andrew 59c30969f9 On ARM EABI double precision floating point values are stored in the
endian the CPU is in, i.e. little-endian on most ARM cores.

This allows ARMv4 and ARMv5 boards to boot with the ARM EABI.
2013-09-07 14:04:10 +00:00

1336 lines
28 KiB
ArmAsm

/* ieee754-df.S double-precision floating point support for ARM
Copyright (C) 2003, 2004, 2005 Free Software Foundation, Inc.
Contributed by Nicolas Pitre (nico@cam.org)
This file is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the
Free Software Foundation; either version 2, or (at your option) any
later version.
In addition to the permissions in the GNU General Public License, the
Free Software Foundation gives you unlimited permission to link the
compiled version of this file into combinations with other programs,
and to distribute those combinations without any restriction coming
from the use of this file. (The General Public License restrictions
do apply in other respects; for example, they cover modification of
the file, and distribution when not linked into a combine
executable.)
This file is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; see the file COPYING. If not, write to
the Free Software Foundation, 51 Franklin Street, Fifth Floor,
Boston, MA 02110-1301, USA. */
/*
* Notes:
*
* The goal of this code is to be as fast as possible. This is
* not meant to be easy to understand for the casual reader.
* For slightly simpler code please see the single precision version
* of this file.
*
* Only the default rounding mode is intended for best performances.
* Exceptions aren't supported yet, but that can be added quite easily
* if necessary without impacting performances.
*/
@ For FPA, float words are always big-endian.
@ For VFP, floats words follow the memory system mode.
#if (defined(__ARM_EABI__) || defined(__VFP_FP__)) && !defined(__ARMEB__)
#define xl r0
#define xh r1
#define yl r2
#define yh r3
#else
#define xh r0
#define xl r1
#define yh r2
#define yl r3
#endif
#ifdef L_negdf2
ARM_FUNC_START negdf2
ARM_FUNC_ALIAS aeabi_dneg negdf2
@ flip sign bit
eor xh, xh, #0x80000000
RET
FUNC_END aeabi_dneg
FUNC_END negdf2
#endif
#ifdef L_addsubdf3
ARM_FUNC_START aeabi_drsub
eor xh, xh, #0x80000000 @ flip sign bit of first arg
b 1f
ARM_FUNC_START subdf3
ARM_FUNC_ALIAS aeabi_dsub subdf3
eor yh, yh, #0x80000000 @ flip sign bit of second arg
#if defined(__INTERWORKING_STUBS__)
b 1f @ Skip Thumb-code prologue
#endif
ARM_FUNC_START adddf3
ARM_FUNC_ALIAS aeabi_dadd adddf3
1: stmfd sp!, {r4, r5, lr}
@ Look for zeroes, equal values, INF, or NAN.
mov r4, xh, lsl #1
mov r5, yh, lsl #1
teq r4, r5
teqeq xl, yl
orrnes ip, r4, xl
orrnes ip, r5, yl
mvnnes ip, r4, asr #21
mvnnes ip, r5, asr #21
beq LSYM(Lad_s)
@ Compute exponent difference. Make largest exponent in r4,
@ corresponding arg in xh-xl, and positive exponent difference in r5.
mov r4, r4, lsr #21
rsbs r5, r4, r5, lsr #21
rsblt r5, r5, #0
ble 1f
add r4, r4, r5
eor yl, xl, yl
eor yh, xh, yh
eor xl, yl, xl
eor xh, yh, xh
eor yl, xl, yl
eor yh, xh, yh
1:
@ If exponent difference is too large, return largest argument
@ already in xh-xl. We need up to 54 bit to handle proper rounding
@ of 0x1p54 - 1.1.
cmp r5, #54
RETLDM "r4, r5" hi
@ Convert mantissa to signed integer.
tst xh, #0x80000000
mov xh, xh, lsl #12
mov ip, #0x00100000
orr xh, ip, xh, lsr #12
beq 1f
rsbs xl, xl, #0
rsc xh, xh, #0
1:
tst yh, #0x80000000
mov yh, yh, lsl #12
orr yh, ip, yh, lsr #12
beq 1f
rsbs yl, yl, #0
rsc yh, yh, #0
1:
@ If exponent == difference, one or both args were denormalized.
@ Since this is not common case, rescale them off line.
teq r4, r5
beq LSYM(Lad_d)
LSYM(Lad_x):
@ Compensate for the exponent overlapping the mantissa MSB added later
sub r4, r4, #1
@ Shift yh-yl right per r5, add to xh-xl, keep leftover bits into ip.
rsbs lr, r5, #32
blt 1f
mov ip, yl, lsl lr
adds xl, xl, yl, lsr r5
adc xh, xh, #0
adds xl, xl, yh, lsl lr
adcs xh, xh, yh, asr r5
b 2f
1: sub r5, r5, #32
add lr, lr, #32
cmp yl, #1
mov ip, yh, lsl lr
orrcs ip, ip, #2 @ 2 not 1, to allow lsr #1 later
adds xl, xl, yh, asr r5
adcs xh, xh, yh, asr #31
2:
@ We now have a result in xh-xl-ip.
