3927 lines
137 KiB
C

/*
* Copyright (c) 2013 Qualcomm Atheros, Inc.
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES WITH
* REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY
* AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT,
* INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM
* LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR
* OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
* PERFORMANCE OF THIS SOFTWARE.
*/
#include "opt_ah.h"
#include "ah.h"
#include "ah_internal.h"
#include "ah_devid.h"
#ifdef AH_DEBUG
#include "ah_desc.h" /* NB: for HAL_PHYERR* */
#endif
#include "ar9300/ar9300.h"
#include "ar9300/ar9300reg.h"
#include "ar9300/ar9300phy.h"
#include "ar9300/ar9300desc.h"
static u_int32_t ar9300_read_loc_timer(struct ath_hal *ah);
void
ar9300_get_hw_hangs(struct ath_hal *ah, hal_hw_hangs_t *hangs)
{
struct ath_hal_9300 *ahp = AH9300(ah);
*hangs = 0;
if (ar9300_get_capability(ah, HAL_CAP_BB_RIFS_HANG, 0, AH_NULL) == HAL_OK) {
*hangs |= HAL_RIFS_BB_HANG_WAR;
}
if (ar9300_get_capability(ah, HAL_CAP_BB_DFS_HANG, 0, AH_NULL) == HAL_OK) {
*hangs |= HAL_DFS_BB_HANG_WAR;
}
if (ar9300_get_capability(ah, HAL_CAP_BB_RX_CLEAR_STUCK_HANG, 0, AH_NULL)
== HAL_OK)
{
*hangs |= HAL_RX_STUCK_LOW_BB_HANG_WAR;
}
if (ar9300_get_capability(ah, HAL_CAP_MAC_HANG, 0, AH_NULL) == HAL_OK) {
*hangs |= HAL_MAC_HANG_WAR;
}
if (ar9300_get_capability(ah, HAL_CAP_PHYRESTART_CLR_WAR, 0, AH_NULL)
== HAL_OK)
{
*hangs |= HAL_PHYRESTART_CLR_WAR;
}
ahp->ah_hang_wars = *hangs;
}
/*
* XXX FreeBSD: the HAL version of ath_hal_mac_usec() knows about
* HT20, HT40, fast-clock, turbo mode, etc.
*/
static u_int
ar9300_mac_to_usec(struct ath_hal *ah, u_int clks)
{
#if 0
const struct ieee80211_channel *chan = AH_PRIVATE(ah)->ah_curchan;
if (chan && IEEE80211_IS_CHAN_HT40(chan)) {
return (ath_hal_mac_usec(ah, clks) / 2);
} else {
return (ath_hal_mac_usec(ah, clks));
}
#endif
return (ath_hal_mac_usec(ah, clks));
}
u_int
ar9300_mac_to_clks(struct ath_hal *ah, u_int usecs)
{
#if 0
const struct ieee80211_channel *chan = AH_PRIVATE(ah)->ah_curchan;
if (chan && IEEE80211_IS_CHAN_HT40(chan)) {
return (ath_hal_mac_clks(ah, usecs) * 2);
} else {
return (ath_hal_mac_clks(ah, usecs));
}
#endif
return (ath_hal_mac_clks(ah, usecs));
}
void
ar9300_get_mac_address(struct ath_hal *ah, u_int8_t *mac)
{
struct ath_hal_9300 *ahp = AH9300(ah);
OS_MEMCPY(mac, ahp->ah_macaddr, IEEE80211_ADDR_LEN);
}
HAL_BOOL
ar9300_set_mac_address(struct ath_hal *ah, const u_int8_t *mac)
{
struct ath_hal_9300 *ahp = AH9300(ah);
OS_MEMCPY(ahp->ah_macaddr, mac, IEEE80211_ADDR_LEN);
return AH_TRUE;
}
void
ar9300_get_bss_id_mask(struct ath_hal *ah, u_int8_t *mask)
{
struct ath_hal_9300 *ahp = AH9300(ah);
OS_MEMCPY(mask, ahp->ah_bssid_mask, IEEE80211_ADDR_LEN);
}
HAL_BOOL
ar9300_set_bss_id_mask(struct ath_hal *ah, const u_int8_t *mask)
{
struct ath_hal_9300 *ahp = AH9300(ah);
/* save it since it must be rewritten on reset */
OS_MEMCPY(ahp->ah_bssid_mask, mask, IEEE80211_ADDR_LEN);
OS_REG_WRITE(ah, AR_BSSMSKL, LE_READ_4(ahp->ah_bssid_mask));
OS_REG_WRITE(ah, AR_BSSMSKU, LE_READ_2(ahp->ah_bssid_mask + 4));
return AH_TRUE;
}
/*
* Attempt to change the cards operating regulatory domain to the given value
* Returns: A_EINVAL for an unsupported regulatory domain.
* A_HARDWARE for an unwritable EEPROM or bad EEPROM version
*/
HAL_BOOL
ar9300_set_regulatory_domain(struct ath_hal *ah,
u_int16_t reg_domain, HAL_STATUS *status)
{
HAL_STATUS ecode;
if (AH_PRIVATE(ah)->ah_currentRD == 0) {
AH_PRIVATE(ah)->ah_currentRD = reg_domain;
return AH_TRUE;
}
ecode = HAL_EIO;
#if 0
bad:
#endif
if (status) {
*status = ecode;
}
return AH_FALSE;
}
/*
* Return the wireless modes (a,b,g,t) supported by hardware.
*
* This value is what is actually supported by the hardware
* and is unaffected by regulatory/country code settings.
*
*/
u_int
ar9300_get_wireless_modes(struct ath_hal *ah)
{
return AH_PRIVATE(ah)->ah_caps.halWirelessModes;
}
/*
* Set the interrupt and GPIO values so the ISR can disable RF
* on a switch signal. Assumes GPIO port and interrupt polarity
* are set prior to call.
*/
void
ar9300_enable_rf_kill(struct ath_hal *ah)
{
/* TODO - can this really be above the hal on the GPIO interface for
* TODO - the client only?
*/
struct ath_hal_9300 *ahp = AH9300(ah);
if (AR_SREV_JUPITER(ah) || AR_SREV_APHRODITE(ah)) {
/* Check RF kill GPIO before set/clear RFSILENT bits. */
if (ar9300_gpio_get(ah, ahp->ah_gpio_select) == ahp->ah_polarity) {
OS_REG_SET_BIT(ah, AR_HOSTIF_REG(ah, AR_RFSILENT),
AR_RFSILENT_FORCE);
OS_REG_SET_BIT(ah, AR_PHY_TEST, RFSILENT_BB);
}
else {
OS_REG_CLR_BIT(ah, AR_HOSTIF_REG(ah, AR_RFSILENT),
AR_RFSILENT_FORCE);
OS_REG_CLR_BIT(ah, AR_PHY_TEST, RFSILENT_BB);
}
}
else {
/* Connect rfsilent_bb_l to baseband */
OS_REG_SET_BIT(ah, AR_HOSTIF_REG(ah, AR_GPIO_INPUT_EN_VAL),
AR_GPIO_INPUT_EN_VAL_RFSILENT_BB);
/* Set input mux for rfsilent_bb_l to GPIO #0 */
OS_REG_CLR_BIT(ah, AR_HOSTIF_REG(ah, AR_GPIO_INPUT_MUX2),
AR_GPIO_INPUT_MUX2_RFSILENT);
OS_REG_SET_BIT(ah, AR_HOSTIF_REG(ah, AR_GPIO_INPUT_MUX2),
(ahp->ah_gpio_select & 0x0f) << 4);
/*
* Configure the desired GPIO port for input and
* enable baseband rf silence
*/
ath_hal_gpioCfgInput(ah, ahp->ah_gpio_select);
OS_REG_SET_BIT(ah, AR_PHY_TEST, RFSILENT_BB);
}
/*
* If radio disable switch connection to GPIO bit x is enabled
* program GPIO interrupt.
* If rfkill bit on eeprom is 1, setupeeprommap routine has already
* verified that it is a later version of eeprom, it has a place for
* rfkill bit and it is set to 1, indicating that GPIO bit x hardware
* connection is present.
*/
/*
* RFKill uses polling not interrupt,
* disable interrupt to avoid Eee PC 2.6.21.4 hang up issue
*/
if (ath_hal_hasrfkill_int(ah)) {
if (ahp->ah_gpio_bit == ar9300_gpio_get(ah, ahp->ah_gpio_select)) {
/* switch already closed, set to interrupt upon open */
ar9300_gpio_set_intr(ah, ahp->ah_gpio_select, !ahp->ah_gpio_bit);
} else {
ar9300_gpio_set_intr(ah, ahp->ah_gpio_select, ahp->ah_gpio_bit);
}
}
}
/*
* Change the LED blinking pattern to correspond to the connectivity
*/
void
ar9300_set_led_state(struct ath_hal *ah, HAL_LED_STATE state)
{
static const u_int32_t ledbits[8] = {
AR_CFG_LED_ASSOC_NONE, /* HAL_LED_RESET */
AR_CFG_LED_ASSOC_PENDING, /* HAL_LED_INIT */
AR_CFG_LED_ASSOC_PENDING, /* HAL_LED_READY */
AR_CFG_LED_ASSOC_PENDING, /* HAL_LED_SCAN */
AR_CFG_LED_ASSOC_PENDING, /* HAL_LED_AUTH */
AR_CFG_LED_ASSOC_ACTIVE, /* HAL_LED_ASSOC */
AR_CFG_LED_ASSOC_ACTIVE, /* HAL_LED_RUN */
AR_CFG_LED_ASSOC_NONE,
};
OS_REG_RMW_FIELD(ah, AR_CFG_LED, AR_CFG_LED_ASSOC_CTL, ledbits[state]);
}
/*
* Sets the Power LED on the cardbus without affecting the Network LED.
*/
void
ar9300_set_power_led_state(struct ath_hal *ah, u_int8_t enabled)
{
u_int32_t val;
val = enabled ? AR_CFG_LED_MODE_POWER_ON : AR_CFG_LED_MODE_POWER_OFF;
OS_REG_RMW_FIELD(ah, AR_CFG_LED, AR_CFG_LED_POWER, val);
}
/*
* Sets the Network LED on the cardbus without affecting the Power LED.
*/
void
ar9300_set_network_led_state(struct ath_hal *ah, u_int8_t enabled)
{
u_int32_t val;
val = enabled ? AR_CFG_LED_MODE_NETWORK_ON : AR_CFG_LED_MODE_NETWORK_OFF;
OS_REG_RMW_FIELD(ah, AR_CFG_LED, AR_CFG_LED_NETWORK, val);
}
/*
* Change association related fields programmed into the hardware.
* Writing a valid BSSID to the hardware effectively enables the hardware
* to synchronize its TSF to the correct beacons and receive frames coming
* from that BSSID. It is called by the SME JOIN operation.
*/
void
ar9300_write_associd(struct ath_hal *ah, const u_int8_t *bssid,
u_int16_t assoc_id)
{
struct ath_hal_9300 *ahp = AH9300(ah);
/* save bssid and assoc_id for restore on reset */
OS_MEMCPY(ahp->ah_bssid, bssid, IEEE80211_ADDR_LEN);
ahp->ah_assoc_id = assoc_id;
OS_REG_WRITE(ah, AR_BSS_ID0, LE_READ_4(ahp->ah_bssid));
OS_REG_WRITE(ah, AR_BSS_ID1, LE_READ_2(ahp->ah_bssid + 4) |
((assoc_id & 0x3fff) << AR_BSS_ID1_AID_S));
}
/*
* Get the current hardware tsf for stamlme
*/
u_int64_t
ar9300_get_tsf64(struct ath_hal *ah)
{
u_int64_t tsf;
/* XXX sync multi-word read? */
tsf = OS_REG_READ(ah, AR_TSF_U32);
tsf = (tsf << 32) | OS_REG_READ(ah, AR_TSF_L32);
return tsf;
}
void
ar9300_set_tsf64(struct ath_hal *ah, u_int64_t tsf)
{
OS_REG_WRITE(ah, AR_TSF_L32, (tsf & 0xffffffff));
OS_REG_WRITE(ah, AR_TSF_U32, ((tsf >> 32) & 0xffffffff));
}
/*
* Get the current hardware tsf for stamlme
*/
u_int32_t
ar9300_get_tsf32(struct ath_hal *ah)
{
return OS_REG_READ(ah, AR_TSF_L32);
}
u_int32_t
ar9300_get_tsf2_32(struct ath_hal *ah)
{
return OS_REG_READ(ah, AR_TSF2_L32);
}
/*
* Reset the current hardware tsf for stamlme.
*/
void
ar9300_reset_tsf(struct ath_hal *ah)
{
int count;
count = 0;
while (OS_REG_READ(ah, AR_SLP32_MODE) & AR_SLP32_TSF_WRITE_STATUS) {
count++;
if (count > 10) {
HALDEBUG(ah, HAL_DEBUG_RESET,
"%s: AR_SLP32_TSF_WRITE_STATUS limit exceeded\n", __func__);
break;
}
OS_DELAY(10);
}
OS_REG_WRITE(ah, AR_RESET_TSF, AR_RESET_TSF_ONCE);
}
/*
* Set or clear hardware basic rate bit
* Set hardware basic rate set if basic rate is found
* and basic rate is equal or less than 2Mbps
*/
void
ar9300_set_basic_rate(struct ath_hal *ah, HAL_RATE_SET *rs)
{
const struct ieee80211_channel *chan = AH_PRIVATE(ah)->ah_curchan;
u_int32_t reg;
u_int8_t xset;
int i;
if (chan == AH_NULL || !IEEE80211_IS_CHAN_CCK(chan)) {
return;
}
xset = 0;
for (i = 0; i < rs->rs_count; i++) {
u_int8_t rset = rs->rs_rates[i];
/* Basic rate defined? */
if ((rset & 0x80) && (rset &= 0x7f) >= xset) {
xset = rset;
}
}
/*
* Set the h/w bit to reflect whether or not the basic
* rate is found to be equal or less than 2Mbps.
*/
reg = OS_REG_READ(ah, AR_STA_ID1);
if (xset && xset / 2 <= 2) {
OS_REG_WRITE(ah, AR_STA_ID1, reg | AR_STA_ID1_BASE_RATE_11B);
} else {
OS_REG_WRITE(ah, AR_STA_ID1, reg &~ AR_STA_ID1_BASE_RATE_11B);
}
}
/*
* Grab a semi-random value from hardware registers - may not
* change often
*/
u_int32_t
ar9300_get_random_seed(struct ath_hal *ah)
{
u_int32_t nf;
nf = (OS_REG_READ(ah, AR_PHY(25)) >> 19) & 0x1ff;
if (nf & 0x100) {
nf = 0 - ((nf ^ 0x1ff) + 1);
}
return (OS_REG_READ(ah, AR_TSF_U32) ^
OS_REG_READ(ah, AR_TSF_L32) ^ nf);
}
/*
* Detect if our card is present
*/
HAL_BOOL
ar9300_detect_card_present(struct ath_hal *ah)
{
u_int16_t mac_version, mac_rev;
u_int32_t v;
/*
* Read the Silicon Revision register and compare that
* to what we read at attach time. If the same, we say
* a card/device is present.
*/
v = OS_REG_READ(ah, AR_HOSTIF_REG(ah, AR_SREV)) & AR_SREV_ID;
if (v == 0xFF) {
/* new SREV format */
v = OS_REG_READ(ah, AR_HOSTIF_REG(ah, AR_SREV));
/*
* Include 6-bit Chip Type (masked to 0) to differentiate
* from pre-Sowl versions
*/
mac_version = (v & AR_SREV_VERSION2) >> AR_SREV_TYPE2_S;
mac_rev = MS(v, AR_SREV_REVISION2);
} else {
mac_version = MS(v, AR_SREV_VERSION);
mac_rev = v & AR_SREV_REVISION;
}
return (AH_PRIVATE(ah)->ah_macVersion == mac_version &&
AH_PRIVATE(ah)->ah_macRev == mac_rev);
}
/*
* Update MIB Counters
*/
void
ar9300_update_mib_mac_stats(struct ath_hal *ah)
{
struct ath_hal_9300 *ahp = AH9300(ah);
HAL_MIB_STATS* stats = &ahp->ah_stats.ast_mibstats;
stats->ackrcv_bad += OS_REG_READ(ah, AR_ACK_FAIL);
stats->rts_bad += OS_REG_READ(ah, AR_RTS_FAIL);
stats->fcs_bad += OS_REG_READ(ah, AR_FCS_FAIL);
stats->rts_good += OS_REG_READ(ah, AR_RTS_OK);
stats->beacons += OS_REG_READ(ah, AR_BEACON_CNT);
}
void
ar9300_get_mib_mac_stats(struct ath_hal *ah, HAL_MIB_STATS* stats)
{
struct ath_hal_9300 *ahp = AH9300(ah);
HAL_MIB_STATS* istats = &ahp->ah_stats.ast_mibstats;
stats->ackrcv_bad = istats->ackrcv_bad;
stats->rts_bad = istats->rts_bad;
stats->fcs_bad = istats->fcs_bad;
stats->rts_good = istats->rts_good;
stats->beacons = istats->beacons;
}
/*
* Detect if the HW supports spreading a CCK signal on channel 14
*/
HAL_BOOL
ar9300_is_japan_channel_spread_supported(struct ath_hal *ah)
{
return AH_TRUE;
}
/*
* Get the rssi of frame curently being received.
*/
u_int32_t
ar9300_get_cur_rssi(struct ath_hal *ah)
{
/* XXX return (OS_REG_READ(ah, AR_PHY_CURRENT_RSSI) & 0xff); */
/* get combined RSSI */
return (OS_REG_READ(ah, AR_PHY_RSSI_3) & 0xff);
}
#if ATH_GEN_RANDOMNESS
/*
* Get the rssi value from BB on ctl chain0.
*/
u_int32_t
ar9300_get_rssi_chain0(struct ath_hal *ah)
{
/* get ctl chain0 RSSI */
return OS_REG_READ(ah, AR_PHY_RSSI_0) & 0xff;
}
#endif
u_int
ar9300_get_def_antenna(struct ath_hal *ah)
{
return (OS_REG_READ(ah, AR_DEF_ANTENNA) & 0x7);
}
/* Setup coverage class */
void
ar9300_set_coverage_class(struct ath_hal *ah, u_int8_t coverageclass, int now)
{
}
void
ar9300_set_def_antenna(struct ath_hal *ah, u_int antenna)
{
OS_REG_WRITE(ah, AR_DEF_ANTENNA, (antenna & 0x7));
}
HAL_BOOL
ar9300_set_antenna_switch(struct ath_hal *ah,
HAL_ANT_SETTING settings, const struct ieee80211_channel *chan,
u_int8_t *tx_chainmask, u_int8_t *rx_chainmask, u_int8_t *antenna_cfgd)
{
struct ath_hal_9300 *ahp = AH9300(ah);
/*
* Owl does not support diversity or changing antennas.
*
* Instead this API and function are defined differently for AR9300.
* To support Tablet PC's, this interface allows the system
* to dramatically reduce the TX power on a particular chain.
*
* Based on the value of (redefined) diversity_control, the
* reset code will decrease power on chain 0 or chain 1/2.
*
* Based on the value of bit 0 of antenna_switch_swap,
* the mapping between OID call and chain is defined as:
* 0: map A -> 0, B -> 1;
* 1: map A -> 1, B -> 0;
*
* NOTE:
* The devices that use this OID should use a tx_chain_mask and
* tx_chain_select_legacy setting of 5 or 3 if ANTENNA_FIXED_B is
* used in order to ensure an active transmit antenna. This
* API will allow the host to turn off the only transmitting
* antenna to ensure the antenna closest to the user's body is
* powered-down.
