freebsd-skq/sys/netinet/tcp_lro.c
2021-02-18 07:29:12 -05:00

2107 lines
54 KiB
C

/*-
* SPDX-License-Identifier: BSD-2-Clause-FreeBSD
*
* Copyright (c) 2007, Myricom Inc.
* Copyright (c) 2008, Intel Corporation.
* Copyright (c) 2012 The FreeBSD Foundation
* Copyright (c) 2016 Mellanox Technologies.
* All rights reserved.
*
* Portions of this software were developed by Bjoern Zeeb
* under sponsorship from the FreeBSD Foundation.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include "opt_inet.h"
#include "opt_inet6.h"
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/kernel.h>
#include <sys/malloc.h>
#include <sys/mbuf.h>
#include <sys/socket.h>
#include <sys/socketvar.h>
#include <sys/sockbuf.h>
#include <sys/sysctl.h>
#include <net/if.h>
#include <net/if_var.h>
#include <net/ethernet.h>
#include <net/bpf.h>
#include <net/vnet.h>
#include <netinet/in_systm.h>
#include <netinet/in.h>
#include <netinet/ip6.h>
#include <netinet/ip.h>
#include <netinet/ip_var.h>
#include <netinet/in_pcb.h>
#include <netinet6/in6_pcb.h>
#include <netinet/tcp.h>
#include <netinet/tcp_seq.h>
#include <netinet/tcp_lro.h>
#include <netinet/tcp_var.h>
#include <netinet/tcpip.h>
#include <netinet/tcp_hpts.h>
#include <netinet/tcp_log_buf.h>
#include <netinet6/ip6_var.h>
#include <machine/in_cksum.h>
static MALLOC_DEFINE(M_LRO, "LRO", "LRO control structures");
#define TCP_LRO_UPDATE_CSUM 1
#ifndef TCP_LRO_UPDATE_CSUM
#define TCP_LRO_INVALID_CSUM 0x0000
#endif
static void tcp_lro_rx_done(struct lro_ctrl *lc);
static int tcp_lro_rx2(struct lro_ctrl *lc, struct mbuf *m,
uint32_t csum, int use_hash);
SYSCTL_NODE(_net_inet_tcp, OID_AUTO, lro, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
"TCP LRO");
static long tcplro_stacks_wanting_mbufq = 0;
counter_u64_t tcp_inp_lro_direct_queue;
counter_u64_t tcp_inp_lro_wokeup_queue;
counter_u64_t tcp_inp_lro_compressed;
counter_u64_t tcp_inp_lro_single_push;
counter_u64_t tcp_inp_lro_locks_taken;
counter_u64_t tcp_inp_lro_sack_wake;
counter_u64_t tcp_extra_mbuf;
counter_u64_t tcp_would_have_but;
counter_u64_t tcp_comp_total;
counter_u64_t tcp_uncomp_total;
counter_u64_t tcp_csum_hardware;
counter_u64_t tcp_csum_hardware_w_ph;
counter_u64_t tcp_csum_software;
static unsigned tcp_lro_entries = TCP_LRO_ENTRIES;
SYSCTL_UINT(_net_inet_tcp_lro, OID_AUTO, entries,
CTLFLAG_RDTUN | CTLFLAG_MPSAFE, &tcp_lro_entries, 0,
"default number of LRO entries");
SYSCTL_COUNTER_U64(_net_inet_tcp_lro, OID_AUTO, fullqueue, CTLFLAG_RD,
&tcp_inp_lro_direct_queue, "Number of lro's fully queued to transport");
SYSCTL_COUNTER_U64(_net_inet_tcp_lro, OID_AUTO, wokeup, CTLFLAG_RD,
&tcp_inp_lro_wokeup_queue, "Number of lro's where we woke up transport via hpts");
SYSCTL_COUNTER_U64(_net_inet_tcp_lro, OID_AUTO, compressed, CTLFLAG_RD,
&tcp_inp_lro_compressed, "Number of lro's compressed and sent to transport");
SYSCTL_COUNTER_U64(_net_inet_tcp_lro, OID_AUTO, single, CTLFLAG_RD,
&tcp_inp_lro_single_push, "Number of lro's sent with single segment");
SYSCTL_COUNTER_U64(_net_inet_tcp_lro, OID_AUTO, lockcnt, CTLFLAG_RD,
&tcp_inp_lro_locks_taken, "Number of lro's inp_wlocks taken");
SYSCTL_COUNTER_U64(_net_inet_tcp_lro, OID_AUTO, sackwakeups, CTLFLAG_RD,
&tcp_inp_lro_sack_wake, "Number of wakeups caused by sack/fin");
SYSCTL_COUNTER_U64(_net_inet_tcp_lro, OID_AUTO, extra_mbuf, CTLFLAG_RD,
&tcp_extra_mbuf, "Number of times we had an extra compressed ack dropped into the tp");
SYSCTL_COUNTER_U64(_net_inet_tcp_lro, OID_AUTO, would_have_but, CTLFLAG_RD,
&tcp_would_have_but, "Number of times we would have had an extra compressed but out of room");
SYSCTL_COUNTER_U64(_net_inet_tcp_lro, OID_AUTO, with_m_ackcmp, CTLFLAG_RD,
&tcp_comp_total, "Number of mbufs queued with M_ACKCMP flags set");
SYSCTL_COUNTER_U64(_net_inet_tcp_lro, OID_AUTO, without_m_ackcmp, CTLFLAG_RD,
&tcp_uncomp_total, "Number of mbufs queued without M_ACKCMP");
SYSCTL_COUNTER_U64(_net_inet_tcp_lro, OID_AUTO, csum_hw, CTLFLAG_RD,
&tcp_csum_hardware, "Number of checksums processed in hardware");
SYSCTL_COUNTER_U64(_net_inet_tcp_lro, OID_AUTO, csum_hw_ph, CTLFLAG_RD,
&tcp_csum_hardware_w_ph, "Number of checksums processed in hardware with pseudo header");
SYSCTL_COUNTER_U64(_net_inet_tcp_lro, OID_AUTO, csum_sw, CTLFLAG_RD,
&tcp_csum_software, "Number of checksums processed in software");
void
tcp_lro_reg_mbufq(void)
{
atomic_fetchadd_long(&tcplro_stacks_wanting_mbufq, 1);
}
void
tcp_lro_dereg_mbufq(void)
{
atomic_fetchadd_long(&tcplro_stacks_wanting_mbufq, -1);
}
static __inline void
tcp_lro_active_insert(struct lro_ctrl *lc, struct lro_head *bucket,
struct lro_entry *le)
{
LIST_INSERT_HEAD(&lc->lro_active, le, next);
LIST_INSERT_HEAD(bucket, le, hash_next);
}
static __inline void
tcp_lro_active_remove(struct lro_entry *le)
{
LIST_REMOVE(le, next); /* active list */
LIST_REMOVE(le, hash_next); /* hash bucket */
}
int
