Simon L. B. Nielsen 6a599222bb Merge OpenSSL 0.9.8m into head.
This also "reverts" some FreeBSD local changes so we should now
be back to using entirely stock OpenSSL.  The local changes were
simple $FreeBSD$ lines additions, which were required in the CVS
days, and the patch for FreeBSD-SA-09:15.ssl which has been
superseded with OpenSSL 0.9.8m's RFC5746 'TLS renegotiation
extension' support.

MFC after:	3 weeks
2010-03-13 19:22:41 +00:00

1389 lines
37 KiB
C

/* ssl/ssl_ciph.c */
/* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
* All rights reserved.
*
* This package is an SSL implementation written
* by Eric Young (eay@cryptsoft.com).
* The implementation was written so as to conform with Netscapes SSL.
*
* This library is free for commercial and non-commercial use as long as
* the following conditions are aheared to. The following conditions
* apply to all code found in this distribution, be it the RC4, RSA,
* lhash, DES, etc., code; not just the SSL code. The SSL documentation
* included with this distribution is covered by the same copyright terms
* except that the holder is Tim Hudson (tjh@cryptsoft.com).
*
* Copyright remains Eric Young's, and as such any Copyright notices in
* the code are not to be removed.
* If this package is used in a product, Eric Young should be given attribution
* as the author of the parts of the library used.
* This can be in the form of a textual message at program startup or
* in documentation (online or textual) provided with the package.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* "This product includes cryptographic software written by
* Eric Young (eay@cryptsoft.com)"
* The word 'cryptographic' can be left out if the rouines from the library
* being used are not cryptographic related :-).
* 4. If you include any Windows specific code (or a derivative thereof) from
* the apps directory (application code) you must include an acknowledgement:
* "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
*
* THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* The licence and distribution terms for any publically available version or
* derivative of this code cannot be changed. i.e. this code cannot simply be
* copied and put under another distribution licence
* [including the GNU Public Licence.]
*/
/* ====================================================================
* Copyright (c) 1998-2006 The OpenSSL Project. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
*
* 3. All advertising materials mentioning features or use of this
* software must display the following acknowledgment:
* "This product includes software developed by the OpenSSL Project
* for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
*
* 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
* endorse or promote products derived from this software without
* prior written permission. For written permission, please contact
* openssl-core@openssl.org.
*
* 5. Products derived from this software may not be called "OpenSSL"
* nor may "OpenSSL" appear in their names without prior written
* permission of the OpenSSL Project.
*
* 6. Redistributions of any form whatsoever must retain the following
* acknowledgment:
* "This product includes software developed by the OpenSSL Project
* for use in the OpenSSL Toolkit (http://www.openssl.org/)"
*
* THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
* EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
* ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
* OF THE POSSIBILITY OF SUCH DAMAGE.
* ====================================================================
*
* This product includes cryptographic software written by Eric Young
* (eay@cryptsoft.com). This product includes software written by Tim
* Hudson (tjh@cryptsoft.com).
*
*/
/* ====================================================================
* Copyright 2002 Sun Microsystems, Inc. ALL RIGHTS RESERVED.
* ECC cipher suite support in OpenSSL originally developed by
* SUN MICROSYSTEMS, INC., and contributed to the OpenSSL project.