*/
/*
* Set antenna control for use during reset sequence by
* ar9300_decrease_chain_power()
*/
ahp->ah_diversity_control = settings;
return AH_TRUE;
}
HAL_BOOL
ar9300_is_sleep_after_beacon_broken(struct ath_hal *ah)
{
return AH_TRUE;
}
HAL_BOOL
ar9300_set_slot_time(struct ath_hal *ah, u_int us)
{
struct ath_hal_9300 *ahp = AH9300(ah);
if (us < HAL_SLOT_TIME_9 || us > ar9300_mac_to_usec(ah, 0xffff)) {
HALDEBUG(ah, HAL_DEBUG_RESET, "%s: bad slot time %u\n", __func__, us);
ahp->ah_slot_time = (u_int) -1; /* restore default handling */
return AH_FALSE;
} else {
/* convert to system clocks */
OS_REG_WRITE(ah, AR_D_GBL_IFS_SLOT, ar9300_mac_to_clks(ah, us));
ahp->ah_slot_time = us;
return AH_TRUE;
}
}
HAL_BOOL
ar9300_set_ack_timeout(struct ath_hal *ah, u_int us)
{
struct ath_hal_9300 *ahp = AH9300(ah);
if (us > ar9300_mac_to_usec(ah, MS(0xffffffff, AR_TIME_OUT_ACK))) {
HALDEBUG(ah, HAL_DEBUG_RESET, "%s: bad ack timeout %u\n", __func__, us);
ahp->ah_ack_timeout = (u_int) -1; /* restore default handling */
return AH_FALSE;
} else {
/* convert to system clocks */
OS_REG_RMW_FIELD(ah,
AR_TIME_OUT, AR_TIME_OUT_ACK, ar9300_mac_to_clks(ah, us));
ahp->ah_ack_timeout = us;
return AH_TRUE;
}
}
u_int
ar9300_get_ack_timeout(struct ath_hal *ah)
{
u_int clks = MS(OS_REG_READ(ah, AR_TIME_OUT), AR_TIME_OUT_ACK);
return ar9300_mac_to_usec(ah, clks); /* convert from system clocks */
}
HAL_STATUS
ar9300_set_quiet(struct ath_hal *ah, u_int32_t period, u_int32_t duration,
u_int32_t next_start, HAL_QUIET_FLAG flag)
{
#define TU_TO_USEC(_tu) ((_tu) << 10)
HAL_STATUS status = HAL_EIO;
u_int32_t tsf = 0, j, next_start_us = 0;
if (flag & HAL_QUIET_ENABLE) {
for (j = 0; j < 2; j++) {
next_start_us = TU_TO_USEC(next_start);
tsf = OS_REG_READ(ah, AR_TSF_L32);
if ((!next_start) || (flag & HAL_QUIET_ADD_CURRENT_TSF)) {
next_start_us += tsf;
}
if (flag & HAL_QUIET_ADD_SWBA_RESP_TIME) {
next_start_us +=
ah->ah_config.ah_sw_beacon_response_time;
}
OS_REG_RMW_FIELD(ah, AR_QUIET1, AR_QUIET1_QUIET_ACK_CTS_ENABLE, 1);
OS_REG_WRITE(ah, AR_QUIET2, SM(duration, AR_QUIET2_QUIET_DUR));
OS_REG_WRITE(ah, AR_QUIET_PERIOD, TU_TO_USEC(period));
OS_REG_WRITE(ah, AR_NEXT_QUIET_TIMER, next_start_us);
OS_REG_SET_BIT(ah, AR_TIMER_MODE, AR_QUIET_TIMER_EN);
if ((OS_REG_READ(ah, AR_TSF_L32) >> 10) == tsf >> 10) {
status = HAL_OK;
break;
}
HALDEBUG(ah, HAL_DEBUG_QUEUE, "%s: TSF have moved "
"while trying to set quiet time TSF: 0x%08x\n", __func__, tsf);
/* TSF shouldn't count twice or reg access is taking forever */
HALASSERT(j < 1);
}
} else {
OS_REG_CLR_BIT(ah, AR_TIMER_MODE, AR_QUIET_TIMER_EN);
status = HAL_OK;
}
return status;
#undef TU_TO_USEC
}
//#ifdef ATH_SUPPORT_DFS
void
ar9300_cac_tx_quiet(struct ath_hal *ah, HAL_BOOL enable)
{
uint32_t reg1, reg2;
reg1 = OS_REG_READ(ah, AR_MAC_PCU_OFFSET(MAC_PCU_MISC_MODE));
reg2 = OS_REG_READ(ah, AR_MAC_PCU_OFFSET(MAC_PCU_QUIET_TIME_1));
AH9300(ah)->ah_cac_quiet_enabled = enable;
if (enable) {
OS_REG_WRITE(ah, AR_MAC_PCU_OFFSET(MAC_PCU_MISC_MODE),
reg1 | AR_PCU_FORCE_QUIET_COLL);
OS_REG_WRITE(ah, AR_MAC_PCU_OFFSET(MAC_PCU_QUIET_TIME_1),
reg2 & ~AR_QUIET1_QUIET_ACK_CTS_ENABLE);
} else {
OS_REG_WRITE(ah, AR_MAC_PCU_OFFSET(MAC_PCU_MISC_MODE),
reg1 & ~AR_PCU_FORCE_QUIET_COLL);
OS_REG_WRITE(ah, AR_MAC_PCU_OFFSET(MAC_PCU_QUIET_TIME_1),
reg2 | AR_QUIET1_QUIET_ACK_CTS_ENABLE);
}
}
//#endif /* ATH_SUPPORT_DFS */
void
ar9300_set_pcu_config(struct ath_hal *ah)
{
ar9300_set_operating_mode(ah, AH_PRIVATE(ah)->ah_opmode);
}
HAL_STATUS
ar9300_get_capability(struct ath_hal *ah, HAL_CAPABILITY_TYPE type,
u_int32_t capability, u_int32_t *result)
{
struct ath_hal_9300 *ahp = AH9300(ah);
const HAL_CAPABILITIES *p_cap = &AH_PRIVATE(ah)->ah_caps;
struct ar9300_ani_state *ani;
switch (type) {
case HAL_CAP_CIPHER: /* cipher handled in hardware */
switch (capability) {
case HAL_CIPHER_AES_CCM:
case HAL_CIPHER_AES_OCB:
case HAL_CIPHER_TKIP:
case HAL_CIPHER_WEP:
case HAL_CIPHER_MIC:
case HAL_CIPHER_CLR:
return HAL_OK;
default:
return HAL_ENOTSUPP;
}
case HAL_CAP_TKIP_MIC: /* handle TKIP MIC in hardware */
switch (capability) {
case 0: /* hardware capability */
return HAL_OK;
case 1:
return (ahp->ah_sta_id1_defaults &
AR_STA_ID1_CRPT_MIC_ENABLE) ? HAL_OK : HAL_ENXIO;
default:
return HAL_ENOTSUPP;
}
case HAL_CAP_TKIP_SPLIT: /* hardware TKIP uses split keys */
switch (capability) {
case 0: /* hardware capability */
return p_cap->halTkipMicTxRxKeySupport ? HAL_ENXIO : HAL_OK;
case 1: /* current setting */
return (ahp->ah_misc_mode & AR_PCU_MIC_NEW_LOC_ENA) ?
HAL_ENXIO : HAL_OK;
default:
return HAL_ENOTSUPP;
}
case HAL_CAP_WME_TKIPMIC:
/* hardware can do TKIP MIC when WMM is turned on */
return HAL_OK;
case HAL_CAP_PHYCOUNTERS: /* hardware PHY error counters */
return HAL_OK;
case HAL_CAP_DIVERSITY: /* hardware supports fast diversity */
switch (capability) {
case 0: /* hardware capability */
return HAL_OK;
case 1: /* current setting */
return (OS_REG_READ(ah, AR_PHY_CCK_DETECT) &
AR_PHY_CCK_DETECT_BB_ENABLE_ANT_FAST_DIV) ?
HAL_OK : HAL_ENXIO;
}
return HAL_EINVAL;
case HAL_CAP_TPC:
switch (capability) {
case 0: /* hardware capability */
return HAL_OK;
case 1:
return ah->ah_config.ath_hal_desc_tpc ?
HAL_OK : HAL_ENXIO;
}
return HAL_OK;
case HAL_CAP_PHYDIAG: /* radar pulse detection capability */
return HAL_OK;
case HAL_CAP_MCAST_KEYSRCH: /* multicast frame keycache search */
switch (capability) {
case 0: /* hardware capability */
return HAL_OK;
case 1:
if (OS_REG_READ(ah, AR_STA_ID1) & AR_STA_ID1_ADHOC) {
/*
* Owl and Merlin have problems in mcast key search.
* Disable this cap. in Ad-hoc mode. see Bug 25776 and
* 26802
*/
return HAL_ENXIO;
} else {
return (ahp->ah_sta_id1_defaults &
AR_STA_ID1_MCAST_KSRCH) ? HAL_OK : HAL_ENXIO;
}
}
return HAL_EINVAL;
case HAL_CAP_TSF_ADJUST: /* hardware has beacon tsf adjust */
switch (capability) {
case 0: /* hardware capability */
return p_cap->halTsfAddSupport ? HAL_OK : HAL_ENOTSUPP;
case 1:
return (ahp->ah_misc_mode & AR_PCU_TX_ADD_TSF) ?
HAL_OK : HAL_ENXIO;
}
return HAL_EINVAL;
case HAL_CAP_RFSILENT: /* rfsilent support */
if (capability == 3) { /* rfkill interrupt */
/*
* XXX: Interrupt-based notification of RF Kill state
* changes not working yet. Report that this feature
* is not supported so that polling is used instead.
*/
return (HAL_ENOTSUPP);
}
return ath_hal_getcapability(ah, type, capability, result);
case HAL_CAP_4ADDR_AGGR:
return HAL_OK;
case HAL_CAP_BB_RIFS_HANG:
return HAL_ENOTSUPP;
case HAL_CAP_BB_DFS_HANG:
return HAL_ENOTSUPP;
case HAL_CAP_BB_RX_CLEAR_STUCK_HANG:
/* Track chips that are known to have BB hangs related
* to rx_clear stuck low.
*/
return HAL_ENOTSUPP;
case HAL_CAP_MAC_HANG:
/* Track chips that are known to have MAC hangs.
*/
return HAL_OK;
case HAL_CAP_RIFS_RX_ENABLED:
/* Is RIFS RX currently enabled */
return (ahp->ah_rifs_enabled == AH_TRUE) ? HAL_OK : HAL_ENOTSUPP;
#if 0
case HAL_CAP_ANT_CFG_2GHZ:
*result = p_cap->halNumAntCfg2Ghz;
return HAL_OK;
case HAL_CAP_ANT_CFG_5GHZ:
*result = p_cap->halNumAntCfg5Ghz;
return HAL_OK;
case HAL_CAP_RX_STBC:
*result = p_cap->hal_rx_stbc_support;
return HAL_OK;
case HAL_CAP_TX_STBC:
*result = p_cap->hal_tx_stbc_support;
return HAL_OK;
#endif
case HAL_CAP_LDPC:
*result = p_cap->halLDPCSupport;
return HAL_OK;
case HAL_CAP_DYNAMIC_SMPS:
return HAL_OK;
case HAL_CAP_DS:
return (AR_SREV_HORNET(ah) || AR_SREV_POSEIDON(ah) || AR_SREV_APHRODITE(ah) ||
(p_cap->halTxChainMask & 0x3) != 0x3 ||
(p_cap->halRxChainMask & 0x3) != 0x3) ?
HAL_ENOTSUPP : HAL_OK;
case HAL_CAP_TS:
return (AR_SREV_HORNET(ah) || AR_SREV_POSEIDON(ah) || AR_SREV_APHRODITE(ah) ||
(p_cap->halTxChainMask & 0x7) != 0x7 ||
(p_cap->halRxChainMask & 0x7) != 0x7) ?
HAL_ENOTSUPP : HAL_OK;
case HAL_CAP_OL_PWRCTRL:
return (ar9300_eeprom_get(ahp, EEP_OL_PWRCTRL)) ?
HAL_OK : HAL_ENOTSUPP;
case HAL_CAP_CRDC:
#if ATH_SUPPORT_CRDC
return (AR_SREV_WASP(ah) &&
ah->ah_config.ath_hal_crdc_enable) ?
HAL_OK : HAL_ENOTSUPP;
#else
return HAL_ENOTSUPP;
#endif
#if 0
case HAL_CAP_MAX_WEP_TKIP_HT20_TX_RATEKBPS:
*result = (u_int32_t)(-1);
return HAL_OK;
case HAL_CAP_MAX_WEP_TKIP_HT40_TX_RATEKBPS:
*result = (u_int32_t)(-1);
return HAL_OK;
#endif
case HAL_CAP_BB_PANIC_WATCHDOG:
return HAL_OK;
case HAL_CAP_PHYRESTART_CLR_WAR:
if ((AH_PRIVATE((ah))->ah_macVersion == AR_SREV_VERSION_OSPREY) &&
(AH_PRIVATE((ah))->ah_macRev < AR_SREV_REVISION_AR9580_10))
{
return HAL_OK;
}
else
{
return HAL_ENOTSUPP;
}
case HAL_CAP_ENTERPRISE_MODE:
*result = ahp->ah_enterprise_mode >> 16;
/*
* WAR for EV 77658 - Add delimiters to first sub-frame when using
* RTS/CTS with aggregation and non-enterprise Osprey.
*
* Bug fixed in AR9580/Peacock, Wasp1.1 and later
*/
if ((ahp->ah_enterprise_mode & AR_ENT_OTP_MIN_PKT_SIZE_DISABLE) &&
!AR_SREV_AR9580_10_OR_LATER(ah) && (!AR_SREV_WASP(ah) ||
AR_SREV_WASP_10(ah))) {
*result |= AH_ENT_RTSCTS_DELIM_WAR;
}
return HAL_OK;
case HAL_CAP_LDPCWAR:
/* WAR for RIFS+LDPC issue is required for all chips currently
* supported by ar9300 HAL.
*/
return HAL_OK;
case HAL_CAP_ENABLE_APM:
*result = p_cap->halApmEnable;
return HAL_OK;
case HAL_CAP_PCIE_LCR_EXTSYNC_EN:
return (p_cap->hal_pcie_lcr_extsync_en == AH_TRUE) ? HAL_OK : HAL_ENOTSUPP;
case HAL_CAP_PCIE_LCR_OFFSET:
*result = p_cap->hal_pcie_lcr_offset;
return HAL_OK;
case HAL_CAP_SMARTANTENNA:
/* FIXME A request is pending with h/w team to add feature bit in
* caldata to detect if board has smart antenna or not, once added
* we need to fix his piece of code to read and return value without
* any compile flags
*/
#if UMAC_SUPPORT_SMARTANTENNA
/* enable smart antenna for Peacock, Wasp and scorpion
for future chips need to modify */
if (AR_SREV_AR9580_10(ah) || (AR_SREV_WASP(ah)) || AR_SREV_SCORPION(ah)) {
return HAL_OK;
} else {
return HAL_ENOTSUPP;
}
#else
return HAL_ENOTSUPP;
#endif
#ifdef ATH_TRAFFIC_FAST_RECOVER
case HAL_CAP_TRAFFIC_FAST_RECOVER:
if (AR_SREV_HORNET(ah) || AR_SREV_POSEIDON(ah) || AR_SREV_WASP_11(ah)) {
return HAL_OK;
} else {
return HAL_ENOTSUPP;
}
#endif
/* FreeBSD ANI */
case HAL_CAP_INTMIT: /* interference mitigation */
switch (capability) {
case HAL_CAP_INTMIT_PRESENT: /* hardware capability */
return HAL_OK;
case HAL_CAP_INTMIT_ENABLE:
return (ahp->ah_proc_phy_err & HAL_PROCESS_ANI) ?
HAL_OK : HAL_ENXIO;
case HAL_CAP_INTMIT_NOISE_IMMUNITY_LEVEL:
case HAL_CAP_INTMIT_OFDM_WEAK_SIGNAL_LEVEL:
// case HAL_CAP_INTMIT_CCK_WEAK_SIGNAL_THR:
case HAL_CAP_INTMIT_FIRSTEP_LEVEL:
case HAL_CAP_INTMIT_SPUR_IMMUNITY_LEVEL:
ani = ar9300_ani_get_current_state(ah);
if (ani == AH_NULL)
return HAL_ENXIO;
switch (capability) {
/* XXX AR9300 HAL has OFDM/CCK noise immunity level params? */
case 2: *result = ani->ofdm_noise_immunity_level; break;
case 3: *result = !ani->ofdm_weak_sig_detect_off; break;
// case 4: *result = ani->cck_weak_sig_threshold; break;
case 5: *result = ani->firstep_level; break;
case 6: *result = ani->spur_immunity_level; break;
}
return HAL_OK;
}
return HAL_EINVAL;
case HAL_CAP_ENFORCE_TXOP:
if (capability == 0)
return (HAL_OK);
if (capability != 1)
return (HAL_ENOTSUPP);
(*result) = !! (ahp->ah_misc_mode & AR_PCU_TXOP_TBTT_LIMIT_ENA);
return (HAL_OK);
case HAL_CAP_TOA_LOCATIONING:
if (capability == 0)
return HAL_OK;
if (capability == 2) {
*result = ar9300_read_loc_timer(ah);
return (HAL_OK);
}
return HAL_ENOTSUPP;
default:
return ath_hal_getcapability(ah, type, capability, result);
}
}
HAL_BOOL
ar9300_set_capability(struct ath_hal *ah, HAL_CAPABILITY_TYPE type,
u_int32_t capability, u_int32_t setting, HAL_STATUS *status)
{
struct ath_hal_9300 *ahp = AH9300(ah);
const HAL_CAPABILITIES *p_cap = &AH_PRIVATE(ah)->ah_caps;
u_int32_t v;
switch (type) {
case HAL_CAP_TKIP_SPLIT: /* hardware TKIP uses split keys */
if (! p_cap->halTkipMicTxRxKeySupport)
return AH_FALSE;
if (setting)
ahp->ah_misc_mode &= ~AR_PCU_MIC_NEW_LOC_ENA;
else
ahp->ah_misc_mode |= AR_PCU_MIC_NEW_LOC_ENA;
OS_REG_WRITE(ah, AR_PCU_MISC, ahp->ah_misc_mode);
return AH_TRUE;
case HAL_CAP_TKIP_MIC: /* handle TKIP MIC in hardware */
if (setting) {
ahp->ah_sta_id1_defaults |= AR_STA_ID1_CRPT_MIC_ENABLE;
} else {
ahp->ah_sta_id1_defaults &= ~AR_STA_ID1_CRPT_MIC_ENABLE;
}
return AH_TRUE;
case HAL_CAP_DIVERSITY:
v = OS_REG_READ(ah, AR_PHY_CCK_DETECT);
if (setting) {
v |= AR_PHY_CCK_DETECT_BB_ENABLE_ANT_FAST_DIV;
} else {
v &= ~AR_PHY_CCK_DETECT_BB_ENABLE_ANT_FAST_DIV;
}
OS_REG_WRITE(ah, AR_PHY_CCK_DETECT, v);
return AH_TRUE;
case HAL_CAP_DIAG: /* hardware diagnostic support */
/*
* NB: could split this up into virtual capabilities,
* (e.g. 1 => ACK, 2 => CTS, etc.) but it hardly
* seems worth the additional complexity.
*/
#ifdef AH_DEBUG
AH_PRIVATE(ah)->ah_diagreg = setting;
#else
AH_PRIVATE(ah)->ah_diagreg = setting & 0x6; /* ACK+CTS */
#endif
OS_REG_WRITE(ah, AR_DIAG_SW, AH_PRIVATE(ah)->ah_diagreg);
return AH_TRUE;
case HAL_CAP_TPC:
ah->ah_config.ath_hal_desc_tpc = (setting != 0);
return AH_TRUE;
case HAL_CAP_MCAST_KEYSRCH: /* multicast frame keycache search */
if (setting) {
ahp->ah_sta_id1_defaults |= AR_STA_ID1_MCAST_KSRCH;
} else {
ahp->ah_sta_id1_defaults &= ~AR_STA_ID1_MCAST_KSRCH;
}
return AH_TRUE;
case HAL_CAP_TSF_ADJUST: /* hardware has beacon tsf adjust */
if (p_cap->halTsfAddSupport) {
if (setting) {
ahp->ah_misc_mode |= AR_PCU_TX_ADD_TSF;
} else {
ahp->ah_misc_mode &= ~AR_PCU_TX_ADD_TSF;
}
return AH_TRUE;
}
return AH_FALSE;
/* FreeBSD interrupt mitigation / ANI */
case HAL_CAP_INTMIT: { /* interference mitigation */
/* This maps the public ANI commands to the internal ANI commands */
/* Private: HAL_ANI_CMD; Public: HAL_CAP_INTMIT_CMD */
static const HAL_ANI_CMD cmds[] = {
HAL_ANI_PRESENT,
HAL_ANI_MODE,
HAL_ANI_NOISE_IMMUNITY_LEVEL,
HAL_ANI_OFDM_WEAK_SIGNAL_DETECTION,
HAL_ANI_CCK_WEAK_SIGNAL_THR,
HAL_ANI_FIRSTEP_LEVEL,
HAL_ANI_SPUR_IMMUNITY_LEVEL,
};
#define N(a) (sizeof(a) / sizeof(a[0]))
return capability < N(cmds) ?