tcp_lro_init(struct lro_ctrl *lc)
{
return (tcp_lro_init_args(lc, NULL, tcp_lro_entries, 0));
}
int
tcp_lro_init_args(struct lro_ctrl *lc, struct ifnet *ifp,
unsigned lro_entries, unsigned lro_mbufs)
{
struct lro_entry *le;
size_t size;
unsigned i, elements;
lc->lro_bad_csum = 0;
lc->lro_queued = 0;
lc->lro_flushed = 0;
lc->lro_mbuf_count = 0;
lc->lro_mbuf_max = lro_mbufs;
lc->lro_cnt = lro_entries;
lc->lro_ackcnt_lim = TCP_LRO_ACKCNT_MAX;
lc->lro_length_lim = TCP_LRO_LENGTH_MAX;
lc->ifp = ifp;
LIST_INIT(&lc->lro_free);
LIST_INIT(&lc->lro_active);
/* create hash table to accelerate entry lookup */
if (lro_entries > lro_mbufs)
elements = lro_entries;
else
elements = lro_mbufs;
lc->lro_hash = phashinit_flags(elements, M_LRO, &lc->lro_hashsz,
HASH_NOWAIT);
if (lc->lro_hash == NULL) {
memset(lc, 0, sizeof(*lc));
return (ENOMEM);
}
/* compute size to allocate */
size = (lro_mbufs * sizeof(struct lro_mbuf_sort)) +
(lro_entries * sizeof(*le));
lc->lro_mbuf_data = (struct lro_mbuf_sort *)
malloc(size, M_LRO, M_NOWAIT | M_ZERO);
/* check for out of memory */
if (lc->lro_mbuf_data == NULL) {
free(lc->lro_hash, M_LRO);
memset(lc, 0, sizeof(*lc));
return (ENOMEM);
}
/* compute offset for LRO entries */
le = (struct lro_entry *)
(lc->lro_mbuf_data + lro_mbufs);
/* setup linked list */
for (i = 0; i != lro_entries; i++)
LIST_INSERT_HEAD(&lc->lro_free, le + i, next);
return (0);
}
static struct tcphdr *
tcp_lro_get_th(struct lro_entry *le, struct mbuf *m)
{
struct ether_header *eh;
struct tcphdr *th = NULL;
#ifdef INET6
struct ip6_hdr *ip6 = NULL; /* Keep compiler happy. */
#endif
#ifdef INET
struct ip *ip4 = NULL; /* Keep compiler happy. */
#endif
eh = mtod(m, struct ether_header *);
switch (le->eh_type) {
#ifdef INET6
case ETHERTYPE_IPV6:
ip6 = (struct ip6_hdr *)(eh + 1);
th = (struct tcphdr *)(ip6 + 1);
break;
#endif
#ifdef INET
case ETHERTYPE_IP:
ip4 = (struct ip *)(eh + 1);
th = (struct tcphdr *)(ip4 + 1);
break;
#endif
}
return (th);
}
static void
lro_free_mbuf_chain(struct mbuf *m)
{
struct mbuf *save;
while (m) {
save = m->m_nextpkt;
m->m_nextpkt = NULL;
m_freem(m);
m = save;
}
}
void
tcp_lro_free(struct lro_ctrl *lc)
{
struct lro_entry *le;
unsigned x;
/* reset LRO free list */
LIST_INIT(&lc->lro_free);
/* free active mbufs, if any */
while ((le = LIST_FIRST(&lc->lro_active)) != NULL) {
tcp_lro_active_remove(le);
lro_free_mbuf_chain(le->m_head);
}
/* free hash table */
free(lc->lro_hash, M_LRO);
lc->lro_hash = NULL;
lc->lro_hashsz = 0;
/* free mbuf array, if any */
for (x = 0; x != lc->lro_mbuf_count; x++)
m_freem(lc->lro_mbuf_data[x].mb);
lc->lro_mbuf_count = 0;
/* free allocated memory, if any */
free(lc->lro_mbuf_data, M_LRO);
lc->lro_mbuf_data = NULL;
}
static uint16_t
tcp_lro_csum_th(struct tcphdr *th)
{
uint32_t ch;
uint16_t *p, l;
ch = th->th_sum = 0x0000;
l = th->th_off;
p = (uint16_t *)th;
while (l > 0) {
ch += *p;
p++;
ch += *p;
p++;
l--;
}
while (ch > 0xffff)
ch = (ch >> 16) + (ch & 0xffff);
return (ch & 0xffff);
}
static uint16_t
tcp_lro_rx_csum_fixup(struct lro_entry *le, void *l3hdr, struct tcphdr *th,
uint16_t tcp_data_len, uint16_t csum)
{
uint32_t c;
uint16_t cs;
c = csum;
/* Remove length from checksum. */
switch (le->eh_type) {
#ifdef INET6
case ETHERTYPE_IPV6:
{
struct ip6_hdr *ip6;
ip6 = (struct ip6_hdr *)l3hdr;
if (le->append_cnt == 0)
cs = ip6->ip6_plen;
else {
uint32_t cx;
cx = ntohs(ip6->ip6_plen);
cs = in6_cksum_pseudo(ip6, cx, ip6->ip6_nxt, 0);
}
break;
}
#endif
#ifdef INET
case ETHERTYPE_IP:
{
struct ip *ip4;
ip4 = (struct ip *)l3hdr;
if (le->append_cnt == 0)
cs = ip4->ip_len;
else {
cs = in_addword(ntohs(ip4->ip_len) - sizeof(*ip4),
IPPROTO_TCP);
cs = in_pseudo(ip4->ip_src.s_addr, ip4->ip_dst.s_addr,
htons(cs));
}
break;
}
#endif
default:
cs = 0; /* Keep compiler happy. */
}
cs = ~cs;
c += cs;
/* Remove TCP header csum. */
cs = ~tcp_lro_csum_th(th);
c += cs;
while (c > 0xffff)
c = (c >> 16) + (c & 0xffff);
return (c & 0xffff);
}
static void
tcp_lro_rx_done(struct lro_ctrl *lc)
{
struct lro_entry *le;
while ((le = LIST_FIRST(&lc->lro_active)) != NULL) {
tcp_lro_active_remove(le);
tcp_lro_flush(lc, le);
}
}
void
tcp_lro_flush_inactive(struct lro_ctrl *lc, const struct timeval *timeout)
{
struct lro_entry *le, *le_tmp;
struct timeval tv;
if (LIST_EMPTY(&lc->lro_active))
return;
getmicrouptime(&tv);
timevalsub(&tv, timeout);
LIST_FOREACH_SAFE(le, &lc->lro_active, next, le_tmp) {
if (timevalcmp(&tv, &le->mtime, >=)) {
tcp_lro_active_remove(le);
tcp_lro_flush(lc, le);
}
}
}
#ifdef INET6
static int
tcp_lro_rx_ipv6(struct lro_ctrl *lc, struct mbuf *m, struct ip6_hdr *ip6,
struct tcphdr **th)
{
/* XXX-BZ we should check the flow-label. */
/* XXX-BZ We do not yet support ext. hdrs. */
if (ip6->ip6_nxt != IPPROTO_TCP)
return (TCP_LRO_NOT_SUPPORTED);
/* Find the TCP header. */
*th = (struct tcphdr *)(ip6 + 1);
return (0);
}
#endif
#ifdef INET
static int