*/
#include <stdio.h>
#include <openssl/objects.h>
#ifndef OPENSSL_NO_COMP
#include <openssl/comp.h>
#endif
#include "ssl_locl.h"
#define SSL_ENC_DES_IDX 0
#define SSL_ENC_3DES_IDX 1
#define SSL_ENC_RC4_IDX 2
#define SSL_ENC_RC2_IDX 3
#define SSL_ENC_IDEA_IDX 4
#define SSL_ENC_eFZA_IDX 5
#define SSL_ENC_NULL_IDX 6
#define SSL_ENC_AES128_IDX 7
#define SSL_ENC_AES256_IDX 8
#define SSL_ENC_CAMELLIA128_IDX 9
#define SSL_ENC_CAMELLIA256_IDX 10
#define SSL_ENC_SEED_IDX 11
#define SSL_ENC_NUM_IDX 12
static const EVP_CIPHER *ssl_cipher_methods[SSL_ENC_NUM_IDX]={
NULL,NULL,NULL,NULL,NULL,NULL,
};
#define SSL_COMP_NULL_IDX 0
#define SSL_COMP_ZLIB_IDX 1
#define SSL_COMP_NUM_IDX 2
static STACK_OF(SSL_COMP) *ssl_comp_methods=NULL;
#define SSL_MD_MD5_IDX 0
#define SSL_MD_SHA1_IDX 1
#define SSL_MD_NUM_IDX 2
static const EVP_MD *ssl_digest_methods[SSL_MD_NUM_IDX]={
NULL,NULL,
};
#define CIPHER_ADD 1
#define CIPHER_KILL 2
#define CIPHER_DEL 3
#define CIPHER_ORD 4
#define CIPHER_SPECIAL 5
typedef struct cipher_order_st
{
SSL_CIPHER *cipher;
int active;
int dead;
struct cipher_order_st *next,*prev;
} CIPHER_ORDER;
static const SSL_CIPHER cipher_aliases[]={
/* Don't include eNULL unless specifically enabled. */
/* Don't include ECC in ALL because these ciphers are not yet official. */
{0,SSL_TXT_ALL, 0,SSL_ALL & ~SSL_eNULL & ~SSL_kECDH & ~SSL_kECDHE, SSL_ALL ,0,0,0,SSL_ALL,SSL_ALL}, /* must be first */
/* TODO: COMPLEMENT OF ALL and COMPLEMENT OF DEFAULT do not have ECC cipher suites handled properly. */
{0,SSL_TXT_CMPALL,0,SSL_eNULL,0,0,0,0,SSL_ENC_MASK,0}, /* COMPLEMENT OF ALL */
{0,SSL_TXT_CMPDEF,0,SSL_ADH, 0,0,0,0,SSL_AUTH_MASK,0},
{0,SSL_TXT_kKRB5,0,SSL_kKRB5,0,0,0,0,SSL_MKEY_MASK,0}, /* VRS Kerberos5 */
{0,SSL_TXT_kRSA,0,SSL_kRSA, 0,0,0,0,SSL_MKEY_MASK,0},
{0,SSL_TXT_kDHr,0,SSL_kDHr, 0,0,0,0,SSL_MKEY_MASK,0},
{0,SSL_TXT_kDHd,0,SSL_kDHd, 0,0,0,0,SSL_MKEY_MASK,0},
{0,SSL_TXT_kEDH,0,SSL_kEDH, 0,0,0,0,SSL_MKEY_MASK,0},
{0,SSL_TXT_kFZA,0,SSL_kFZA, 0,0,0,0,SSL_MKEY_MASK,0},
{0,SSL_TXT_DH, 0,SSL_DH, 0,0,0,0,SSL_MKEY_MASK,0},
{0,SSL_TXT_ECC, 0,(SSL_kECDH|SSL_kECDHE), 0,0,0,0,SSL_MKEY_MASK,0},
{0,SSL_TXT_EDH, 0,SSL_EDH, 0,0,0,0,SSL_MKEY_MASK|SSL_AUTH_MASK,0},
{0,SSL_TXT_aKRB5,0,SSL_aKRB5,0,0,0,0,SSL_AUTH_MASK,0}, /* VRS Kerberos5 */
{0,SSL_TXT_aRSA,0,SSL_aRSA, 0,0,0,0,SSL_AUTH_MASK,0},
{0,SSL_TXT_aDSS,0,SSL_aDSS, 0,0,0,0,SSL_AUTH_MASK,0},
{0,SSL_TXT_aFZA,0,SSL_aFZA, 0,0,0,0,SSL_AUTH_MASK,0},
{0,SSL_TXT_aNULL,0,SSL_aNULL,0,0,0,0,SSL_AUTH_MASK,0},
{0,SSL_TXT_aDH, 0,SSL_aDH, 0,0,0,0,SSL_AUTH_MASK,0},
{0,SSL_TXT_DSS, 0,SSL_DSS, 0,0,0,0,SSL_AUTH_MASK,0},
{0,SSL_TXT_DES, 0,SSL_DES, 0,0,0,0,SSL_ENC_MASK,0},
{0,SSL_TXT_3DES,0,SSL_3DES, 0,0,0,0,SSL_ENC_MASK,0},
{0,SSL_TXT_RC4, 0,SSL_RC4, 0,0,0,0,SSL_ENC_MASK,0},
{0,SSL_TXT_RC2, 0,SSL_RC2, 0,0,0,0,SSL_ENC_MASK,0},
#ifndef OPENSSL_NO_IDEA
{0,SSL_TXT_IDEA,0,SSL_IDEA, 0,0,0,0,SSL_ENC_MASK,0},
#endif
{0,SSL_TXT_SEED,0,SSL_SEED, 0,0,0,0,SSL_ENC_MASK,0},
{0,SSL_TXT_eNULL,0,SSL_eNULL,0,0,0,0,SSL_ENC_MASK,0},
{0,SSL_TXT_eFZA,0,SSL_eFZA, 0,0,0,0,SSL_ENC_MASK,0},
{0,SSL_TXT_AES, 0,SSL_AES, 0,0,0,0,SSL_ENC_MASK,0},
{0,SSL_TXT_CAMELLIA,0,SSL_CAMELLIA, 0,0,0,0,SSL_ENC_MASK,0},
{0,SSL_TXT_MD5, 0,SSL_MD5, 0,0,0,0,SSL_MAC_MASK,0},
{0,SSL_TXT_SHA1,0,SSL_SHA1, 0,0,0,0,SSL_MAC_MASK,0},
{0,SSL_TXT_SHA, 0,SSL_SHA, 0,0,0,0,SSL_MAC_MASK,0},
{0,SSL_TXT_NULL,0,SSL_NULL, 0,0,0,0,SSL_ENC_MASK,0},
{0,SSL_TXT_KRB5,0,SSL_KRB5, 0,0,0,0,SSL_AUTH_MASK|SSL_MKEY_MASK,0},
{0,SSL_TXT_RSA, 0,SSL_RSA, 0,0,0,0,SSL_AUTH_MASK|SSL_MKEY_MASK,0},
{0,SSL_TXT_ADH, 0,SSL_ADH, 0,0,0,0,SSL_AUTH_MASK|SSL_MKEY_MASK,0},
{0,SSL_TXT_FZA, 0,SSL_FZA, 0,0,0,0,SSL_AUTH_MASK|SSL_MKEY_MASK|SSL_ENC_MASK,0},
{0,SSL_TXT_SSLV2, 0,SSL_SSLV2, 0,0,0,0,SSL_SSL_MASK,0},
{0,SSL_TXT_SSLV3, 0,SSL_SSLV3, 0,0,0,0,SSL_SSL_MASK,0},
{0,SSL_TXT_TLSV1, 0,SSL_TLSV1, 0,0,0,0,SSL_SSL_MASK,0},
{0,SSL_TXT_EXP ,0, 0,SSL_EXPORT, 0,0,0,0,SSL_EXP_MASK},
{0,SSL_TXT_EXPORT,0, 0,SSL_EXPORT, 0,0,0,0,SSL_EXP_MASK},
{0,SSL_TXT_EXP40, 0, 0, SSL_EXP40, 0,0,0,0,SSL_STRONG_MASK},
{0,SSL_TXT_EXP56, 0, 0, SSL_EXP56, 0,0,0,0,SSL_STRONG_MASK},
