710948de69
world. This should be considered highly experimental. Approved-by: re
350 lines
14 KiB
C
350 lines
14 KiB
C
/* $FreeBSD$ */
|
|
/* $NetBSD: rf_layout.h,v 1.5 2001/01/26 04:14:14 oster Exp $ */
|
|
/*
|
|
* Copyright (c) 1995 Carnegie-Mellon University.
|
|
* All rights reserved.
|
|
*
|
|
* Author: Mark Holland
|
|
*
|
|
* Permission to use, copy, modify and distribute this software and
|
|
* its documentation is hereby granted, provided that both the copyright
|
|
* notice and this permission notice appear in all copies of the
|
|
* software, derivative works or modified versions, and any portions
|
|
* thereof, and that both notices appear in supporting documentation.
|
|
*
|
|
* CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
|
|
* CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
|
|
* FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
|
|
*
|
|
* Carnegie Mellon requests users of this software to return to
|
|
*
|
|
* Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
|
|
* School of Computer Science
|
|
* Carnegie Mellon University
|
|
* Pittsburgh PA 15213-3890
|
|
*
|
|
* any improvements or extensions that they make and grant Carnegie the
|
|
* rights to redistribute these changes.
|
|
*/
|
|
|
|
/* rf_layout.h -- header file defining layout data structures
|
|
*/
|
|
|
|
#ifndef _RF__RF_LAYOUT_H_
|
|
#define _RF__RF_LAYOUT_H_
|
|
|
|
#include <dev/raidframe/rf_types.h>
|
|
#include <dev/raidframe/rf_archs.h>
|
|
#include <dev/raidframe/rf_alloclist.h>
|
|
|
|
#ifndef _KERNEL
|
|
#include <stdio.h>
|
|
#endif
|
|
|
|
/*****************************************************************************************
|
|
*
|
|
* This structure identifies all layout-specific operations and parameters.
|
|
*
|
|
****************************************************************************************/
|
|
|
|
typedef struct RF_LayoutSW_s {
|
|
RF_ParityConfig_t parityConfig;
|
|
const char *configName;
|
|
|
|
#ifndef _KERNEL
|
|
/* layout-specific parsing */
|
|
int (*MakeLayoutSpecific) (FILE * fp, RF_Config_t * cfgPtr, void *arg);
|
|
void *makeLayoutSpecificArg;
|
|
#endif /* !KERNEL */
|
|
|
|
#if RF_UTILITY == 0
|
|
/* initialization routine */
|
|
int (*Configure) (RF_ShutdownList_t ** shutdownListp, RF_Raid_t * raidPtr, RF_Config_t * cfgPtr);
|
|
|
|
/* routine to map RAID sector address -> physical (row, col, offset) */
|
|
void (*MapSector) (RF_Raid_t * raidPtr, RF_RaidAddr_t raidSector,
|
|
RF_RowCol_t * row, RF_RowCol_t * col, RF_SectorNum_t * diskSector, int remap);
|
|
|
|
/* routine to map RAID sector address -> physical (r,c,o) of parity
|
|
* unit */
|
|
void (*MapParity) (RF_Raid_t * raidPtr, RF_RaidAddr_t raidSector,
|
|
RF_RowCol_t * row, RF_RowCol_t * col, RF_SectorNum_t * diskSector, int remap);
|
|
|
|
/* routine to map RAID sector address -> physical (r,c,o) of Q unit */
|
|