tcp_lro_rx_ipv4(struct lro_ctrl *lc, struct mbuf *m, struct ip *ip4,
struct tcphdr **th)
{
int csum_flags;
uint16_t csum;
if (ip4->ip_p != IPPROTO_TCP)
return (TCP_LRO_NOT_SUPPORTED);
/* Ensure there are no options. */
if ((ip4->ip_hl << 2) != sizeof (*ip4))
return (TCP_LRO_CANNOT);
/* .. and the packet is not fragmented. */
if (ip4->ip_off & htons(IP_MF|IP_OFFMASK))
return (TCP_LRO_CANNOT);
/* Legacy IP has a header checksum that needs to be correct. */
csum_flags = m->m_pkthdr.csum_flags;
if (csum_flags & CSUM_IP_CHECKED) {
if (__predict_false((csum_flags & CSUM_IP_VALID) == 0)) {
lc->lro_bad_csum++;
return (TCP_LRO_CANNOT);
}
} else {
csum = in_cksum_hdr(ip4);
if (__predict_false((csum) != 0)) {
lc->lro_bad_csum++;
return (TCP_LRO_CANNOT);
}
}
/* Find the TCP header (we assured there are no IP options). */
*th = (struct tcphdr *)(ip4 + 1);
return (0);
}
#endif
#ifdef TCPHPTS
static void
tcp_lro_log(struct tcpcb *tp, struct lro_ctrl *lc,
struct lro_entry *le, struct mbuf *m, int frm, int32_t tcp_data_len,
uint32_t th_seq , uint32_t th_ack, uint16_t th_win)
{
if (tp->t_logstate != TCP_LOG_STATE_OFF) {
union tcp_log_stackspecific log;
struct timeval tv;
uint32_t cts;
cts = tcp_get_usecs(&tv);
memset(&log, 0, sizeof(union tcp_log_stackspecific));
log.u_bbr.flex8 = frm;
log.u_bbr.flex1 = tcp_data_len;
if (m)
log.u_bbr.flex2 = m->m_pkthdr.len;
else
log.u_bbr.flex2 = 0;
log.u_bbr.flex3 = le->append_cnt;
log.u_bbr.flex4 = le->p_len;
if (le->m_head) {
log.u_bbr.flex5 = le->m_head->m_pkthdr.len;
log.u_bbr.delRate = le->m_head->m_flags;
log.u_bbr.rttProp = le->m_head->m_pkthdr.rcv_tstmp;
}
log.u_bbr.inflight = th_seq;
log.u_bbr.timeStamp = cts;
log.u_bbr.epoch = le->next_seq;
log.u_bbr.delivered = th_ack;
log.u_bbr.lt_epoch = le->ack_seq;
log.u_bbr.pacing_gain = th_win;
log.u_bbr.cwnd_gain = le->window;
log.u_bbr.cur_del_rate = (uintptr_t)m;
log.u_bbr.bw_inuse = (uintptr_t)le->m_head;
log.u_bbr.pkts_out = le->mbuf_cnt; /* Total mbufs added */
log.u_bbr.applimited = le->ulp_csum;
log.u_bbr.lost = le->mbuf_appended;
log.u_bbr.pkt_epoch = le->cmp_ack_cnt;
log.u_bbr.flex6 = tcp_tv_to_usectick(&lc->lro_last_flush);
if (in_epoch(net_epoch_preempt))
log.u_bbr.inhpts = 1;
else
log.u_bbr.inhpts = 0;
TCP_LOG_EVENTP(tp, NULL,
&tp->t_inpcb->inp_socket->so_rcv,
&tp->t_inpcb->inp_socket->so_snd,
TCP_LOG_LRO, 0,
0, &log, false, &tv);
}
}
#endif
static void
tcp_flush_out_le(struct tcpcb *tp, struct lro_ctrl *lc, struct lro_entry *le)
{
if (le->append_cnt > 1) {
struct tcphdr *th;
uint16_t p_len;
p_len = htons(le->p_len);
switch (le->eh_type) {
#ifdef INET6
case ETHERTYPE_IPV6:
{
struct ip6_hdr *ip6;
ip6 = le->le_ip6;
ip6->ip6_plen = p_len;
th = (struct tcphdr *)(ip6 + 1);
le->m_head->m_pkthdr.csum_flags = CSUM_DATA_VALID |
CSUM_PSEUDO_HDR;
le->p_len += ETHER_HDR_LEN + sizeof(*ip6);
break;
}
#endif
#ifdef INET
case ETHERTYPE_IP:
{
struct ip *ip4;
uint32_t cl;
uint16_t c;
ip4 = le->le_ip4;
/* Fix IP header checksum for new length. */
c = ~ip4->ip_sum;
cl = c;
c = ~ip4->ip_len;
cl += c + p_len;
while (cl > 0xffff)
cl = (cl >> 16) + (cl & 0xffff);
c = cl;
ip4->ip_sum = ~c;
ip4->ip_len = p_len;
th = (struct tcphdr *)(ip4 + 1);
le->m_head->m_pkthdr.csum_flags = CSUM_DATA_VALID |
CSUM_PSEUDO_HDR | CSUM_IP_CHECKED | CSUM_IP_VALID;
le->p_len += ETHER_HDR_LEN;
break;
}
#endif
default:
th = NULL; /* Keep compiler happy. */
}
le->m_head->m_pkthdr.csum_data = 0xffff;
le->m_head->m_pkthdr.len = le->p_len;
/* Incorporate the latest ACK into the TCP header. */
th->th_ack = le->ack_seq;
th->th_win = le->window;
/* Incorporate latest timestamp into the TCP header. */
if (le->timestamp != 0) {
uint32_t *ts_ptr;
ts_ptr = (uint32_t *)(th + 1);
ts_ptr[1] = htonl(le->tsval);
ts_ptr[2] = le->tsecr;
}
/* Update the TCP header checksum. */
le->ulp_csum += p_len;
le->ulp_csum += tcp_lro_csum_th(th);
while (le->ulp_csum > 0xffff)
le->ulp_csum = (le->ulp_csum >> 16) +
(le->ulp_csum & 0xffff);
th->th_sum = (le->ulp_csum & 0xffff);
th->th_sum = ~th->th_sum;
}
/*
* Break any chain, this is not set to NULL on the singleton
* case m_nextpkt points to m_head. Other case set them
* m_nextpkt to NULL in push_and_replace.
*/
le->m_head->m_nextpkt = NULL;
le->m_head->m_pkthdr.lro_nsegs = le->append_cnt;
(*lc->ifp->if_input)(lc->ifp, le->m_head);
lc->lro_queued += le->append_cnt;
}
static void
tcp_set_le_to_m(struct lro_ctrl *lc, struct lro_entry *le, struct mbuf *m)
{
struct ether_header *eh;
void *l3hdr = NULL; /* Keep compiler happy. */
struct tcphdr *th;
#ifdef INET6
struct ip6_hdr *ip6 = NULL; /* Keep compiler happy. */
#endif
#ifdef INET
struct ip *ip4 = NULL; /* Keep compiler happy. */
#endif
uint32_t *ts_ptr;
int error, l, ts_failed = 0;
uint16_t tcp_data_len;
uint16_t csum;
error = -1;
eh = mtod(m, struct ether_header *);
/*
* We must reset the other pointers since the mbuf
* we were pointing too is about to go away.