{0,SSL_TXT_LOW, 0, 0, SSL_LOW, 0,0,0,0,SSL_STRONG_MASK},
{0,SSL_TXT_MEDIUM,0, 0,SSL_MEDIUM, 0,0,0,0,SSL_STRONG_MASK},
{0,SSL_TXT_HIGH, 0, 0, SSL_HIGH, 0,0,0,0,SSL_STRONG_MASK},
{0,SSL_TXT_FIPS, 0, 0, SSL_FIPS, 0,0,0,0,SSL_FIPS|SSL_STRONG_NONE},
};
void ssl_load_ciphers(void)
{
ssl_cipher_methods[SSL_ENC_DES_IDX]=
EVP_get_cipherbyname(SN_des_cbc);
ssl_cipher_methods[SSL_ENC_3DES_IDX]=
EVP_get_cipherbyname(SN_des_ede3_cbc);
ssl_cipher_methods[SSL_ENC_RC4_IDX]=
EVP_get_cipherbyname(SN_rc4);
ssl_cipher_methods[SSL_ENC_RC2_IDX]=
EVP_get_cipherbyname(SN_rc2_cbc);
#ifndef OPENSSL_NO_IDEA
ssl_cipher_methods[SSL_ENC_IDEA_IDX]=
EVP_get_cipherbyname(SN_idea_cbc);
#else
ssl_cipher_methods[SSL_ENC_IDEA_IDX]= NULL;
#endif
ssl_cipher_methods[SSL_ENC_AES128_IDX]=
EVP_get_cipherbyname(SN_aes_128_cbc);
ssl_cipher_methods[SSL_ENC_AES256_IDX]=
EVP_get_cipherbyname(SN_aes_256_cbc);
ssl_cipher_methods[SSL_ENC_CAMELLIA128_IDX]=
EVP_get_cipherbyname(SN_camellia_128_cbc);
ssl_cipher_methods[SSL_ENC_CAMELLIA256_IDX]=
EVP_get_cipherbyname(SN_camellia_256_cbc);
ssl_cipher_methods[SSL_ENC_SEED_IDX]=
EVP_get_cipherbyname(SN_seed_cbc);
ssl_digest_methods[SSL_MD_MD5_IDX]=
EVP_get_digestbyname(SN_md5);
ssl_digest_methods[SSL_MD_SHA1_IDX]=
EVP_get_digestbyname(SN_sha1);
}
#ifndef OPENSSL_NO_COMP
static int sk_comp_cmp(const SSL_COMP * const *a,
const SSL_COMP * const *b)
{
return((*a)->id-(*b)->id);
}
static void load_builtin_compressions(void)
{
int got_write_lock = 0;
CRYPTO_r_lock(CRYPTO_LOCK_SSL);
if (ssl_comp_methods == NULL)
{
CRYPTO_r_unlock(CRYPTO_LOCK_SSL);
CRYPTO_w_lock(CRYPTO_LOCK_SSL);
got_write_lock = 1;
if (ssl_comp_methods == NULL)
{
SSL_COMP *comp = NULL;
MemCheck_off();
ssl_comp_methods=sk_SSL_COMP_new(sk_comp_cmp);
if (ssl_comp_methods != NULL)
{
comp=(SSL_COMP *)OPENSSL_malloc(sizeof(SSL_COMP));
if (comp != NULL)
{
comp->method=COMP_zlib();
if (comp->method
&& comp->method->type == NID_undef)
OPENSSL_free(comp);
else
{
comp->id=SSL_COMP_ZLIB_IDX;
comp->name=comp->method->name;
sk_SSL_COMP_push(ssl_comp_methods,comp);
}
}
}
MemCheck_on();
}
}
if (got_write_lock)
CRYPTO_w_unlock(CRYPTO_LOCK_SSL);
else
CRYPTO_r_unlock(CRYPTO_LOCK_SSL);
}
#endif
int ssl_cipher_get_evp(const SSL_SESSION *s, const EVP_CIPHER **enc,
const EVP_MD **md, SSL_COMP **comp)
{
int i;
SSL_CIPHER *c;
c=s->cipher;
if (c == NULL) return(0);
if (comp != NULL)
{
SSL_COMP ctmp;
#ifndef OPENSSL_NO_COMP
load_builtin_compressions();
#endif
*comp=NULL;
ctmp.id=s->compress_meth;
if (ssl_comp_methods != NULL)
{
i=sk_SSL_COMP_find(ssl_comp_methods,&ctmp);
if (i >= 0)
*comp=sk_SSL_COMP_value(ssl_comp_methods,i);
else
*comp=NULL;
}
}
if ((enc == NULL) || (md == NULL)) return(0);
switch (c->algorithms & SSL_ENC_MASK)
{
case SSL_DES:
i=SSL_ENC_DES_IDX;
break;
case SSL_3DES:
i=SSL_ENC_3DES_IDX;
break;
case SSL_RC4:
i=SSL_ENC_RC4_IDX;
break;
case SSL_RC2:
i=SSL_ENC_RC2_IDX;
break;
case SSL_IDEA:
i=SSL_ENC_IDEA_IDX;
break;
case SSL_eNULL:
i=SSL_ENC_NULL_IDX;
break;
case SSL_AES:
switch(c->alg_bits)
{
case 128: i=SSL_ENC_AES128_IDX; break;
case 256: i=SSL_ENC_AES256_IDX; break;
default: i=-1; break;
}
break;
case SSL_CAMELLIA:
switch(c->alg_bits)
{
case 128: i=SSL_ENC_CAMELLIA128_IDX; break;
case 256: i=SSL_ENC_CAMELLIA256_IDX; break;
default: i=-1; break;
}
break;
case SSL_SEED:
i=SSL_ENC_SEED_IDX;
break;
default:
i= -1;
break;
}
if ((i < 0) || (i > SSL_ENC_NUM_IDX))
*enc=NULL;
else
{
if (i == SSL_ENC_NULL_IDX)
*enc=EVP_enc_null();
else
*enc=ssl_cipher_methods[i];
}
switch (c->algorithms & SSL_MAC_MASK)
{
case SSL_MD5:
i=SSL_MD_MD5_IDX;
break;
case SSL_SHA1:
i=SSL_MD_SHA1_IDX;
break;
default:
i= -1;
break;
}
if ((i < 0) || (i > SSL_MD_NUM_IDX))
*md=NULL;
else
*md=ssl_digest_methods[i];
if ((*enc != NULL) && (*md != NULL))
return(1);
else
return(0);
}
#define ITEM_SEP(a) \
(((a) == ':') || ((a) == ' ') || ((a) == ';') || ((a) == ','))
static void ll_append_tail(CIPHER_ORDER **head, CIPHER_ORDER *curr,
CIPHER_ORDER **tail)
{
if (curr == *tail) return;
if (curr == *head)
*head=curr->next;