void (*MapQ) (RF_Raid_t * raidPtr, RF_RaidAddr_t raidSector, RF_RowCol_t * row,
|
|
RF_RowCol_t * col, RF_SectorNum_t * diskSector, int remap);
|
|
|
|
/* routine to identify the disks comprising a stripe */
|
|
void (*IdentifyStripe) (RF_Raid_t * raidPtr, RF_RaidAddr_t addr,
|
|
RF_RowCol_t ** diskids, RF_RowCol_t * outRow);
|
|
|
|
/* routine to select a dag */
|
|
void (*SelectionFunc) (RF_Raid_t * raidPtr, RF_IoType_t type,
|
|
RF_AccessStripeMap_t * asmap,
|
|
RF_VoidFuncPtr *);
|
|
#if 0
|
|
void (**createFunc) (RF_Raid_t *,
|
|
RF_AccessStripeMap_t *,
|
|
RF_DagHeader_t *, void *,
|
|
RF_RaidAccessFlags_t,
|
|
RF_AllocListElem_t *);
|
|
|
|
#endif
|
|
|
|
/* map a stripe ID to a parity stripe ID. This is typically the
|
|
* identity mapping */
|
|
void (*MapSIDToPSID) (RF_RaidLayout_t * layoutPtr, RF_StripeNum_t stripeID,
|
|
RF_StripeNum_t * psID, RF_ReconUnitNum_t * which_ru);
|
|
|
|
/* get default head separation limit (may be NULL) */
|
|
RF_HeadSepLimit_t(*GetDefaultHeadSepLimit) (RF_Raid_t * raidPtr);
|
|
|
|
/* get default num recon buffers (may be NULL) */
|
|
int (*GetDefaultNumFloatingReconBuffers) (RF_Raid_t * raidPtr);
|
|
|
|
/* get number of spare recon units (may be NULL) */
|
|
RF_ReconUnitCount_t(*GetNumSpareRUs) (RF_Raid_t * raidPtr);
|
|
|
|
/* spare table installation (may be NULL) */
|
|
int (*InstallSpareTable) (RF_Raid_t * raidPtr, RF_RowCol_t frow, RF_RowCol_t fcol);
|
|
|
|
/* recon buffer submission function */
|
|
int (*SubmitReconBuffer) (RF_ReconBuffer_t * rbuf, int keep_it,
|
|
int use_committed);
|
|
|
|
/*
|
|
* verify that parity information for a stripe is correct
|
|
* see rf_parityscan.h for return vals
|
|
*/
|
|
int (*VerifyParity) (RF_Raid_t * raidPtr, RF_RaidAddr_t raidAddr,
|
|
RF_PhysDiskAddr_t * parityPDA, int correct_it, RF_RaidAccessFlags_t flags);
|
|
|
|
/* number of faults tolerated by this mapping */
|
|
int faultsTolerated;
|
|
|
|
/* states to step through in an access. Must end with "LastState". The
|
|
* default is DefaultStates in rf_layout.c */
|
|
RF_AccessState_t *states;
|
|
|
|
RF_AccessStripeMapFlags_t flags;
|
|
#endif /* RF_UTILITY == 0 */
|
|
} RF_LayoutSW_t;
|
|
/* enables remapping to spare location under dist sparing */
|
|
#define RF_REMAP 1
|
|
#define RF_DONT_REMAP 0
|
|
|
|
/*
|
|
* Flags values for RF_AccessStripeMapFlags_t
|
|
*/
|
|
#define RF_NO_STRIPE_LOCKS 0x0001 /* suppress stripe locks */
|
|
#define RF_DISTRIBUTE_SPARE 0x0002 /* distribute spare space in archs
|
|
* that support it */
|
|
#define RF_BD_DECLUSTERED 0x0004 /* declustering uses block designs */
|
|
|
|
/*************************************************************************
|
|
*
|
|
* this structure forms the layout component of the main Raid
|
|
* structure. It describes everything needed to define and perform
|
|
* the mapping of logical RAID addresses <-> physical disk addresses.