ar9300_ani_control(ah, cmds[capability], setting) :
AH_FALSE;
#undef N
}
case HAL_CAP_RXBUFSIZE: /* set MAC receive buffer size */
ahp->rx_buf_size = setting & AR_DATABUF_MASK;
OS_REG_WRITE(ah, AR_DATABUF, ahp->rx_buf_size);
return AH_TRUE;
case HAL_CAP_ENFORCE_TXOP:
if (capability != 1)
return AH_FALSE;
if (setting) {
ahp->ah_misc_mode |= AR_PCU_TXOP_TBTT_LIMIT_ENA;
OS_REG_SET_BIT(ah, AR_PCU_MISC, AR_PCU_TXOP_TBTT_LIMIT_ENA);
} else {
ahp->ah_misc_mode &= ~AR_PCU_TXOP_TBTT_LIMIT_ENA;
OS_REG_CLR_BIT(ah, AR_PCU_MISC, AR_PCU_TXOP_TBTT_LIMIT_ENA);
}
return AH_TRUE;
case HAL_CAP_TOA_LOCATIONING:
if (capability == 0)
return AH_TRUE;
if (capability == 1) {
ar9300_update_loc_ctl_reg(ah, setting);
return AH_TRUE;
}
return AH_FALSE;
/* fall thru... */
default:
return ath_hal_setcapability(ah, type, capability, setting, status);
}
}
#ifdef AH_DEBUG
static void
ar9300_print_reg(struct ath_hal *ah, u_int32_t args)
{
u_int32_t i = 0;
/* Read 0x80d0 to trigger pcie analyzer */
HALDEBUG(ah, HAL_DEBUG_PRINT_REG,
"0x%04x 0x%08x\n", 0x80d0, OS_REG_READ(ah, 0x80d0));
if (args & HAL_DIAG_PRINT_REG_COUNTER) {
struct ath_hal_9300 *ahp = AH9300(ah);
u_int32_t tf, rf, rc, cc;
tf = OS_REG_READ(ah, AR_TFCNT);
rf = OS_REG_READ(ah, AR_RFCNT);
rc = OS_REG_READ(ah, AR_RCCNT);
cc = OS_REG_READ(ah, AR_CCCNT);
HALDEBUG(ah, HAL_DEBUG_PRINT_REG,
"AR_TFCNT Diff= 0x%x\n", tf - ahp->last_tf);
HALDEBUG(ah, HAL_DEBUG_PRINT_REG,
"AR_RFCNT Diff= 0x%x\n", rf - ahp->last_rf);
HALDEBUG(ah, HAL_DEBUG_PRINT_REG,
"AR_RCCNT Diff= 0x%x\n", rc - ahp->last_rc);
HALDEBUG(ah, HAL_DEBUG_PRINT_REG,
"AR_CCCNT Diff= 0x%x\n", cc - ahp->last_cc);
ahp->last_tf = tf;
ahp->last_rf = rf;
ahp->last_rc = rc;
ahp->last_cc = cc;
HALDEBUG(ah, HAL_DEBUG_PRINT_REG,
"DMADBG0 = 0x%x\n", OS_REG_READ(ah, AR_DMADBG_0));
HALDEBUG(ah, HAL_DEBUG_PRINT_REG,
"DMADBG1 = 0x%x\n", OS_REG_READ(ah, AR_DMADBG_1));
HALDEBUG(ah, HAL_DEBUG_PRINT_REG,
"DMADBG2 = 0x%x\n", OS_REG_READ(ah, AR_DMADBG_2));
HALDEBUG(ah, HAL_DEBUG_PRINT_REG,
"DMADBG3 = 0x%x\n", OS_REG_READ(ah, AR_DMADBG_3));
HALDEBUG(ah, HAL_DEBUG_PRINT_REG,
"DMADBG4 = 0x%x\n", OS_REG_READ(ah, AR_DMADBG_4));
HALDEBUG(ah, HAL_DEBUG_PRINT_REG,
"DMADBG5 = 0x%x\n", OS_REG_READ(ah, AR_DMADBG_5));
HALDEBUG(ah, HAL_DEBUG_PRINT_REG,
"DMADBG6 = 0x%x\n", OS_REG_READ(ah, AR_DMADBG_6));
HALDEBUG(ah, HAL_DEBUG_PRINT_REG,
"DMADBG7 = 0x%x\n", OS_REG_READ(ah, AR_DMADBG_7));
}
if (args & HAL_DIAG_PRINT_REG_ALL) {
for (i = 0x8; i <= 0xB8; i += sizeof(u_int32_t)) {
HALDEBUG(ah, HAL_DEBUG_PRINT_REG, "0x%04x 0x%08x\n",
i, OS_REG_READ(ah, i));
}
for (i = 0x800; i <= (0x800 + (10 << 2)); i += sizeof(u_int32_t)) {
HALDEBUG(ah, HAL_DEBUG_PRINT_REG, "0x%04x 0x%08x\n",
i, OS_REG_READ(ah, i));
}
HALDEBUG(ah, HAL_DEBUG_PRINT_REG,
"0x%04x 0x%08x\n", 0x840, OS_REG_READ(ah, i));
HALDEBUG(ah, HAL_DEBUG_PRINT_REG,
"0x%04x 0x%08x\n", 0x880, OS_REG_READ(ah, i));
for (i = 0x8C0; i <= (0x8C0 + (10 << 2)); i += sizeof(u_int32_t)) {
HALDEBUG(ah, HAL_DEBUG_PRINT_REG, "0x%04x 0x%08x\n",
i, OS_REG_READ(ah, i));
}
for (i = 0x1F00; i <= 0x1F04; i += sizeof(u_int32_t)) {
HALDEBUG(ah, HAL_DEBUG_PRINT_REG, "0x%04x 0x%08x\n",
i, OS_REG_READ(ah, i));
}
for (i = 0x4000; i <= 0x408C; i += sizeof(u_int32_t)) {
HALDEBUG(ah, HAL_DEBUG_PRINT_REG, "0x%04x 0x%08x\n",
i, OS_REG_READ(ah, i));
}
for (i = 0x5000; i <= 0x503C; i += sizeof(u_int32_t)) {
HALDEBUG(ah, HAL_DEBUG_PRINT_REG, "0x%04x 0x%08x\n",
i, OS_REG_READ(ah, i));
}
for (i = 0x7040; i <= 0x7058; i += sizeof(u_int32_t)) {
HALDEBUG(ah, HAL_DEBUG_PRINT_REG, "0x%04x 0x%08x\n",
i, OS_REG_READ(ah, i));
}
for (i = 0x8000; i <= 0x8098; i += sizeof(u_int32_t)) {
HALDEBUG(ah, HAL_DEBUG_PRINT_REG, "0x%04x 0x%08x\n",
i, OS_REG_READ(ah, i));
}
for (i = 0x80D4; i <= 0x8200; i += sizeof(u_int32_t)) {
HALDEBUG(ah, HAL_DEBUG_PRINT_REG, "0x%04x 0x%08x\n",
i, OS_REG_READ(ah, i));
}
for (i = 0x8240; i <= 0x97FC; i += sizeof(u_int32_t)) {
HALDEBUG(ah, HAL_DEBUG_PRINT_REG, "0x%04x 0x%08x\n",
i, OS_REG_READ(ah, i));
}
for (i = 0x9800; i <= 0x99f0; i += sizeof(u_int32_t)) {
HALDEBUG(ah, HAL_DEBUG_PRINT_REG, "0x%04x 0x%08x\n",
i, OS_REG_READ(ah, i));
}
for (i = 0x9c10; i <= 0x9CFC; i += sizeof(u_int32_t)) {
HALDEBUG(ah, HAL_DEBUG_PRINT_REG, "0x%04x 0x%08x\n",
i, OS_REG_READ(ah, i));
}
for (i = 0xA200; i <= 0xA26C; i += sizeof(u_int32_t)) {
HALDEBUG(ah, HAL_DEBUG_PRINT_REG, "0x%04x 0x%08x\n",
i, OS_REG_READ(ah, i));
}
}
}
#endif
HAL_BOOL
ar9300_get_diag_state(struct ath_hal *ah, int request,
const void *args, u_int32_t argsize,
void **result, u_int32_t *resultsize)
{
struct ath_hal_9300 *ahp = AH9300(ah);
struct ar9300_ani_state *ani;
(void) ahp;
if (ath_hal_getdiagstate(ah, request, args, argsize, result, resultsize)) {
return AH_TRUE;
}
switch (request) {
#ifdef AH_PRIVATE_DIAG
case HAL_DIAG_EEPROM:
*result = &ahp->ah_eeprom;
*resultsize = sizeof(ar9300_eeprom_t);
return AH_TRUE;
#if 0 /* XXX - TODO */
case HAL_DIAG_EEPROM_EXP_11A:
case HAL_DIAG_EEPROM_EXP_11B:
case HAL_DIAG_EEPROM_EXP_11G:
pe = &ahp->ah_mode_power_array2133[request - HAL_DIAG_EEPROM_EXP_11A];
*result = pe->p_channels;
*resultsize = (*result == AH_NULL) ? 0 :
roundup(sizeof(u_int16_t) * pe->num_channels,
sizeof(u_int32_t)) +
sizeof(EXPN_DATA_PER_CHANNEL_2133) * pe->num_channels;
return AH_TRUE;
#endif
case HAL_DIAG_RFGAIN:
*result = &ahp->ah_gain_values;
*resultsize = sizeof(GAIN_VALUES);
return AH_TRUE;
case HAL_DIAG_RFGAIN_CURSTEP:
*result = (void *) ahp->ah_gain_values.curr_step;
*resultsize = (*result == AH_NULL) ?
0 : sizeof(GAIN_OPTIMIZATION_STEP);
return AH_TRUE;
#if 0 /* XXX - TODO */
case HAL_DIAG_PCDAC:
*result = ahp->ah_pcdac_table;
*resultsize = ahp->ah_pcdac_table_size;
return AH_TRUE;
#endif
case HAL_DIAG_ANI_CURRENT:
ani = ar9300_ani_get_current_state(ah);
if (ani == AH_NULL)
return AH_FALSE;
/* Convert ar9300 HAL to FreeBSD HAL ANI state */
/* XXX TODO: add all of these to the HAL ANI state structure */
bzero(&ahp->ext_ani_state, sizeof(ahp->ext_ani_state));
/* XXX should this be OFDM or CCK noise immunity level? */
ahp->ext_ani_state.noiseImmunityLevel = ani->ofdm_noise_immunity_level;
ahp->ext_ani_state.spurImmunityLevel = ani->spur_immunity_level;
ahp->ext_ani_state.firstepLevel = ani->firstep_level;
ahp->ext_ani_state.ofdmWeakSigDetectOff = ani->ofdm_weak_sig_detect_off;
/* mrc_cck_off */
/* cck_noise_immunity_level */
ahp->ext_ani_state.listenTime = ani->listen_time;
*result = &ahp->ext_ani_state;
*resultsize = sizeof(ahp->ext_ani_state);
#if 0
*result = ar9300_ani_get_current_state(ah);
*resultsize = (*result == AH_NULL) ?
0 : sizeof(struct ar9300_ani_state);
#endif
return AH_TRUE;
case HAL_DIAG_ANI_STATS:
*result = ar9300_ani_get_current_stats(ah);
*resultsize = (*result == AH_NULL) ?
0 : sizeof(HAL_ANI_STATS);
return AH_TRUE;
case HAL_DIAG_ANI_CMD:
if (argsize != 2*sizeof(u_int32_t)) {
return AH_FALSE;
}
ar9300_ani_control(
ah, ((const u_int32_t *)args)[0], ((const u_int32_t *)args)[1]);
return AH_TRUE;
#if 0
case HAL_DIAG_TXCONT:
/*AR9300_CONTTXMODE(ah, (struct ath_desc *)args, argsize );*/
return AH_TRUE;
#endif /* 0 */
#endif /* AH_PRIVATE_DIAG */
case HAL_DIAG_CHANNELS:
#if 0
*result = &(ahp->ah_priv.ah_channels[0]);
*resultsize =
sizeof(ahp->ah_priv.ah_channels[0]) * ahp->ah_priv.priv.ah_nchan;
#endif
return AH_TRUE;
#ifdef AH_DEBUG
case HAL_DIAG_PRINT_REG:
ar9300_print_reg(ah, *((const u_int32_t *)args));
return AH_TRUE;
#endif
default:
break;
}
return AH_FALSE;
}
void
ar9300_dma_reg_dump(struct ath_hal *ah)
{
#ifdef AH_DEBUG
#define NUM_DMA_DEBUG_REGS 8
#define NUM_QUEUES 10
u_int32_t val[NUM_DMA_DEBUG_REGS];
int qcu_offset = 0, dcu_offset = 0;
u_int32_t *qcu_base = &val[0], *dcu_base = &val[4], reg;
int i, j, k;
int16_t nfarray[HAL_NUM_NF_READINGS];
#ifdef ATH_NF_PER_CHAN
HAL_CHANNEL_INTERNAL *ichan = ath_hal_checkchannel(ah, AH_PRIVATE(ah)->ah_curchan);
#endif /* ATH_NF_PER_CHAN */
HAL_NFCAL_HIST_FULL *h = AH_HOME_CHAN_NFCAL_HIST(ah, ichan);
/* selecting DMA OBS 8 */
OS_REG_WRITE(ah, AR_MACMISC,
((AR_MACMISC_DMA_OBS_LINE_8 << AR_MACMISC_DMA_OBS_S) |
(AR_MACMISC_MISC_OBS_BUS_1 << AR_MACMISC_MISC_OBS_BUS_MSB_S)));
ath_hal_printf(ah, "Raw DMA Debug values:\n");
for (i = 0; i < NUM_DMA_DEBUG_REGS; i++) {
if (i % 4 == 0) {
ath_hal_printf(ah, "\n");
}
val[i] = OS_REG_READ(ah, AR_DMADBG_0 + (i * sizeof(u_int32_t)));
ath_hal_printf(ah, "%d: %08x ", i, val[i]);
}
ath_hal_printf(ah, "\n\n");
ath_hal_printf(ah, "Num QCU: chain_st fsp_ok fsp_st DCU: chain_st\n");
for (i = 0; i < NUM_QUEUES; i++, qcu_offset += 4, dcu_offset += 5) {
if (i == 8) {
/* only 8 QCU entries in val[0] */
qcu_offset = 0;
qcu_base++;
}
if (i == 6) {
/* only 6 DCU entries in val[4] */
dcu_offset = 0;
dcu_base++;
}
ath_hal_printf(ah,
"%2d %2x %1x %2x %2x\n",
i,
(*qcu_base & (0x7 << qcu_offset)) >> qcu_offset,
(*qcu_base & (0x8 << qcu_offset)) >> (qcu_offset + 3),
val[2] & (0x7 << (i * 3)) >> (i * 3),
(*dcu_base & (0x1f << dcu_offset)) >> dcu_offset);
}
ath_hal_printf(ah, "\n");
ath_hal_printf(ah,
"qcu_stitch state: %2x qcu_fetch state: %2x\n",
(val[3] & 0x003c0000) >> 18, (val[3] & 0x03c00000) >> 22);
ath_hal_printf(ah,
"qcu_complete state: %2x dcu_complete state: %2x\n",
(val[3] & 0x1c000000) >> 26, (val[6] & 0x3));
ath_hal_printf(ah,
"dcu_arb state: %2x dcu_fp state: %2x\n",
(val[5] & 0x06000000) >> 25, (val[5] & 0x38000000) >> 27);
ath_hal_printf(ah,
"chan_idle_dur: %3d chan_idle_dur_valid: %1d\n",
(val[6] & 0x000003fc) >> 2, (val[6] & 0x00000400) >> 10);
ath_hal_printf(ah,
"txfifo_valid_0: %1d txfifo_valid_1: %1d\n",
(val[6] & 0x00000800) >> 11, (val[6] & 0x00001000) >> 12);
ath_hal_printf(ah,
"txfifo_dcu_num_0: %2d txfifo_dcu_num_1: %2d\n",
(val[6] & 0x0001e000) >> 13, (val[6] & 0x001e0000) >> 17);
ath_hal_printf(ah, "pcu observe 0x%x \n", OS_REG_READ(ah, AR_OBS_BUS_1));
ath_hal_printf(ah, "AR_CR 0x%x \n", OS_REG_READ(ah, AR_CR));
ar9300_upload_noise_floor(ah, 1, nfarray);
ath_hal_printf(ah, "2G:\n");
ath_hal_printf(ah, "Min CCA Out:\n");
ath_hal_printf(ah, "\t\tChain 0\t\tChain 1\t\tChain 2\n");
ath_hal_printf(ah, "Control:\t%8d\t%8d\t%8d\n",
nfarray[0], nfarray[1], nfarray[2]);
ath_hal_printf(ah, "Extension:\t%8d\t%8d\t%8d\n\n",
nfarray[3], nfarray[4], nfarray[5]);
ar9300_upload_noise_floor(ah, 0, nfarray);
ath_hal_printf(ah, "5G:\n");
ath_hal_printf(ah, "Min CCA Out:\n");
ath_hal_printf(ah, "\t\tChain 0\t\tChain 1\t\tChain 2\n");
ath_hal_printf(ah, "Control:\t%8d\t%8d\t%8d\n",
nfarray[0], nfarray[1], nfarray[2]);
ath_hal_printf(ah, "Extension:\t%8d\t%8d\t%8d\n\n",
nfarray[3], nfarray[4], nfarray[5]);
for (i = 0; i < HAL_NUM_NF_READINGS; i++) {
ath_hal_printf(ah, "%s Chain %d NF History:\n",
((i < 3) ? "Control " : "Extension "), i%3);
for (j = 0, k = h->base.curr_index;
j < HAL_NF_CAL_HIST_LEN_FULL;
j++, k++) {
ath_hal_printf(ah, "Element %d: %d\n",
j, h->nf_cal_buffer[k % HAL_NF_CAL_HIST_LEN_FULL][i]);
}
ath_hal_printf(ah, "Last Programmed NF: %d\n\n", h->base.priv_nf[i]);
}
reg = OS_REG_READ(ah, AR_PHY_FIND_SIG_LOW);
ath_hal_printf(ah, "FIRStep Low = 0x%x (%d)\n",
MS(reg, AR_PHY_FIND_SIG_LOW_FIRSTEP_LOW),
MS(reg, AR_PHY_FIND_SIG_LOW_FIRSTEP_LOW));
reg = OS_REG_READ(ah, AR_PHY_DESIRED_SZ);
ath_hal_printf(ah, "Total Desired = 0x%x (%d)\n",
MS(reg, AR_PHY_DESIRED_SZ_TOT_DES),
MS(reg, AR_PHY_DESIRED_SZ_TOT_DES));
ath_hal_printf(ah, "ADC Desired = 0x%x (%d)\n",
MS(reg, AR_PHY_DESIRED_SZ_ADC),
MS(reg, AR_PHY_DESIRED_SZ_ADC));
reg = OS_REG_READ(ah, AR_PHY_FIND_SIG);
ath_hal_printf(ah, "FIRStep = 0x%x (%d)\n",
MS(reg, AR_PHY_FIND_SIG_FIRSTEP),
MS(reg, AR_PHY_FIND_SIG_FIRSTEP));
reg = OS_REG_READ(ah, AR_PHY_AGC);
ath_hal_printf(ah, "Coarse High = 0x%x (%d)\n",
MS(reg, AR_PHY_AGC_COARSE_HIGH),
MS(reg, AR_PHY_AGC_COARSE_HIGH));
ath_hal_printf(ah, "Coarse Low = 0x%x (%d)\n",
MS(reg, AR_PHY_AGC_COARSE_LOW),
MS(reg, AR_PHY_AGC_COARSE_LOW));
ath_hal_printf(ah, "Coarse Power Constant = 0x%x (%d)\n",
MS(reg, AR_PHY_AGC_COARSE_PWR_CONST),
MS(reg, AR_PHY_AGC_COARSE_PWR_CONST));
reg = OS_REG_READ(ah, AR_PHY_TIMING5);
ath_hal_printf(ah, "Enable Cyclic Power Thresh = %d\n",
MS(reg, AR_PHY_TIMING5_CYCPWR_THR1_ENABLE));
ath_hal_printf(ah, "Cyclic Power Thresh = 0x%x (%d)\n",
MS(reg, AR_PHY_TIMING5_CYCPWR_THR1),
MS(reg, AR_PHY_TIMING5_CYCPWR_THR1));
ath_hal_printf(ah, "Cyclic Power Thresh 1A= 0x%x (%d)\n",
MS(reg, AR_PHY_TIMING5_CYCPWR_THR1A),
MS(reg, AR_PHY_TIMING5_CYCPWR_THR1A));
reg = OS_REG_READ(ah, AR_PHY_DAG_CTRLCCK);
ath_hal_printf(ah, "Barker RSSI Thresh Enable = %d\n",
MS(reg, AR_PHY_DAG_CTRLCCK_EN_RSSI_THR));
ath_hal_printf(ah, "Barker RSSI Thresh = 0x%x (%d)\n",
MS(reg, AR_PHY_DAG_CTRLCCK_RSSI_THR),
MS(reg, AR_PHY_DAG_CTRLCCK_RSSI_THR));
/* Step 1a: Set bit 23 of register 0xa360 to 0 */
reg = OS_REG_READ(ah, 0xa360);
reg &= ~0x00800000;
OS_REG_WRITE(ah, 0xa360, reg);
/* Step 2a: Set register 0xa364 to 0x1000 */
reg = 0x1000;
OS_REG_WRITE(ah, 0xa364, reg);
/* Step 3a: Read bits 17:0 of register 0x9c20 */
reg = OS_REG_READ(ah, 0x9c20);
reg &= 0x0003ffff;
ath_hal_printf(ah,
"%s: Test Control Status [0x1000] 0x9c20[17:0] = 0x%x\n",
__func__, reg);
/* Step 1b: Set bit 23 of register 0xa360 to 0 */
reg = OS_REG_READ(ah, 0xa360);
reg &= ~0x00800000;
OS_REG_WRITE(ah, 0xa360, reg);
/* Step 2b: Set register 0xa364 to 0x1400 */
reg = 0x1400;
OS_REG_WRITE(ah, 0xa364, reg);
/* Step 3b: Read bits 17:0 of register 0x9c20 */
reg = OS_REG_READ(ah, 0x9c20);
reg &= 0x0003ffff;
ath_hal_printf(ah,
"%s: Test Control Status [0x1400] 0x9c20[17:0] = 0x%x\n",
__func__, reg);
/* Step 1c: Set bit 23 of register 0xa360 to 0 */
reg = OS_REG_READ(ah, 0xa360);
reg &= ~0x00800000;
OS_REG_WRITE(ah, 0xa360, reg);
/* Step 2c: Set register 0xa364 to 0x3C00 */
reg = 0x3c00;
OS_REG_WRITE(ah, 0xa364, reg);
/* Step 3c: Read bits 17:0 of register 0x9c20 */
reg = OS_REG_READ(ah, 0x9c20);
reg &= 0x0003ffff;
ath_hal_printf(ah,
"%s: Test Control Status [0x3C00] 0x9c20[17:0] = 0x%x\n",
__func__, reg);
/* Step 1d: Set bit 24 of register 0xa360 to 0 */
reg = OS_REG_READ(ah, 0xa360);
reg &= ~0x001040000;
OS_REG_WRITE(ah, 0xa360, reg);
/* Step 2d: Set register 0xa364 to 0x5005D */
reg = 0x5005D;
OS_REG_WRITE(ah, 0xa364, reg);
/* Step 3d: Read bits 17:0 of register 0xa368 */
reg = OS_REG_READ(ah, 0xa368);
reg &= 0x0003ffff;
ath_hal_printf(ah,
"%s: Test Control Status [0x5005D] 0xa368[17:0] = 0x%x\n",
__func__, reg);
/* Step 1e: Set bit 24 of register 0xa360 to 0 */
reg = OS_REG_READ(ah, 0xa360);
reg &= ~0x001040000;
OS_REG_WRITE(ah, 0xa360, reg);
/* Step 2e: Set register 0xa364 to 0x7005D */
reg = 0x7005D;
OS_REG_WRITE(ah, 0xa364, reg);
/* Step 3e: Read bits 17:0 of register 0xa368 */
reg = OS_REG_READ(ah, 0xa368);
reg &= 0x0003ffff;
ath_hal_printf(ah,
"%s: Test Control Status [0x7005D] 0xa368[17:0] = 0x%x\n",
__func__, reg);
/* Step 1f: Set bit 24 of register 0xa360 to 0 */
reg = OS_REG_READ(ah, 0xa360);
reg &= ~0x001000000;
reg |= 0x40000;
OS_REG_WRITE(ah, 0xa360, reg);
/* Step 2f: Set register 0xa364 to 0x3005D */
reg = 0x3005D;
OS_REG_WRITE(ah, 0xa364, reg);
/* Step 3f: Read bits 17:0 of register 0xa368 */
reg = OS_REG_READ(ah, 0xa368);
reg &= 0x0003ffff;
ath_hal_printf(ah,
"%s: Test Control Status [0x3005D] 0xa368[17:0] = 0x%x\n",
__func__, reg);
/* Step 1g: Set bit 24 of register 0xa360 to 0 */
reg = OS_REG_READ(ah, 0xa360);
reg &= ~0x001000000;
reg |= 0x40000;
OS_REG_WRITE(ah, 0xa360, reg);
/* Step 2g: Set register 0xa364 to 0x6005D */
reg = 0x6005D;
OS_REG_WRITE(ah, 0xa364, reg);
/* Step 3g: Read bits 17:0 of register 0xa368 */
reg = OS_REG_READ(ah, 0xa368);
reg &= 0x0003ffff;
ath_hal_printf(ah,
"%s: Test Control Status [0x6005D] 0xa368[17:0] = 0x%x\n",
__func__, reg);
#endif /* AH_DEBUG */
}
/*
* Return the busy for rx_frame, rx_clear, and tx_frame
*/
u_int32_t
ar9300_get_mib_cycle_counts_pct(struct ath_hal *ah, u_int32_t *rxc_pcnt,
u_int32_t *rxf_pcnt, u_int32_t *txf_pcnt)
{
struct ath_hal_9300 *ahp = AH9300(ah);
u_int32_t good = 1;
u_int32_t rc = OS_REG_READ(ah, AR_RCCNT);
u_int32_t rf = OS_REG_READ(ah, AR_RFCNT);
u_int32_t tf = OS_REG_READ(ah, AR_TFCNT);
u_int32_t cc = OS_REG_READ(ah, AR_CCCNT); /* read cycles last */
if (ahp->ah_cycles == 0 || ahp->ah_cycles > cc) {
/*
* Cycle counter wrap (or initial call); it's not possible
* to accurately calculate a value because the registers
* right shift rather than wrap--so punt and return 0.