@ Keep absolute value in xh-xl-ip, sign in r5 (the n bit was set above)
and r5, xh, #0x80000000
bpl LSYM(Lad_p)
rsbs ip, ip, #0
rscs xl, xl, #0
rsc xh, xh, #0
@ Determine how to normalize the result.
LSYM(Lad_p):
cmp xh, #0x00100000
bcc LSYM(Lad_a)
cmp xh, #0x00200000
bcc LSYM(Lad_e)
@ Result needs to be shifted right.
movs xh, xh, lsr #1
movs xl, xl, rrx
mov ip, ip, rrx
add r4, r4, #1
@ Make sure we did not bust our exponent.
mov r2, r4, lsl #21
cmn r2, #(2 << 21)
bcs LSYM(Lad_o)
@ Our result is now properly aligned into xh-xl, remaining bits in ip.
@ Round with MSB of ip. If halfway between two numbers, round towards
@ LSB of xl = 0.
@ Pack final result together.
LSYM(Lad_e):
cmp ip, #0x80000000
moveqs ip, xl, lsr #1
adcs xl, xl, #0
adc xh, xh, r4, lsl #20
orr xh, xh, r5
RETLDM "r4, r5"
@ Result must be shifted left and exponent adjusted.
LSYM(Lad_a):
movs ip, ip, lsl #1
adcs xl, xl, xl
adc xh, xh, xh
tst xh, #0x00100000
sub r4, r4, #1
bne LSYM(Lad_e)
@ No rounding necessary since ip will always be 0 at this point.
LSYM(Lad_l):
#if __ARM_ARCH__ < 5
teq xh, #0
movne r3, #20
moveq r3, #52
moveq xh, xl
moveq xl, #0
mov r2, xh
cmp r2, #(1 << 16)
movhs r2, r2, lsr #16
subhs r3, r3, #16
cmp r2, #(1 << 8)
movhs r2, r2, lsr #8
subhs r3, r3, #8
cmp r2, #(1 << 4)
movhs r2, r2, lsr #4
subhs r3, r3, #4
cmp r2, #(1 << 2)
subhs r3, r3, #2
sublo r3, r3, r2, lsr #1
sub r3, r3, r2, lsr #3
#else
teq xh, #0
moveq xh, xl
moveq xl, #0
clz r3, xh
addeq r3, r3, #32
sub r3, r3, #11
#endif
@ determine how to shift the value.
subs r2, r3, #32
bge 2f
adds r2, r2, #12
ble 1f
@ shift value left 21 to 31 bits, or actually right 11 to 1 bits
@ since a register switch happened above.
add ip, r2, #20
rsb r2, r2, #12
mov xl, xh, lsl ip
mov xh, xh, lsr r2
b 3f
@ actually shift value left 1 to 20 bits, which might also represent
@ 32 to 52 bits if counting the register switch that happened earlier.
1: add r2, r2, #20
2: rsble ip, r2, #32
mov xh, xh, lsl r2
orrle xh, xh, xl, lsr ip
movle xl, xl, lsl r2
@ adjust exponent accordingly.
3: subs r4, r4, r3
addge xh, xh, r4, lsl #20
orrge xh, xh, r5
RETLDM "r4, r5" ge
@ Exponent too small, denormalize result.
@ Find out proper shift value.
mvn r4, r4
subs r4, r4, #31
bge 2f
adds r4, r4, #12
bgt 1f
@ shift result right of 1 to 20 bits, sign is in r5.
add r4, r4, #20
rsb r2, r4, #32
mov xl, xl, lsr r4
orr xl, xl, xh, lsl r2
orr xh, r5, xh, lsr r4
RETLDM "r4, r5"
@ shift result right of 21 to 31 bits, or left 11 to 1 bits after
@ a register switch from xh to xl.
1: rsb r4, r4, #12
rsb r2, r4, #32
mov xl, xl, lsr r2
orr xl, xl, xh, lsl r4
mov xh, r5
RETLDM "r4, r5"
@ Shift value right of 32 to 64 bits, or 0 to 32 bits after a switch
@ from xh to xl.
2: mov xl, xh, lsr r4
mov xh, r5
RETLDM "r4, r5"
@ Adjust exponents for denormalized arguments.
@ Note that r4 must not remain equal to 0.
LSYM(Lad_d):
teq r4, #0
eor yh, yh, #0x00100000
eoreq xh, xh, #0x00100000
addeq r4, r4, #1
subne r5, r5, #1
b LSYM(Lad_x)
LSYM(Lad_s):
mvns ip, r4, asr #21
mvnnes ip, r5, asr #21
beq LSYM(Lad_i)
teq r4, r5
teqeq xl, yl
beq 1f
@ Result is x + 0.0 = x or 0.0 + y = y.
orrs ip, r4, xl
moveq xh, yh
moveq xl, yl
RETLDM "r4, r5"
1: teq xh, yh
@ Result is x - x = 0.
movne xh, #0
movne xl, #0
RETLDM "r4, r5" ne
@ Result is x + x = 2x.
movs ip, r4, lsr #21
bne 2f
movs xl, xl, lsl #1
adcs xh, xh, xh
orrcs xh, xh, #0x80000000
RETLDM "r4, r5"
2: adds r4, r4, #(2 << 21)
addcc xh, xh, #(1 << 20)
RETLDM "r4, r5" cc
and r5, xh, #0x80000000
@ Overflow: return INF.