if (curr->prev != NULL)
curr->prev->next=curr->next;
if (curr->next != NULL) /* should always be true */
curr->next->prev=curr->prev;
(*tail)->next=curr;
curr->prev= *tail;
curr->next=NULL;
*tail=curr;
}
struct disabled_masks { /* This is a kludge no longer needed with OpenSSL 0.9.9,
* where 128-bit and 256-bit algorithms simply will get
* separate bits. */
unsigned long mask; /* everything except m256 */
unsigned long m256; /* applies to 256-bit algorithms only */
};
static struct disabled_masks ssl_cipher_get_disabled(void)
{
unsigned long mask;
unsigned long m256;
struct disabled_masks ret;
mask = SSL_kFZA;
#ifdef OPENSSL_NO_RSA
mask |= SSL_aRSA|SSL_kRSA;
#endif
#ifdef OPENSSL_NO_DSA
mask |= SSL_aDSS;
#endif
#ifdef OPENSSL_NO_DH
mask |= SSL_kDHr|SSL_kDHd|SSL_kEDH|SSL_aDH;
#endif
#ifdef OPENSSL_NO_KRB5
mask |= SSL_kKRB5|SSL_aKRB5;
#endif
#ifdef OPENSSL_NO_ECDH
mask |= SSL_kECDH|SSL_kECDHE;
#endif
#ifdef SSL_FORBID_ENULL
mask |= SSL_eNULL;
#endif
mask |= (ssl_cipher_methods[SSL_ENC_DES_IDX ] == NULL) ? SSL_DES :0;
mask |= (ssl_cipher_methods[SSL_ENC_3DES_IDX] == NULL) ? SSL_3DES:0;
mask |= (ssl_cipher_methods[SSL_ENC_RC4_IDX ] == NULL) ? SSL_RC4 :0;
mask |= (ssl_cipher_methods[SSL_ENC_RC2_IDX ] == NULL) ? SSL_RC2 :0;
mask |= (ssl_cipher_methods[SSL_ENC_IDEA_IDX] == NULL) ? SSL_IDEA:0;
mask |= (ssl_cipher_methods[SSL_ENC_eFZA_IDX] == NULL) ? SSL_eFZA:0;
mask |= (ssl_cipher_methods[SSL_ENC_SEED_IDX] == NULL) ? SSL_SEED:0;
mask |= (ssl_digest_methods[SSL_MD_MD5_IDX ] == NULL) ? SSL_MD5 :0;
mask |= (ssl_digest_methods[SSL_MD_SHA1_IDX] == NULL) ? SSL_SHA1:0;
/* finally consider algorithms where mask and m256 differ */
m256 = mask;
mask |= (ssl_cipher_methods[SSL_ENC_AES128_IDX] == NULL) ? SSL_AES:0;
mask |= (ssl_cipher_methods[SSL_ENC_CAMELLIA128_IDX] == NULL) ? SSL_CAMELLIA:0;
m256 |= (ssl_cipher_methods[SSL_ENC_AES256_IDX] == NULL) ? SSL_AES:0;
m256 |= (ssl_cipher_methods[SSL_ENC_CAMELLIA256_IDX] == NULL) ? SSL_CAMELLIA:0;
ret.mask = mask;
ret.m256 = m256;
return ret;
}
static void ssl_cipher_collect_ciphers(const SSL_METHOD *ssl_method,
int num_of_ciphers, unsigned long mask, unsigned long m256,
CIPHER_ORDER *co_list, CIPHER_ORDER **head_p,
CIPHER_ORDER **tail_p)
{
int i, co_list_num;
SSL_CIPHER *c;
/*
* We have num_of_ciphers descriptions compiled in, depending on the
* method selected (SSLv2 and/or SSLv3, TLSv1 etc).
* These will later be sorted in a linked list with at most num
* entries.
*/
/* Get the initial list of ciphers */
co_list_num = 0; /* actual count of ciphers */
for (i = 0; i < num_of_ciphers; i++)
{
c = ssl_method->get_cipher(i);
#define IS_MASKED(c) ((c)->algorithms & (((c)->alg_bits == 256) ? m256 : mask))
/* drop those that use any of that is not available */
#ifdef OPENSSL_FIPS
if ((c != NULL) && c->valid && !IS_MASKED(c)
&& (!FIPS_mode() || (c->algo_strength & SSL_FIPS)))
#else
if ((c != NULL) && c->valid && !IS_MASKED(c))
#endif
{
co_list[co_list_num].cipher = c;
co_list[co_list_num].next = NULL;
co_list[co_list_num].prev = NULL;
co_list[co_list_num].active = 0;
co_list_num++;
#ifdef KSSL_DEBUG
printf("\t%d: %s %lx %lx\n",i,c->name,c->id,c->algorithms);
#endif /* KSSL_DEBUG */
/*
if (!sk_push(ca_list,(char *)c)) goto err;
*/
}
}
/*
* Prepare linked list from list entries
*/
for (i = 1; i < co_list_num - 1; i++)
{
co_list[i].prev = &(co_list[i-1]);
co_list[i].next = &(co_list[i+1]);
}
if (co_list_num > 0)
{
(*head_p) = &(co_list[0]);
(*head_p)->prev = NULL;
(*head_p)->next = &(co_list[1]);
(*tail_p) = &(co_list[co_list_num - 1]);
(*tail_p)->prev = &(co_list[co_list_num - 2]);
(*tail_p)->next = NULL;
}
}
static void ssl_cipher_collect_aliases(SSL_CIPHER **ca_list,
int num_of_group_aliases, unsigned long mask,
CIPHER_ORDER *head)
{
CIPHER_ORDER *ciph_curr;
SSL_CIPHER **ca_curr;
int i;
/*
* First, add the real ciphers as already collected
*/
ciph_curr = head;
ca_curr = ca_list;
while (ciph_curr != NULL)
{
*ca_curr = ciph_curr->cipher;
ca_curr++;
ciph_curr = ciph_curr->next;
}
/*
* Now we add the available ones from the cipher_aliases[] table.