*/
switch (le->eh_type) {
#ifdef INET6
case ETHERTYPE_IPV6:
l3hdr = ip6 = (struct ip6_hdr *)(eh + 1);
error = tcp_lro_rx_ipv6(lc, m, ip6, &th);
le->le_ip6 = ip6;
le->source_ip6 = ip6->ip6_src;
le->dest_ip6 = ip6->ip6_dst;
le->p_len = m->m_pkthdr.len - ETHER_HDR_LEN - sizeof(*ip6);
break;
#endif
#ifdef INET
case ETHERTYPE_IP:
l3hdr = ip4 = (struct ip *)(eh + 1);
error = tcp_lro_rx_ipv4(lc, m, ip4, &th);
le->le_ip4 = ip4;
le->source_ip4 = ip4->ip_src.s_addr;
le->dest_ip4 = ip4->ip_dst.s_addr;
le->p_len = m->m_pkthdr.len - ETHER_HDR_LEN;
break;
#endif
}
KASSERT(error == 0, ("%s: le=%p tcp_lro_rx_xxx failed\n",
__func__, le));
ts_ptr = (uint32_t *)(th + 1);
l = (th->th_off << 2);
l -= sizeof(*th);
if (l != 0 &&
(__predict_false(l != TCPOLEN_TSTAMP_APPA) ||
(*ts_ptr != ntohl(TCPOPT_NOP<<24|TCPOPT_NOP<<16|
TCPOPT_TIMESTAMP<<8|TCPOLEN_TIMESTAMP)))) {
/* We have failed to find a timestamp some other option? */
ts_failed = 1;
}
if ((l != 0) && (ts_failed == 0)) {
le->timestamp = 1;
le->tsval = ntohl(*(ts_ptr + 1));
le->tsecr = *(ts_ptr + 2);
} else
le->timestamp = 0;
le->source_port = th->th_sport;
le->dest_port = th->th_dport;
/* Pull out the csum */
tcp_data_len = m->m_pkthdr.lro_len;
le->next_seq = ntohl(th->th_seq) + tcp_data_len;
le->ack_seq = th->th_ack;
le->window = th->th_win;
csum = th->th_sum;
/* Setup the data pointers */
le->m_head = m;
le->m_tail = m_last(m);
le->append_cnt = 0;
le->ulp_csum = tcp_lro_rx_csum_fixup(le, l3hdr, th, tcp_data_len,
~csum);
le->append_cnt++;
th->th_sum = csum; /* Restore checksum on first packet. */
}
static void
tcp_push_and_replace(struct tcpcb *tp, struct lro_ctrl *lc, struct lro_entry *le, struct mbuf *m)
{
/*
* Push up the stack the current le and replace
* it with m.
*/
struct mbuf *msave;
/* Grab off the next and save it */
msave = le->m_head->m_nextpkt;
le->m_head->m_nextpkt = NULL;
/* Now push out the old le entry */
tcp_flush_out_le(tp, lc, le);
/*
* Now to replace the data properly in the le
* we have to reset the tcp header and
* other fields.
*/
tcp_set_le_to_m(lc, le, m);
/* Restore the next list */
m->m_nextpkt = msave;
}
static void
tcp_lro_condense(struct tcpcb *tp, struct lro_ctrl *lc, struct lro_entry *le)
{
/*
* Walk through the mbuf chain we
* have on tap and compress/condense
* as required.
*/
uint32_t *ts_ptr;
struct mbuf *m;
struct tcphdr *th;
uint16_t tcp_data_len, csum_upd;
int l;
/*
* First we must check the lead (m_head)
* we must make sure that it is *not*
* something that should be sent up
* right away (sack etc).
*/
again:
m = le->m_head->m_nextpkt;
if (m == NULL) {
/* Just the one left */
return;
}
if (m->m_flags & M_ACKCMP)
panic("LRO condense lc:%p le:%p reaches with mbuf:%p ackcmp",
lc, le, m);
th = tcp_lro_get_th(le, le->m_head);
KASSERT(th != NULL,
("le:%p m:%p th comes back NULL?", le, le->m_head));
l = (th->th_off << 2);
l -= sizeof(*th);
ts_ptr = (uint32_t *)(th + 1);
if (l != 0 && (__predict_false(l != TCPOLEN_TSTAMP_APPA) ||
(*ts_ptr != ntohl(TCPOPT_NOP<<24|TCPOPT_NOP<<16|
TCPOPT_TIMESTAMP<<8|TCPOLEN_TIMESTAMP)))) {
/*
* Its not the timestamp. We can't
* use this guy as the head.
*/
le->m_head->m_nextpkt = m->m_nextpkt;
tcp_push_and_replace(tp, lc, le, m);
goto again;
}
if ((th->th_flags & ~(TH_ACK | TH_PUSH)) != 0) {
/*
* Make sure that previously seen segements/ACKs are delivered
* before this segment, e.g. FIN.
*/
le->m_head->m_nextpkt = m->m_nextpkt;
KASSERT(((m->m_flags & M_LRO_EHDRSTRP) == 0) ,
("tp:%p mbuf:%p has stripped ethernet flags:0x%x", tp, m, m->m_flags));
tcp_push_and_replace(tp, lc, le, m);
goto again;
}
while((m = le->m_head->m_nextpkt) != NULL) {
/*
* condense m into le, first
* pull m out of the list.
*/
KASSERT(((m->m_flags & M_LRO_EHDRSTRP) == 0) ,
("tp:%p mbuf:%p has stripped ethernet flags:0x%x", tp, m, m->m_flags));
KASSERT(((m->m_flags & M_ACKCMP) == 0),
("LRO condense lc:%p le:%p reaches with mbuf:%p ackcmp", lc, le, m));
le->m_head->m_nextpkt = m->m_nextpkt;
m->m_nextpkt = NULL;
/* Setup my data */
tcp_data_len = m->m_pkthdr.lro_len;
th = tcp_lro_get_th(le, m);
KASSERT(th != NULL,
("le:%p m:%p th comes back NULL?", le, m));
ts_ptr = (uint32_t *)(th + 1);
l = (th->th_off << 2);
l -= sizeof(*th);
if (le->append_cnt >= lc->lro_ackcnt_lim) {
tcp_push_and_replace(tp, lc, le, m);
goto again;
}
if (le->p_len > (lc->lro_length_lim - tcp_data_len)) {
/* Flush now if appending will result in overflow. */
tcp_push_and_replace(tp, lc, le, m);
goto again;
}
if (l != 0 && (__predict_false(l != TCPOLEN_TSTAMP_APPA) ||
(*ts_ptr != ntohl(TCPOPT_NOP<<24|TCPOPT_NOP<<16|
TCPOPT_TIMESTAMP<<8|TCPOLEN_TIMESTAMP)))) {
/*
* Maybe a sack in the new one? We need to
* start all over after flushing the
* current le. We will go up to the beginning
* and flush it (calling the replace again possibly
* or just returning).
*/
tcp_push_and_replace(tp, lc, le, m);
goto again;
}
if ((th->th_flags & ~(TH_ACK | TH_PUSH)) != 0) {
tcp_push_and_replace(tp, lc, le, m);
goto again;
}
if (l != 0) {
uint32_t tsval = ntohl(*(ts_ptr + 1));
/* Make sure timestamp values are increasing. */
if (TSTMP_GT(le->tsval, tsval)) {
tcp_push_and_replace(tp, lc, le, m);
goto again;
}
le->tsval = tsval;
le->tsecr = *(ts_ptr + 2);
}
/* Try to append the new segment. */
if (__predict_false(ntohl(th->th_seq) != le->next_seq ||
(tcp_data_len == 0 &&
le->ack_seq == th->th_ack &&
le->window == th->th_win))) {
/* Out of order packet or duplicate ACK. */
tcp_push_and_replace(tp, lc, le, m);
goto again;
}
if (tcp_data_len || SEQ_GT(ntohl(th->th_ack), ntohl(le->ack_seq))) {
le->next_seq += tcp_data_len;
le->ack_seq = th->th_ack;
le->window = th->th_win;
} else if (th->th_ack == le->ack_seq) {
le->window = WIN_MAX(le->window, th->th_win);
}
csum_upd = m->m_pkthdr.lro_csum;
le->ulp_csum += csum_upd;
if (tcp_data_len == 0) {
le->append_cnt++;
le->mbuf_cnt--;
m_freem(m);
continue;
}
le->append_cnt++;
le->mbuf_appended++;
le->p_len += tcp_data_len;
/*
* Adjust the mbuf so that m_data points to the first byte of
* the ULP payload. Adjust the mbuf to avoid complications and
* append new segment to existing mbuf chain.