*/
HALDEBUG(ah, HAL_DEBUG_CHANNEL,
"%s: cycle counter wrap. ExtBusy = 0\n", __func__);
good = 0;
} else {
u_int32_t cc_d = cc - ahp->ah_cycles;
u_int32_t rc_d = rc - ahp->ah_rx_clear;
u_int32_t rf_d = rf - ahp->ah_rx_frame;
u_int32_t tf_d = tf - ahp->ah_tx_frame;
if (cc_d != 0) {
*rxc_pcnt = rc_d * 100 / cc_d;
*rxf_pcnt = rf_d * 100 / cc_d;
*txf_pcnt = tf_d * 100 / cc_d;
} else {
good = 0;
}
}
ahp->ah_cycles = cc;
ahp->ah_rx_frame = rf;
ahp->ah_rx_clear = rc;
ahp->ah_tx_frame = tf;
return good;
}
/*
* Return approximation of extension channel busy over an time interval
* 0% (clear) -> 100% (busy)
* -1 for invalid estimate
*/
uint32_t
ar9300_get_11n_ext_busy(struct ath_hal *ah)
{
/*
* Overflow condition to check before multiplying to get %
* (x * 100 > 0xFFFFFFFF ) => (x > 0x28F5C28)
*/
#define OVERFLOW_LIMIT 0x28F5C28
#define ERROR_CODE -1
struct ath_hal_9300 *ahp = AH9300(ah);
u_int32_t busy = 0; /* percentage */
int8_t busyper = 0;
u_int32_t cycle_count, ctl_busy, ext_busy;
/* cycle_count will always be the first to wrap; therefore, read it last
* This sequence of reads is not atomic, and MIB counter wrap
* could happen during it ?
*/
ctl_busy = OS_REG_READ(ah, AR_RCCNT);
ext_busy = OS_REG_READ(ah, AR_EXTRCCNT);
cycle_count = OS_REG_READ(ah, AR_CCCNT);
if ((ahp->ah_cycle_count == 0) || (ahp->ah_cycle_count > cycle_count) ||
(ahp->ah_ctl_busy > ctl_busy) || (ahp->ah_ext_busy > ext_busy))
{
/*
* Cycle counter wrap (or initial call); it's not possible
* to accurately calculate a value because the registers
* right shift rather than wrap--so punt and return 0.
*/
busyper = ERROR_CODE;
HALDEBUG(ah, HAL_DEBUG_CHANNEL,
"%s: cycle counter wrap. ExtBusy = 0\n", __func__);
} else {
u_int32_t cycle_delta = cycle_count - ahp->ah_cycle_count;
u_int32_t ext_busy_delta = ext_busy - ahp->ah_ext_busy;
/*
* Compute extension channel busy percentage
* Overflow condition: 0xFFFFFFFF < ext_busy_delta * 100
* Underflow condition/Divide-by-zero: check that cycle_delta >> 7 != 0
* Will never happen, since (ext_busy_delta < cycle_delta) always,
* and shift necessitated by large ext_busy_delta.
* Due to timing difference to read the registers and counter overflow,
* it may still happen that cycle_delta >> 7 = 0.
*
*/
if (cycle_delta) {
if (ext_busy_delta > OVERFLOW_LIMIT) {
if (cycle_delta >> 7) {
busy = ((ext_busy_delta >> 7) * 100) / (cycle_delta >> 7);
} else {
busyper = ERROR_CODE;
}
} else {
busy = (ext_busy_delta * 100) / cycle_delta;
}
} else {
busyper = ERROR_CODE;
}
if (busy > 100) {
busy = 100;
}
if ( busyper != ERROR_CODE ) {
busyper = busy;
}
}
ahp->ah_cycle_count = cycle_count;
ahp->ah_ctl_busy = ctl_busy;
ahp->ah_ext_busy = ext_busy;
return busyper;
#undef OVERFLOW_LIMIT
#undef ERROR_CODE
}
/* BB Panic Watchdog declarations */
#define HAL_BB_PANIC_WD_HT20_FACTOR 74 /* 0.74 */
#define HAL_BB_PANIC_WD_HT40_FACTOR 37 /* 0.37 */
void
ar9300_config_bb_panic_watchdog(struct ath_hal *ah)
{
#define HAL_BB_PANIC_IDLE_TIME_OUT 0x0a8c0000
const struct ieee80211_channel *chan = AH_PRIVATE(ah)->ah_curchan;
u_int32_t idle_tmo_ms = AH9300(ah)->ah_bb_panic_timeout_ms;
u_int32_t val, idle_count;
if (idle_tmo_ms != 0) {
/* enable IRQ, disable chip-reset for BB panic */
val = OS_REG_READ(ah, AR_PHY_PANIC_WD_CTL_2) &
AR_PHY_BB_PANIC_CNTL2_MASK;
OS_REG_WRITE(ah, AR_PHY_PANIC_WD_CTL_2,
(val | AR_PHY_BB_PANIC_IRQ_ENABLE) & ~AR_PHY_BB_PANIC_RST_ENABLE);
/* bound limit to 10 secs */
if (idle_tmo_ms > 10000) {
idle_tmo_ms = 10000;
}
if (chan != AH_NULL && IEEE80211_IS_CHAN_HT40(chan)) {
idle_count = (100 * idle_tmo_ms) / HAL_BB_PANIC_WD_HT40_FACTOR;
} else {
idle_count = (100 * idle_tmo_ms) / HAL_BB_PANIC_WD_HT20_FACTOR;
}
/*
* enable panic in non-IDLE mode,
* disable in IDLE mode,
* set idle time-out
*/
// EV92527 : Enable IDLE mode panic
OS_REG_WRITE(ah, AR_PHY_PANIC_WD_CTL_1,
AR_PHY_BB_PANIC_NON_IDLE_ENABLE |
AR_PHY_BB_PANIC_IDLE_ENABLE |
(AR_PHY_BB_PANIC_IDLE_MASK & HAL_BB_PANIC_IDLE_TIME_OUT) |
(AR_PHY_BB_PANIC_NON_IDLE_MASK & (idle_count << 2)));
} else {
/* disable IRQ, disable chip-reset for BB panic */
OS_REG_WRITE(ah, AR_PHY_PANIC_WD_CTL_2,
OS_REG_READ(ah, AR_PHY_PANIC_WD_CTL_2) &
~(AR_PHY_BB_PANIC_RST_ENABLE | AR_PHY_BB_PANIC_IRQ_ENABLE));
/* disable panic in non-IDLE mode, disable in IDLE mode */
OS_REG_WRITE(ah, AR_PHY_PANIC_WD_CTL_1,
OS_REG_READ(ah, AR_PHY_PANIC_WD_CTL_1) &
~(AR_PHY_BB_PANIC_NON_IDLE_ENABLE | AR_PHY_BB_PANIC_IDLE_ENABLE));
}
HALDEBUG(ah, HAL_DEBUG_RFPARAM, "%s: %s BB Panic Watchdog tmo=%ums\n",
__func__, idle_tmo_ms ? "Enabled" : "Disabled", idle_tmo_ms);
#undef HAL_BB_PANIC_IDLE_TIME_OUT
}
void
ar9300_handle_bb_panic(struct ath_hal *ah)
{
u_int32_t status;
/*
* we want to avoid printing in ISR context so we save
* panic watchdog status to be printed later in DPC context
*/
AH9300(ah)->ah_bb_panic_last_status = status =
OS_REG_READ(ah, AR_PHY_PANIC_WD_STATUS);
/*
* panic watchdog timer should reset on status read
* but to make sure we write 0 to the watchdog status bit
*/
OS_REG_WRITE(ah, AR_PHY_PANIC_WD_STATUS, status & ~AR_PHY_BB_WD_STATUS_CLR);
}
int
ar9300_get_bb_panic_info(struct ath_hal *ah, struct hal_bb_panic_info *bb_panic)
{
bb_panic->status = AH9300(ah)->ah_bb_panic_last_status;
/*
* For signature 04000539 do not print anything.
* This is a very common occurence as a compromise between
* BB Panic and AH_FALSE detects (EV71009). It indicates
* radar hang, which can be cleared by reprogramming
* radar related register and does not requre a chip reset
*/
/* Suppress BB Status mesg following signature */
switch (bb_panic->status) {
case 0x04000539:
case 0x04008009:
case 0x04000b09:
case 0x1300000a:
return -1;
}
bb_panic->tsf = ar9300_get_tsf32(ah);
bb_panic->wd = MS(bb_panic->status, AR_PHY_BB_WD_STATUS);
bb_panic->det = MS(bb_panic->status, AR_PHY_BB_WD_DET_HANG);
bb_panic->rdar = MS(bb_panic->status, AR_PHY_BB_WD_RADAR_SM);
bb_panic->r_odfm = MS(bb_panic->status, AR_PHY_BB_WD_RX_OFDM_SM);
bb_panic->r_cck = MS(bb_panic->status, AR_PHY_BB_WD_RX_CCK_SM);
bb_panic->t_odfm = MS(bb_panic->status, AR_PHY_BB_WD_TX_OFDM_SM);
bb_panic->t_cck = MS(bb_panic->status, AR_PHY_BB_WD_TX_CCK_SM);
bb_panic->agc = MS(bb_panic->status, AR_PHY_BB_WD_AGC_SM);
bb_panic->src = MS(bb_panic->status, AR_PHY_BB_WD_SRCH_SM);
bb_panic->phy_panic_wd_ctl1 = OS_REG_READ(ah, AR_PHY_PANIC_WD_CTL_1);
bb_panic->phy_panic_wd_ctl2 = OS_REG_READ(ah, AR_PHY_PANIC_WD_CTL_2);
bb_panic->phy_gen_ctrl = OS_REG_READ(ah, AR_PHY_GEN_CTRL);
bb_panic->rxc_pcnt = bb_panic->rxf_pcnt = bb_panic->txf_pcnt = 0;
bb_panic->cycles = ar9300_get_mib_cycle_counts_pct(ah,
&bb_panic->rxc_pcnt,
&bb_panic->rxf_pcnt,
&bb_panic->txf_pcnt);
if (ah->ah_config.ath_hal_show_bb_panic) {
ath_hal_printf(ah, "\n==== BB update: BB status=0x%08x, "
"tsf=0x%08x ====\n", bb_panic->status, bb_panic->tsf);
ath_hal_printf(ah, "** BB state: wd=%u det=%u rdar=%u rOFDM=%d "
"rCCK=%u tOFDM=%u tCCK=%u agc=%u src=%u **\n",
bb_panic->wd, bb_panic->det, bb_panic->rdar,
bb_panic->r_odfm, bb_panic->r_cck, bb_panic->t_odfm,
bb_panic->t_cck, bb_panic->agc, bb_panic->src);
ath_hal_printf(ah, "** BB WD cntl: cntl1=0x%08x cntl2=0x%08x **\n",
bb_panic->phy_panic_wd_ctl1, bb_panic->phy_panic_wd_ctl2);
ath_hal_printf(ah, "** BB mode: BB_gen_controls=0x%08x **\n",
bb_panic->phy_gen_ctrl);
if (bb_panic->cycles) {
ath_hal_printf(ah, "** BB busy times: rx_clear=%d%%, "
"rx_frame=%d%%, tx_frame=%d%% **\n", bb_panic->rxc_pcnt,
bb_panic->rxf_pcnt, bb_panic->txf_pcnt);
}
ath_hal_printf(ah, "==== BB update: done ====\n\n");
}
return 0; //The returned data will be stored for athstats to retrieve it
}
/* set the reason for HAL reset */
void
ar9300_set_hal_reset_reason(struct ath_hal *ah, u_int8_t resetreason)
{
AH9300(ah)->ah_reset_reason = resetreason;
}
/*
* Configure 20/40 operation
*
* 20/40 = joint rx clear (control and extension)
* 20 = rx clear (control)
*
* - NOTE: must stop MAC (tx) and requeue 40 MHz packets as 20 MHz
* when changing from 20/40 => 20 only
*/
void
ar9300_set_11n_mac2040(struct ath_hal *ah, HAL_HT_MACMODE mode)
{
u_int32_t macmode;
/* Configure MAC for 20/40 operation */
if (mode == HAL_HT_MACMODE_2040 &&
!ah->ah_config.ath_hal_cwm_ignore_ext_cca) {
macmode = AR_2040_JOINED_RX_CLEAR;
} else {
macmode = 0;
}
OS_REG_WRITE(ah, AR_2040_MODE, macmode);
}
/*
* Get Rx clear (control/extension channel)
*
* Returns active low (busy) for ctrl/ext channel
* Owl 2.0
*/
HAL_HT_RXCLEAR
ar9300_get_11n_rx_clear(struct ath_hal *ah)
{
HAL_HT_RXCLEAR rxclear = 0;
u_int32_t val;
val = OS_REG_READ(ah, AR_DIAG_SW);
/* control channel */
if (val & AR_DIAG_RX_CLEAR_CTL_LOW) {
rxclear |= HAL_RX_CLEAR_CTL_LOW;
}
/* extension channel */
if (val & AR_DIAG_RX_CLEAR_EXT_LOW) {
rxclear |= HAL_RX_CLEAR_EXT_LOW;
}
return rxclear;
}
/*
* Set Rx clear (control/extension channel)
*
* Useful for forcing the channel to appear busy for
* debugging/diagnostics
* Owl 2.0
*/
void
ar9300_set_11n_rx_clear(struct ath_hal *ah, HAL_HT_RXCLEAR rxclear)
{
/* control channel */
if (rxclear & HAL_RX_CLEAR_CTL_LOW) {
OS_REG_SET_BIT(ah, AR_DIAG_SW, AR_DIAG_RX_CLEAR_CTL_LOW);
} else {
OS_REG_CLR_BIT(ah, AR_DIAG_SW, AR_DIAG_RX_CLEAR_CTL_LOW);
}
/* extension channel */
if (rxclear & HAL_RX_CLEAR_EXT_LOW) {
OS_REG_SET_BIT(ah, AR_DIAG_SW, AR_DIAG_RX_CLEAR_EXT_LOW);
} else {
OS_REG_CLR_BIT(ah, AR_DIAG_SW, AR_DIAG_RX_CLEAR_EXT_LOW);
}
}
/*
* HAL support code for force ppm tracking workaround.
*/
u_int32_t
ar9300_ppm_get_rssi_dump(struct ath_hal *ah)
{
u_int32_t retval;
u_int32_t off1;
u_int32_t off2;
if (OS_REG_READ(ah, AR_PHY_ANALOG_SWAP) & AR_PHY_SWAP_ALT_CHAIN) {
off1 = 0x2000;
off2 = 0x1000;
} else {
off1 = 0x1000;
off2 = 0x2000;
}
retval = ((0xff & OS_REG_READ(ah, AR_PHY_CHAN_INFO_GAIN_0 )) << 0) |
((0xff & OS_REG_READ(ah, AR_PHY_CHAN_INFO_GAIN_0 + off1)) << 8) |
((0xff & OS_REG_READ(ah, AR_PHY_CHAN_INFO_GAIN_0 + off2)) << 16);
return retval;
}
u_int32_t
ar9300_ppm_force(struct ath_hal *ah)
{
u_int32_t data_fine;
u_int32_t data4;
//u_int32_t off1;
//u_int32_t off2;
HAL_BOOL signed_val = AH_FALSE;
// if (OS_REG_READ(ah, AR_PHY_ANALOG_SWAP) & AR_PHY_SWAP_ALT_CHAIN) {
// off1 = 0x2000;
// off2 = 0x1000;
// } else {
// off1 = 0x1000;
// off2 = 0x2000;
// }
data_fine =
AR_PHY_CHAN_INFO_GAIN_DIFF_PPM_MASK &
OS_REG_READ(ah, AR_PHY_CHNINFO_GAINDIFF);
/*
* bit [11-0] is new ppm value. bit 11 is the signed bit.
* So check value from bit[10:0].
* Now get the abs val of the ppm value read in bit[0:11].
* After that do bound check on abs value.
* if value is off limit, CAP the value and and restore signed bit.
*/
if (data_fine & AR_PHY_CHAN_INFO_GAIN_DIFF_PPM_SIGNED_BIT)
{
/* get the positive value */
data_fine = (~data_fine + 1) & AR_PHY_CHAN_INFO_GAIN_DIFF_PPM_MASK;
signed_val = AH_TRUE;
}
if (data_fine > AR_PHY_CHAN_INFO_GAIN_DIFF_UPPER_LIMIT)
{
HALDEBUG(ah, HAL_DEBUG_REGIO,
"%s Correcting ppm out of range %x\n",
__func__, (data_fine & 0x7ff));
data_fine = AR_PHY_CHAN_INFO_GAIN_DIFF_UPPER_LIMIT;
}
/*
* Restore signed value if changed above.
* Use typecast to avoid compilation errors
*/
if (signed_val) {
data_fine = (-(int32_t)data_fine) &
AR_PHY_CHAN_INFO_GAIN_DIFF_PPM_MASK;
}
/* write value */
data4 = OS_REG_READ(ah, AR_PHY_TIMING2) &
~(AR_PHY_TIMING2_USE_FORCE_PPM | AR_PHY_TIMING2_FORCE_PPM_VAL);
OS_REG_WRITE(ah, AR_PHY_TIMING2,
data4 | data_fine | AR_PHY_TIMING2_USE_FORCE_PPM);
return data_fine;
}
void
ar9300_ppm_un_force(struct ath_hal *ah)
{
u_int32_t data4;
data4 = OS_REG_READ(ah, AR_PHY_TIMING2) & ~AR_PHY_TIMING2_USE_FORCE_PPM;
OS_REG_WRITE(ah, AR_PHY_TIMING2, data4);
}
u_int32_t
ar9300_ppm_arm_trigger(struct ath_hal *ah)
{
u_int32_t val;
u_int32_t ret;
val = OS_REG_READ(ah, AR_PHY_CHAN_INFO_MEMORY);
ret = OS_REG_READ(ah, AR_TSF_L32);
OS_REG_WRITE(ah, AR_PHY_CHAN_INFO_MEMORY,
val | AR_PHY_CHAN_INFO_MEMORY_CAPTURE_MASK);
/* return low word of TSF at arm time */
return ret;
}
int
ar9300_ppm_get_trigger(struct ath_hal *ah)
{
if (OS_REG_READ(ah, AR_PHY_CHAN_INFO_MEMORY) &
AR_PHY_CHAN_INFO_MEMORY_CAPTURE_MASK)
{
/* has not triggered yet, return AH_FALSE */
return 0;
}
/* else triggered, return AH_TRUE */
return 1;
}
void
ar9300_mark_phy_inactive(struct ath_hal *ah)
{
OS_REG_WRITE(ah, AR_PHY_ACTIVE, AR_PHY_ACTIVE_DIS);
}
/* DEBUG */
u_int32_t
ar9300_ppm_get_force_state(struct ath_hal *ah)
{
return
OS_REG_READ(ah, AR_PHY_TIMING2) &
(AR_PHY_TIMING2_USE_FORCE_PPM | AR_PHY_TIMING2_FORCE_PPM_VAL);
}
/*
* Return the Cycle counts for rx_frame, rx_clear, and tx_frame
*/
HAL_BOOL
ar9300_get_mib_cycle_counts(struct ath_hal *ah, HAL_SURVEY_SAMPLE *hs)
{
/*
* XXX FreeBSD todo: reimplement this
*/
#if 0
p_cnts->tx_frame_count = OS_REG_READ(ah, AR_TFCNT);
p_cnts->rx_frame_count = OS_REG_READ(ah, AR_RFCNT);
p_cnts->rx_clear_count = OS_REG_READ(ah, AR_RCCNT);
p_cnts->cycle_count = OS_REG_READ(ah, AR_CCCNT);
p_cnts->is_tx_active = (OS_REG_READ(ah, AR_TFCNT) ==
p_cnts->tx_frame_count) ? AH_FALSE : AH_TRUE;
p_cnts->is_rx_active = (OS_REG_READ(ah, AR_RFCNT) ==
p_cnts->rx_frame_count) ? AH_FALSE : AH_TRUE;
#endif
return AH_FALSE;
}
void
ar9300_clear_mib_counters(struct ath_hal *ah)
{
u_int32_t reg_val;
reg_val = OS_REG_READ(ah, AR_MIBC);
OS_REG_WRITE(ah, AR_MIBC, reg_val | AR_MIBC_CMC);
OS_REG_WRITE(ah, AR_MIBC, reg_val & ~AR_MIBC_CMC);
}
/* Enable or Disable RIFS Rx capability as part of SW WAR for Bug 31602 */
HAL_BOOL
ar9300_set_rifs_delay(struct ath_hal *ah, HAL_BOOL enable)
{
struct ath_hal_9300 *ahp = AH9300(ah);
HAL_CHANNEL_INTERNAL *ichan =
ath_hal_checkchannel(ah, AH_PRIVATE(ah)->ah_curchan);
HAL_BOOL is_chan_2g = IS_CHAN_2GHZ(ichan);
u_int32_t tmp = 0;
if (enable) {
if (ahp->ah_rifs_enabled == AH_TRUE) {
return AH_TRUE;
}
OS_REG_WRITE(ah, AR_PHY_SEARCH_START_DELAY, ahp->ah_rifs_reg[0]);
OS_REG_WRITE(ah, AR_PHY_RIFS_SRCH,
ahp->ah_rifs_reg[1]);
ahp->ah_rifs_enabled = AH_TRUE;
OS_MEMZERO(ahp->ah_rifs_reg, sizeof(ahp->ah_rifs_reg));
} else {
if (ahp->ah_rifs_enabled == AH_TRUE) {
ahp->ah_rifs_reg[0] = OS_REG_READ(ah,
AR_PHY_SEARCH_START_DELAY);
ahp->ah_rifs_reg[1] = OS_REG_READ(ah, AR_PHY_RIFS_SRCH);
}
/* Change rifs init delay to 0 */
OS_REG_WRITE(ah, AR_PHY_RIFS_SRCH,
(ahp->ah_rifs_reg[1] & ~(AR_PHY_RIFS_INIT_DELAY)));
tmp = 0xfffff000 & OS_REG_READ(ah, AR_PHY_SEARCH_START_DELAY);
if (is_chan_2g) {
if (IEEE80211_IS_CHAN_HT40(AH_PRIVATE(ah)->ah_curchan)) {
OS_REG_WRITE(ah, AR_PHY_SEARCH_START_DELAY, tmp | 500);
} else { /* Sowl 2G HT-20 default is 0x134 for search start delay */
OS_REG_WRITE(ah, AR_PHY_SEARCH_START_DELAY, tmp | 250);
}
} else {
if (IEEE80211_IS_CHAN_HT40(AH_PRIVATE(ah)->ah_curchan)) {
OS_REG_WRITE(ah, AR_PHY_SEARCH_START_DELAY, tmp | 0x370);
} else { /* Sowl 5G HT-20 default is 0x1b8 for search start delay */
OS_REG_WRITE(ah, AR_PHY_SEARCH_START_DELAY, tmp | 0x1b8);
}
}
ahp->ah_rifs_enabled = AH_FALSE;
}
return AH_TRUE;
} /* ar9300_set_rifs_delay () */
/* Set the current RIFS Rx setting */
HAL_BOOL
ar9300_set_11n_rx_rifs(struct ath_hal *ah, HAL_BOOL enable)
{
/* Non-Owl 11n chips */
if ((ath_hal_getcapability(ah, HAL_CAP_RIFS_RX, 0, AH_NULL) == HAL_OK)) {
if (ar9300_get_capability(ah, HAL_CAP_LDPCWAR, 0, AH_NULL) == HAL_OK) {
return ar9300_set_rifs_delay(ah, enable);
}
return AH_FALSE;
}
return AH_TRUE;
} /* ar9300_set_11n_rx_rifs () */
static hal_mac_hangs_t
ar9300_compare_dbg_hang(struct ath_hal *ah, mac_dbg_regs_t mac_dbg,
hal_mac_hang_check_t hang_check, hal_mac_hangs_t hangs, u_int8_t *dcu_chain)
{
int i = 0;
hal_mac_hangs_t found_hangs = 0;
if (hangs & dcu_chain_state) {
for (i = 0; i < 6; i++) {
if (((mac_dbg.dma_dbg_4 >> (5 * i)) & 0x1f) ==
hang_check.dcu_chain_state)
{
found_hangs |= dcu_chain_state;
*dcu_chain = i;
}
}
for (i = 0; i < 4; i++) {
if (((mac_dbg.dma_dbg_5 >> (5 * i)) & 0x1f) ==
hang_check.dcu_chain_state)
{
found_hangs |= dcu_chain_state;
*dcu_chain = i + 6;
}
}
}
if (hangs & dcu_complete_state) {
if ((mac_dbg.dma_dbg_6 & 0x3) == hang_check.dcu_complete_state) {
found_hangs |= dcu_complete_state;
}
}
return found_hangs;
} /* end - ar9300_compare_dbg_hang */
#define NUM_STATUS_READS 50
HAL_BOOL
ar9300_detect_mac_hang(struct ath_hal *ah)
{
struct ath_hal_9300 *ahp = AH9300(ah);
mac_dbg_regs_t mac_dbg;
hal_mac_hang_check_t hang_sig1_val = {0x6, 0x1, 0, 0, 0, 0, 0, 0};
hal_mac_hangs_t hang_sig1 = (dcu_chain_state | dcu_complete_state);
int i = 0;
u_int8_t dcu_chain = 0, current_dcu_chain_state, shift_val;
if (!(ahp->ah_hang_wars & HAL_MAC_HANG_WAR)) {
return AH_FALSE;
}
OS_MEMZERO(&mac_dbg, sizeof(mac_dbg));
mac_dbg.dma_dbg_4 = OS_REG_READ(ah, AR_DMADBG_4);
mac_dbg.dma_dbg_5 = OS_REG_READ(ah, AR_DMADBG_5);
mac_dbg.dma_dbg_6 = OS_REG_READ(ah, AR_DMADBG_6);
HALDEBUG(ah, HAL_DEBUG_DFS, " dma regs: %X %X %X \n",
mac_dbg.dma_dbg_4, mac_dbg.dma_dbg_5,
mac_dbg.dma_dbg_6);
if (hang_sig1 !=
ar9300_compare_dbg_hang(ah, mac_dbg,
hang_sig1_val, hang_sig1, &dcu_chain))
{
HALDEBUG(ah, HAL_DEBUG_DFS, " hang sig1 not found \n");
return AH_FALSE;
}
shift_val = (dcu_chain >= 6) ? (dcu_chain-6) : (dcu_chain);
shift_val *= 5;
for (i = 1; i <= NUM_STATUS_READS; i++) {
if (dcu_chain < 6) {
mac_dbg.dma_dbg_4 = OS_REG_READ(ah, AR_DMADBG_4);
current_dcu_chain_state =
((mac_dbg.dma_dbg_4 >> shift_val) & 0x1f);
} else {
mac_dbg.dma_dbg_5 = OS_REG_READ(ah, AR_DMADBG_5);
current_dcu_chain_state = ((mac_dbg.dma_dbg_5 >> shift_val) & 0x1f);
}
mac_dbg.dma_dbg_6 = OS_REG_READ(ah, AR_DMADBG_6);
if (((mac_dbg.dma_dbg_6 & 0x3) != hang_sig1_val.dcu_complete_state)
|| (current_dcu_chain_state != hang_sig1_val.dcu_chain_state)) {
return AH_FALSE;
}
}
HALDEBUG(ah, HAL_DEBUG_DFS, "%s sig5count=%d sig6count=%d ", __func__,
ahp->ah_hang[MAC_HANG_SIG1], ahp->ah_hang[MAC_HANG_SIG2]);
ahp->ah_hang[MAC_HANG_SIG1]++;
return AH_TRUE;
} /* end - ar9300_detect_mac_hang */
/* Determine if the baseband is hung by reading the Observation Bus Register */
HAL_BOOL
ar9300_detect_bb_hang(struct ath_hal *ah)
{
#define N(a) (sizeof(a) / sizeof(a[0]))
struct ath_hal_9300 *ahp = AH9300(ah);
u_int32_t hang_sig = 0;
int i = 0;
/* Check the PCU Observation Bus 1 register (0x806c) NUM_STATUS_READS times
*
* 4 known BB hang signatures -
* [1] bits 8,9,11 are 0. State machine state (bits 25-31) is 0x1E
* [2] bits 8,9 are 1, bit 11 is 0. State machine state (bits 25-31) is 0x52
* [3] bits 8,9 are 1, bit 11 is 0. State machine state (bits 25-31) is 0x18
* [4] bit 10 is 1, bit 11 is 0. WEP state (bits 12-17) is 0x2,
* Rx State (bits 20-24) is 0x7.