LSYM(Lad_o):
orr xh, r5, #0x7f000000
orr xh, xh, #0x00f00000
mov xl, #0
RETLDM "r4, r5"
@ At least one of x or y is INF/NAN.
@ if xh-xl != INF/NAN: return yh-yl (which is INF/NAN)
@ if yh-yl != INF/NAN: return xh-xl (which is INF/NAN)
@ if either is NAN: return NAN
@ if opposite sign: return NAN
@ otherwise return xh-xl (which is INF or -INF)
LSYM(Lad_i):
mvns ip, r4, asr #21
movne xh, yh
movne xl, yl
mvneqs ip, r5, asr #21
movne yh, xh
movne yl, xl
orrs r4, xl, xh, lsl #12
orreqs r5, yl, yh, lsl #12
teqeq xh, yh
orrne xh, xh, #0x00080000 @ quiet NAN
RETLDM "r4, r5"
FUNC_END aeabi_dsub
FUNC_END subdf3
FUNC_END aeabi_dadd
FUNC_END adddf3
ARM_FUNC_START floatunsidf
ARM_FUNC_ALIAS aeabi_ui2d floatunsidf
teq r0, #0
moveq r1, #0
RETc(eq)
stmfd sp!, {r4, r5, lr}
mov r4, #0x400 @ initial exponent
add r4, r4, #(52-1 - 1)
mov r5, #0 @ sign bit is 0
.ifnc xl, r0
mov xl, r0
.endif
mov xh, #0
b LSYM(Lad_l)
FUNC_END aeabi_ui2d
FUNC_END floatunsidf
ARM_FUNC_START floatsidf
ARM_FUNC_ALIAS aeabi_i2d floatsidf
teq r0, #0
moveq r1, #0
RETc(eq)
stmfd sp!, {r4, r5, lr}
mov r4, #0x400 @ initial exponent
add r4, r4, #(52-1 - 1)
ands r5, r0, #0x80000000 @ sign bit in r5
rsbmi r0, r0, #0 @ absolute value
.ifnc xl, r0
mov xl, r0
.endif
mov xh, #0
b LSYM(Lad_l)
FUNC_END aeabi_i2d
FUNC_END floatsidf
ARM_FUNC_START extendsfdf2
ARM_FUNC_ALIAS aeabi_f2d extendsfdf2
movs r2, r0, lsl #1 @ toss sign bit
mov xh, r2, asr #3 @ stretch exponent
mov xh, xh, rrx @ retrieve sign bit
mov xl, r2, lsl #28 @ retrieve remaining bits
andnes r3, r2, #0xff000000 @ isolate exponent
teqne r3, #0xff000000 @ if not 0, check if INF or NAN
eorne xh, xh, #0x38000000 @ fixup exponent otherwise.
RETc(ne) @ and return it.
teq r2, #0 @ if actually 0
teqne r3, #0xff000000 @ or INF or NAN
RETc(eq) @ we are done already.
@ value was denormalized. We can normalize it now.
stmfd sp!, {r4, r5, lr}
mov r4, #0x380 @ setup corresponding exponent
and r5, xh, #0x80000000 @ move sign bit in r5
bic xh, xh, #0x80000000
b LSYM(Lad_l)
FUNC_END aeabi_f2d
FUNC_END extendsfdf2
ARM_FUNC_START floatundidf
ARM_FUNC_ALIAS aeabi_ul2d floatundidf
orrs r2, r0, r1
#if !defined (__VFP_FP__) && !defined(__SOFTFP__)
mvfeqd f0, #0.0
#endif
RETc(eq)
#if !defined (__VFP_FP__) && !defined(__SOFTFP__)
@ For hard FPA code we want to return via the tail below so that
@ we can return the result in f0 as well as in r0/r1 for backwards
@ compatibility.
adr ip, LSYM(f0_ret)
stmfd sp!, {r4, r5, ip, lr}
#else
stmfd sp!, {r4, r5, lr}
#endif
mov r5, #0
b 2f
ARM_FUNC_START floatdidf
ARM_FUNC_ALIAS aeabi_l2d floatdidf
orrs r2, r0, r1
#if !defined (__VFP_FP__) && !defined(__SOFTFP__)
mvfeqd f0, #0.0
#endif
RETc(eq)
#if !defined (__VFP_FP__) && !defined(__SOFTFP__)
@ For hard FPA code we want to return via the tail below so that
@ we can return the result in f0 as well as in r0/r1 for backwards
@ compatibility.
adr ip, LSYM(f0_ret)
stmfd sp!, {r4, r5, ip, lr}
#else
stmfd sp!, {r4, r5, lr}
#endif
ands r5, ah, #0x80000000 @ sign bit in r5
bpl 2f
rsbs al, al, #0
rsc ah, ah, #0
2:
mov r4, #0x400 @ initial exponent
add r4, r4, #(52-1 - 1)
@ FPA little-endian: must swap the word order.