* They represent either an algorithm, that must be fully
* supported (not match any bit in mask) or represent a cipher
* strength value (will be added in any case because algorithms=0).
*/
for (i = 0; i < num_of_group_aliases; i++)
{
if ((i == 0) || /* always fetch "ALL" */
!(cipher_aliases[i].algorithms & mask))
{
*ca_curr = (SSL_CIPHER *)(cipher_aliases + i);
ca_curr++;
}
}
*ca_curr = NULL; /* end of list */
}
static void ssl_cipher_apply_rule(unsigned long cipher_id, unsigned long ssl_version,
unsigned long algorithms, unsigned long mask,
unsigned long algo_strength, unsigned long mask_strength,
int rule, int strength_bits, CIPHER_ORDER *co_list,
CIPHER_ORDER **head_p, CIPHER_ORDER **tail_p)
{
CIPHER_ORDER *head, *tail, *curr, *curr2, *tail2;
SSL_CIPHER *cp;
unsigned long ma, ma_s;
#ifdef CIPHER_DEBUG
printf("Applying rule %d with %08lx %08lx %08lx %08lx (%d)\n",
rule, algorithms, mask, algo_strength, mask_strength,
strength_bits);
#endif
curr = head = *head_p;
curr2 = head;
tail2 = tail = *tail_p;
for (;;)
{
if ((curr == NULL) || (curr == tail2)) break;
curr = curr2;
curr2 = curr->next;
cp = curr->cipher;
/* If explicit cipher suite, match only that one for its own protocol version.
* Usual selection criteria will be used for similar ciphersuites from other version! */
if (cipher_id && (cp->algorithms & SSL_SSL_MASK) == ssl_version)
{
if (cp->id != cipher_id)
continue;
}
/*
* Selection criteria is either the number of strength_bits
* or the algorithm used.
*/
else if (strength_bits == -1)
{
ma = mask & cp->algorithms;
ma_s = mask_strength & cp->algo_strength;
#ifdef CIPHER_DEBUG
printf("\nName: %s:\nAlgo = %08lx Algo_strength = %08lx\nMask = %08lx Mask_strength %08lx\n", cp->name, cp->algorithms, cp->algo_strength, mask, mask_strength);
printf("ma = %08lx ma_s %08lx, ma&algo=%08lx, ma_s&algos=%08lx\n", ma, ma_s, ma&algorithms, ma_s&algo_strength);
#endif
/*
* Select: if none of the mask bit was met from the
* cipher or not all of the bits were met, the
* selection does not apply.
*/
if (((ma == 0) && (ma_s == 0)) ||
((ma & algorithms) != ma) ||
((ma_s & algo_strength) != ma_s))
continue; /* does not apply */
}
else if (strength_bits != cp->strength_bits)
continue; /* does not apply */
#ifdef CIPHER_DEBUG
printf("Action = %d\n", rule);
#endif
/* add the cipher if it has not been added yet. */
if (rule == CIPHER_ADD)
{
if (!curr->active)
{
int add_this_cipher = 1;
if (((cp->algorithms & (SSL_kECDHE|SSL_kECDH|SSL_aECDSA)) != 0))
{
/* Make sure "ECCdraft" ciphersuites are activated only if
* *explicitly* requested, but not implicitly (such as
* as part of the "AES" alias). */
add_this_cipher = (mask & (SSL_kECDHE|SSL_kECDH|SSL_aECDSA)) != 0 || cipher_id != 0;
}
if (add_this_cipher)
{
ll_append_tail(&head, curr, &tail);
curr->active = 1;
}
}
}
/* Move the added cipher to this location */
else if (rule == CIPHER_ORD)
{
if (curr->active)
{
ll_append_tail(&head, curr, &tail);
}
}
else if (rule == CIPHER_DEL)
curr->active = 0;
else if (rule == CIPHER_KILL)
{
if (head == curr)
head = curr->next;
else
curr->prev->next = curr->next;
if (tail == curr)
tail = curr->prev;
curr->active = 0;
if (curr->next != NULL)
curr->next->prev = curr->prev;
if (curr->prev != NULL)
curr->prev->next = curr->next;
curr->next = NULL;
curr->prev = NULL;
}
}
*head_p = head;
*tail_p = tail;
}
static int ssl_cipher_strength_sort(CIPHER_ORDER *co_list,
CIPHER_ORDER **head_p,
CIPHER_ORDER **tail_p)
{
int max_strength_bits, i, *number_uses;
CIPHER_ORDER *curr;
/*
* This routine sorts the ciphers with descending strength. The sorting
* must keep the pre-sorted sequence, so we apply the normal sorting
* routine as '+' movement to the end of the list.
*/
max_strength_bits = 0;
curr = *head_p;
while (curr != NULL)
{
if (curr->active &&
(curr->cipher->strength_bits > max_strength_bits))
max_strength_bits = curr->cipher->strength_bits;
curr = curr->next;
}
number_uses = OPENSSL_malloc((max_strength_bits + 1) * sizeof(int));
if (!number_uses)
{
SSLerr(SSL_F_SSL_CIPHER_STRENGTH_SORT,ERR_R_MALLOC_FAILURE);
return(0);
}
memset(number_uses, 0, (max_strength_bits + 1) * sizeof(int));
/*
* Now find the strength_bits values actually used
*/
curr = *head_p;
while (curr != NULL)
{
if (curr->active)
number_uses[curr->cipher->strength_bits]++;
curr = curr->next;
}
/*
* Go through the list of used strength_bits values in descending
* order.