*/
m_adj(m, m->m_pkthdr.len - tcp_data_len);
m_demote_pkthdr(m);
le->m_tail->m_next = m;
le->m_tail = m_last(m);
}
}
#ifdef TCPHPTS
static void
tcp_queue_pkts(struct tcpcb *tp, struct lro_entry *le)
{
if (tp->t_in_pkt == NULL) {
/* Nothing yet there */
tp->t_in_pkt = le->m_head;
tp->t_tail_pkt = le->m_last_mbuf;
} else {
/* Already some there */
tp->t_tail_pkt->m_nextpkt = le->m_head;
tp->t_tail_pkt = le->m_last_mbuf;
}
le->m_head = NULL;
le->m_last_mbuf = NULL;
}
static struct mbuf *
tcp_lro_get_last_if_ackcmp(struct lro_ctrl *lc, struct lro_entry *le, struct inpcb *inp)
{
struct mbuf *m = NULL;
struct tcpcb *tp;
tp = intotcpcb(inp);
if (tp) {
/* Look at the last mbuf if any in queue */
if ((tp->t_tail_pkt) &&
(tp->t_tail_pkt->m_flags & M_ACKCMP)) {
if (M_TRAILINGSPACE(tp->t_tail_pkt) >= sizeof(struct tcp_ackent)) {
tcp_lro_log(tp, lc, le, NULL, 23, 0, 0, 0, 0);
m = tp->t_tail_pkt;
} else {
if ((inp->inp_flags2 & INP_MBUF_L_ACKS) == 0) {
counter_u64_add(tcp_would_have_but, 1);
inp->inp_flags2 |= INP_MBUF_L_ACKS;
}
}
}
}
return (m);
}
static struct inpcb *
tcp_lro_lookup(struct lro_ctrl *lc, struct lro_entry *le)
{
struct inpcb *inp = NULL;
NET_EPOCH_ASSERT();
switch (le->eh_type) {
#ifdef INET6
case ETHERTYPE_IPV6:
inp = in6_pcblookup(&V_tcbinfo, &le->source_ip6,
le->source_port, &le->dest_ip6,le->dest_port,
INPLOOKUP_WLOCKPCB,
lc->ifp);
break;
#endif
#ifdef INET
case ETHERTYPE_IP:
inp = in_pcblookup(&V_tcbinfo, le->le_ip4->ip_src,
le->source_port, le->le_ip4->ip_dst, le->dest_port,
INPLOOKUP_WLOCKPCB,
lc->ifp);
break;
#endif
}
return (inp);
}
#endif
#ifdef NO
static void
stack_guard_prep(uint32_t *sg, int len)
{
int i;
for (i = 0; i < len; i++) {
sg[i] = 0xdeadc0de;
}
}
static void
stack_guard_check(struct lro_ctrl *lc, struct lro_entry *le, uint32_t *sg, int len)
{
int i;
for (i = 0; i < len; i++) {
if (sg[i] != 0xdeadc0de)
panic("Stack guard fails sg[%d] = 0x%x le:%p lc:%p sg:%p\n",
i, sg[i], le, lc, sg);
}
}
#endif
void
tcp_lro_flush(struct lro_ctrl *lc, struct lro_entry *le)
{
struct tcpcb *tp = NULL;
#ifdef TCPHPTS
struct inpcb *inp = NULL;
int need_wakeup = 0, can_queue = 0;
/* Now lets lookup the inp first */
CURVNET_SET(lc->ifp->if_vnet);
/*
* XXXRRS Currently the common input handler for
* mbuf queuing cannot handle VLAN Tagged. This needs
* to be fixed and the or condition removed (i.e. the
* common code should do the right lookup for the vlan
* tag and anything else that the vlan_input() does).
*/
if (le->m_head == NULL) {
/*
* Everything was pushed up to the stack nothing to do
* but release the reference and be done.
*/
if (le->inp) {
INP_WLOCK(le->inp);
if (in_pcbrele_wlocked(le->inp) == 0) {
/*
* We released it and still
* have the lock.
*/
INP_WUNLOCK(le->inp);
}
}
goto done;
}
if ((tcplro_stacks_wanting_mbufq == 0) || (le->m_head->m_flags & M_VLANTAG))
goto skip_lookup;
if (le->inp == NULL) {
le->inp = inp = tcp_lro_lookup(lc, le);
if (inp && ((inp->inp_flags & (INP_DROPPED|INP_TIMEWAIT)) ||
(inp->inp_flags2 & INP_FREED))) {
/*
* We can't present these to the inp since
* it will not support the stripped ethernet
* header that these have nor if a compressed
* ack is presnet.
*/
INP_WUNLOCK(inp);
lro_free_mbuf_chain(le->m_head);
goto done;
}
if ((le->flags & HAS_COMP_ENTRIES) &&
((inp->inp_flags2 & INP_MBUF_ACKCMP) == 0)) {
/*
* It swapped to off, must be a stack
* switch. We need to ditch all the packets
* and the peer will just have to retransmit.
*/
INP_WUNLOCK(inp);
lro_free_mbuf_chain(le->m_head);
goto done;
}
} else {
/* We have a reference on the inp lets lock and release it */
inp = le->inp;
INP_WLOCK(inp);
if (in_pcbrele_wlocked(inp)) {
/*
* We lost the inp. We can't present these to the inp since
* it will not support the stripped off etherent header.
*/
lro_free_mbuf_chain(le->m_head);
goto done;
}
if (inp && ((inp->inp_flags & (INP_DROPPED|INP_TIMEWAIT)) ||
(inp->inp_flags2 & INP_FREED))) {
/*
* We can't present these to the inp since
* it may not support them.
*/
INP_WUNLOCK(inp);
lro_free_mbuf_chain(le->m_head);
goto done;
}
if ((le->flags & HAS_COMP_ENTRIES) &&
((inp->inp_flags2 & INP_MBUF_ACKCMP) == 0)) {
/*
* It swapped to off, must be a stack
* switch. We need to ditch all the packets
* and the peer will just have to retransmit.
*/
INP_WUNLOCK(inp);
lro_free_mbuf_chain(le->m_head);
goto done;
}
}
if (inp && ((inp->inp_flags2 & INP_SUPPORTS_MBUFQ) ||
(inp->inp_flags2 & INP_MBUF_ACKCMP))) {
/* The transport supports mbuf queuing */
can_queue = 1;
if (le->need_wakeup ||
((inp->inp_in_input == 0) &&
((inp->inp_flags2 & INP_MBUF_QUEUE_READY) == 0))) {
/*
* Either the transport is off on a keep-alive
* (it has the queue_ready flag clear and its
* not already been woken) or the entry has
* some urgent thing (FIN or possibly SACK blocks).
* This means we need to wake the transport up by
* putting it on the input pacer.
*/
need_wakeup = 1;
if ((inp->inp_flags2 & INP_DONT_SACK_QUEUE) &&
(le->need_wakeup != 1)) {
/*
* Prohibited from a sack wakeup.