.ifnc xh, ah
mov ip, al
mov xh, ah
mov xl, ip
.endif
movs ip, xh, lsr #22
beq LSYM(Lad_p)
@ The value is too big. Scale it down a bit...
mov r2, #3
movs ip, ip, lsr #3
addne r2, r2, #3
movs ip, ip, lsr #3
addne r2, r2, #3
add r2, r2, ip, lsr #3
rsb r3, r2, #32
mov ip, xl, lsl r3
mov xl, xl, lsr r2
orr xl, xl, xh, lsl r3
mov xh, xh, lsr r2
add r4, r4, r2
b LSYM(Lad_p)
#if !defined (__VFP_FP__) && !defined(__SOFTFP__)
@ Legacy code expects the result to be returned in f0. Copy it
@ there as well.
LSYM(f0_ret):
stmfd sp!, {r0, r1}
ldfd f0, [sp], #8
RETLDM
#endif
FUNC_END floatdidf
FUNC_END aeabi_l2d
FUNC_END floatundidf
FUNC_END aeabi_ul2d
#endif /* L_addsubdf3 */
#ifdef L_muldivdf3
ARM_FUNC_START muldf3
ARM_FUNC_ALIAS aeabi_dmul muldf3
stmfd sp!, {r4, r5, r6, lr}
@ Mask out exponents, trap any zero/denormal/INF/NAN.
mov ip, #0xff
orr ip, ip, #0x700
ands r4, ip, xh, lsr #20
andnes r5, ip, yh, lsr #20
teqne r4, ip
teqne r5, ip
bleq LSYM(Lml_s)
@ Add exponents together
add r4, r4, r5
@ Determine final sign.
eor r6, xh, yh
@ Convert mantissa to unsigned integer.
@ If power of two, branch to a separate path.
bic xh, xh, ip, lsl #21
bic yh, yh, ip, lsl #21
orrs r5, xl, xh, lsl #12
orrnes r5, yl, yh, lsl #12
orr xh, xh, #0x00100000
orr yh, yh, #0x00100000
beq LSYM(Lml_1)
#if __ARM_ARCH__ < 4
@ Put sign bit in r6, which will be restored in yl later.
and r6, r6, #0x80000000
@ Well, no way to make it shorter without the umull instruction.
stmfd sp!, {r6, r7, r8, r9, sl, fp}
mov r7, xl, lsr #16
mov r8, yl, lsr #16
mov r9, xh, lsr #16
mov sl, yh, lsr #16
bic xl, xl, r7, lsl #16
bic yl, yl, r8, lsl #16
bic xh, xh, r9, lsl #16
bic yh, yh, sl, lsl #16
mul ip, xl, yl
mul fp, xl, r8
mov lr, #0
adds ip, ip, fp, lsl #16
adc lr, lr, fp, lsr #16
mul fp, r7, yl
adds ip, ip, fp, lsl #16
adc lr, lr, fp, lsr #16
mul fp, xl, sl
mov r5, #0
adds lr, lr, fp, lsl #16
adc r5, r5, fp, lsr #16
mul fp, r7, yh
adds lr, lr, fp, lsl #16
adc r5, r5, fp, lsr #16
mul fp, xh, r8
adds lr, lr, fp, lsl #16
adc r5, r5, fp, lsr #16
mul fp, r9, yl
adds lr, lr, fp, lsl #16
adc r5, r5, fp, lsr #16
mul fp, xh, sl
mul r6, r9, sl
adds r5, r5, fp, lsl #16
adc r6, r6, fp, lsr #16
mul fp, r9, yh
adds r5, r5, fp, lsl #16
adc r6, r6, fp, lsr #16
mul fp, xl, yh
adds lr, lr, fp
mul fp, r7, sl
adcs r5, r5, fp
mul fp, xh, yl
adc r6, r6, #0
adds lr, lr, fp
mul fp, r9, r8
adcs r5, r5, fp
mul fp, r7, r8
adc r6, r6, #0
adds lr, lr, fp
mul fp, xh, yh
adcs r5, r5, fp
adc r6, r6, #0
ldmfd sp!, {yl, r7, r8, r9, sl, fp}
#else
@ Here is the actual multiplication.
umull ip, lr, xl, yl
mov r5, #0
umlal lr, r5, xh, yl
and yl, r6, #0x80000000
umlal lr, r5, xl, yh
mov r6, #0
umlal r5, r6, xh, yh
#endif
@ The LSBs in ip are only significant for the final rounding.
@ Fold them into lr.
teq ip, #0
orrne lr, lr, #1
@ Adjust result upon the MSB position.
sub r4, r4, #0xff
cmp r6, #(1 << (20-11))
sbc r4, r4, #0x300
bcs 1f
movs lr, lr, lsl #1
adcs r5, r5, r5
adc r6, r6, r6
1:
@ Shift to final position, add sign to result.
orr xh, yl, r6, lsl #11
orr xh, xh, r5, lsr #21
mov xl, r5, lsl #11
orr xl, xl, lr, lsr #21
mov lr, lr, lsl #11
@ Check exponent range for under/overflow.
subs ip, r4, #(254 - 1)
cmphi ip, #0x700
bhi LSYM(Lml_u)
@ Round the result, merge final exponent.
cmp lr, #0x80000000
moveqs lr, xl, lsr #1
adcs xl, xl, #0
adc xh, xh, r4, lsl #20
RETLDM "r4, r5, r6"
@ Multiplication by 0x1p*: let''s shortcut a lot of code.