*/
hal_hw_hang_check_t hang_list [] =
{
/* Offset Reg Value Reg Mask Hang Offset */
{AR_OBS_BUS_1, 0x1E000000, 0x7E000B00, BB_HANG_SIG1},
{AR_OBS_BUS_1, 0x52000B00, 0x7E000B00, BB_HANG_SIG2},
{AR_OBS_BUS_1, 0x18000B00, 0x7E000B00, BB_HANG_SIG3},
{AR_OBS_BUS_1, 0x00702400, 0x7E7FFFEF, BB_HANG_SIG4}
};
if (!(ahp->ah_hang_wars & (HAL_RIFS_BB_HANG_WAR |
HAL_DFS_BB_HANG_WAR |
HAL_RX_STUCK_LOW_BB_HANG_WAR))) {
return AH_FALSE;
}
hang_sig = OS_REG_READ(ah, AR_OBS_BUS_1);
for (i = 1; i <= NUM_STATUS_READS; i++) {
if (hang_sig != OS_REG_READ(ah, AR_OBS_BUS_1)) {
return AH_FALSE;
}
}
for (i = 0; i < N(hang_list); i++) {
if ((hang_sig & hang_list[i].hang_mask) == hang_list[i].hang_val) {
ahp->ah_hang[hang_list[i].hang_offset]++;
HALDEBUG(ah, HAL_DEBUG_DFS, "%s sig1count=%d sig2count=%d "
"sig3count=%d sig4count=%d\n", __func__,
ahp->ah_hang[BB_HANG_SIG1], ahp->ah_hang[BB_HANG_SIG2],
ahp->ah_hang[BB_HANG_SIG3], ahp->ah_hang[BB_HANG_SIG4]);
return AH_TRUE;
}
}
HALDEBUG(ah, HAL_DEBUG_DFS, "%s Found an unknown BB hang signature! "
"<0x806c>=0x%x\n", __func__, hang_sig);
return AH_FALSE;
#undef N
} /* end - ar9300_detect_bb_hang () */
#undef NUM_STATUS_READS
HAL_STATUS
ar9300_select_ant_config(struct ath_hal *ah, u_int32_t cfg)
{
struct ath_hal_9300 *ahp = AH9300(ah);
const struct ieee80211_channel *chan = AH_PRIVATE(ah)->ah_curchan;
HAL_CHANNEL_INTERNAL *ichan = ath_hal_checkchannel(ah, chan);
const HAL_CAPABILITIES *p_cap = &AH_PRIVATE(ah)->ah_caps;
u_int16_t ant_config;
u_int32_t hal_num_ant_config;
hal_num_ant_config = IS_CHAN_2GHZ(ichan) ?
p_cap->halNumAntCfg2GHz: p_cap->halNumAntCfg5GHz;
if (cfg < hal_num_ant_config) {
if (HAL_OK == ar9300_eeprom_get_ant_cfg(ahp, chan, cfg, &ant_config)) {
OS_REG_WRITE(ah, AR_PHY_SWITCH_COM, ant_config);
return HAL_OK;
}
}
return HAL_EINVAL;
}
/*
* Functions to get/set DCS mode
*/
void
ar9300_set_dcs_mode(struct ath_hal *ah, u_int32_t mode)
{
AH9300(ah)->ah_dcs_enable = mode;
}
u_int32_t
ar9300_get_dcs_mode(struct ath_hal *ah)
{
return AH9300(ah)->ah_dcs_enable;
}
#if ATH_BT_COEX
void
ar9300_set_bt_coex_info(struct ath_hal *ah, HAL_BT_COEX_INFO *btinfo)
{
struct ath_hal_9300 *ahp = AH9300(ah);
ahp->ah_bt_module = btinfo->bt_module;
ahp->ah_bt_coex_config_type = btinfo->bt_coex_config;
ahp->ah_bt_active_gpio_select = btinfo->bt_gpio_bt_active;
ahp->ah_bt_priority_gpio_select = btinfo->bt_gpio_bt_priority;
ahp->ah_wlan_active_gpio_select = btinfo->bt_gpio_wlan_active;
ahp->ah_bt_active_polarity = btinfo->bt_active_polarity;
ahp->ah_bt_coex_single_ant = btinfo->bt_single_ant;
ahp->ah_bt_wlan_isolation = btinfo->bt_isolation;
}
void
ar9300_bt_coex_config(struct ath_hal *ah, HAL_BT_COEX_CONFIG *btconf)
{
struct ath_hal_9300 *ahp = AH9300(ah);
HAL_BOOL rx_clear_polarity;
/*
* For Kiwi and Osprey, the polarity of rx_clear is active high.
* The bt_rxclear_polarity flag from ath_dev needs to be inverted.
*/
rx_clear_polarity = !btconf->bt_rxclear_polarity;
ahp->ah_bt_coex_mode = (ahp->ah_bt_coex_mode & AR_BT_QCU_THRESH) |
SM(btconf->bt_time_extend, AR_BT_TIME_EXTEND) |
SM(btconf->bt_txstate_extend, AR_BT_TXSTATE_EXTEND) |
SM(btconf->bt_txframe_extend, AR_BT_TX_FRAME_EXTEND) |
SM(btconf->bt_mode, AR_BT_MODE) |
SM(btconf->bt_quiet_collision, AR_BT_QUIET) |
SM(rx_clear_polarity, AR_BT_RX_CLEAR_POLARITY) |
SM(btconf->bt_priority_time, AR_BT_PRIORITY_TIME) |
SM(btconf->bt_first_slot_time, AR_BT_FIRST_SLOT_TIME);
ahp->ah_bt_coex_mode2 |= SM(btconf->bt_hold_rxclear, AR_BT_HOLD_RX_CLEAR);
if (ahp->ah_bt_coex_single_ant == AH_FALSE) {
/* Enable ACK to go out even though BT has higher priority. */
ahp->ah_bt_coex_mode2 |= AR_BT_DISABLE_BT_ANT;
}
}
void
ar9300_bt_coex_set_qcu_thresh(struct ath_hal *ah, int qnum)
{
struct ath_hal_9300 *ahp = AH9300(ah);
/* clear the old value, then set the new value */
ahp->ah_bt_coex_mode &= ~AR_BT_QCU_THRESH;
ahp->ah_bt_coex_mode |= SM(qnum, AR_BT_QCU_THRESH);
}
void
ar9300_bt_coex_set_weights(struct ath_hal *ah, u_int32_t stomp_type)
{
struct ath_hal_9300 *ahp = AH9300(ah);
ahp->ah_bt_coex_bt_weight[0] = AR9300_BT_WGHT;
ahp->ah_bt_coex_bt_weight[1] = AR9300_BT_WGHT;
ahp->ah_bt_coex_bt_weight[2] = AR9300_BT_WGHT;
ahp->ah_bt_coex_bt_weight[3] = AR9300_BT_WGHT;
switch (stomp_type) {
case HAL_BT_COEX_STOMP_ALL:
ahp->ah_bt_coex_wlan_weight[0] = AR9300_STOMP_ALL_WLAN_WGHT0;
ahp->ah_bt_coex_wlan_weight[1] = AR9300_STOMP_ALL_WLAN_WGHT1;
break;
case HAL_BT_COEX_STOMP_LOW:
ahp->ah_bt_coex_wlan_weight[0] = AR9300_STOMP_LOW_WLAN_WGHT0;
ahp->ah_bt_coex_wlan_weight[1] = AR9300_STOMP_LOW_WLAN_WGHT1;
break;
case HAL_BT_COEX_STOMP_ALL_FORCE:
ahp->ah_bt_coex_wlan_weight[0] = AR9300_STOMP_ALL_FORCE_WLAN_WGHT0;
ahp->ah_bt_coex_wlan_weight[1] = AR9300_STOMP_ALL_FORCE_WLAN_WGHT1;
break;
case HAL_BT_COEX_STOMP_LOW_FORCE:
ahp->ah_bt_coex_wlan_weight[0] = AR9300_STOMP_LOW_FORCE_WLAN_WGHT0;
ahp->ah_bt_coex_wlan_weight[1] = AR9300_STOMP_LOW_FORCE_WLAN_WGHT1;
break;
case HAL_BT_COEX_STOMP_NONE:
case HAL_BT_COEX_NO_STOMP:
ahp->ah_bt_coex_wlan_weight[0] = AR9300_STOMP_NONE_WLAN_WGHT0;
ahp->ah_bt_coex_wlan_weight[1] = AR9300_STOMP_NONE_WLAN_WGHT1;
break;
default:
/* There is a force_weight from registry */
ahp->ah_bt_coex_wlan_weight[0] = stomp_type;
ahp->ah_bt_coex_wlan_weight[1] = stomp_type;
break;
}
}
void
ar9300_bt_coex_setup_bmiss_thresh(struct ath_hal *ah, u_int32_t thresh)
{
struct ath_hal_9300 *ahp = AH9300(ah);
/* clear the old value, then set the new value */
ahp->ah_bt_coex_mode2 &= ~AR_BT_BCN_MISS_THRESH;
ahp->ah_bt_coex_mode2 |= SM(thresh, AR_BT_BCN_MISS_THRESH);
}
static void
ar9300_bt_coex_antenna_diversity(struct ath_hal *ah, u_int32_t value)
{
struct ath_hal_9300 *ahp = AH9300(ah);
#if ATH_ANT_DIV_COMB
//struct ath_hal_private *ahpriv = AH_PRIVATE(ah);
const struct ieee80211_channel *chan = AH_PRIVATE(ah)->ah_curchan;
#endif
HALDEBUG(ah, HAL_DEBUG_BT_COEX, "%s: called, value=%d\n", __func__, value);
if (ahp->ah_bt_coex_flag & HAL_BT_COEX_FLAG_ANT_DIV_ALLOW)
{
if (ahp->ah_diversity_control == HAL_ANT_VARIABLE)
{
/* Config antenna diversity */
#if ATH_ANT_DIV_COMB
ar9300_ant_ctrl_set_lna_div_use_bt_ant(ah, value, chan);
#endif
}
}
}
void
ar9300_bt_coex_set_parameter(struct ath_hal *ah, u_int32_t type,
u_int32_t value)
{
struct ath_hal_9300 *ahp = AH9300(ah);
struct ath_hal_private *ahpriv = AH_PRIVATE(ah);
switch (type) {
case HAL_BT_COEX_SET_ACK_PWR:
if (value) {
ahp->ah_bt_coex_flag |= HAL_BT_COEX_FLAG_LOW_ACK_PWR;
} else {
ahp->ah_bt_coex_flag &= ~HAL_BT_COEX_FLAG_LOW_ACK_PWR;
}
ar9300_set_tx_power_limit(ah, ahpriv->ah_powerLimit,
ahpriv->ah_extraTxPow, 0);
break;
case HAL_BT_COEX_ANTENNA_DIVERSITY:
if (AR_SREV_POSEIDON(ah) || AR_SREV_APHRODITE(ah)) {
ahp->ah_bt_coex_flag |= HAL_BT_COEX_FLAG_ANT_DIV_ALLOW;
if (value) {
ahp->ah_bt_coex_flag |= HAL_BT_COEX_FLAG_ANT_DIV_ENABLE;
}
else {
ahp->ah_bt_coex_flag &= ~HAL_BT_COEX_FLAG_ANT_DIV_ENABLE;
}
ar9300_bt_coex_antenna_diversity(ah, value);
}
break;
case HAL_BT_COEX_LOWER_TX_PWR:
if (value) {
ahp->ah_bt_coex_flag |= HAL_BT_COEX_FLAG_LOWER_TX_PWR;
}
else {
ahp->ah_bt_coex_flag &= ~HAL_BT_COEX_FLAG_LOWER_TX_PWR;
}
ar9300_set_tx_power_limit(ah, ahpriv->ah_powerLimit,
ahpriv->ah_extraTxPow, 0);
break;
#if ATH_SUPPORT_MCI
case HAL_BT_COEX_MCI_MAX_TX_PWR:
if ((ah->ah_config.ath_hal_mci_config &
ATH_MCI_CONFIG_CONCUR_TX) == ATH_MCI_CONCUR_TX_SHARED_CHN)
{
if (value) {
ahp->ah_bt_coex_flag |= HAL_BT_COEX_FLAG_MCI_MAX_TX_PWR;
ahp->ah_mci_concur_tx_en = AH_TRUE;
}
else {
ahp->ah_bt_coex_flag &= ~HAL_BT_COEX_FLAG_MCI_MAX_TX_PWR;
ahp->ah_mci_concur_tx_en = AH_FALSE;
}
ar9300_set_tx_power_limit(ah, ahpriv->ah_powerLimit,
ahpriv->ah_extraTxPow, 0);
}
HALDEBUG(ah, HAL_DEBUG_BT_COEX, "(MCI) concur_tx_en = %d\n",
ahp->ah_mci_concur_tx_en);
break;
case HAL_BT_COEX_MCI_FTP_STOMP_RX:
if (value) {
ahp->ah_bt_coex_flag |= HAL_BT_COEX_FLAG_MCI_FTP_STOMP_RX;
}
else {
ahp->ah_bt_coex_flag &= ~HAL_BT_COEX_FLAG_MCI_FTP_STOMP_RX;
}
break;
#endif
default:
break;
}
}
void
ar9300_bt_coex_disable(struct ath_hal *ah)
{
struct ath_hal_9300 *ahp = AH9300(ah);
/* Always drive rx_clear_external output as 0 */
ath_hal_gpioCfgOutput(ah, ahp->ah_wlan_active_gpio_select,
HAL_GPIO_OUTPUT_MUX_AS_OUTPUT);
if (ahp->ah_bt_coex_single_ant == AH_TRUE) {
OS_REG_RMW_FIELD(ah, AR_QUIET1, AR_QUIET1_QUIET_ACK_CTS_ENABLE, 1);
OS_REG_RMW_FIELD(ah, AR_PCU_MISC, AR_PCU_BT_ANT_PREVENT_RX, 0);
}
OS_REG_WRITE(ah, AR_BT_COEX_MODE, AR_BT_QUIET | AR_BT_MODE);
OS_REG_WRITE(ah, AR_BT_COEX_MODE2, 0);
OS_REG_WRITE(ah, AR_BT_COEX_WL_WEIGHTS0, 0);
OS_REG_WRITE(ah, AR_BT_COEX_WL_WEIGHTS1, 0);
OS_REG_WRITE(ah, AR_BT_COEX_BT_WEIGHTS0, 0);
OS_REG_WRITE(ah, AR_BT_COEX_BT_WEIGHTS1, 0);
OS_REG_WRITE(ah, AR_BT_COEX_BT_WEIGHTS2, 0);
OS_REG_WRITE(ah, AR_BT_COEX_BT_WEIGHTS3, 0);
ahp->ah_bt_coex_enabled = AH_FALSE;
}
int
ar9300_bt_coex_enable(struct ath_hal *ah)
{
struct ath_hal_9300 *ahp = AH9300(ah);
/* Program coex mode and weight registers to actually enable coex */
OS_REG_WRITE(ah, AR_BT_COEX_MODE, ahp->ah_bt_coex_mode);
OS_REG_WRITE(ah, AR_BT_COEX_MODE2, ahp->ah_bt_coex_mode2);
OS_REG_WRITE(ah, AR_BT_COEX_WL_WEIGHTS0, ahp->ah_bt_coex_wlan_weight[0]);
OS_REG_WRITE(ah, AR_BT_COEX_WL_WEIGHTS1, ahp->ah_bt_coex_wlan_weight[1]);
OS_REG_WRITE(ah, AR_BT_COEX_BT_WEIGHTS0, ahp->ah_bt_coex_bt_weight[0]);
OS_REG_WRITE(ah, AR_BT_COEX_BT_WEIGHTS1, ahp->ah_bt_coex_bt_weight[1]);
OS_REG_WRITE(ah, AR_BT_COEX_BT_WEIGHTS2, ahp->ah_bt_coex_bt_weight[2]);
OS_REG_WRITE(ah, AR_BT_COEX_BT_WEIGHTS3, ahp->ah_bt_coex_bt_weight[3]);
if (ahp->ah_bt_coex_flag & HAL_BT_COEX_FLAG_LOW_ACK_PWR) {
OS_REG_WRITE(ah, AR_TPC, HAL_BT_COEX_LOW_ACK_POWER);
} else {
OS_REG_WRITE(ah, AR_TPC, HAL_BT_COEX_HIGH_ACK_POWER);
}
OS_REG_RMW_FIELD(ah, AR_QUIET1, AR_QUIET1_QUIET_ACK_CTS_ENABLE, 1);
if (ahp->ah_bt_coex_single_ant == AH_TRUE) {
OS_REG_RMW_FIELD(ah, AR_PCU_MISC, AR_PCU_BT_ANT_PREVENT_RX, 1);
} else {
OS_REG_RMW_FIELD(ah, AR_PCU_MISC, AR_PCU_BT_ANT_PREVENT_RX, 0);
}
if (ahp->ah_bt_coex_config_type == HAL_BT_COEX_CFG_3WIRE) {
/* For 3-wire, configure the desired GPIO port for rx_clear */
ath_hal_gpioCfgOutput(ah,
ahp->ah_wlan_active_gpio_select,
HAL_GPIO_OUTPUT_MUX_AS_WLAN_ACTIVE);
}
else if ((ahp->ah_bt_coex_config_type >= HAL_BT_COEX_CFG_2WIRE_2CH) &&
(ahp->ah_bt_coex_config_type <= HAL_BT_COEX_CFG_2WIRE_CH0))
{
/* For 2-wire, configure the desired GPIO port for TX_FRAME output */
ath_hal_gpioCfgOutput(ah,
ahp->ah_wlan_active_gpio_select,
HAL_GPIO_OUTPUT_MUX_AS_TX_FRAME);
}
/*
* Enable a weak pull down on BT_ACTIVE.