|
|
*
|
|
*************************************************************************/
|
|
struct RF_RaidLayout_s {
|
|
/* configuration parameters */
|
|
RF_SectorCount_t sectorsPerStripeUnit; /* number of sectors in one
|
|
* stripe unit */
|
|
RF_StripeCount_t SUsPerPU; /* stripe units per parity unit */
|
|
RF_StripeCount_t SUsPerRU; /* stripe units per reconstruction
|
|
* unit */
|
|
|
|
/* redundant-but-useful info computed from the above, used in all
|
|
* layouts */
|
|
RF_StripeCount_t numStripe; /* total number of stripes in the
|
|
* array */
|
|
RF_SectorCount_t dataSectorsPerStripe;
|
|
RF_StripeCount_t dataStripeUnitsPerDisk;
|
|
u_int bytesPerStripeUnit;
|
|
u_int dataBytesPerStripe;
|
|
RF_StripeCount_t numDataCol; /* number of SUs of data per stripe
|
|
* (name here is a la RAID4) */
|
|
RF_StripeCount_t numParityCol; /* number of SUs of parity per stripe.
|
|
* Always 1 for now */
|
|
RF_StripeCount_t numParityLogCol; /* number of SUs of parity log
|
|
* per stripe. Always 1 for
|
|
* now */
|
|
RF_StripeCount_t stripeUnitsPerDisk;
|
|
|
|
RF_LayoutSW_t *map; /* ptr to struct holding mapping fns and
|
|
* information */
|
|
void *layoutSpecificInfo; /* ptr to a structure holding
|
|
* layout-specific params */
|
|
};
|
|
/*****************************************************************************************
|
|
*
|
|
* The mapping code returns a pointer to a list of AccessStripeMap structures, which
|
|
* describes all the mapping information about an access. The list contains one
|
|
* AccessStripeMap structure per stripe touched by the access. Each element in the list
|
|
* contains a stripe identifier and a pointer to a list of PhysDiskAddr structuress. Each
|
|
* element in this latter list describes the physical location of a stripe unit accessed
|
|
* within the corresponding stripe.
|
|
*
|
|
****************************************************************************************/
|
|
|
|
#define RF_PDA_TYPE_DATA 0
|
|
#define RF_PDA_TYPE_PARITY 1
|
|
#define RF_PDA_TYPE_Q 2
|
|
|
|
struct RF_PhysDiskAddr_s {
|
|
RF_RowCol_t row, col; /* disk identifier */
|
|
RF_SectorNum_t startSector; /* sector offset into the disk */
|
|
RF_SectorCount_t numSector; /* number of sectors accessed */
|
|
int type; /* used by higher levels: currently, data,
|
|
* parity, or q */
|
|
caddr_t bufPtr; /* pointer to buffer supplying/receiving data */
|
|
RF_RaidAddr_t raidAddress; /* raid address corresponding to this
|
|
* physical disk address */
|
|
RF_PhysDiskAddr_t *next;
|
|
};
|
|
#define RF_MAX_FAILED_PDA RF_MAXCOL
|
|
|
|
struct RF_AccessStripeMap_s {
|
|
RF_StripeNum_t stripeID;/* the stripe index */
|
|
RF_RaidAddr_t raidAddress; /* the starting raid address within
|
|
* this stripe */
|
|
RF_RaidAddr_t endRaidAddress; /* raid address one sector past the
|
|
* end of the access */
|
|
RF_SectorCount_t totalSectorsAccessed; /* total num sectors
|
|
* identified in physInfo list */
|
|
RF_StripeCount_t numStripeUnitsAccessed; /* total num elements in
|
|
* physInfo list */
|
|
int numDataFailed; /* number of failed data disks accessed */
|
|
int numParityFailed;/* number of failed parity disks accessed (0
|