LSYM(Lml_1):
and r6, r6, #0x80000000
orr xh, r6, xh
orr xl, xl, yl
eor xh, xh, yh
subs r4, r4, ip, lsr #1
rsbgts r5, r4, ip
orrgt xh, xh, r4, lsl #20
RETLDM "r4, r5, r6" gt
@ Under/overflow: fix things up for the code below.
orr xh, xh, #0x00100000
mov lr, #0
subs r4, r4, #1
LSYM(Lml_u):
@ Overflow?
bgt LSYM(Lml_o)
@ Check if denormalized result is possible, otherwise return signed 0.
cmn r4, #(53 + 1)
movle xl, #0
bicle xh, xh, #0x7fffffff
RETLDM "r4, r5, r6" le
@ Find out proper shift value.
rsb r4, r4, #0
subs r4, r4, #32
bge 2f
adds r4, r4, #12
bgt 1f
@ shift result right of 1 to 20 bits, preserve sign bit, round, etc.
add r4, r4, #20
rsb r5, r4, #32
mov r3, xl, lsl r5
mov xl, xl, lsr r4
orr xl, xl, xh, lsl r5
and r2, xh, #0x80000000
bic xh, xh, #0x80000000
adds xl, xl, r3, lsr #31
adc xh, r2, xh, lsr r4
orrs lr, lr, r3, lsl #1
biceq xl, xl, r3, lsr #31
RETLDM "r4, r5, r6"
@ shift result right of 21 to 31 bits, or left 11 to 1 bits after
@ a register switch from xh to xl. Then round.
1: rsb r4, r4, #12
rsb r5, r4, #32
mov r3, xl, lsl r4
mov xl, xl, lsr r5
orr xl, xl, xh, lsl r4
bic xh, xh, #0x7fffffff
adds xl, xl, r3, lsr #31
adc xh, xh, #0
orrs lr, lr, r3, lsl #1
biceq xl, xl, r3, lsr #31
RETLDM "r4, r5, r6"
@ Shift value right of 32 to 64 bits, or 0 to 32 bits after a switch
@ from xh to xl. Leftover bits are in r3-r6-lr for rounding.
2: rsb r5, r4, #32
orr lr, lr, xl, lsl r5
mov r3, xl, lsr r4
orr r3, r3, xh, lsl r5
mov xl, xh, lsr r4
bic xh, xh, #0x7fffffff
bic xl, xl, xh, lsr r4
add xl, xl, r3, lsr #31
orrs lr, lr, r3, lsl #1
biceq xl, xl, r3, lsr #31
RETLDM "r4, r5, r6"
@ One or both arguments are denormalized.
@ Scale them leftwards and preserve sign bit.
LSYM(Lml_d):
teq r4, #0
bne 2f
and r6, xh, #0x80000000
1: movs xl, xl, lsl #1
adc xh, xh, xh
tst xh, #0x00100000
subeq r4, r4, #1
beq 1b
orr xh, xh, r6
teq r5, #0
movne pc, lr
2: and r6, yh, #0x80000000
3: movs yl, yl, lsl #1
adc yh, yh, yh
tst yh, #0x00100000
subeq r5, r5, #1
beq 3b
orr yh, yh, r6
mov pc, lr
LSYM(Lml_s):
@ Isolate the INF and NAN cases away
teq r4, ip
and r5, ip, yh, lsr #20
teqne r5, ip
beq 1f
@ Here, one or more arguments are either denormalized or zero.
orrs r6, xl, xh, lsl #1
orrnes r6, yl, yh, lsl #1
bne LSYM(Lml_d)
@ Result is 0, but determine sign anyway.
LSYM(Lml_z):
eor xh, xh, yh
bic xh, xh, #0x7fffffff
mov xl, #0
RETLDM "r4, r5, r6"
1: @ One or both args are INF or NAN.
orrs r6, xl, xh, lsl #1
moveq xl, yl
moveq xh, yh
orrnes r6, yl, yh, lsl #1
beq LSYM(Lml_n) @ 0 * INF or INF * 0 -> NAN
teq r4, ip
bne 1f
orrs r6, xl, xh, lsl #12
bne LSYM(Lml_n) @ NAN * <anything> -> NAN
1: teq r5, ip
bne LSYM(Lml_i)
orrs r6, yl, yh, lsl #12
movne xl, yl
movne xh, yh
bne LSYM(Lml_n) @ <anything> * NAN -> NAN
@ Result is INF, but we need to determine its sign.
LSYM(Lml_i):
eor xh, xh, yh
@ Overflow: return INF (sign already in xh).
LSYM(Lml_o):
and xh, xh, #0x80000000
orr xh, xh, #0x7f000000
orr xh, xh, #0x00f00000
mov xl, #0
RETLDM "r4, r5, r6"
@ Return a quiet NAN.