*/
for (i = max_strength_bits; i >= 0; i--)
if (number_uses[i] > 0)
ssl_cipher_apply_rule(0, 0, 0, 0, 0, 0, CIPHER_ORD, i,
co_list, head_p, tail_p);
OPENSSL_free(number_uses);
return(1);
}
static int ssl_cipher_process_rulestr(const char *rule_str,
CIPHER_ORDER *co_list, CIPHER_ORDER **head_p,
CIPHER_ORDER **tail_p, SSL_CIPHER **ca_list)
{
unsigned long algorithms, mask, algo_strength, mask_strength;
const char *l, *start, *buf;
int j, multi, found, rule, retval, ok, buflen;
unsigned long cipher_id = 0, ssl_version = 0;
char ch;
retval = 1;
l = rule_str;
for (;;)
{
ch = *l;
if (ch == '\0')
break; /* done */
if (ch == '-')
{ rule = CIPHER_DEL; l++; }
else if (ch == '+')
{ rule = CIPHER_ORD; l++; }
else if (ch == '!')
{ rule = CIPHER_KILL; l++; }
else if (ch == '@')
{ rule = CIPHER_SPECIAL; l++; }
else
{ rule = CIPHER_ADD; }
if (ITEM_SEP(ch))
{
l++;
continue;
}
algorithms = mask = algo_strength = mask_strength = 0;
start=l;
for (;;)
{
ch = *l;
buf = l;
buflen = 0;
#ifndef CHARSET_EBCDIC
while ( ((ch >= 'A') && (ch <= 'Z')) ||
((ch >= '0') && (ch <= '9')) ||
((ch >= 'a') && (ch <= 'z')) ||
(ch == '-'))
#else
while ( isalnum(ch) || (ch == '-'))
#endif
{
ch = *(++l);
buflen++;
}
if (buflen == 0)
{
/*
* We hit something we cannot deal with,
* it is no command or separator nor
* alphanumeric, so we call this an error.
*/
SSLerr(SSL_F_SSL_CIPHER_PROCESS_RULESTR,
SSL_R_INVALID_COMMAND);
retval = found = 0;
l++;
break;
}
if (rule == CIPHER_SPECIAL)
{
found = 0; /* unused -- avoid compiler warning */
break; /* special treatment */
}
/* check for multi-part specification */
if (ch == '+')
{
multi=1;
l++;
}
else
multi=0;
/*
* Now search for the cipher alias in the ca_list. Be careful
* with the strncmp, because the "buflen" limitation
* will make the rule "ADH:SOME" and the cipher
* "ADH-MY-CIPHER" look like a match for buflen=3.
* So additionally check whether the cipher name found
* has the correct length. We can save a strlen() call:
* just checking for the '\0' at the right place is
* sufficient, we have to strncmp() anyway. (We cannot
* use strcmp(), because buf is not '\0' terminated.)
*/
j = found = 0;
cipher_id = 0;
ssl_version = 0;
while (ca_list[j])
{
if (!strncmp(buf, ca_list[j]->name, buflen) &&
(ca_list[j]->name[buflen] == '\0'))
{
found = 1;
break;
}
else
j++;
}
if (!found)
break; /* ignore this entry */
/* New algorithms:
* 1 - any old restrictions apply outside new mask
* 2 - any new restrictions apply outside old mask
* 3 - enforce old & new where masks intersect
*/
algorithms = (algorithms & ~ca_list[j]->mask) | /* 1 */
(ca_list[j]->algorithms & ~mask) | /* 2 */
(algorithms & ca_list[j]->algorithms); /* 3 */
mask |= ca_list[j]->mask;
algo_strength = (algo_strength & ~ca_list[j]->mask_strength) |
(ca_list[j]->algo_strength & ~mask_strength) |
(algo_strength & ca_list[j]->algo_strength);
mask_strength |= ca_list[j]->mask_strength;
/* explicit ciphersuite found */
if (ca_list[j]->valid)
{
cipher_id = ca_list[j]->id;
ssl_version = ca_list[j]->algorithms & SSL_SSL_MASK;
break;
}
if (!multi) break;
}
/*
* Ok, we have the rule, now apply it
*/
if (rule == CIPHER_SPECIAL)
{ /* special command */
ok = 0;
if ((buflen == 8) &&
!strncmp(buf, "STRENGTH", 8))
ok = ssl_cipher_strength_sort(co_list,
head_p, tail_p);
else
SSLerr(SSL_F_SSL_CIPHER_PROCESS_RULESTR,
SSL_R_INVALID_COMMAND);
if (ok == 0)
retval = 0;
/*
* We do not support any "multi" options
* together with "@", so throw away the
* rest of the command, if any left, until
* end or ':' is found.
*/
while ((*l != '\0') && !ITEM_SEP(*l))
l++;
}
else if (found)
{
ssl_cipher_apply_rule(cipher_id, ssl_version, algorithms, mask,
algo_strength, mask_strength, rule, -1,
co_list, head_p, tail_p);
}
else
{
while ((*l != '\0') && !ITEM_SEP(*l))
l++;
}
if (*l == '\0') break; /* done */
}
return(retval);
}
STACK_OF(SSL_CIPHER) *ssl_create_cipher_list(const SSL_METHOD *ssl_method,
STACK_OF(SSL_CIPHER) **cipher_list,
STACK_OF(SSL_CIPHER) **cipher_list_by_id,
const char *rule_str)
{
int ok, num_of_ciphers, num_of_alias_max, num_of_group_aliases;
unsigned long disabled_mask;
unsigned long disabled_m256;
STACK_OF(SSL_CIPHER) *cipherstack, *tmp_cipher_list;
const char *rule_p;
CIPHER_ORDER *co_list = NULL, *head = NULL, *tail = NULL, *curr;
SSL_CIPHER **ca_list = NULL;
/*
* Return with error if nothing to do.
*/
if (rule_str == NULL || cipher_list == NULL || cipher_list_by_id == NULL)
return NULL;
/*
* To reduce the work to do we only want to process the compiled
* in algorithms, so we first get the mask of disabled ciphers.
*/
{
struct disabled_masks d;
d = ssl_cipher_get_disabled();
disabled_mask = d.mask;
disabled_m256 = d.m256;
}
/*
* Now we have to collect the available ciphers from the compiled
* in ciphers. We cannot get more than the number compiled in, so
* it is used for allocation.