*/
need_wakeup = 0;
}
}
/* Do we need to be awoken due to lots of data or acks? */
if ((le->tcp_tot_p_len >= lc->lro_length_lim) ||
(le->mbuf_cnt >= lc->lro_ackcnt_lim))
need_wakeup = 1;
}
if (inp)
tp = intotcpcb(inp);
else
tp = NULL;
if (can_queue) {
counter_u64_add(tcp_inp_lro_direct_queue, 1);
tcp_lro_log(tp, lc, le, NULL, 22, need_wakeup,
inp->inp_flags2, inp->inp_in_input, le->need_wakeup);
tcp_queue_pkts(tp, le);
if (need_wakeup) {
/*
* We must get the guy to wakeup via
* hpts.
*/
NET_EPOCH_ASSERT();
if (le->need_wakeup == 2) {
/*
* The value 2 is set if the
* options are unrecognized i.e.
* not just a timestamp. So really
* sack is usually what it is but
* it might be some other option (CWR
* etc).
*/
counter_u64_add(tcp_inp_lro_sack_wake, 1);
}
counter_u64_add(tcp_inp_lro_wokeup_queue, 1);
if ((*tp->t_fb->tfb_do_queued_segments)(inp->inp_socket, tp, 0)) {
inp = NULL;
}
}
}
if (inp) {
/* Unlock it */
tp = NULL;
counter_u64_add(tcp_inp_lro_locks_taken, 1);
INP_WUNLOCK(inp);
}
if (can_queue == 0) {
skip_lookup:
if (le->strip_cnt) {
/*
* We have stripped mbufs, the connection
* must have changed underneath us. You
* loose the packets as a penalty.
*/
lro_free_mbuf_chain(le->m_head);
goto done;
}
#endif /* TCPHPTS */
/* Old fashioned lro method */
if (le->m_head != le->m_last_mbuf) {
counter_u64_add(tcp_inp_lro_compressed, 1);
tcp_lro_condense(tp, lc, le);
} else
counter_u64_add(tcp_inp_lro_single_push, 1);
tcp_flush_out_le(tp, lc, le);
#ifdef TCPHPTS
}
done:
CURVNET_RESTORE();
#endif
lc->lro_flushed++;
bzero(le, sizeof(*le));
LIST_INSERT_HEAD(&lc->lro_free, le, next);
}
#ifdef HAVE_INLINE_FLSLL
#define tcp_lro_msb_64(x) (1ULL << (flsll(x) - 1))
#else
static inline uint64_t
tcp_lro_msb_64(uint64_t x)
{
x |= (x >> 1);
x |= (x >> 2);
x |= (x >> 4);
x |= (x >> 8);
x |= (x >> 16);
x |= (x >> 32);
return (x & ~(x >> 1));
}
#endif
/*
* The tcp_lro_sort() routine is comparable to qsort(), except it has
* a worst case complexity limit of O(MIN(N,64)*N), where N is the
* number of elements to sort and 64 is the number of sequence bits
* available. The algorithm is bit-slicing the 64-bit sequence number,
* sorting one bit at a time from the most significant bit until the
* least significant one, skipping the constant bits. This is
* typically called a radix sort.
*/
static void
tcp_lro_sort(struct lro_mbuf_sort *parray, uint32_t size)
{
struct lro_mbuf_sort temp;
uint64_t ones;
uint64_t zeros;
uint32_t x;
uint32_t y;
repeat:
/* for small arrays insertion sort is faster */
if (size <= 12) {
for (x = 1; x < size; x++) {
temp = parray[x];
for (y = x; y > 0 && temp.seq < parray[y - 1].seq; y--)
parray[y] = parray[y - 1];
parray[y] = temp;
}
return;
}
/* compute sequence bits which are constant */
ones = 0;
zeros = 0;
for (x = 0; x != size; x++) {
ones |= parray[x].seq;
zeros |= ~parray[x].seq;
}
/* compute bits which are not constant into "ones" */
ones &= zeros;
if (ones == 0)
return;
/* pick the most significant bit which is not constant */
ones = tcp_lro_msb_64(ones);
/*
* Move entries having cleared sequence bits to the beginning
* of the array:
*/
for (x = y = 0; y != size; y++) {
/* skip set bits */
if (parray[y].seq & ones)
continue;
/* swap entries */
temp = parray[x];
parray[x] = parray[y];
parray[y] = temp;
x++;
}
KASSERT(x != 0 && x != size, ("Memory is corrupted\n"));
/* sort zeros */
tcp_lro_sort(parray, x);
/* sort ones */
parray += x;
size -= x;
goto repeat;
}
void
tcp_lro_flush_all(struct lro_ctrl *lc)
{
uint64_t seq;
uint64_t nseq;
unsigned x;
/* check if no mbufs to flush */
if (lc->lro_mbuf_count == 0)
goto done;
microuptime(&lc->lro_last_flush);
/* sort all mbufs according to stream */
tcp_lro_sort(lc->lro_mbuf_data, lc->lro_mbuf_count);
/* input data into LRO engine, stream by stream */
seq = 0;
for (x = 0; x != lc->lro_mbuf_count; x++) {
struct mbuf *mb;
/* get mbuf */
mb = lc->lro_mbuf_data[x].mb;
/* get sequence number, masking away the packet index */
nseq = lc->lro_mbuf_data[x].seq & (-1ULL << 24);
/* check for new stream */
if (seq != nseq) {
seq = nseq;
/* flush active streams */
tcp_lro_rx_done(lc);
}
/* add packet to LRO engine */
if (tcp_lro_rx2(lc, mb, 0, 0) != 0) {
/* input packet to network layer */
(*lc->ifp->if_input)(lc->ifp, mb);
lc->lro_queued++;
lc->lro_flushed++;
}
}
done:
/* flush active streams */
tcp_lro_rx_done(lc);
lc->lro_mbuf_count = 0;
}
static void
lro_set_mtime(struct timeval *tv, struct timespec *ts)
{
tv->tv_sec = ts->tv_sec;
tv->tv_usec = ts->tv_nsec / 1000;
}
#ifdef TCPHPTS
static void
build_ack_entry(struct tcp_ackent *ae, struct tcphdr *th, struct mbuf *m, uint16_t hdr_len, uint16_t iptos)
{
/*
* Given a TCP ack, summarize it down into the small tcp
* ack entry.
*/
u_char *cp;
KASSERT(((th->th_flags & ~(TH_ACK | TH_PUSH | TH_CWR | TH_ECE)) == 0),
("tcphdr:%p mbuf:%p has unallowed bits %x", th, m, th->th_flags));
ae->timestamp = m->m_pkthdr.rcv_tstmp;
if (m->m_flags & M_TSTMP_LRO)
ae->flags = TSTMP_LRO;
else if (m->m_flags & M_TSTMP)
ae->flags = TSTMP_HDWR;
ae->seq = ntohl(th->th_seq);
ae->ack = ntohl(th->th_ack);
ae->flags |= th->th_flags;
if (hdr_len) {
/* We have a timestamp options get out the bits */
cp = (u_char *)(th + 1);
/* Skip the two NOP's at the front */
while (*cp == TCPOPT_NOP)
cp++;
KASSERT(((*cp == TCPOPT_TIMESTAMP) &&
(cp[1] == TCPOLEN_TIMESTAMP)),
("At %p in tcphdr:%p options of %d not timestamp",
cp, th, hdr_len));
bcopy((char *)cp + 2,
(char *)&ae->ts_value, sizeof(uint32_t));
ae->ts_value = ntohl(ae->ts_value);
bcopy((char *)cp + 6,
(char *)&ae->ts_echo, sizeof(uint32_t));
ae->ts_echo = ntohl(ae->ts_echo);
ae->flags |= HAS_TSTMP;
}
ae->win = ntohs(th->th_win);
ae->codepoint = iptos;
}
static struct mbuf *
do_bpf_and_csum(struct inpcb *inp, struct lro_ctrl *lc, struct lro_entry *le,
struct ether_header *eh, struct mbuf *m, int bpf_req, int locked)
{
/*
* Do TCP/IP checksum and BPF tap for either ACK_CMP packets or
* MBUF QUEUE type packets.