LSYM(Lml_n):
orr xh, xh, #0x7f000000
orr xh, xh, #0x00f80000
RETLDM "r4, r5, r6"
FUNC_END aeabi_dmul
FUNC_END muldf3
ARM_FUNC_START divdf3
ARM_FUNC_ALIAS aeabi_ddiv divdf3
stmfd sp!, {r4, r5, r6, lr}
@ Mask out exponents, trap any zero/denormal/INF/NAN.
mov ip, #0xff
orr ip, ip, #0x700
ands r4, ip, xh, lsr #20
andnes r5, ip, yh, lsr #20
teqne r4, ip
teqne r5, ip
bleq LSYM(Ldv_s)
@ Substract divisor exponent from dividend''s.
sub r4, r4, r5
@ Preserve final sign into lr.
eor lr, xh, yh
@ Convert mantissa to unsigned integer.
@ Dividend -> r5-r6, divisor -> yh-yl.
orrs r5, yl, yh, lsl #12
mov xh, xh, lsl #12
beq LSYM(Ldv_1)
mov yh, yh, lsl #12
mov r5, #0x10000000
orr yh, r5, yh, lsr #4
orr yh, yh, yl, lsr #24
mov yl, yl, lsl #8
orr r5, r5, xh, lsr #4
orr r5, r5, xl, lsr #24
mov r6, xl, lsl #8
@ Initialize xh with final sign bit.
and xh, lr, #0x80000000
@ Ensure result will land to known bit position.
@ Apply exponent bias accordingly.
cmp r5, yh
cmpeq r6, yl
adc r4, r4, #(255 - 2)
add r4, r4, #0x300
bcs 1f
movs yh, yh, lsr #1
mov yl, yl, rrx
1:
@ Perform first substraction to align result to a nibble.
subs r6, r6, yl
sbc r5, r5, yh
movs yh, yh, lsr #1
mov yl, yl, rrx
mov xl, #0x00100000
mov ip, #0x00080000
@ The actual division loop.
1: subs lr, r6, yl
sbcs lr, r5, yh
subcs r6, r6, yl
movcs r5, lr
orrcs xl, xl, ip
movs yh, yh, lsr #1
mov yl, yl, rrx
subs lr, r6, yl
sbcs lr, r5, yh
subcs r6, r6, yl
movcs r5, lr
orrcs xl, xl, ip, lsr #1
movs yh, yh, lsr #1
mov yl, yl, rrx
subs lr, r6, yl
sbcs lr, r5, yh
subcs r6, r6, yl
movcs r5, lr
orrcs xl, xl, ip, lsr #2
movs yh, yh, lsr #1
mov yl, yl, rrx
subs lr, r6, yl
sbcs lr, r5, yh
subcs r6, r6, yl
movcs r5, lr
orrcs xl, xl, ip, lsr #3
orrs lr, r5, r6
beq 2f
mov r5, r5, lsl #4
orr r5, r5, r6, lsr #28
mov r6, r6, lsl #4
mov yh, yh, lsl #3
orr yh, yh, yl, lsr #29
mov yl, yl, lsl #3
movs ip, ip, lsr #4
bne 1b
@ We are done with a word of the result.
@ Loop again for the low word if this pass was for the high word.
tst xh, #0x00100000
bne 3f
orr xh, xh, xl
mov xl, #0
mov ip, #0x80000000
b 1b
2:
@ Be sure result starts in the high word.
tst xh, #0x00100000
orreq xh, xh, xl
moveq xl, #0
3:
@ Check exponent range for under/overflow.
subs ip, r4, #(254 - 1)
cmphi ip, #0x700
bhi LSYM(Lml_u)
@ Round the result, merge final exponent.
subs ip, r5, yh
subeqs ip, r6, yl
moveqs ip, xl, lsr #1
adcs xl, xl, #0
adc xh, xh, r4, lsl #20
RETLDM "r4, r5, r6"
@ Division by 0x1p*: shortcut a lot of code.
LSYM(Ldv_1):
and lr, lr, #0x80000000
orr xh, lr, xh, lsr #12
adds r4, r4, ip, lsr #1
rsbgts r5, r4, ip
orrgt xh, xh, r4, lsl #20
RETLDM "r4, r5, r6" gt
orr xh, xh, #0x00100000
mov lr, #0
subs r4, r4, #1
b LSYM(Lml_u)
@ Result mightt need to be denormalized: put remainder bits
@ in lr for rounding considerations.
LSYM(Ldv_u):
orr lr, r5, r6
b LSYM(Lml_u)
@ One or both arguments is either INF, NAN or zero.