*/
num_of_ciphers = ssl_method->num_ciphers();
#ifdef KSSL_DEBUG
printf("ssl_create_cipher_list() for %d ciphers\n", num_of_ciphers);
#endif /* KSSL_DEBUG */
co_list = (CIPHER_ORDER *)OPENSSL_malloc(sizeof(CIPHER_ORDER) * num_of_ciphers);
if (co_list == NULL)
{
SSLerr(SSL_F_SSL_CREATE_CIPHER_LIST,ERR_R_MALLOC_FAILURE);
return(NULL); /* Failure */
}
ssl_cipher_collect_ciphers(ssl_method, num_of_ciphers, disabled_mask,
disabled_m256, co_list, &head, &tail);
/*
* We also need cipher aliases for selecting based on the rule_str.
* There might be two types of entries in the rule_str: 1) names
* of ciphers themselves 2) aliases for groups of ciphers.
* For 1) we need the available ciphers and for 2) the cipher
* groups of cipher_aliases added together in one list (otherwise
* we would be happy with just the cipher_aliases table).
*/
num_of_group_aliases = sizeof(cipher_aliases) / sizeof(SSL_CIPHER);
num_of_alias_max = num_of_ciphers + num_of_group_aliases + 1;
ca_list =
(SSL_CIPHER **)OPENSSL_malloc(sizeof(SSL_CIPHER *) * num_of_alias_max);
if (ca_list == NULL)
{
OPENSSL_free(co_list);
SSLerr(SSL_F_SSL_CREATE_CIPHER_LIST,ERR_R_MALLOC_FAILURE);
return(NULL); /* Failure */
}
ssl_cipher_collect_aliases(ca_list, num_of_group_aliases,
(disabled_mask & disabled_m256), head);
/*
* If the rule_string begins with DEFAULT, apply the default rule
* before using the (possibly available) additional rules.
*/
ok = 1;
rule_p = rule_str;
if (strncmp(rule_str,"DEFAULT",7) == 0)
{
ok = ssl_cipher_process_rulestr(SSL_DEFAULT_CIPHER_LIST,
co_list, &head, &tail, ca_list);
rule_p += 7;
if (*rule_p == ':')
rule_p++;
}
if (ok && (strlen(rule_p) > 0))
ok = ssl_cipher_process_rulestr(rule_p, co_list, &head, &tail,
ca_list);
OPENSSL_free(ca_list); /* Not needed anymore */
if (!ok)
{ /* Rule processing failure */
OPENSSL_free(co_list);
return(NULL);
}
/*
* Allocate new "cipherstack" for the result, return with error
* if we cannot get one.
*/
if ((cipherstack = sk_SSL_CIPHER_new_null()) == NULL)
{
OPENSSL_free(co_list);
return(NULL);
}
/*
* The cipher selection for the list is done. The ciphers are added
* to the resulting precedence to the STACK_OF(SSL_CIPHER).
*/
for (curr = head; curr != NULL; curr = curr->next)
{
#ifdef OPENSSL_FIPS
if (curr->active && (!FIPS_mode() || curr->cipher->algo_strength & SSL_FIPS))
#else
if (curr->active)
#endif
{
sk_SSL_CIPHER_push(cipherstack, curr->cipher);
#ifdef CIPHER_DEBUG
printf("<%s>\n",curr->cipher->name);
#endif
}
}
OPENSSL_free(co_list); /* Not needed any longer */
tmp_cipher_list = sk_SSL_CIPHER_dup(cipherstack);
if (tmp_cipher_list == NULL)
{
sk_SSL_CIPHER_free(cipherstack);
return NULL;
}
if (*cipher_list != NULL)
sk_SSL_CIPHER_free(*cipher_list);
*cipher_list = cipherstack;
if (*cipher_list_by_id != NULL)
sk_SSL_CIPHER_free(*cipher_list_by_id);
*cipher_list_by_id = tmp_cipher_list;
(void)sk_SSL_CIPHER_set_cmp_func(*cipher_list_by_id,ssl_cipher_ptr_id_cmp);
sk_SSL_CIPHER_sort(*cipher_list_by_id);
return(cipherstack);
}
char *SSL_CIPHER_description(const SSL_CIPHER *cipher, char *buf, int len)
{
int is_export,pkl,kl;
const char *ver,*exp_str;
const char *kx,*au,*enc,*mac;
unsigned long alg,alg2,alg_s;
#ifdef KSSL_DEBUG
static const char *format="%-23s %s Kx=%-8s Au=%-4s Enc=%-9s Mac=%-4s%s AL=%lx\n";
#else
static const char *format="%-23s %s Kx=%-8s Au=%-4s Enc=%-9s Mac=%-4s%s\n";
#endif /* KSSL_DEBUG */
alg=cipher->algorithms;
alg_s=cipher->algo_strength;
alg2=cipher->algorithm2;
is_export=SSL_C_IS_EXPORT(cipher);
pkl=SSL_C_EXPORT_PKEYLENGTH(cipher);
kl=SSL_C_EXPORT_KEYLENGTH(cipher);
exp_str=is_export?" export":"";
if (alg & SSL_SSLV2)
ver="SSLv2";
else if (alg & SSL_SSLV3)
ver="SSLv3";
else
ver="unknown";
switch (alg&SSL_MKEY_MASK)
{
case SSL_kRSA:
kx=is_export?(pkl == 512 ? "RSA(512)" : "RSA(1024)"):"RSA";
break;
case SSL_kDHr:
kx="DH/RSA";
break;
case SSL_kDHd:
kx="DH/DSS";
break;
case SSL_kKRB5: /* VRS */
case SSL_KRB5: /* VRS */
kx="KRB5";
break;
case SSL_kFZA:
kx="Fortezza";
break;
case SSL_kEDH:
kx=is_export?(pkl == 512 ? "DH(512)" : "DH(1024)"):"DH";
break;
case SSL_kECDH:
case SSL_kECDHE:
kx=is_export?"ECDH(<=163)":"ECDH";
break;
default:
kx="unknown";
}
switch (alg&SSL_AUTH_MASK)
{
case SSL_aRSA:
au="RSA";
break;
case SSL_aDSS:
au="DSS";
break;
case SSL_aDH:
au="DH";
break;
case SSL_aKRB5: /* VRS */
case SSL_KRB5: /* VRS */
au="KRB5";
break;
case SSL_aFZA:
case SSL_aNULL:
au="None";
break;
case SSL_aECDSA:
au="ECDSA";
break;
default:
au="unknown";
break;
}
switch (alg&SSL_ENC_MASK)
{
case SSL_DES:
enc=(is_export && kl == 5)?"DES(40)":"DES(56)";
break;
case SSL_3DES:
enc="3DES(168)";
break;
case SSL_RC4:
enc=is_export?(kl == 5 ? "RC4(40)" : "RC4(56)")
:((alg2&SSL2_CF_8_BYTE_ENC)?"RC4(64)":"RC4(128)");
break;
case SSL_RC2:
enc=is_export?(kl == 5 ? "RC2(40)" : "RC2(56)"):"RC2(128)";
break;
case SSL_IDEA:
enc="IDEA(128)";
break;
case SSL_eFZA:
enc="Fortezza";
break;
case SSL_eNULL:
enc="None";
break;
case SSL_AES:
switch(cipher->strength_bits)
{
case 128: enc="AES(128)"; break;
case 192: enc="AES(192)"; break;
case 256: enc="AES(256)"; break;
default: enc="AES(?""?""?)"; break;
}
break;
case SSL_CAMELLIA:
switch(cipher->strength_bits)
{
case 128: enc="Camellia(128)"; break;
case 256: enc="Camellia(256)"; break;
default: enc="Camellia(?""?""?)"; break;
}
break;
case SSL_SEED:
enc="SEED(128)";
break;
default:
enc="unknown";
break;
}
switch (alg&SSL_MAC_MASK)
{
case SSL_MD5:
mac="MD5";
break;
case SSL_SHA1:
mac="SHA1";
break;
default:
mac="unknown";
break;
}
if (buf == NULL)
{
len=128;
buf=OPENSSL_malloc(len);
if (buf == NULL) return("OPENSSL_malloc Error");
}
else if (len < 128)
return("Buffer too small");
#ifdef KSSL_DEBUG
BIO_snprintf(buf,len,format,cipher->name,ver,kx,au,enc,mac,exp_str,alg);
#else
BIO_snprintf(buf,len,format,cipher->name,ver,kx,au,enc,mac,exp_str);
#endif /* KSSL_DEBUG */
return(buf);
}
char *SSL_CIPHER_get_version(const SSL_CIPHER *c)
{
int i;
if (c == NULL) return("(NONE)");
i=(int)(c->id>>24L);
if (i == 3)
return("TLSv1/SSLv3");
else if (i == 2)
return("SSLv2");
else
return("unknown");
}
/* return the actual cipher being used */
const char *SSL_CIPHER_get_name(const SSL_CIPHER *c)
{
if (c != NULL)
return(c->name);
return("(NONE)");
}
/* number of bits for symmetric cipher */
int SSL_CIPHER_get_bits(const SSL_CIPHER *c, int *alg_bits)
{
int ret=0;
if (c != NULL)
{
if (alg_bits != NULL) *alg_bits = c->alg_bits;
ret = c->strength_bits;
}
return(ret);
}
SSL_COMP *ssl3_comp_find(STACK_OF(SSL_COMP) *sk, int n)
{
SSL_COMP *ctmp;
int i,nn;
if ((n == 0) || (sk == NULL)) return(NULL);
nn=sk_SSL_COMP_num(sk);
for (i=0; i<nn; i++)
{
ctmp=sk_SSL_COMP_value(sk,i);
if (ctmp->id == n)
return(ctmp);
}
return(NULL);
}
#ifdef OPENSSL_NO_COMP
void *SSL_COMP_get_compression_methods(void)
{
return NULL;
}
int SSL_COMP_add_compression_method(int id, void *cm)
{
return 1;
}
const char *SSL_COMP_get_name(const void *comp)
{
return NULL;
}
#else
STACK_OF(SSL_COMP) *SSL_COMP_get_compression_methods(void)
{
load_builtin_compressions();
return(ssl_comp_methods);
}
int SSL_COMP_add_compression_method(int id, COMP_METHOD *cm)
{
SSL_COMP *comp;
if (cm == NULL || cm->type == NID_undef)
return 1;
/* According to draft-ietf-tls-compression-04.txt, the
compression number ranges should be the following:
0 to 63: methods defined by the IETF
64 to 192: external party methods assigned by IANA
193 to 255: reserved for private use */
if (id < 193 || id > 255)
{
SSLerr(SSL_F_SSL_COMP_ADD_COMPRESSION_METHOD,SSL_R_COMPRESSION_ID_NOT_WITHIN_PRIVATE_RANGE);
return 0;
}
MemCheck_off();
comp=(SSL_COMP *)OPENSSL_malloc(sizeof(SSL_COMP));
comp->id=id;
comp->method=cm;
load_builtin_compressions();
if (ssl_comp_methods
&& sk_SSL_COMP_find(ssl_comp_methods,comp) >= 0)
{
OPENSSL_free(comp);
MemCheck_on();
SSLerr(SSL_F_SSL_COMP_ADD_COMPRESSION_METHOD,SSL_R_DUPLICATE_COMPRESSION_ID);
return(1);
}
else if ((ssl_comp_methods == NULL)
|| !sk_SSL_COMP_push(ssl_comp_methods,comp))
{
OPENSSL_free(comp);
MemCheck_on();
SSLerr(SSL_F_SSL_COMP_ADD_COMPRESSION_METHOD,ERR_R_MALLOC_FAILURE);
return(1);
}
else
{
MemCheck_on();
return(0);
}
}
const char *SSL_COMP_get_name(const COMP_METHOD *comp)
{
if (comp)
return comp->name;
return NULL;
}
#endif