*/
struct tcphdr *th;
#ifdef INET6
struct ip6_hdr *ip6 = NULL; /* Keep compiler happy. */
#endif
#ifdef INET
struct ip *ip = NULL; /* Keep compiler happy. */
#endif
uint16_t drop_hdrlen;
int etype, tlen;
#ifdef INET
uint8_t iptos;
#endif
/* Let the BPF see the packet */
if (bpf_req && lc->ifp)
ETHER_BPF_MTAP(lc->ifp, m);
/* Get type and Trim off the ethernet header */
m->m_pkthdr.lro_etype = etype = ntohs(eh->ether_type);
m_adj(m, sizeof(*eh));
m->m_flags |= M_LRO_EHDRSTRP;
switch (etype) {
#ifdef INET6
case ETHERTYPE_IPV6:
{
if (m->m_len < (sizeof(*ip6) + sizeof(*th))) {
m = m_pullup(m, sizeof(*ip6) + sizeof(*th));
if (m == NULL) {
TCPSTAT_INC(tcps_rcvshort);
m_freem(m);
return (NULL);
}
}
ip6 = (struct ip6_hdr *)(eh + 1);
th = (struct tcphdr *)(ip6 + 1);
tlen = ntohs(ip6->ip6_plen);
drop_hdrlen = sizeof(*ip6);
if (m->m_pkthdr.csum_flags & CSUM_DATA_VALID_IPV6) {
if (m->m_pkthdr.csum_flags & CSUM_PSEUDO_HDR) {
counter_u64_add(tcp_csum_hardware_w_ph, 1);
th->th_sum = m->m_pkthdr.csum_data;
} else {
counter_u64_add(tcp_csum_hardware, 1);
th->th_sum = in6_cksum_pseudo(ip6, tlen,
IPPROTO_TCP, m->m_pkthdr.csum_data);
}
th->th_sum ^= 0xffff;
} else {
counter_u64_add(tcp_csum_software, 1);
th->th_sum = in6_cksum(m, IPPROTO_TCP, drop_hdrlen, tlen);
}
if (th->th_sum) {
TCPSTAT_INC(tcps_rcvbadsum);
if (locked) {
/* Log the bad news */
struct tcpcb *tp = intotcpcb(inp);
tcp_lro_log(tp, lc, le, m, 13, tlen, m->m_pkthdr.csum_flags, drop_hdrlen, th->th_sum);
}
m_freem(m);
return (NULL);
}
/*
* Be proactive about unspecified IPv6 address in source.
* As we use all-zero to indicate unbounded/unconnected pcb,
* unspecified IPv6 address can be used to confuse us.
*
* Note that packets with unspecified IPv6 destination is
* already dropped in ip6_input.
*/
if (IN6_IS_ADDR_UNSPECIFIED(&ip6->ip6_src)) {
/* XXX stat */
m_freem(m);
return (NULL);
}
break;
}
#endif
#ifdef INET
case ETHERTYPE_IP:
{
if (m->m_len < sizeof (struct tcpiphdr)) {
if ((m = m_pullup(m, sizeof (struct tcpiphdr)))
== NULL) {
TCPSTAT_INC(tcps_rcvshort);
m_freem(m);
return (NULL);
}
}
ip = (struct ip *)(eh + 1);
th = (struct tcphdr *)(ip + 1);
iptos = ip->ip_tos;
drop_hdrlen = sizeof(*ip);
tlen = ntohs(ip->ip_len) - sizeof(struct ip);
if (m->m_pkthdr.csum_flags & CSUM_DATA_VALID) {
if (m->m_pkthdr.csum_flags & CSUM_PSEUDO_HDR) {
counter_u64_add(tcp_csum_hardware_w_ph, 1);
th->th_sum = m->m_pkthdr.csum_data;
} else {
counter_u64_add(tcp_csum_hardware, 1);
th->th_sum = in_pseudo(ip->ip_src.s_addr,
ip->ip_dst.s_addr,
htonl(m->m_pkthdr.csum_data + tlen +
IPPROTO_TCP));
}
th->th_sum ^= 0xffff;
} else {
int len;
struct ipovly *ipov = (struct ipovly *)ip;
/*
* Checksum extended TCP header and data.
*/
counter_u64_add(tcp_csum_software, 1);
len = drop_hdrlen + tlen;
bzero(ipov->ih_x1, sizeof(ipov->ih_x1));
ipov->ih_len = htons(tlen);
th->th_sum = in_cksum(m, len);
/* Reset length for SDT probes. */
ip->ip_len = htons(len);
/* Reset TOS bits */
ip->ip_tos = iptos;
/* Re-initialization for later version check */
ip->ip_v = IPVERSION;
ip->ip_hl = sizeof(*ip) >> 2;
}
if (th->th_sum) {
TCPSTAT_INC(tcps_rcvbadsum);
if (locked) {
/* Log the bad news */
struct tcpcb *tp = intotcpcb(inp);
tcp_lro_log(tp, lc, le, m, 13, tlen, m->m_pkthdr.csum_flags, drop_hdrlen, th->th_sum);
}
m_freem(m);
return (NULL);
}
break;
}
#endif
} /* end switch */
return (m);
}
#endif
static int
tcp_lro_rx2(struct lro_ctrl *lc, struct mbuf *m, uint32_t csum, int use_hash)
{
struct lro_entry *le;
struct ether_header *eh;
#ifdef INET6
struct ip6_hdr *ip6 = NULL; /* Keep compiler happy. */
#endif
#ifdef INET
struct ip *ip4 = NULL; /* Keep compiler happy. */
#endif
struct tcphdr *th;
void *l3hdr = NULL; /* Keep compiler happy. */
uint32_t *ts_ptr;
tcp_seq seq;
int error, ip_len, hdr_len, locked = 0;
uint16_t eh_type, tcp_data_len, need_flush;
#ifdef TCPHPTS
uint16_t iptos;
#endif
struct lro_head *bucket;
struct timespec arrv;
/* Clear the flags we may use to communicate with TCP */
m->m_flags &= ~(M_ACKCMP|M_LRO_EHDRSTRP);
/* We expect a contiguous header [eh, ip, tcp]. */
if ((m->m_flags & (M_TSTMP_LRO|M_TSTMP)) == 0) {
/* If no hardware or arrival stamp on the packet add arrival */
nanouptime(&arrv);
m->m_pkthdr.rcv_tstmp = (arrv.tv_sec * 1000000000) + arrv.tv_nsec;
m->m_flags |= M_TSTMP_LRO;
}
eh = mtod(m, struct ether_header *);
eh_type = ntohs(eh->ether_type);
switch (eh_type) {
#ifdef INET6
case ETHERTYPE_IPV6:
{
CURVNET_SET(lc->ifp->if_vnet);
if (V_ip6_forwarding != 0) {
/* XXX-BZ stats but changing lro_ctrl is a problem. */
CURVNET_RESTORE();
return (TCP_LRO_CANNOT);
}
CURVNET_RESTORE();
l3hdr = ip6 = (struct ip6_hdr *)(eh + 1);
error = tcp_lro_rx_ipv6(lc, m, ip6, &th);
if (error != 0)
return (error);
tcp_data_len = ntohs(ip6->ip6_plen);
#ifdef TCPHPTS
iptos = (ntohl(ip6->ip6_flow) >> 20) & 0xff;
#endif
ip_len = sizeof(*ip6) + tcp_data_len;
break;
}
#endif
#ifdef INET
case ETHERTYPE_IP:
{
CURVNET_SET(lc->ifp->if_vnet);
if (V_ipforwarding != 0) {
/* XXX-BZ stats but changing lro_ctrl is a problem. */
CURVNET_RESTORE();
return (TCP_LRO_CANNOT);
}
CURVNET_RESTORE();
l3hdr = ip4 = (struct ip *)(eh + 1);
error = tcp_lro_rx_ipv4(lc, m, ip4, &th);
if (error != 0)
return (error);
ip_len = ntohs(ip4->ip_len);
#ifdef TCPHPTS
iptos = ip4->ip_tos;
#endif
tcp_data_len = ip_len - sizeof(*ip4);
break;
}
#endif
/* XXX-BZ what happens in case of VLAN(s)? */
default:
return (TCP_LRO_NOT_SUPPORTED);
}
/*
* If the frame is padded beyond the end of the IP packet, then we must
* trim the extra bytes off.