LSYM(Ldv_s):
and r5, ip, yh, lsr #20
teq r4, ip
teqeq r5, ip
beq LSYM(Lml_n) @ INF/NAN / INF/NAN -> NAN
teq r4, ip
bne 1f
orrs r4, xl, xh, lsl #12
bne LSYM(Lml_n) @ NAN / <anything> -> NAN
teq r5, ip
bne LSYM(Lml_i) @ INF / <anything> -> INF
mov xl, yl
mov xh, yh
b LSYM(Lml_n) @ INF / (INF or NAN) -> NAN
1: teq r5, ip
bne 2f
orrs r5, yl, yh, lsl #12
beq LSYM(Lml_z) @ <anything> / INF -> 0
mov xl, yl
mov xh, yh
b LSYM(Lml_n) @ <anything> / NAN -> NAN
2: @ If both are nonzero, we need to normalize and resume above.
orrs r6, xl, xh, lsl #1
orrnes r6, yl, yh, lsl #1
bne LSYM(Lml_d)
@ One or both arguments are 0.
orrs r4, xl, xh, lsl #1
bne LSYM(Lml_i) @ <non_zero> / 0 -> INF
orrs r5, yl, yh, lsl #1
bne LSYM(Lml_z) @ 0 / <non_zero> -> 0
b LSYM(Lml_n) @ 0 / 0 -> NAN
FUNC_END aeabi_ddiv
FUNC_END divdf3
#endif /* L_muldivdf3 */
#ifdef L_cmpdf2
@ Note: only r0 (return value) and ip are clobbered here.
ARM_FUNC_START gtdf2
ARM_FUNC_ALIAS gedf2 gtdf2
mov ip, #-1
b 1f
ARM_FUNC_START ltdf2
ARM_FUNC_ALIAS ledf2 ltdf2
mov ip, #1
b 1f
ARM_FUNC_START cmpdf2
ARM_FUNC_ALIAS nedf2 cmpdf2
ARM_FUNC_ALIAS eqdf2 cmpdf2
mov ip, #1 @ how should we specify unordered here?
1: str ip, [sp, #-4]
@ Trap any INF/NAN first.
mov ip, xh, lsl #1
mvns ip, ip, asr #21
mov ip, yh, lsl #1
mvnnes ip, ip, asr #21
beq 3f
@ Test for equality.
@ Note that 0.0 is equal to -0.0.
2: orrs ip, xl, xh, lsl #1 @ if x == 0.0 or -0.0
orreqs ip, yl, yh, lsl #1 @ and y == 0.0 or -0.0
teqne xh, yh @ or xh == yh
teqeq xl, yl @ and xl == yl
moveq r0, #0 @ then equal.
RETc(eq)
@ Clear C flag
cmn r0, #0
@ Compare sign,
teq xh, yh
@ Compare values if same sign
cmppl xh, yh
cmpeq xl, yl
@ Result:
movcs r0, yh, asr #31
mvncc r0, yh, asr #31
orr r0, r0, #1
RET
@ Look for a NAN.
3: mov ip, xh, lsl #1
mvns ip, ip, asr #21
bne 4f
orrs ip, xl, xh, lsl #12
bne 5f @ x is NAN
4: mov ip, yh, lsl #1
mvns ip, ip, asr #21
bne 2b
orrs ip, yl, yh, lsl #12
beq 2b @ y is not NAN
5: ldr r0, [sp, #-4] @ unordered return code
RET
FUNC_END gedf2
FUNC_END gtdf2
FUNC_END ledf2
FUNC_END ltdf2
FUNC_END nedf2
FUNC_END eqdf2
FUNC_END cmpdf2
ARM_FUNC_START aeabi_cdrcmple
mov ip, r0
mov r0, r2
mov r2, ip
mov ip, r1
mov r1, r3
mov r3, ip
b 6f
ARM_FUNC_START aeabi_cdcmpeq
ARM_FUNC_ALIAS aeabi_cdcmple aeabi_cdcmpeq
@ The status-returning routines are required to preserve all
@ registers except ip, lr, and cpsr.
6: stmfd sp!, {r0, lr}
ARM_CALL cmpdf2
@ Set the Z flag correctly, and the C flag unconditionally.
cmp r0, #0
@ Clear the C flag if the return value was -1, indicating
@ that the first operand was smaller than the second.
cmnmi r0, #0
RETLDM "r0"
FUNC_END aeabi_cdcmple
FUNC_END aeabi_cdcmpeq
FUNC_END aeabi_cdrcmple
ARM_FUNC_START aeabi_dcmpeq
str lr, [sp, #-8]!
ARM_CALL aeabi_cdcmple
moveq r0, #1 @ Equal to.
movne r0, #0 @ Less than, greater than, or unordered.
RETLDM
FUNC_END aeabi_dcmpeq
ARM_FUNC_START aeabi_dcmplt
str lr, [sp, #-8]!
ARM_CALL aeabi_cdcmple
movcc r0, #1 @ Less than.
movcs r0, #0 @ Equal to, greater than, or unordered.
RETLDM
FUNC_END aeabi_dcmplt
ARM_FUNC_START aeabi_dcmple
str lr, [sp, #-8]!
ARM_CALL aeabi_cdcmple
movls r0, #1 @ Less than or equal to.
movhi r0, #0 @ Greater than or unordered.
RETLDM
FUNC_END aeabi_dcmple
ARM_FUNC_START aeabi_dcmpge
str lr, [sp, #-8]!
ARM_CALL aeabi_cdrcmple
movls r0, #1 @ Operand 2 is less than or equal to operand 1.
movhi r0, #0 @ Operand 2 greater than operand 1, or unordered.
RETLDM
FUNC_END aeabi_dcmpge
ARM_FUNC_START aeabi_dcmpgt
str lr, [sp, #-8]!