* When BT device is disabled, BT_ACTIVE might be floating.
*/
OS_REG_RMW(ah, AR_HOSTIF_REG(ah, AR_GPIO_PDPU),
(AR_GPIO_PULL_DOWN << (ahp->ah_bt_active_gpio_select * 2)),
(AR_GPIO_PDPU_OPTION << (ahp->ah_bt_active_gpio_select * 2)));
ahp->ah_bt_coex_enabled = AH_TRUE;
return 0;
}
u_int32_t ar9300_get_bt_active_gpio(struct ath_hal *ah, u_int32_t reg)
{
return 0;
}
u_int32_t ar9300_get_wlan_active_gpio(struct ath_hal *ah, u_int32_t reg,u_int32_t bOn)
{
return bOn;
}
void
ar9300_init_bt_coex(struct ath_hal *ah)
{
struct ath_hal_9300 *ahp = AH9300(ah);
if (ahp->ah_bt_coex_config_type == HAL_BT_COEX_CFG_3WIRE) {
OS_REG_SET_BIT(ah, AR_HOSTIF_REG(ah, AR_GPIO_INPUT_EN_VAL),
(AR_GPIO_INPUT_EN_VAL_BT_PRIORITY_BB |
AR_GPIO_INPUT_EN_VAL_BT_ACTIVE_BB));
/*
* Set input mux for bt_prority_async and
* bt_active_async to GPIO pins
*/
OS_REG_RMW_FIELD(ah,
AR_HOSTIF_REG(ah, AR_GPIO_INPUT_MUX1),
AR_GPIO_INPUT_MUX1_BT_ACTIVE,
ahp->ah_bt_active_gpio_select);
OS_REG_RMW_FIELD(ah,
AR_HOSTIF_REG(ah, AR_GPIO_INPUT_MUX1),
AR_GPIO_INPUT_MUX1_BT_PRIORITY,
ahp->ah_bt_priority_gpio_select);
/* Configure the desired GPIO ports for input */
ath_hal_gpioCfgInput(ah, ahp->ah_bt_active_gpio_select);
ath_hal_gpioCfgInput(ah, ahp->ah_bt_priority_gpio_select);
if (ahp->ah_bt_coex_enabled) {
ar9300_bt_coex_enable(ah);
} else {
ar9300_bt_coex_disable(ah);
}
}
else if ((ahp->ah_bt_coex_config_type >= HAL_BT_COEX_CFG_2WIRE_2CH) &&
(ahp->ah_bt_coex_config_type <= HAL_BT_COEX_CFG_2WIRE_CH0))
{
/* 2-wire */
if (ahp->ah_bt_coex_enabled) {
/* Connect bt_active_async to baseband */
OS_REG_CLR_BIT(ah,
AR_HOSTIF_REG(ah, AR_GPIO_INPUT_EN_VAL),
(AR_GPIO_INPUT_EN_VAL_BT_PRIORITY_DEF |
AR_GPIO_INPUT_EN_VAL_BT_FREQUENCY_DEF));
OS_REG_SET_BIT(ah,
AR_HOSTIF_REG(ah, AR_GPIO_INPUT_EN_VAL),
AR_GPIO_INPUT_EN_VAL_BT_ACTIVE_BB);
/*
* Set input mux for bt_prority_async and
* bt_active_async to GPIO pins
*/
OS_REG_RMW_FIELD(ah,
AR_HOSTIF_REG(ah, AR_GPIO_INPUT_MUX1),
AR_GPIO_INPUT_MUX1_BT_ACTIVE,
ahp->ah_bt_active_gpio_select);
/* Configure the desired GPIO ports for input */
ath_hal_gpioCfgInput(ah, ahp->ah_bt_active_gpio_select);
/* Enable coexistence on initialization */
ar9300_bt_coex_enable(ah);
}
}
#if ATH_SUPPORT_MCI
else if (ahp->ah_bt_coex_config_type == HAL_BT_COEX_CFG_MCI) {
if (ahp->ah_bt_coex_enabled) {
ar9300_mci_bt_coex_enable(ah);
}
else {
ar9300_mci_bt_coex_disable(ah);
}
}
#endif /* ATH_SUPPORT_MCI */
}
#endif /* ATH_BT_COEX */
HAL_STATUS ar9300_set_proxy_sta(struct ath_hal *ah, HAL_BOOL enable)
{
u_int32_t val;
int wasp_mm_rev;
#define AR_SOC_RST_REVISION_ID 0xB8060090
#define REG_READ(_reg) *((volatile u_int32_t *)(_reg))
wasp_mm_rev = (REG_READ(AR_SOC_RST_REVISION_ID) &
AR_SREV_REVISION_WASP_MINOR_MINOR_MASK) >>
AR_SREV_REVISION_WASP_MINOR_MINOR_SHIFT;
#undef AR_SOC_RST_REVISION_ID
#undef REG_READ
/*
* Azimuth (ProxySTA) Mode is only supported correctly by
* Peacock or WASP 1.3.0.1 or later (hopefully) chips.
*
* Enable this feature for Scorpion at this time. The silicon
* still needs to be validated.
*/
if (!(AH_PRIVATE((ah))->ah_macVersion == AR_SREV_VERSION_AR9580) &&
!(AH_PRIVATE((ah))->ah_macVersion == AR_SREV_VERSION_SCORPION) &&
!((AH_PRIVATE((ah))->ah_macVersion == AR_SREV_VERSION_WASP) &&
((AH_PRIVATE((ah))->ah_macRev > AR_SREV_REVISION_WASP_13) ||
(AH_PRIVATE((ah))->ah_macRev == AR_SREV_REVISION_WASP_13 &&
wasp_mm_rev >= 0 /* 1 */))))
{
HALDEBUG(ah, HAL_DEBUG_UNMASKABLE, "%s error: current chip (ver 0x%x, "
"rev 0x%x, minor minor rev 0x%x) cannot support Azimuth Mode\n",
__func__, AH_PRIVATE((ah))->ah_macVersion,
AH_PRIVATE((ah))->ah_macRev, wasp_mm_rev);
return HAL_ENOTSUPP;
}
OS_REG_WRITE(ah,
AR_MAC_PCU_LOGIC_ANALYZER, AR_MAC_PCU_LOGIC_ANALYZER_PSTABUG75996);
/* turn on mode bit[24] for proxy sta */
OS_REG_WRITE(ah, AR_PCU_MISC_MODE2,
OS_REG_READ(ah, AR_PCU_MISC_MODE2) | AR_PCU_MISC_MODE2_PROXY_STA);
val = OS_REG_READ(ah, AR_AZIMUTH_MODE);
if (enable) {
val |= AR_AZIMUTH_KEY_SEARCH_AD1 |
AR_AZIMUTH_CTS_MATCH_TX_AD2 |
AR_AZIMUTH_BA_USES_AD1;
/* turn off filter pass hold (bit 9) */
val &= ~AR_AZIMUTH_FILTER_PASS_HOLD;
} else {
val &= ~(AR_AZIMUTH_KEY_SEARCH_AD1 |
AR_AZIMUTH_CTS_MATCH_TX_AD2 |
AR_AZIMUTH_BA_USES_AD1);
}
OS_REG_WRITE(ah, AR_AZIMUTH_MODE, val);
/* enable promiscous mode */
OS_REG_WRITE(ah, AR_RX_FILTER,
OS_REG_READ(ah, AR_RX_FILTER) | HAL_RX_FILTER_PROM);
/* enable promiscous in azimuth mode */
OS_REG_WRITE(ah, AR_PCU_MISC_MODE2, AR_PCU_MISC_MODE2_PROM_VC_MODE);
OS_REG_WRITE(ah, AR_MAC_PCU_LOGIC_ANALYZER, AR_MAC_PCU_LOGIC_ANALYZER_VC_MODE);
/* turn on filter pass hold (bit 9) */
OS_REG_WRITE(ah, AR_AZIMUTH_MODE,
OS_REG_READ(ah, AR_AZIMUTH_MODE) | AR_AZIMUTH_FILTER_PASS_HOLD);
return HAL_OK;
}
#if 0
void ar9300_mat_enable(struct ath_hal *ah, int enable)
{
/*
* MAT (s/w ProxySTA) implementation requires to turn off interrupt
* mitigation and turn on key search always for better performance.
*/
struct ath_hal_9300 *ahp = AH9300(ah);
struct ath_hal_private *ap = AH_PRIVATE(ah);
ahp->ah_intr_mitigation_rx = !enable;
if (ahp->ah_intr_mitigation_rx) {
/*
* Enable Interrupt Mitigation for Rx.
* If no build-specific limits for the rx interrupt mitigation
* timer have been specified, use conservative defaults.
*/
#ifndef AH_RIMT_VAL_LAST
#define AH_RIMT_LAST_MICROSEC 500
#endif
#ifndef AH_RIMT_VAL_FIRST
#define AH_RIMT_FIRST_MICROSEC 2000
#endif
OS_REG_RMW_FIELD(ah, AR_RIMT, AR_RIMT_LAST, AH_RIMT_LAST_MICROSEC);
OS_REG_RMW_FIELD(ah, AR_RIMT, AR_RIMT_FIRST, AH_RIMT_FIRST_MICROSEC);
} else {
OS_REG_WRITE(ah, AR_RIMT, 0);
}
ahp->ah_enable_keysearch_always = !!enable;
ar9300_enable_keysearch_always(ah, ahp->ah_enable_keysearch_always);
}
#endif
void ar9300_enable_tpc(struct ath_hal *ah)
{
u_int32_t val = 0;
ah->ah_config.ath_hal_desc_tpc = 1;
/* Enable TPC */
OS_REG_RMW_FIELD(ah, AR_PHY_PWRTX_MAX, AR_PHY_PER_PACKET_POWERTX_MAX, 1);
/*
* Disable per chain power reduction since we are already
* accounting for this in our calculations
*/
val = OS_REG_READ(ah, AR_PHY_POWER_TX_SUB);
if (AR_SREV_WASP(ah)) {
OS_REG_WRITE(ah, AR_PHY_POWER_TX_SUB,
val & AR_PHY_POWER_TX_SUB_2_DISABLE);
} else {
OS_REG_WRITE(ah, AR_PHY_POWER_TX_SUB,
val & AR_PHY_POWER_TX_SUB_3_DISABLE);
}
}
/*
* ar9300_force_tsf_sync
* This function forces the TSF sync to the given bssid, this is implemented
* as a temp hack to get the AoW demo, and is primarily used in the WDS client
* mode of operation, where we sync the TSF to RootAP TSF values
*/
void
ar9300_force_tsf_sync(struct ath_hal *ah, const u_int8_t *bssid,
u_int16_t assoc_id)
{
ar9300_set_operating_mode(ah, HAL_M_STA);
ar9300_write_associd(ah, bssid, assoc_id);
}
void ar9300_chk_rssi_update_tx_pwr(struct ath_hal *ah, int rssi)
{
struct ath_hal_9300 *ahp = AH9300(ah);
u_int32_t temp_obdb_reg_val = 0, temp_tcp_reg_val;
u_int32_t temp_powertx_rate9_reg_val;
int8_t olpc_power_offset = 0;
int8_t tmp_olpc_val = 0;
HAL_RSSI_TX_POWER old_greentx_status;
u_int8_t target_power_val_t[ar9300_rate_size];
int8_t tmp_rss1_thr1, tmp_rss1_thr2;
if ((AH_PRIVATE(ah)->ah_opmode != HAL_M_STA) ||
!ah->ah_config.ath_hal_sta_update_tx_pwr_enable) {
return;
}
old_greentx_status = AH9300(ah)->green_tx_status;
if (ahp->ah_hw_green_tx_enable) {
tmp_rss1_thr1 = AR9485_HW_GREEN_TX_THRES1_DB;
tmp_rss1_thr2 = AR9485_HW_GREEN_TX_THRES2_DB;
} else {
tmp_rss1_thr1 = WB225_SW_GREEN_TX_THRES1_DB;
tmp_rss1_thr2 = WB225_SW_GREEN_TX_THRES2_DB;
}
if ((ah->ah_config.ath_hal_sta_update_tx_pwr_enable_S1)
&& (rssi > tmp_rss1_thr1))
{
if (old_greentx_status != HAL_RSSI_TX_POWER_SHORT) {
AH9300(ah)->green_tx_status = HAL_RSSI_TX_POWER_SHORT;
}
} else if (ah->ah_config.ath_hal_sta_update_tx_pwr_enable_S2
&& (rssi > tmp_rss1_thr2))
{
if (old_greentx_status != HAL_RSSI_TX_POWER_MIDDLE) {
AH9300(ah)->green_tx_status = HAL_RSSI_TX_POWER_MIDDLE;
}
} else if (ah->ah_config.ath_hal_sta_update_tx_pwr_enable_S3) {
if (old_greentx_status != HAL_RSSI_TX_POWER_LONG) {
AH9300(ah)->green_tx_status = HAL_RSSI_TX_POWER_LONG;
}
}
/* If status is not change, don't do anything */
if (old_greentx_status == AH9300(ah)->green_tx_status) {
return;
}
/* for Poseidon which ath_hal_sta_update_tx_pwr_enable is enabled */
if ((AH9300(ah)->green_tx_status != HAL_RSSI_TX_POWER_NONE)
&& AR_SREV_POSEIDON(ah))
{
if (ahp->ah_hw_green_tx_enable) {
switch (AH9300(ah)->green_tx_status) {
case HAL_RSSI_TX_POWER_SHORT:
/* 1. TxPower Config */
OS_MEMCPY(target_power_val_t, ar9485_hw_gtx_tp_distance_short,
sizeof(target_power_val_t));
/* 1.1 Store OLPC Delta Calibration Offset*/
olpc_power_offset = 0;
/* 2. Store OB/DB */
/* 3. Store TPC settting */
temp_tcp_reg_val = (SM(14, AR_TPC_ACK) |
SM(14, AR_TPC_CTS) |
SM(14, AR_TPC_CHIRP) |
SM(14, AR_TPC_RPT));
/* 4. Store BB_powertx_rate9 value */
temp_powertx_rate9_reg_val =
AR9485_BBPWRTXRATE9_HW_GREEN_TX_SHORT_VALUE;
break;
case HAL_RSSI_TX_POWER_MIDDLE:
/* 1. TxPower Config */
OS_MEMCPY(target_power_val_t, ar9485_hw_gtx_tp_distance_middle,
sizeof(target_power_val_t));
/* 1.1 Store OLPC Delta Calibration Offset*/
olpc_power_offset = 0;
/* 2. Store OB/DB */
/* 3. Store TPC settting */
temp_tcp_reg_val = (SM(18, AR_TPC_ACK) |
SM(18, AR_TPC_CTS) |
SM(18, AR_TPC_CHIRP) |
SM(18, AR_TPC_RPT));
/* 4. Store BB_powertx_rate9 value */
temp_powertx_rate9_reg_val =
AR9485_BBPWRTXRATE9_HW_GREEN_TX_MIDDLE_VALUE;
break;
case HAL_RSSI_TX_POWER_LONG:
default:
/* 1. TxPower Config */
OS_MEMCPY(target_power_val_t, ahp->ah_default_tx_power,
sizeof(target_power_val_t));
/* 1.1 Store OLPC Delta Calibration Offset*/
olpc_power_offset = 0;
/* 2. Store OB/DB1/DB2 */
/* 3. Store TPC settting */
temp_tcp_reg_val =
AH9300(ah)->ah_ob_db1[POSEIDON_STORED_REG_TPC];
/* 4. Store BB_powertx_rate9 value */
temp_powertx_rate9_reg_val =
AH9300(ah)->ah_ob_db1[POSEIDON_STORED_REG_BB_PWRTX_RATE9];
break;
}
} else {
switch (AH9300(ah)->green_tx_status) {
case HAL_RSSI_TX_POWER_SHORT:
/* 1. TxPower Config */
OS_MEMCPY(target_power_val_t, wb225_sw_gtx_tp_distance_short,
sizeof(target_power_val_t));
/* 1.1 Store OLPC Delta Calibration Offset*/
olpc_power_offset =
wb225_gtx_olpc_cal_offset[WB225_OB_GREEN_TX_SHORT_VALUE] -
wb225_gtx_olpc_cal_offset[WB225_OB_CALIBRATION_VALUE];
/* 2. Store OB/DB */
temp_obdb_reg_val =
AH9300(ah)->ah_ob_db1[POSEIDON_STORED_REG_OBDB];
temp_obdb_reg_val &= ~(AR_PHY_65NM_CH0_TXRF2_DB2G |
AR_PHY_65NM_CH0_TXRF2_OB2G_CCK |
AR_PHY_65NM_CH0_TXRF2_OB2G_PSK |
AR_PHY_65NM_CH0_TXRF2_OB2G_QAM);
temp_obdb_reg_val |= (SM(5, AR_PHY_65NM_CH0_TXRF2_DB2G) |
SM(WB225_OB_GREEN_TX_SHORT_VALUE,
AR_PHY_65NM_CH0_TXRF2_OB2G_CCK) |
SM(WB225_OB_GREEN_TX_SHORT_VALUE,
AR_PHY_65NM_CH0_TXRF2_OB2G_PSK) |
SM(WB225_OB_GREEN_TX_SHORT_VALUE,
AR_PHY_65NM_CH0_TXRF2_OB2G_QAM));
/* 3. Store TPC settting */
temp_tcp_reg_val = (SM(6, AR_TPC_ACK) |
SM(6, AR_TPC_CTS) |
SM(6, AR_TPC_CHIRP) |
SM(6, AR_TPC_RPT));
/* 4. Store BB_powertx_rate9 value */
temp_powertx_rate9_reg_val =
WB225_BBPWRTXRATE9_SW_GREEN_TX_SHORT_VALUE;
break;
case HAL_RSSI_TX_POWER_MIDDLE:
/* 1. TxPower Config */
OS_MEMCPY(target_power_val_t, wb225_sw_gtx_tp_distance_middle,
sizeof(target_power_val_t));
/* 1.1 Store OLPC Delta Calibration Offset*/
olpc_power_offset =
wb225_gtx_olpc_cal_offset[WB225_OB_GREEN_TX_MIDDLE_VALUE] -
wb225_gtx_olpc_cal_offset[WB225_OB_CALIBRATION_VALUE];
/* 2. Store OB/DB */
temp_obdb_reg_val =
AH9300(ah)->ah_ob_db1[POSEIDON_STORED_REG_OBDB];
temp_obdb_reg_val &= ~(AR_PHY_65NM_CH0_TXRF2_DB2G |
AR_PHY_65NM_CH0_TXRF2_OB2G_CCK |
AR_PHY_65NM_CH0_TXRF2_OB2G_PSK |
AR_PHY_65NM_CH0_TXRF2_OB2G_QAM);
temp_obdb_reg_val |= (SM(5, AR_PHY_65NM_CH0_TXRF2_DB2G) |
SM(WB225_OB_GREEN_TX_MIDDLE_VALUE,
AR_PHY_65NM_CH0_TXRF2_OB2G_CCK) |
SM(WB225_OB_GREEN_TX_MIDDLE_VALUE,
AR_PHY_65NM_CH0_TXRF2_OB2G_PSK) |
SM(WB225_OB_GREEN_TX_MIDDLE_VALUE,
AR_PHY_65NM_CH0_TXRF2_OB2G_QAM));
/* 3. Store TPC settting */
temp_tcp_reg_val = (SM(14, AR_TPC_ACK) |
SM(14, AR_TPC_CTS) |
SM(14, AR_TPC_CHIRP) |
SM(14, AR_TPC_RPT));
/* 4. Store BB_powertx_rate9 value */
temp_powertx_rate9_reg_val =
WB225_BBPWRTXRATE9_SW_GREEN_TX_MIDDLE_VALUE;
break;
case HAL_RSSI_TX_POWER_LONG:
default:
/* 1. TxPower Config */
OS_MEMCPY(target_power_val_t, ahp->ah_default_tx_power,
sizeof(target_power_val_t));
/* 1.1 Store OLPC Delta Calibration Offset*/
olpc_power_offset =
wb225_gtx_olpc_cal_offset[WB225_OB_GREEN_TX_LONG_VALUE] -
wb225_gtx_olpc_cal_offset[WB225_OB_CALIBRATION_VALUE];
/* 2. Store OB/DB1/DB2 */
temp_obdb_reg_val =
AH9300(ah)->ah_ob_db1[POSEIDON_STORED_REG_OBDB];
/* 3. Store TPC settting */
temp_tcp_reg_val =
AH9300(ah)->ah_ob_db1[POSEIDON_STORED_REG_TPC];
/* 4. Store BB_powertx_rate9 value */
temp_powertx_rate9_reg_val =
AH9300(ah)->ah_ob_db1[POSEIDON_STORED_REG_BB_PWRTX_RATE9];
break;
}
}
/* 1.1 Do OLPC Delta Calibration Offset */
tmp_olpc_val =
(int8_t) AH9300(ah)->ah_db2[POSEIDON_STORED_REG_G2_OLPC_OFFSET];
tmp_olpc_val += olpc_power_offset;
OS_REG_RMW(ah, AR_PHY_TPC_11_B0,
(tmp_olpc_val << AR_PHY_TPC_OLPC_GAIN_DELTA_S),
AR_PHY_TPC_OLPC_GAIN_DELTA);
/* 1.2 TxPower Config */
ar9300_transmit_power_reg_write(ah, target_power_val_t);
/* 2. Config OB/DB */
if (!ahp->ah_hw_green_tx_enable) {
OS_REG_WRITE(ah, AR_PHY_65NM_CH0_TXRF2, temp_obdb_reg_val);
}
/* 3. config TPC settting */
OS_REG_WRITE(ah, AR_TPC, temp_tcp_reg_val);
/* 4. config BB_powertx_rate9 value */
OS_REG_WRITE(ah, AR_PHY_BB_POWERTX_RATE9, temp_powertx_rate9_reg_val);
}
}
#if 0
void
ar9300_get_vow_stats(
struct ath_hal *ah, HAL_VOWSTATS* p_stats, u_int8_t vow_reg_flags)
{
if (vow_reg_flags & AR_REG_TX_FRM_CNT) {
p_stats->tx_frame_count = OS_REG_READ(ah, AR_TFCNT);
}
if (vow_reg_flags & AR_REG_RX_FRM_CNT) {
p_stats->rx_frame_count = OS_REG_READ(ah, AR_RFCNT);
}
if (vow_reg_flags & AR_REG_RX_CLR_CNT) {
p_stats->rx_clear_count = OS_REG_READ(ah, AR_RCCNT);
}
if (vow_reg_flags & AR_REG_CYCLE_CNT) {
p_stats->cycle_count = OS_REG_READ(ah, AR_CCCNT);
}
if (vow_reg_flags & AR_REG_EXT_CYCLE_CNT) {
p_stats->ext_cycle_count = OS_REG_READ(ah, AR_EXTRCCNT);
}
}
#endif
/*
* ar9300_is_skip_paprd_by_greentx
*
* This function check if we need to skip PAPRD tuning
* when GreenTx in specific state.
