nve_osfreeex(PNV_VOID ctx, PMEMORY_BLOCKEX mem_block_ex)
{
MEMORY_BLOCK mem_block;
DEBUGOUT(NVE_DEBUG_API, "nve: nve_osfreeex\n");
mem_block.pLogical = mem_block_ex->pLogicalOrig;
mem_block.pPhysical = (PVOID)((ulong)mem_block_ex->pPhysicalOrigLow);
mem_block.uiLength = mem_block_ex->uiLengthOrig;
return (nve_osfree(ctx, &mem_block));
}
/* Clear memory region */
static NV_SINT32
nve_osclear(PNV_VOID ctx, PNV_VOID mem, NV_SINT32 length)
{
DEBUGOUT(NVE_DEBUG_API, "nve: nve_osclear\n");
memset(mem, 0, length);
return (1);
}
/* Sleep for a tick */
static NV_SINT32
nve_osdelay(PNV_VOID ctx, NV_UINT32 usec)
{
DELAY(usec);
return (1);
}
/* Allocate memory for rx buffer */
static NV_SINT32
nve_osallocrxbuf(PNV_VOID ctx, PMEMORY_BLOCK mem, PNV_VOID *id)
{
struct nve_softc *sc = ctx;
struct nve_rx_desc *desc;
struct nve_map_buffer *buf;
int error;
if (device_is_attached(sc->dev))
NVE_LOCK_ASSERT(sc);
DEBUGOUT(NVE_DEBUG_API, "nve: nve_osallocrxbuf\n");
if (sc->pending_rxs == RX_RING_SIZE) {
device_printf(sc->dev, "rx ring buffer is full\n");
goto fail;
}
desc = sc->rx_desc + sc->cur_rx;
buf = &desc->buf;
if (buf->mbuf == NULL) {
buf->mbuf = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
if (buf->mbuf == NULL) {
device_printf(sc->dev, "failed to allocate memory\n");
goto fail;
}
buf->mbuf->m_len = buf->mbuf->m_pkthdr.len = MCLBYTES;
m_adj(buf->mbuf, ETHER_ALIGN);
error = bus_dmamap_load_mbuf(sc->mtag, buf->map, buf->mbuf,
nve_dmamap_rx_cb, &desc->paddr, 0);
if (error) {
device_printf(sc->dev, "failed to dmamap mbuf\n");
m_freem(buf->mbuf);
buf->mbuf = NULL;
goto fail;
}
bus_dmamap_sync(sc->mtag, buf->map, BUS_DMASYNC_PREREAD);
desc->buflength = buf->mbuf->m_len;
desc->vaddr = mtod(buf->mbuf, caddr_t);
}
sc->pending_rxs++;
sc->cur_rx = (sc->cur_rx + 1) % RX_RING_SIZE;
mem->pLogical = (void *)desc->vaddr;
mem->pPhysical = (void *)desc->paddr;
mem->uiLength = desc->buflength;
*id = (void *)desc;
return (1);
fail:
return (0);
}
/* Free the rx buffer */
static NV_SINT32
nve_osfreerxbuf(PNV_VOID ctx, PMEMORY_BLOCK mem, PNV_VOID id)
{
struct nve_softc *sc = ctx;
struct nve_rx_desc *desc;
struct nve_map_buffer *buf;
DEBUGOUT(NVE_DEBUG_API, "nve: nve_osfreerxbuf\n");
desc = (struct nve_rx_desc *) id;
buf = &desc->buf;
if (buf->mbuf) {
bus_dmamap_unload(sc->mtag, buf->map);
bus_dmamap_destroy(sc->mtag, buf->map);
m_freem(buf->mbuf);
}
sc->pending_rxs--;
buf->mbuf = NULL;
return (1);
}
/* This gets called by the Nvidia API after our TX packet has been sent */
static NV_SINT32
nve_ospackettx(PNV_VOID ctx, PNV_VOID id, NV_UINT32 success)
{
struct nve_softc *sc = ctx;
struct nve_map_buffer *buf;
struct nve_tx_desc *desc = (struct nve_tx_desc *) id;
struct ifnet *ifp;
NVE_LOCK_ASSERT(sc);
DEBUGOUT(NVE_DEBUG_API, "nve: nve_ospackettx\n");
ifp = sc->ifp;
buf = &desc->buf;
sc->pending_txs--;
/* Unload and free mbuf cluster */
if (buf->mbuf == NULL)
goto fail;
bus_dmamap_sync(sc->mtag, buf->map, BUS_DMASYNC_POSTWRITE);
bus_dmamap_unload(sc->mtag, buf->map);
m_freem(buf->mbuf);
buf->mbuf = NULL;
/* Send more packets if we have them */
if (sc->pending_txs < TX_RING_SIZE)
sc->ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd) && sc->pending_txs < TX_RING_SIZE)
nve_ifstart_locked(ifp);
fail:
return (1);
}
/* This gets called by the Nvidia API when a new packet has been received */
/* XXX What is newbuf used for? XXX */
static NV_SINT32
nve_ospacketrx(PNV_VOID ctx, PNV_VOID data, NV_UINT32 success, NV_UINT8 *newbuf,
NV_UINT8 priority)
{
struct nve_softc *sc = ctx;
struct ifnet *ifp;
struct nve_rx_desc *desc;
struct nve_map_buffer *buf;
ADAPTER_READ_DATA *readdata;
struct mbuf *m;
NVE_LOCK_ASSERT(sc);
DEBUGOUT(NVE_DEBUG_API, "nve: nve_ospacketrx\n");
ifp = sc->ifp;
readdata = (ADAPTER_READ_DATA *) data;
desc = readdata->pvID;
buf = &desc->buf;