ARM_CALL aeabi_cdrcmple
movcc r0, #1 @ Operand 2 is less than operand 1.
movcs r0, #0 @ Operand 2 is greater than or equal to operand 1,
@ or they are unordered.
RETLDM
FUNC_END aeabi_dcmpgt
#endif /* L_cmpdf2 */
#ifdef L_unorddf2
ARM_FUNC_START unorddf2
ARM_FUNC_ALIAS aeabi_dcmpun unorddf2
mov ip, xh, lsl #1
mvns ip, ip, asr #21
bne 1f
orrs ip, xl, xh, lsl #12
bne 3f @ x is NAN
1: mov ip, yh, lsl #1
mvns ip, ip, asr #21
bne 2f
orrs ip, yl, yh, lsl #12
bne 3f @ y is NAN
2: mov r0, #0 @ arguments are ordered.
RET
3: mov r0, #1 @ arguments are unordered.
RET
FUNC_END aeabi_dcmpun
FUNC_END unorddf2
#endif /* L_unorddf2 */
#ifdef L_fixdfsi
ARM_FUNC_START fixdfsi
ARM_FUNC_ALIAS aeabi_d2iz fixdfsi
@ check exponent range.
mov r2, xh, lsl #1
adds r2, r2, #(1 << 21)
bcs 2f @ value is INF or NAN
bpl 1f @ value is too small
mov r3, #(0xfffffc00 + 31)
subs r2, r3, r2, asr #21
bls 3f @ value is too large
@ scale value
mov r3, xh, lsl #11
orr r3, r3, #0x80000000
orr r3, r3, xl, lsr #21
tst xh, #0x80000000 @ the sign bit
mov r0, r3, lsr r2
rsbne r0, r0, #0
RET
1: mov r0, #0
RET
2: orrs xl, xl, xh, lsl #12
bne 4f @ x is NAN.
3: ands r0, xh, #0x80000000 @ the sign bit
moveq r0, #0x7fffffff @ maximum signed positive si
RET
4: mov r0, #0 @ How should we convert NAN?
RET
FUNC_END aeabi_d2iz
FUNC_END fixdfsi
#endif /* L_fixdfsi */
#ifdef L_fixunsdfsi
ARM_FUNC_START fixunsdfsi
ARM_FUNC_ALIAS aeabi_d2uiz fixunsdfsi
@ check exponent range.
movs r2, xh, lsl #1
bcs 1f @ value is negative
adds r2, r2, #(1 << 21)
bcs 2f @ value is INF or NAN
bpl 1f @ value is too small
mov r3, #(0xfffffc00 + 31)
subs r2, r3, r2, asr #21
bmi 3f @ value is too large
@ scale value
mov r3, xh, lsl #11
orr r3, r3, #0x80000000
orr r3, r3, xl, lsr #21
mov r0, r3, lsr r2
RET
1: mov r0, #0
RET
2: orrs xl, xl, xh, lsl #12
bne 4f @ value is NAN.
3: mov r0, #0xffffffff @ maximum unsigned si
RET
4: mov r0, #0 @ How should we convert NAN?
RET
FUNC_END aeabi_d2uiz
FUNC_END fixunsdfsi
#endif /* L_fixunsdfsi */
#ifdef L_truncdfsf2
ARM_FUNC_START truncdfsf2
ARM_FUNC_ALIAS aeabi_d2f truncdfsf2
@ check exponent range.
mov r2, xh, lsl #1
subs r3, r2, #((1023 - 127) << 21)
subcss ip, r3, #(1 << 21)
rsbcss ip, ip, #(254 << 21)
bls 2f @ value is out of range
1: @ shift and round mantissa
and ip, xh, #0x80000000
mov r2, xl, lsl #3
orr xl, ip, xl, lsr #29
cmp r2, #0x80000000
adc r0, xl, r3, lsl #2
biceq r0, r0, #1
RET
2: @ either overflow or underflow
tst xh, #0x40000000
bne 3f @ overflow
@ check if denormalized value is possible
adds r2, r3, #(23 << 21)
andlt r0, xh, #0x80000000 @ too small, return signed 0.
RETc(lt)
@ denormalize value so we can resume with the code above afterwards.
orr xh, xh, #0x00100000
mov r2, r2, lsr #21
rsb r2, r2, #24
rsb ip, r2, #32
movs r3, xl, lsl ip
mov xl, xl, lsr r2
orrne xl, xl, #1 @ fold r3 for rounding considerations.
mov r3, xh, lsl #11
mov r3, r3, lsr #11
orr xl, xl, r3, lsl ip
mov r3, r3, lsr r2
mov r3, r3, lsl #1
b 1b
3: @ chech for NAN
mvns r3, r2, asr #21
bne 5f @ simple overflow
orrs r3, xl, xh, lsl #12
movne r0, #0x7f000000
orrne r0, r0, #0x00c00000
RETc(ne) @ return NAN
5: @ return INF with sign
and r0, xh, #0x80000000
orr r0, r0, #0x7f000000
orr r0, r0, #0x00800000
RET
FUNC_END aeabi_d2f
FUNC_END truncdfsf2
#endif /* L_truncdfsf2 */