|
* or 1) */
|
|
int numQFailed; /* number of failed Q units accessed (0 or 1) */
|
|
RF_AccessStripeMapFlags_t flags; /* various flags */
|
|
#if 0
|
|
RF_PhysDiskAddr_t *failedPDA; /* points to the PDA that has failed */
|
|
RF_PhysDiskAddr_t *failedPDAtwo; /* points to the second PDA
|
|
* that has failed, if any */
|
|
#else
|
|
int numFailedPDAs; /* number of failed phys addrs */
|
|
RF_PhysDiskAddr_t *failedPDAs[RF_MAX_FAILED_PDA]; /* array of failed phys
|
|
* addrs */
|
|
#endif
|
|
RF_PhysDiskAddr_t *physInfo; /* a list of PhysDiskAddr structs */
|
|
RF_PhysDiskAddr_t *parityInfo; /* list of physical addrs for the
|
|
* parity (P of P + Q ) */
|
|
RF_PhysDiskAddr_t *qInfo; /* list of physical addrs for the Q of
|
|
* P + Q */
|
|
RF_LockReqDesc_t lockReqDesc; /* used for stripe locking */
|
|
RF_RowCol_t origRow; /* the original row: we may redirect the acc
|
|
* to a different row */
|
|
RF_AccessStripeMap_t *next;
|
|
};
|
|
/* flag values */
|
|
#define RF_ASM_REDIR_LARGE_WRITE 0x00000001 /* allows large-write creation
|
|
* code to redirect failed
|
|
* accs */
|
|
#define RF_ASM_BAILOUT_DAG_USED 0x00000002 /* allows us to detect
|
|
* recursive calls to the
|
|
* bailout write dag */
|
|
#define RF_ASM_FLAGS_LOCK_TRIED 0x00000004 /* we've acquired the lock on
|
|
* the first parity range in
|
|
* this parity stripe */
|
|
#define RF_ASM_FLAGS_LOCK_TRIED2 0x00000008 /* we've acquired the lock on
|
|
* the 2nd parity range in
|
|
* this parity stripe */
|
|
#define RF_ASM_FLAGS_FORCE_TRIED 0x00000010 /* we've done the force-recon
|
|
* call on this parity stripe */
|
|
#define RF_ASM_FLAGS_RECON_BLOCKED 0x00000020 /* we blocked recon => we must
|
|
* unblock it later */
|
|
|
|
struct RF_AccessStripeMapHeader_s {
|
|
RF_StripeCount_t numStripes; /* total number of stripes touched by
|
|
* this acc */
|
|
RF_AccessStripeMap_t *stripeMap; /* pointer to the actual map.
|
|
* Also used for making lists */
|
|
RF_AccessStripeMapHeader_t *next;
|
|
};
|
|
/*****************************************************************************************
|
|
*
|
|
* various routines mapping addresses in the RAID address space. These work across
|
|
* all layouts. DON'T PUT ANY LAYOUT-SPECIFIC CODE HERE.
|
|
*
|
|
****************************************************************************************/
|
|
|
|
/* return the identifier of the stripe containing the given address */
|
|
#define rf_RaidAddressToStripeID(_layoutPtr_, _addr_) \
|
|
( ((_addr_) / (_layoutPtr_)->sectorsPerStripeUnit) / (_layoutPtr_)->numDataCol )
|
|
|
|
/* return the raid address of the start of the indicates stripe ID */
|
|
#define rf_StripeIDToRaidAddress(_layoutPtr_, _sid_) \
|
|
( ((_sid_) * (_layoutPtr_)->sectorsPerStripeUnit) * (_layoutPtr_)->numDataCol )
|
|
|
|
/* return the identifier of the stripe containing the given stripe unit id */
|
|
#define rf_StripeUnitIDToStripeID(_layoutPtr_, _addr_) \
|
|
( (_addr_) / (_layoutPtr_)->numDataCol )
|
|
|
|
/* return the identifier of the stripe unit containing the given address */
|
|
#define rf_RaidAddressToStripeUnitID(_layoutPtr_, _addr_) \
|
|
( ((_addr_) / (_layoutPtr_)->sectorsPerStripeUnit) )