*/
HAL_BOOL
ar9300_is_skip_paprd_by_greentx(struct ath_hal *ah)
{
if (AR_SREV_POSEIDON(ah) &&
ah->ah_config.ath_hal_sta_update_tx_pwr_enable &&
((AH9300(ah)->green_tx_status == HAL_RSSI_TX_POWER_SHORT) ||
(AH9300(ah)->green_tx_status == HAL_RSSI_TX_POWER_MIDDLE)))
{
return AH_TRUE;
}
return AH_FALSE;
}
void
ar9300_control_signals_for_green_tx_mode(struct ath_hal *ah)
{
unsigned int valid_obdb_0_b0 = 0x2d; // 5,5 - dB[0:2],oB[5:3]
unsigned int valid_obdb_1_b0 = 0x25; // 4,5 - dB[0:2],oB[5:3]
unsigned int valid_obdb_2_b0 = 0x1d; // 3,5 - dB[0:2],oB[5:3]
unsigned int valid_obdb_3_b0 = 0x15; // 2,5 - dB[0:2],oB[5:3]
unsigned int valid_obdb_4_b0 = 0xd; // 1,5 - dB[0:2],oB[5:3]
struct ath_hal_9300 *ahp = AH9300(ah);
if (AR_SREV_POSEIDON(ah) && ahp->ah_hw_green_tx_enable) {
OS_REG_RMW_FIELD_ALT(ah, AR_PHY_PAPRD_VALID_OBDB_POSEIDON,
AR_PHY_PAPRD_VALID_OBDB_0, valid_obdb_0_b0);
OS_REG_RMW_FIELD_ALT(ah, AR_PHY_PAPRD_VALID_OBDB_POSEIDON,
AR_PHY_PAPRD_VALID_OBDB_1, valid_obdb_1_b0);
OS_REG_RMW_FIELD_ALT(ah, AR_PHY_PAPRD_VALID_OBDB_POSEIDON,
AR_PHY_PAPRD_VALID_OBDB_2, valid_obdb_2_b0);
OS_REG_RMW_FIELD_ALT(ah, AR_PHY_PAPRD_VALID_OBDB_POSEIDON,
AR_PHY_PAPRD_VALID_OBDB_3, valid_obdb_3_b0);
OS_REG_RMW_FIELD_ALT(ah, AR_PHY_PAPRD_VALID_OBDB_POSEIDON,
AR_PHY_PAPRD_VALID_OBDB_4, valid_obdb_4_b0);
}
}
void ar9300_hwgreentx_set_pal_spare(struct ath_hal *ah, int value)
{
struct ath_hal_9300 *ahp = AH9300(ah);
if (AR_SREV_POSEIDON(ah) && ahp->ah_hw_green_tx_enable) {
if ((value == 0) || (value == 1)) {
OS_REG_RMW_FIELD(ah, AR_PHY_65NM_CH0_TXRF3,
AR_PHY_65NM_CH0_TXRF3_OLD_PAL_SPARE, value);
}
}
}
void ar9300_reset_hw_beacon_proc_crc(struct ath_hal *ah)
{
OS_REG_SET_BIT(ah, AR_HWBCNPROC1, AR_HWBCNPROC1_RESET_CRC);
}
int32_t ar9300_get_hw_beacon_rssi(struct ath_hal *ah)
{
int32_t val = OS_REG_READ_FIELD(ah, AR_BCN_RSSI_AVE, AR_BCN_RSSI_AVE_VAL);
/* RSSI format is 8.4. Ignore lowest four bits */
val = val >> 4;
return val;
}
void ar9300_set_hw_beacon_rssi_threshold(struct ath_hal *ah,
u_int32_t rssi_threshold)
{
struct ath_hal_9300 *ahp = AH9300(ah);
OS_REG_RMW_FIELD(ah, AR_RSSI_THR, AR_RSSI_THR_VAL, rssi_threshold);
/* save value for restoring after chip reset */
ahp->ah_beacon_rssi_threshold = rssi_threshold;
}
void ar9300_reset_hw_beacon_rssi(struct ath_hal *ah)
{
OS_REG_SET_BIT(ah, AR_RSSI_THR, AR_RSSI_BCN_RSSI_RST);
}
void ar9300_set_hw_beacon_proc(struct ath_hal *ah, HAL_BOOL on)
{
if (on) {
OS_REG_SET_BIT(ah, AR_HWBCNPROC1, AR_HWBCNPROC1_CRC_ENABLE |
AR_HWBCNPROC1_EXCLUDE_TIM_ELM);
}
else {
OS_REG_CLR_BIT(ah, AR_HWBCNPROC1, AR_HWBCNPROC1_CRC_ENABLE |
AR_HWBCNPROC1_EXCLUDE_TIM_ELM);
}
}
/*
* Gets the contents of the specified key cache entry.
*/
HAL_BOOL
ar9300_print_keycache(struct ath_hal *ah)
{
const HAL_CAPABILITIES *p_cap = &AH_PRIVATE(ah)->ah_caps;
u_int32_t key0, key1, key2, key3, key4;
u_int32_t mac_hi, mac_lo;
u_int16_t entry = 0;
u_int32_t valid = 0;
u_int32_t key_type;
ath_hal_printf(ah, "Slot Key\t\t\t Valid Type Mac \n");
for (entry = 0 ; entry < p_cap->halKeyCacheSize; entry++) {
key0 = OS_REG_READ(ah, AR_KEYTABLE_KEY0(entry));
key1 = OS_REG_READ(ah, AR_KEYTABLE_KEY1(entry));
key2 = OS_REG_READ(ah, AR_KEYTABLE_KEY2(entry));
key3 = OS_REG_READ(ah, AR_KEYTABLE_KEY3(entry));
key4 = OS_REG_READ(ah, AR_KEYTABLE_KEY4(entry));
key_type = OS_REG_READ(ah, AR_KEYTABLE_TYPE(entry));
mac_lo = OS_REG_READ(ah, AR_KEYTABLE_MAC0(entry));
mac_hi = OS_REG_READ(ah, AR_KEYTABLE_MAC1(entry));
if (mac_hi & AR_KEYTABLE_VALID) {
valid = 1;
} else {
valid = 0;
}
if ((mac_hi != 0) && (mac_lo != 0)) {
mac_hi &= ~0x8000;
mac_hi <<= 1;
mac_hi |= ((mac_lo & (1 << 31) )) >> 31;
mac_lo <<= 1;
}
ath_hal_printf(ah,
"%03d "
"%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x"
" %02d %02d "
"%02x:%02x:%02x:%02x:%02x:%02x \n",
entry,
(key0 << 24) >> 24, (key0 << 16) >> 24,
(key0 << 8) >> 24, key0 >> 24,
(key1 << 24) >> 24, (key1 << 16) >> 24,
//(key1 << 8) >> 24, key1 >> 24,
(key2 << 24) >> 24, (key2 << 16) >> 24,
(key2 << 8) >> 24, key2 >> 24,
(key3 << 24) >> 24, (key3 << 16) >> 24,
//(key3 << 8) >> 24, key3 >> 24,
(key4 << 24) >> 24, (key4 << 16) >> 24,
(key4 << 8) >> 24, key4 >> 24,
valid, key_type,
(mac_lo << 24) >> 24, (mac_lo << 16) >> 24, (mac_lo << 8) >> 24,
(mac_lo) >> 24, (mac_hi << 24) >> 24, (mac_hi << 16) >> 24 );
}
return AH_TRUE;
}
/* enable/disable smart antenna mode */
HAL_BOOL
ar9300_set_smart_antenna(struct ath_hal *ah, HAL_BOOL enable)
{
struct ath_hal_9300 *ahp = AH9300(ah);
if (enable) {
OS_REG_SET_BIT(ah, AR_XRTO, AR_ENABLE_SMARTANTENNA);
} else {
OS_REG_CLR_BIT(ah, AR_XRTO, AR_ENABLE_SMARTANTENNA);
}
/* if scropion and smart antenna is enabled, write swcom1 with 0x440
* and swcom2 with 0
* FIXME Ideally these registers need to be made read from caldata.
* Until the calibration team gets them, keep them along with board
* configuration.
*/
if (enable && AR_SREV_SCORPION(ah) &&
(HAL_OK == ar9300_get_capability(ah, HAL_CAP_SMARTANTENNA, 0,0))) {
OS_REG_WRITE(ah, AR_PHY_SWITCH_COM, 0x440);
OS_REG_WRITE(ah, AR_PHY_SWITCH_COM_2, 0);
}
ahp->ah_smartantenna_enable = enable;
return 1;
}
#ifdef ATH_TX99_DIAG
#ifndef ATH_SUPPORT_HTC
void
ar9300_tx99_channel_pwr_update(struct ath_hal *ah, HAL_CHANNEL *c,
u_int32_t txpower)
{
#define PWR_MAS(_r, _s) (((_r) & 0x3f) << (_s))
static int16_t p_pwr_array[ar9300_rate_size] = { 0 };
int32_t i;
/* The max power is limited to 63 */
if (txpower <= AR9300_MAX_RATE_POWER) {
for (i = 0; i < ar9300_rate_size; i++) {
p_pwr_array[i] = txpower;
}
} else {
for (i = 0; i < ar9300_rate_size; i++) {
p_pwr_array[i] = AR9300_MAX_RATE_POWER;
}
}
OS_REG_WRITE(ah, 0xa458, 0);
/* Write the OFDM power per rate set */
/* 6 (LSB), 9, 12, 18 (MSB) */
OS_REG_WRITE(ah, 0xa3c0,
PWR_MAS(p_pwr_array[ALL_TARGET_LEGACY_6_24], 24)
| PWR_MAS(p_pwr_array[ALL_TARGET_LEGACY_6_24], 16)
| PWR_MAS(p_pwr_array[ALL_TARGET_LEGACY_6_24], 8)
| PWR_MAS(p_pwr_array[ALL_TARGET_LEGACY_6_24], 0)
);
/* 24 (LSB), 36, 48, 54 (MSB) */
OS_REG_WRITE(ah, 0xa3c4,
PWR_MAS(p_pwr_array[ALL_TARGET_LEGACY_54], 24)
| PWR_MAS(p_pwr_array[ALL_TARGET_LEGACY_48], 16)
| PWR_MAS(p_pwr_array[ALL_TARGET_LEGACY_36], 8)
| PWR_MAS(p_pwr_array[ALL_TARGET_LEGACY_6_24], 0)
);
/* Write the CCK power per rate set */
/* 1L (LSB), reserved, 2L, 2S (MSB) */
OS_REG_WRITE(ah, 0xa3c8,
PWR_MAS(p_pwr_array[ALL_TARGET_LEGACY_1L_5L], 24)
| PWR_MAS(p_pwr_array[ALL_TARGET_LEGACY_1L_5L], 16)
/* | PWR_MAS(txPowerTimes2, 8) */ /* this is reserved for Osprey */
| PWR_MAS(p_pwr_array[ALL_TARGET_LEGACY_1L_5L], 0)
);
/* 5.5L (LSB), 5.5S, 11L, 11S (MSB) */
OS_REG_WRITE(ah, 0xa3cc,
PWR_MAS(p_pwr_array[ALL_TARGET_LEGACY_11S], 24)
| PWR_MAS(p_pwr_array[ALL_TARGET_LEGACY_11L], 16)
| PWR_MAS(p_pwr_array[ALL_TARGET_LEGACY_5S], 8)
| PWR_MAS(p_pwr_array[ALL_TARGET_LEGACY_1L_5L], 0)
);
/* Write the HT20 power per rate set */
/* 0/8/16 (LSB), 1-3/9-11/17-19, 4, 5 (MSB) */
OS_REG_WRITE(ah, 0xa3d0,
PWR_MAS(p_pwr_array[ALL_TARGET_HT20_5], 24)
| PWR_MAS(p_pwr_array[ALL_TARGET_HT20_4], 16)
| PWR_MAS(p_pwr_array[ALL_TARGET_HT20_1_3_9_11_17_19], 8)
| PWR_MAS(p_pwr_array[ALL_TARGET_HT20_0_8_16], 0)
);
/* 6 (LSB), 7, 12, 13 (MSB) */
OS_REG_WRITE(ah, 0xa3d4,
PWR_MAS(p_pwr_array[ALL_TARGET_HT20_13], 24)
| PWR_MAS(p_pwr_array[ALL_TARGET_HT20_12], 16)
| PWR_MAS(p_pwr_array[ALL_TARGET_HT20_7], 8)
| PWR_MAS(p_pwr_array[ALL_TARGET_HT20_6], 0)
);
/* 14 (LSB), 15, 20, 21 */
OS_REG_WRITE(ah, 0xa3e4,
PWR_MAS(p_pwr_array[ALL_TARGET_HT20_21], 24)
| PWR_MAS(p_pwr_array[ALL_TARGET_HT20_20], 16)
| PWR_MAS(p_pwr_array[ALL_TARGET_HT20_15], 8)
| PWR_MAS(p_pwr_array[ALL_TARGET_HT20_14], 0)
);
/* Mixed HT20 and HT40 rates */
/* HT20 22 (LSB), HT20 23, HT40 22, HT40 23 (MSB) */
OS_REG_WRITE(ah, 0xa3e8,
PWR_MAS(p_pwr_array[ALL_TARGET_HT40_23], 24)
| PWR_MAS(p_pwr_array[ALL_TARGET_HT40_22], 16)
| PWR_MAS(p_pwr_array[ALL_TARGET_HT20_23], 8)
| PWR_MAS(p_pwr_array[ALL_TARGET_HT20_22], 0)
);
/* Write the HT40 power per rate set */
/* correct PAR difference between HT40 and HT20/LEGACY */
/* 0/8/16 (LSB), 1-3/9-11/17-19, 4, 5 (MSB) */
OS_REG_WRITE(ah, 0xa3d8,
PWR_MAS(p_pwr_array[ALL_TARGET_HT40_5], 24)
| PWR_MAS(p_pwr_array[ALL_TARGET_HT40_4], 16)
| PWR_MAS(p_pwr_array[ALL_TARGET_HT40_1_3_9_11_17_19], 8)
| PWR_MAS(p_pwr_array[ALL_TARGET_HT40_0_8_16], 0)
);
/* 6 (LSB), 7, 12, 13 (MSB) */
OS_REG_WRITE(ah, 0xa3dc,
PWR_MAS(p_pwr_array[ALL_TARGET_HT40_13], 24)
| PWR_MAS(p_pwr_array[ALL_TARGET_HT40_12], 16)
| PWR_MAS(p_pwr_array[ALL_TARGET_HT40_7], 8)
| PWR_MAS(p_pwr_array[ALL_TARGET_HT40_6], 0)
);
/* 14 (LSB), 15, 20, 21 */
OS_REG_WRITE(ah, 0xa3ec,
PWR_MAS(p_pwr_array[ALL_TARGET_HT40_21], 24)
| PWR_MAS(p_pwr_array[ALL_TARGET_HT40_20], 16)
| PWR_MAS(p_pwr_array[ALL_TARGET_HT40_15], 8)
| PWR_MAS(p_pwr_array[ALL_TARGET_HT40_14], 0)
);
#undef PWR_MAS
}
void
ar9300_tx99_chainmsk_setup(struct ath_hal *ah, int tx_chainmask)
{
if (tx_chainmask == 0x5) {
OS_REG_WRITE(ah, AR_PHY_ANALOG_SWAP,
OS_REG_READ(ah, AR_PHY_ANALOG_SWAP) | AR_PHY_SWAP_ALT_CHAIN);
}
OS_REG_WRITE(ah, AR_PHY_RX_CHAINMASK, tx_chainmask);
OS_REG_WRITE(ah, AR_PHY_CAL_CHAINMASK, tx_chainmask);
OS_REG_WRITE(ah, AR_SELFGEN_MASK, tx_chainmask);
if (tx_chainmask == 0x5) {
OS_REG_WRITE(ah, AR_PHY_ANALOG_SWAP,
OS_REG_READ(ah, AR_PHY_ANALOG_SWAP) | AR_PHY_SWAP_ALT_CHAIN);
}
}
void
ar9300_tx99_set_single_carrier(struct ath_hal *ah, int tx_chain_mask,
int chtype)
{
OS_REG_WRITE(ah, 0x98a4, OS_REG_READ(ah, 0x98a4) | (0x7ff << 11) | 0x7ff);
OS_REG_WRITE(ah, 0xa364, OS_REG_READ(ah, 0xa364) | (1 << 7) | (1 << 1));
OS_REG_WRITE(ah, 0xa350,
(OS_REG_READ(ah, 0xa350) | (1 << 31) | (1 << 15)) & ~(1 << 13));
/* 11G mode */
if (!chtype) {
OS_REG_WRITE(ah, AR_PHY_65NM_CH0_RXTX2,
OS_REG_READ(ah, AR_PHY_65NM_CH0_RXTX2) | (0x1 << 3) | (0x1 << 2));
if (AR_SREV_OSPREY(ah) || AR_SREV_WASP(ah)) {
OS_REG_WRITE(ah, AR_PHY_65NM_CH0_TOP,
OS_REG_READ(ah, AR_PHY_65NM_CH0_TOP) & ~(0x1 << 4));
OS_REG_WRITE(ah, AR_PHY_65NM_CH0_TOP2,
(OS_REG_READ(ah, AR_PHY_65NM_CH0_TOP2)
| (0x1 << 26) | (0x7 << 24))
& ~(0x1 << 22));
} else {
OS_REG_WRITE(ah, AR_HORNET_CH0_TOP,
OS_REG_READ(ah, AR_HORNET_CH0_TOP) & ~(0x1 << 4));
OS_REG_WRITE(ah, AR_HORNET_CH0_TOP2,
(OS_REG_READ(ah, AR_HORNET_CH0_TOP2)
| (0x1 << 26) | (0x7 << 24))
& ~(0x1 << 22));
}
/* chain zero */
if ((tx_chain_mask & 0x01) == 0x01) {
OS_REG_WRITE(ah, AR_PHY_65NM_CH0_RXTX1,
(OS_REG_READ(ah, AR_PHY_65NM_CH0_RXTX1)
| (0x1 << 31) | (0x5 << 15)
| (0x3 << 9)) & ~(0x1 << 27)
& ~(0x1 << 12));
OS_REG_WRITE(ah, AR_PHY_65NM_CH0_RXTX2,
(OS_REG_READ(ah, AR_PHY_65NM_CH0_RXTX2)
| (0x1 << 12) | (0x1 << 10)
| (0x1 << 9) | (0x1 << 8)
| (0x1 << 7)) & ~(0x1 << 11));
OS_REG_WRITE(ah, AR_PHY_65NM_CH0_RXTX3,
(OS_REG_READ(ah, AR_PHY_65NM_CH0_RXTX3)
| (0x1 << 29) | (0x1 << 25)
| (0x1 << 23) | (0x1 << 19)
| (0x1 << 10) | (0x1 << 9)
| (0x1 << 8) | (0x1 << 3))
& ~(0x1 << 28)& ~(0x1 << 24)
& ~(0x1 << 22)& ~(0x1 << 7));
OS_REG_WRITE(ah, AR_PHY_65NM_CH0_TXRF1,
(OS_REG_READ(ah, AR_PHY_65NM_CH0_TXRF1)
| (0x1 << 23))& ~(0x1 << 21));
OS_REG_WRITE(ah, AR_PHY_65NM_CH0_BB1,
OS_REG_READ(ah, AR_PHY_65NM_CH0_BB1)
| (0x1 << 12) | (0x1 << 10)
| (0x1 << 9) | (0x1 << 8)
| (0x1 << 6) | (0x1 << 5)
| (0x1 << 4) | (0x1 << 3)
| (0x1 << 2));
OS_REG_WRITE(ah, AR_PHY_65NM_CH0_BB2,
OS_REG_READ(ah, AR_PHY_65NM_CH0_BB2) | (0x1 << 31));
}
if (AR_SREV_OSPREY(ah) || AR_SREV_WASP(ah)) {
/* chain one */
if ((tx_chain_mask & 0x02) == 0x02 ) {
OS_REG_WRITE(ah, AR_PHY_65NM_CH1_RXTX1,
(OS_REG_READ(ah, AR_PHY_65NM_CH1_RXTX1)
| (0x1 << 31) | (0x5 << 15)
| (0x3 << 9)) & ~(0x1 << 27)
& ~(0x1 << 12));
OS_REG_WRITE(ah, AR_PHY_65NM_CH1_RXTX2,
(OS_REG_READ(ah, AR_PHY_65NM_CH1_RXTX2)
| (0x1 << 12) | (0x1 << 10)
| (0x1 << 9) | (0x1 << 8)
| (0x1 << 7)) & ~(0x1 << 11));
OS_REG_WRITE(ah, AR_PHY_65NM_CH1_RXTX3,
(OS_REG_READ(ah, AR_PHY_65NM_CH1_RXTX3)
| (0x1 << 29) | (0x1 << 25)
| (0x1 << 23) | (0x1 << 19)
| (0x1 << 10) | (0x1 << 9)
| (0x1 << 8) | (0x1 << 3))
& ~(0x1 << 28)& ~(0x1 << 24)
& ~(0x1 << 22)& ~(0x1 << 7));
OS_REG_WRITE(ah, AR_PHY_65NM_CH1_TXRF1,
(OS_REG_READ(ah, AR_PHY_65NM_CH1_TXRF1)
| (0x1 << 23))& ~(0x1 << 21));
OS_REG_WRITE(ah, AR_PHY_65NM_CH1_BB1,
