Peter Wemm 937a200089 Introduce svnlite so that we can check out our source code again.
This is actually a fully functional build except:
* All internal shared libraries are static linked to make sure there
  is no interference with ports (and to reduce build time).
* It does not have the python/perl/etc plugin or API support.
* By default, it installs as "svnlite" rather than "svn".
* If WITH_SVN added in make.conf, you get "svn".
* If WITHOUT_SVNLITE is in make.conf, this is completely disabled.

To be absolutely clear, this is not intended for any use other than
checking out freebsd source and committing, like we once did with cvs.

It should be usable for small scale local repositories that don't
need the python/perl plugin architecture.
2013-06-18 02:53:45 +00:00

206 lines
4.7 KiB
C

/* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "apr_arch_atomic.h"
#ifdef USE_ATOMICS_GENERIC
#include <stdlib.h>
#if APR_HAS_THREADS
# define DECLARE_MUTEX_LOCKED(name, mem) \
apr_thread_mutex_t *name = mutex_hash(mem)
# define MUTEX_UNLOCK(name) \
do { \
if (apr_thread_mutex_unlock(name) != APR_SUCCESS) \
abort(); \
} while (0)
#else
# define DECLARE_MUTEX_LOCKED(name, mem)
# define MUTEX_UNLOCK(name)
# warning Be warned: using stubs for all atomic operations
#endif
#if APR_HAS_THREADS
static apr_thread_mutex_t **hash_mutex;
#define NUM_ATOMIC_HASH 7
/* shift by 2 to get rid of alignment issues */
#define ATOMIC_HASH(x) (unsigned int)(((unsigned long)(x)>>2)%(unsigned int)NUM_ATOMIC_HASH)
static apr_status_t atomic_cleanup(void *data)
{
if (hash_mutex == data)
hash_mutex = NULL;
return APR_SUCCESS;
}
APR_DECLARE(apr_status_t) apr_atomic_init(apr_pool_t *p)
{
int i;
apr_status_t rv;
if (hash_mutex != NULL)
return APR_SUCCESS;
hash_mutex = apr_palloc(p, sizeof(apr_thread_mutex_t*) * NUM_ATOMIC_HASH);
apr_pool_cleanup_register(p, hash_mutex, atomic_cleanup,
apr_pool_cleanup_null);
for (i = 0; i < NUM_ATOMIC_HASH; i++) {
rv = apr_thread_mutex_create(&(hash_mutex[i]),
APR_THREAD_MUTEX_DEFAULT, p);
if (rv != APR_SUCCESS) {
return rv;
}
}
return APR_SUCCESS;
}
static APR_INLINE apr_thread_mutex_t *mutex_hash(volatile apr_uint32_t *mem)
{
apr_thread_mutex_t *mutex = hash_mutex[ATOMIC_HASH(mem)];
if (apr_thread_mutex_lock(mutex) != APR_SUCCESS) {
abort();
}
return mutex;
}
#else
APR_DECLARE(apr_status_t) apr_atomic_init(apr_pool_t *p)
{
return APR_SUCCESS;
}
#endif /* APR_HAS_THREADS */
APR_DECLARE(apr_uint32_t) apr_atomic_read32(volatile apr_uint32_t *mem)
{
return *mem;
}
APR_DECLARE(void) apr_atomic_set32(volatile apr_uint32_t *mem, apr_uint32_t val)
{
DECLARE_MUTEX_LOCKED(mutex, mem);
*mem = val;
MUTEX_UNLOCK(mutex);
}
APR_DECLARE(apr_uint32_t) apr_atomic_add32(volatile apr_uint32_t *mem, apr_uint32_t val)
{
apr_uint32_t old_value;
DECLARE_MUTEX_LOCKED(mutex, mem);
old_value = *mem;
*mem += val;
MUTEX_UNLOCK(mutex);
return old_value;
}
APR_DECLARE(void) apr_atomic_sub32(volatile apr_uint32_t *mem, apr_uint32_t val)
{
DECLARE_MUTEX_LOCKED(mutex, mem);
*mem -= val;
MUTEX_UNLOCK(mutex);
}
APR_DECLARE(apr_uint32_t) apr_atomic_inc32(volatile apr_uint32_t *mem)
{
return apr_atomic_add32(mem, 1);
}
APR_DECLARE(int) apr_atomic_dec32(volatile apr_uint32_t *mem)
{
apr_uint32_t new;
DECLARE_MUTEX_LOCKED(mutex, mem);
(*mem)--;
new = *mem;
MUTEX_UNLOCK(mutex);
return new;
}
APR_DECLARE(apr_uint32_t) apr_atomic_cas32(volatile apr_uint32_t *mem, apr_uint32_t with,
apr_uint32_t cmp)
{
apr_uint32_t prev;
DECLARE_MUTEX_LOCKED(mutex, mem);
prev = *mem;
if (prev == cmp) {
*mem = with;
}
MUTEX_UNLOCK(mutex);
return prev;
}
APR_DECLARE(apr_uint32_t) apr_atomic_xchg32(volatile apr_uint32_t *mem, apr_uint32_t val)
{
apr_uint32_t prev;
DECLARE_MUTEX_LOCKED(mutex, mem);
prev = *mem;
*mem = val;
MUTEX_UNLOCK(mutex);
return prev;
}
APR_DECLARE(void*) apr_atomic_casptr(volatile void **mem, void *with, const void *cmp)
{
void *prev;
DECLARE_MUTEX_LOCKED(mutex, *mem);
prev = *(void **)mem;
if (prev == cmp) {
*mem = with;
}
MUTEX_UNLOCK(mutex);
return prev;
}
APR_DECLARE(void*) apr_atomic_xchgptr(volatile void **mem, void *with)
{
void *prev;
DECLARE_MUTEX_LOCKED(mutex, *mem);
prev = *(void **)mem;
*mem = with;
MUTEX_UNLOCK(mutex);
return prev;
}
#endif /* USE_ATOMICS_GENERIC */