bus_dmamap_sync(sc->mtag, buf->map, BUS_DMASYNC_POSTREAD);
if (success) {
/* Sync DMA bounce buffer. */
bus_dmamap_sync(sc->mtag, buf->map, BUS_DMASYNC_POSTREAD);
/* First mbuf in packet holds the ethernet and packet headers */
buf->mbuf->m_pkthdr.rcvif = ifp;
buf->mbuf->m_pkthdr.len = buf->mbuf->m_len =
readdata->ulTotalLength;
bus_dmamap_unload(sc->mtag, buf->map);
/* Blat the mbuf pointer, kernel will free the mbuf cluster */
m = buf->mbuf;
buf->mbuf = NULL;
/* Give mbuf to OS. */
NVE_UNLOCK(sc);
(*ifp->if_input)(ifp, m);
NVE_LOCK(sc);
if (readdata->ulFilterMatch & ADREADFL_MULTICAST_MATCH)
ifp->if_imcasts++;
} else {
bus_dmamap_sync(sc->mtag, buf->map, BUS_DMASYNC_POSTREAD);
bus_dmamap_unload(sc->mtag, buf->map);
m_freem(buf->mbuf);
buf->mbuf = NULL;
}
sc->cur_rx = desc - sc->rx_desc;
sc->pending_rxs--;
return (1);
}
/* This gets called by NVIDIA API when the PHY link state changes */
static NV_SINT32
nve_oslinkchg(PNV_VOID ctx, NV_SINT32 enabled)
{
DEBUGOUT(NVE_DEBUG_API, "nve: nve_oslinkchg\n");
return (1);
}
/* Setup a watchdog timer */
static NV_SINT32
nve_osalloctimer(PNV_VOID ctx, PNV_VOID *timer)
{
struct nve_softc *sc = (struct nve_softc *)ctx;
DEBUGOUT(NVE_DEBUG_BROKEN, "nve: nve_osalloctimer\n");
callout_init(&sc->ostimer, CALLOUT_MPSAFE);
*timer = &sc->ostimer;
return (1);
}
/* Free the timer */
static NV_SINT32
nve_osfreetimer(PNV_VOID ctx, PNV_VOID timer)
{
DEBUGOUT(NVE_DEBUG_BROKEN, "nve: nve_osfreetimer\n");
callout_drain((struct callout *)timer);
return (1);
}
/* Setup timer parameters */
static NV_SINT32
nve_osinittimer(PNV_VOID ctx, PNV_VOID timer, PTIMER_FUNC func, PNV_VOID parameters)
{
struct nve_softc *sc = (struct nve_softc *)ctx;
DEBUGOUT(NVE_DEBUG_BROKEN, "nve: nve_osinittimer\n");
sc->ostimer_func = func;
sc->ostimer_params = parameters;
return (1);
}
/* Set the timer to go off */
static NV_SINT32
nve_ossettimer(PNV_VOID ctx, PNV_VOID timer, NV_UINT32 delay)
{
struct nve_softc *sc = ctx;
DEBUGOUT(NVE_DEBUG_BROKEN, "nve: nve_ossettimer\n");
callout_reset((struct callout *)timer, delay, sc->ostimer_func,
sc->ostimer_params);
return (1);
}
/* Cancel the timer */
static NV_SINT32
nve_oscanceltimer(PNV_VOID ctx, PNV_VOID timer)
{
DEBUGOUT(NVE_DEBUG_BROKEN, "nve: nve_oscanceltimer\n");
callout_stop((struct callout *)timer);
return (1);
}
static NV_SINT32
nve_ospreprocpkt(PNV_VOID ctx, PNV_VOID readdata, PNV_VOID *id,
NV_UINT8 *newbuffer, NV_UINT8 priority)
{
/* Not implemented */
DEBUGOUT(NVE_DEBUG_BROKEN, "nve: nve_ospreprocpkt\n");
return (1);
}
static PNV_VOID
nve_ospreprocpktnopq(PNV_VOID ctx, PNV_VOID readdata)
{
/* Not implemented */
DEBUGOUT(NVE_DEBUG_BROKEN, "nve: nve_ospreprocpkt\n");
return (NULL);
}
static NV_SINT32
nve_osindicatepkt(PNV_VOID ctx, PNV_VOID *id, NV_UINT32 pktno)
{
/* Not implemented */
DEBUGOUT(NVE_DEBUG_BROKEN, "nve: nve_osindicatepkt\n");
return (1);
}
/* Allocate mutex context (already done in nve_attach) */
static NV_SINT32
nve_oslockalloc(PNV_VOID ctx, NV_SINT32 type, PNV_VOID *pLock)
{
struct nve_softc *sc = (struct nve_softc *)ctx;
DEBUGOUT(NVE_DEBUG_LOCK, "nve: nve_oslockalloc\n");
*pLock = (void **)sc;
return (1);
}
/* Obtain a spin lock */
static NV_SINT32
nve_oslockacquire(PNV_VOID ctx, NV_SINT32 type, PNV_VOID lock)
{
DEBUGOUT(NVE_DEBUG_LOCK, "nve: nve_oslockacquire\n");
return (1);
}
/* Release lock */
static NV_SINT32
nve_oslockrelease(PNV_VOID ctx, NV_SINT32 type, PNV_VOID lock)
{
DEBUGOUT(NVE_DEBUG_LOCK, "nve: nve_oslockrelease\n");
return (1);
}
/* I have no idea what this is for */
static PNV_VOID
nve_osreturnbufvirt(PNV_VOID ctx, PNV_VOID readdata)
{
/* Not implemented */
DEBUGOUT(NVE_DEBUG_LOCK, "nve: nve_osreturnbufvirt\n");
panic("nve: nve_osreturnbufvirtual not implemented\n");
return (NULL);
}
/* --- End on NVOSAPI interface --- */