OS_REG_READ(ah, AR_PHY_65NM_CH1_BB1)
| (0x1 << 12) | (0x1 << 10)
| (0x1 << 9) | (0x1 << 8)
| (0x1 << 6) | (0x1 << 5)
| (0x1 << 4) | (0x1 << 3)
| (0x1 << 2));
OS_REG_WRITE(ah, AR_PHY_65NM_CH1_BB2,
OS_REG_READ(ah, AR_PHY_65NM_CH1_BB2) | (0x1 << 31));
}
}
if (AR_SREV_OSPREY(ah)) {
/* chain two */
if ((tx_chain_mask & 0x04) == 0x04 ) {
OS_REG_WRITE(ah, AR_PHY_65NM_CH2_RXTX1,
(OS_REG_READ(ah, AR_PHY_65NM_CH2_RXTX1)
| (0x1 << 31) | (0x5 << 15)
| (0x3 << 9)) & ~(0x1 << 27)
& ~(0x1 << 12));
OS_REG_WRITE(ah, AR_PHY_65NM_CH2_RXTX2,
(OS_REG_READ(ah, AR_PHY_65NM_CH2_RXTX2)
| (0x1 << 12) | (0x1 << 10)
| (0x1 << 9) | (0x1 << 8)
| (0x1 << 7)) & ~(0x1 << 11));
OS_REG_WRITE(ah, AR_PHY_65NM_CH2_RXTX3,
(OS_REG_READ(ah, AR_PHY_65NM_CH2_RXTX3)
| (0x1 << 29) | (0x1 << 25)
| (0x1 << 23) | (0x1 << 19)
| (0x1 << 10) | (0x1 << 9)
| (0x1 << 8) | (0x1 << 3))
& ~(0x1 << 28)& ~(0x1 << 24)
& ~(0x1 << 22)& ~(0x1 << 7));
OS_REG_WRITE(ah, AR_PHY_65NM_CH2_TXRF1,
(OS_REG_READ(ah, AR_PHY_65NM_CH2_TXRF1)
| (0x1 << 23))& ~(0x1 << 21));
OS_REG_WRITE(ah, AR_PHY_65NM_CH2_BB1,
OS_REG_READ(ah, AR_PHY_65NM_CH2_BB1)
| (0x1 << 12) | (0x1 << 10)
| (0x1 << 9) | (0x1 << 8)
| (0x1 << 6) | (0x1 << 5)
| (0x1 << 4) | (0x1 << 3)
| (0x1 << 2));
OS_REG_WRITE(ah, AR_PHY_65NM_CH2_BB2,
OS_REG_READ(ah, AR_PHY_65NM_CH2_BB2) | (0x1 << 31));
}
}
OS_REG_WRITE(ah, 0xa28c, 0x11111);
OS_REG_WRITE(ah, 0xa288, 0x111);
} else {
/* chain zero */
if ((tx_chain_mask & 0x01) == 0x01) {
OS_REG_WRITE(ah, AR_PHY_65NM_CH0_RXTX1,
(OS_REG_READ(ah, AR_PHY_65NM_CH0_RXTX1)
| (0x1 << 31) | (0x1 << 27)
| (0x3 << 23) | (0x1 << 19)
| (0x1 << 15) | (0x3 << 9))
& ~(0x1 << 12));
OS_REG_WRITE(ah, AR_PHY_65NM_CH0_RXTX2,
(OS_REG_READ(ah, AR_PHY_65NM_CH0_RXTX2)
| (0x1 << 12) | (0x1 << 10)
| (0x1 << 9) | (0x1 << 8)
| (0x1 << 7) | (0x1 << 3)
| (0x1 << 2) | (0x1 << 1))
& ~(0x1 << 11)& ~(0x1 << 0));
OS_REG_WRITE(ah, AR_PHY_65NM_CH0_RXTX3,
(OS_REG_READ(ah, AR_PHY_65NM_CH0_RXTX3)
| (0x1 << 29) | (0x1 << 25)
| (0x1 << 23) | (0x1 << 19)
| (0x1 << 10) | (0x1 << 9)
| (0x1 << 8) | (0x1 << 3))
& ~(0x1 << 28)& ~(0x1 << 24)
& ~(0x1 << 22)& ~(0x1 << 7));
OS_REG_WRITE(ah, AR_PHY_65NM_CH0_TXRF1,
(OS_REG_READ(ah, AR_PHY_65NM_CH0_TXRF1)
| (0x1 << 23))& ~(0x1 << 21));
OS_REG_WRITE(ah, AR_PHY_65NM_CH0_TXRF2,
OS_REG_READ(ah, AR_PHY_65NM_CH0_TXRF2)
| (0x3 << 3) | (0x3 << 0));
OS_REG_WRITE(ah, AR_PHY_65NM_CH0_TXRF3,
(OS_REG_READ(ah, AR_PHY_65NM_CH0_TXRF3)
| (0x3 << 29) | (0x3 << 26)
| (0x2 << 23) | (0x2 << 20)
| (0x2 << 17))& ~(0x1 << 14));
OS_REG_WRITE(ah, AR_PHY_65NM_CH0_BB1,
OS_REG_READ(ah, AR_PHY_65NM_CH0_BB1)
| (0x1 << 12) | (0x1 << 10)
| (0x1 << 9) | (0x1 << 8)
| (0x1 << 6) | (0x1 << 5)
| (0x1 << 4) | (0x1 << 3)
| (0x1 << 2));
OS_REG_WRITE(ah, AR_PHY_65NM_CH0_BB2,
OS_REG_READ(ah, AR_PHY_65NM_CH0_BB2) | (0x1 << 31));
if (AR_SREV_OSPREY(ah) || AR_SREV_WASP(ah)) {
OS_REG_WRITE(ah, AR_PHY_65NM_CH0_TOP,
OS_REG_READ(ah, AR_PHY_65NM_CH0_TOP) & ~(0x1 << 4));
OS_REG_WRITE(ah, AR_PHY_65NM_CH0_TOP2,
OS_REG_READ(ah, AR_PHY_65NM_CH0_TOP2)
| (0x1 << 26) | (0x7 << 24)
| (0x3 << 22));
} else {
OS_REG_WRITE(ah, AR_HORNET_CH0_TOP,
OS_REG_READ(ah, AR_HORNET_CH0_TOP) & ~(0x1 << 4));
OS_REG_WRITE(ah, AR_HORNET_CH0_TOP2,
OS_REG_READ(ah, AR_HORNET_CH0_TOP2)
| (0x1 << 26) | (0x7 << 24)
| (0x3 << 22));
}
if (AR_SREV_OSPREY(ah) || AR_SREV_WASP(ah)) {
OS_REG_WRITE(ah, AR_PHY_65NM_CH1_RXTX2,
(OS_REG_READ(ah, AR_PHY_65NM_CH1_RXTX2)
| (0x1 << 3) | (0x1 << 2)
| (0x1 << 1)) & ~(0x1 << 0));
OS_REG_WRITE(ah, AR_PHY_65NM_CH1_RXTX3,
OS_REG_READ(ah, AR_PHY_65NM_CH1_RXTX3)
| (0x1 << 19) | (0x1 << 3));
OS_REG_WRITE(ah, AR_PHY_65NM_CH1_TXRF1,
OS_REG_READ(ah, AR_PHY_65NM_CH1_TXRF1) | (0x1 << 23));
}
if (AR_SREV_OSPREY(ah)) {
OS_REG_WRITE(ah, AR_PHY_65NM_CH2_RXTX2,
(OS_REG_READ(ah, AR_PHY_65NM_CH2_RXTX2)
| (0x1 << 3) | (0x1 << 2)
| (0x1 << 1)) & ~(0x1 << 0));
OS_REG_WRITE(ah, AR_PHY_65NM_CH2_RXTX3,
OS_REG_READ(ah, AR_PHY_65NM_CH2_RXTX3)
| (0x1 << 19) | (0x1 << 3));
OS_REG_WRITE(ah, AR_PHY_65NM_CH2_TXRF1,
OS_REG_READ(ah, AR_PHY_65NM_CH2_TXRF1) | (0x1 << 23));
}
}
if (AR_SREV_OSPREY(ah) || AR_SREV_WASP(ah)) {
/* chain one */
if ((tx_chain_mask & 0x02) == 0x02 ) {
OS_REG_WRITE(ah, AR_PHY_65NM_CH0_RXTX2,
(OS_REG_READ(ah, AR_PHY_65NM_CH0_RXTX2)
| (0x1 << 3) | (0x1 << 2)
| (0x1 << 1)) & ~(0x1 << 0));
OS_REG_WRITE(ah, AR_PHY_65NM_CH0_RXTX3,
OS_REG_READ(ah, AR_PHY_65NM_CH0_RXTX3)
| (0x1 << 19) | (0x1 << 3));
OS_REG_WRITE(ah, AR_PHY_65NM_CH0_TXRF1,
OS_REG_READ(ah, AR_PHY_65NM_CH0_TXRF1) | (0x1 << 23));
if (AR_SREV_OSPREY(ah) || AR_SREV_WASP(ah)) {
OS_REG_WRITE(ah, AR_PHY_65NM_CH0_TOP,
OS_REG_READ(ah, AR_PHY_65NM_CH0_TOP) & ~(0x1 << 4));
OS_REG_WRITE(ah, AR_PHY_65NM_CH0_TOP2,
OS_REG_READ(ah, AR_PHY_65NM_CH0_TOP2)
| (0x1 << 26) | (0x7 << 24)
| (0x3 << 22));
} else {
OS_REG_WRITE(ah, AR_HORNET_CH0_TOP,
OS_REG_READ(ah, AR_HORNET_CH0_TOP) & ~(0x1 << 4));
OS_REG_WRITE(ah, AR_HORNET_CH0_TOP2,
OS_REG_READ(ah, AR_HORNET_CH0_TOP2)
| (0x1 << 26) | (0x7 << 24)
| (0x3 << 22));
}
OS_REG_WRITE(ah, AR_PHY_65NM_CH1_RXTX1,
(OS_REG_READ(ah, AR_PHY_65NM_CH1_RXTX1)
| (0x1 << 31) | (0x1 << 27)
| (0x3 << 23) | (0x1 << 19)
| (0x1 << 15) | (0x3 << 9))
& ~(0x1 << 12));
OS_REG_WRITE(ah, AR_PHY_65NM_CH1_RXTX2,
(OS_REG_READ(ah, AR_PHY_65NM_CH1_RXTX2)
| (0x1 << 12) | (0x1 << 10)
| (0x1 << 9) | (0x1 << 8)
| (0x1 << 7) | (0x1 << 3)
| (0x1 << 2) | (0x1 << 1))
& ~(0x1 << 11)& ~(0x1 << 0));
OS_REG_WRITE(ah, AR_PHY_65NM_CH1_RXTX3,
(OS_REG_READ(ah, AR_PHY_65NM_CH1_RXTX3)
| (0x1 << 29) | (0x1 << 25)
| (0x1 << 23) | (0x1 << 19)
| (0x1 << 10) | (0x1 << 9)
| (0x1 << 8) | (0x1 << 3))
& ~(0x1 << 28)& ~(0x1 << 24)
& ~(0x1 << 22)& ~(0x1 << 7));
OS_REG_WRITE(ah, AR_PHY_65NM_CH1_TXRF1,
(OS_REG_READ(ah, AR_PHY_65NM_CH1_TXRF1)
| (0x1 << 23))& ~(0x1 << 21));
OS_REG_WRITE(ah, AR_PHY_65NM_CH1_TXRF2,
OS_REG_READ(ah, AR_PHY_65NM_CH1_TXRF2)
| (0x3 << 3) | (0x3 << 0));
OS_REG_WRITE(ah, AR_PHY_65NM_CH1_TXRF3,
(OS_REG_READ(ah, AR_PHY_65NM_CH1_TXRF3)
| (0x3 << 29) | (0x3 << 26)
| (0x2 << 23) | (0x2 << 20)
| (0x2 << 17))& ~(0x1 << 14));
OS_REG_WRITE(ah, AR_PHY_65NM_CH1_BB1,
OS_REG_READ(ah, AR_PHY_65NM_CH1_BB1)
| (0x1 << 12) | (0x1 << 10)
| (0x1 << 9) | (0x1 << 8)
| (0x1 << 6) | (0x1 << 5)
| (0x1 << 4) | (0x1 << 3)
| (0x1 << 2));
OS_REG_WRITE(ah, AR_PHY_65NM_CH1_BB2,
OS_REG_READ(ah, AR_PHY_65NM_CH1_BB2) | (0x1 << 31));
if (AR_SREV_OSPREY(ah)) {
OS_REG_WRITE(ah, AR_PHY_65NM_CH2_RXTX2,
(OS_REG_READ(ah, AR_PHY_65NM_CH2_RXTX2)
| (0x1 << 3) | (0x1 << 2)
| (0x1 << 1)) & ~(0x1 << 0));
OS_REG_WRITE(ah, AR_PHY_65NM_CH2_RXTX3,
OS_REG_READ(ah, AR_PHY_65NM_CH2_RXTX3)
| (0x1 << 19) | (0x1 << 3));
OS_REG_WRITE(ah, AR_PHY_65NM_CH2_TXRF1,
OS_REG_READ(ah, AR_PHY_65NM_CH2_TXRF1) | (0x1 << 23));
}
}
}
if (AR_SREV_OSPREY(ah)) {
/* chain two */
if ((tx_chain_mask & 0x04) == 0x04 ) {
OS_REG_WRITE(ah, AR_PHY_65NM_CH0_RXTX2,
(OS_REG_READ(ah, AR_PHY_65NM_CH0_RXTX2)
| (0x1 << 3) | (0x1 << 2)
| (0x1 << 1)) & ~(0x1 << 0));
OS_REG_WRITE(ah, AR_PHY_65NM_CH0_RXTX3,
OS_REG_READ(ah, AR_PHY_65NM_CH0_RXTX3)
| (0x1 << 19) | (0x1 << 3));
OS_REG_WRITE(ah, AR_PHY_65NM_CH0_TXRF1,
OS_REG_READ(ah, AR_PHY_65NM_CH0_TXRF1) | (0x1 << 23));
if (AR_SREV_OSPREY(ah) || AR_SREV_WASP(ah)) {
OS_REG_WRITE(ah, AR_PHY_65NM_CH0_TOP,
OS_REG_READ(ah, AR_PHY_65NM_CH0_TOP) & ~(0x1 << 4));
OS_REG_WRITE(ah, AR_PHY_65NM_CH0_TOP2,
OS_REG_READ(ah, AR_PHY_65NM_CH0_TOP2)
| (0x1 << 26) | (0x7 << 24)
| (0x3 << 22));
} else {
OS_REG_WRITE(ah, AR_HORNET_CH0_TOP,
OS_REG_READ(ah, AR_HORNET_CH0_TOP) & ~(0x1 << 4));
OS_REG_WRITE(ah, AR_HORNET_CH0_TOP2,
OS_REG_READ(ah, AR_HORNET_CH0_TOP2)
| (0x1 << 26) | (0x7 << 24)
| (0x3 << 22));
}
OS_REG_WRITE(ah, AR_PHY_65NM_CH1_RXTX2,
(OS_REG_READ(ah, AR_PHY_65NM_CH1_RXTX2)
| (0x1 << 3) | (0x1 << 2)
| (0x1 << 1)) & ~(0x1 << 0));
OS_REG_WRITE(ah, AR_PHY_65NM_CH1_RXTX3,
OS_REG_READ(ah, AR_PHY_65NM_CH1_RXTX3)
| (0x1 << 19) | (0x1 << 3));
OS_REG_WRITE(ah, AR_PHY_65NM_CH1_TXRF1,
OS_REG_READ(ah, AR_PHY_65NM_CH1_TXRF1) | (0x1 << 23));
OS_REG_WRITE(ah, AR_PHY_65NM_CH2_RXTX1,
(OS_REG_READ(ah, AR_PHY_65NM_CH2_RXTX1)
| (0x1 << 31) | (0x1 << 27)
| (0x3 << 23) | (0x1 << 19)
| (0x1 << 15) | (0x3 << 9))
& ~(0x1 << 12));
OS_REG_WRITE(ah, AR_PHY_65NM_CH2_RXTX2,
(OS_REG_READ(ah, AR_PHY_65NM_CH2_RXTX2)
| (0x1 << 12) | (0x1 << 10)
| (0x1 << 9) | (0x1 << 8)
| (0x1 << 7) | (0x1 << 3)
| (0x1 << 2) | (0x1 << 1))
& ~(0x1 << 11)& ~(0x1 << 0));
OS_REG_WRITE(ah, AR_PHY_65NM_CH2_RXTX3,
(OS_REG_READ(ah, AR_PHY_65NM_CH2_RXTX3)
| (0x1 << 29) | (0x1 << 25)
| (0x1 << 23) | (0x1 << 19)
| (0x1 << 10) | (0x1 << 9)
| (0x1 << 8) | (0x1 << 3))
& ~(0x1 << 28)& ~(0x1 << 24)
& ~(0x1 << 22)& ~(0x1 << 7));
OS_REG_WRITE(ah, AR_PHY_65NM_CH2_TXRF1,
(OS_REG_READ(ah, AR_PHY_65NM_CH2_TXRF1)
| (0x1 << 23))& ~(0x1 << 21));
OS_REG_WRITE(ah, AR_PHY_65NM_CH2_TXRF2,
OS_REG_READ(ah, AR_PHY_65NM_CH2_TXRF2)
| (0x3 << 3) | (0x3 << 0));
OS_REG_WRITE(ah, AR_PHY_65NM_CH2_TXRF3,
(OS_REG_READ(ah, AR_PHY_65NM_CH2_TXRF3)
| (0x3 << 29) | (0x3 << 26)
| (0x2 << 23) | (0x2 << 20)
| (0x2 << 17))& ~(0x1 << 14));
OS_REG_WRITE(ah, AR_PHY_65NM_CH2_BB1,
OS_REG_READ(ah, AR_PHY_65NM_CH2_BB1)
| (0x1 << 12) | (0x1 << 10)
| (0x1 << 9) | (0x1 << 8)
| (0x1 << 6) | (0x1 << 5)
| (0x1 << 4) | (0x1 << 3)
| (0x1 << 2));
OS_REG_WRITE(ah, AR_PHY_65NM_CH2_BB2,
OS_REG_READ(ah, AR_PHY_65NM_CH2_BB2) | (0x1 << 31));
}
}
OS_REG_WRITE(ah, 0xa28c, 0x22222);
OS_REG_WRITE(ah, 0xa288, 0x222);
}
}
void
ar9300_tx99_start(struct ath_hal *ah, u_int8_t *data)
{
u_int32_t val;
u_int32_t qnum = (u_int32_t)data;
/* Disable AGC to A2 */
OS_REG_WRITE(ah, AR_PHY_TEST, (OS_REG_READ(ah, AR_PHY_TEST) | PHY_AGC_CLR));
OS_REG_WRITE(ah, AR_DIAG_SW, OS_REG_READ(ah, AR_DIAG_SW) &~ AR_DIAG_RX_DIS);
OS_REG_WRITE(ah, AR_CR, AR_CR_RXD); /* set receive disable */
/* set CW_MIN and CW_MAX both to 0, AIFS=2 */
OS_REG_WRITE(ah, AR_DLCL_IFS(qnum), 0);
OS_REG_WRITE(ah, AR_D_GBL_IFS_SIFS, 20); /* 50 OK */
OS_REG_WRITE(ah, AR_D_GBL_IFS_EIFS, 20);
/* 200 ok for HT20, 400 ok for HT40 */
OS_REG_WRITE(ah, AR_TIME_OUT, 0x00000400);
OS_REG_WRITE(ah, AR_DRETRY_LIMIT(qnum), 0xffffffff);
/* set QCU modes to early termination */
val = OS_REG_READ(ah, AR_QMISC(qnum));
OS_REG_WRITE(ah, AR_QMISC(qnum), val | AR_Q_MISC_DCU_EARLY_TERM_REQ);
}
void
ar9300_tx99_stop(struct ath_hal *ah)
{
/* this should follow the setting of start */
OS_REG_WRITE(ah, AR_PHY_TEST, OS_REG_READ(ah, AR_PHY_TEST) &~ PHY_AGC_CLR);
OS_REG_WRITE(ah, AR_DIAG_SW, OS_REG_READ(ah, AR_DIAG_SW) | AR_DIAG_RX_DIS);
}
#endif /* ATH_TX99_DIAG */
#endif /* ATH_SUPPORT_HTC */
HAL_BOOL
ar9300Get3StreamSignature(struct ath_hal *ah)
{
return AH_FALSE;
}
HAL_BOOL
ar9300ForceVCS(struct ath_hal *ah)
{
return AH_FALSE;
}
HAL_BOOL
ar9300SetDfs3StreamFix(struct ath_hal *ah, u_int32_t val)
{
return AH_FALSE;
}
static u_int32_t
ar9300_read_loc_timer(struct ath_hal *ah)
{
return OS_REG_READ(ah, AR_LOC_TIMER_REG);
}
HAL_BOOL
ar9300_set_ctl_pwr(struct ath_hal *ah, u_int8_t *ctl_array)
{
struct ath_hal_9300 *ahp = AH9300(ah);
ar9300_eeprom_t *p_eep_data = &ahp->ah_eeprom;
u_int8_t *ctl_index;
u_int32_t offset = 0;
if (!ctl_array)
return AH_FALSE;
/* copy 2G ctl freqbin and power data */
ctl_index = p_eep_data->ctl_index_2g;
OS_MEMCPY(ctl_index + OSPREY_NUM_CTLS_2G, ctl_array,
OSPREY_NUM_CTLS_2G * OSPREY_NUM_BAND_EDGES_2G + /* ctl_freqbin_2G */
OSPREY_NUM_CTLS_2G * sizeof(OSP_CAL_CTL_DATA_2G)); /* ctl_power_data_2g */
offset = (OSPREY_NUM_CTLS_2G * OSPREY_NUM_BAND_EDGES_2G) +
( OSPREY_NUM_CTLS_2G * sizeof(OSP_CAL_CTL_DATA_2G));
/* copy 2G ctl freqbin and power data */
ctl_index = p_eep_data->ctl_index_5g;
OS_MEMCPY(ctl_index + OSPREY_NUM_CTLS_5G, ctl_array + offset,
OSPREY_NUM_CTLS_5G * OSPREY_NUM_BAND_EDGES_5G + /* ctl_freqbin_5G */
OSPREY_NUM_CTLS_5G * sizeof(OSP_CAL_CTL_DATA_5G)); /* ctl_power_data_5g */
return AH_FALSE;
}
void
ar9300_set_txchainmaskopt(struct ath_hal *ah, u_int8_t mask)
{
struct ath_hal_9300 *ahp = AH9300(ah);
/* optional txchainmask should be subset of primary txchainmask */
if ((mask & ahp->ah_tx_chainmask) != mask) {
ahp->ah_tx_chainmaskopt = 0;
ath_hal_printf(ah, "Error: ah_tx_chainmask=%d, mask=%d\n", ahp->ah_tx_chainmask, mask);
return;
}
ahp->ah_tx_chainmaskopt = mask;
}