|
|
|
|
/* return the RAID address of next stripe boundary beyond the given address */
|
|
#define rf_RaidAddressOfNextStripeBoundary(_layoutPtr_, _addr_) \
|
|
( (((_addr_)/(_layoutPtr_)->dataSectorsPerStripe)+1) * (_layoutPtr_)->dataSectorsPerStripe )
|
|
|
|
/* return the RAID address of the start of the stripe containing the given address */
|
|
#define rf_RaidAddressOfPrevStripeBoundary(_layoutPtr_, _addr_) \
|
|
( (((_addr_)/(_layoutPtr_)->dataSectorsPerStripe)+0) * (_layoutPtr_)->dataSectorsPerStripe )
|
|
|
|
/* return the RAID address of next stripe unit boundary beyond the given address */
|
|
#define rf_RaidAddressOfNextStripeUnitBoundary(_layoutPtr_, _addr_) \
|
|
( (((_addr_)/(_layoutPtr_)->sectorsPerStripeUnit)+1L)*(_layoutPtr_)->sectorsPerStripeUnit )
|
|
|
|
/* return the RAID address of the start of the stripe unit containing RAID address _addr_ */
|
|
#define rf_RaidAddressOfPrevStripeUnitBoundary(_layoutPtr_, _addr_) \
|
|
( (((_addr_)/(_layoutPtr_)->sectorsPerStripeUnit)+0)*(_layoutPtr_)->sectorsPerStripeUnit )
|
|
|
|
/* returns the offset into the stripe. used by RaidAddressStripeAligned */
|
|
#define rf_RaidAddressStripeOffset(_layoutPtr_, _addr_) \
|
|
( (_addr_) % ((_layoutPtr_)->dataSectorsPerStripe) )
|
|
|
|
/* returns the offset into the stripe unit. */
|
|
#define rf_StripeUnitOffset(_layoutPtr_, _addr_) \
|
|
( (_addr_) % ((_layoutPtr_)->sectorsPerStripeUnit) )
|
|
|
|
/* returns nonzero if the given RAID address is stripe-aligned */
|
|
#define rf_RaidAddressStripeAligned( __layoutPtr__, __addr__ ) \
|
|
( rf_RaidAddressStripeOffset(__layoutPtr__, __addr__) == 0 )
|
|
|
|
/* returns nonzero if the given address is stripe-unit aligned */
|
|
#define rf_StripeUnitAligned( __layoutPtr__, __addr__ ) \
|
|
( rf_StripeUnitOffset(__layoutPtr__, __addr__) == 0 )
|
|
|
|
/* convert an address expressed in RAID blocks to/from an addr expressed in bytes */
|
|
#define rf_RaidAddressToByte(_raidPtr_, _addr_) \
|
|
( (_addr_) << ( (_raidPtr_)->logBytesPerSector ) )
|
|
|
|
#define rf_ByteToRaidAddress(_raidPtr_, _addr_) \
|
|
( (_addr_) >> ( (_raidPtr_)->logBytesPerSector ) )
|
|
|
|
/* convert a raid address to/from a parity stripe ID. Conversion to raid address is easy,
|
|
* since we're asking for the address of the first sector in the parity stripe. Conversion to a
|
|
* parity stripe ID is more complex, since stripes are not contiguously allocated in
|
|
* parity stripes.
|
|
*/
|
|
#define rf_RaidAddressToParityStripeID(_layoutPtr_, _addr_, _ru_num_) \
|
|
rf_MapStripeIDToParityStripeID( (_layoutPtr_), rf_RaidAddressToStripeID( (_layoutPtr_), (_addr_) ), (_ru_num_) )
|
|
|
|
#define rf_ParityStripeIDToRaidAddress(_layoutPtr_, _psid_) \
|
|
( (_psid_) * (_layoutPtr_)->SUsPerPU * (_layoutPtr_)->numDataCol * (_layoutPtr_)->sectorsPerStripeUnit )
|
|
|
|
RF_LayoutSW_t *rf_GetLayout(RF_ParityConfig_t parityConfig);
|
|
int
|
|
rf_ConfigureLayout(RF_ShutdownList_t ** listp, RF_Raid_t * raidPtr,
|
|
RF_Config_t * cfgPtr);
|
|
RF_StripeNum_t
|
|
rf_MapStripeIDToParityStripeID(RF_RaidLayout_t * layoutPtr,
|
|
RF_StripeNum_t stripeID, RF_ReconUnitNum_t * which_ru);
|
|
|
|
#endif /* !_RF__RF_LAYOUT_H_ */
|