*/
hdr_len = m->m_pkthdr.len - (ETHER_HDR_LEN + ip_len);
if (hdr_len != 0) {
if (hdr_len < 0)
/* Truncated packet. */
return (TCP_LRO_CANNOT);
m_adj(m, -hdr_len);
}
/*
* Check TCP header constraints.
*/
hdr_len = (th->th_off << 2);
ts_ptr = (uint32_t *)(th + 1);
tcp_data_len -= hdr_len;
hdr_len -= sizeof(*th);
if (th->th_flags & TH_SYN)
return (TCP_LRO_CANNOT);
if ((th->th_flags & ~(TH_ACK | TH_PUSH)) != 0) {
need_flush = 1;
} else
need_flush = 0;
if (hdr_len != 0 && (__predict_false(hdr_len != TCPOLEN_TSTAMP_APPA) ||
(*ts_ptr != ntohl(TCPOPT_NOP<<24|TCPOPT_NOP<<16|
TCPOPT_TIMESTAMP<<8|TCPOLEN_TIMESTAMP)))) {
/*
* We have an option besides Timestamps, maybe
* it is a sack (most likely) which means we
* will probably need to wake up a sleeper (if
* the guy does queueing).
*/
need_flush = 2;
}
/* If the driver did not pass in the checksum, set it now. */
if (csum == 0x0000)
csum = th->th_sum;
seq = ntohl(th->th_seq);
if (!use_hash) {
bucket = &lc->lro_hash[0];
} else if (M_HASHTYPE_ISHASH(m)) {
bucket = &lc->lro_hash[m->m_pkthdr.flowid % lc->lro_hashsz];
} else {
uint32_t hash;
switch (eh_type) {
#ifdef INET
case ETHERTYPE_IP:
hash = ip4->ip_src.s_addr + ip4->ip_dst.s_addr;
break;
#endif
#ifdef INET6
case ETHERTYPE_IPV6:
hash = ip6->ip6_src.s6_addr32[0] +
ip6->ip6_dst.s6_addr32[0];
hash += ip6->ip6_src.s6_addr32[1] +
ip6->ip6_dst.s6_addr32[1];
hash += ip6->ip6_src.s6_addr32[2] +
ip6->ip6_dst.s6_addr32[2];
hash += ip6->ip6_src.s6_addr32[3] +
ip6->ip6_dst.s6_addr32[3];
break;
#endif
default:
hash = 0;
break;
}
hash += th->th_sport + th->th_dport;
bucket = &lc->lro_hash[hash % lc->lro_hashsz];
}
/* Try to find a matching previous segment. */
LIST_FOREACH(le, bucket, hash_next) {
if (le->eh_type != eh_type)
continue;
if (le->source_port != th->th_sport ||
le->dest_port != th->th_dport)
continue;
switch (eh_type) {
#ifdef INET6
case ETHERTYPE_IPV6:
if (bcmp(&le->source_ip6, &ip6->ip6_src,
sizeof(struct in6_addr)) != 0 ||
bcmp(&le->dest_ip6, &ip6->ip6_dst,
sizeof(struct in6_addr)) != 0)
continue;
break;
#endif
#ifdef INET
case ETHERTYPE_IP:
if (le->source_ip4 != ip4->ip_src.s_addr ||
le->dest_ip4 != ip4->ip_dst.s_addr)
continue;
break;
#endif
}
if (tcp_data_len || SEQ_GT(ntohl(th->th_ack), ntohl(le->ack_seq)) ||
(th->th_ack == le->ack_seq)) {
m->m_pkthdr.lro_len = tcp_data_len;
} else {
/* no data and old ack */
m_freem(m);
return (0);
}
#ifdef TCPHPTS
if ((tcplro_stacks_wanting_mbufq == 0) || (m->m_flags & M_VLANTAG))
goto skip_lookup_a;
if (le->inp == NULL) {
CURVNET_SET(lc->ifp->if_vnet);
le->inp = tcp_lro_lookup(lc, le);
if (le->inp) {
in_pcbref(le->inp);
locked = 1;
}
CURVNET_RESTORE();
} else if (le->inp) {
INP_WLOCK(le->inp);
locked = 1;
}
if (locked && ((le->inp->inp_flags & (INP_DROPPED|INP_TIMEWAIT)) ||
(le->inp->inp_flags2 & INP_FREED))) {
/* We can't present these to the inp since
* its dead Jim.
*/
int ret;
ret = in_pcbrele_wlocked(le->inp);
if (ret == 0)
INP_WUNLOCK(le->inp);
le->inp = NULL;
locked = 0;
tcp_lro_active_remove(le);
if (le->strip_cnt && le->m_head) {
/*
* If we have any stripped packets we
* just dump the whole chain. The
* tcp_lro_flush code knows how
* to handle things when le->m_head is NULL
* and even le->inp is NULL.
*/
lro_free_mbuf_chain(le->m_head);
le->m_head = NULL;
}
tcp_lro_flush(lc, le);
return (TCP_LRO_CANNOT);
}
/* See if it has been switched on */
if (le->inp && (le->inp->inp_flags2 & INP_MBUF_ACKCMP))
le->flags |= CAN_USE_ACKCMP;
if ((need_flush == 1) &&
le->inp &&
(le->inp->inp_flags2 & (INP_MBUF_ACKCMP|INP_SUPPORTS_MBUFQ)) &&
((th->th_flags & ~(TH_ACK | TH_PUSH | TH_ECE | TH_CWR)) == 0)) {
/*
* For MBUF queuing or ACKCMP we can accept ECE and CWR
* since each packet is sent to the transport (or the
* compressed state including the ECN bits).
*/
need_flush = 0;
}
skip_lookup_a:
#endif
if (need_flush)
le->need_wakeup = need_flush;
/* Save of the data only csum */
m->m_pkthdr.rcvif = lc->ifp;
m->m_pkthdr.lro_csum = tcp_lro_rx_csum_fixup(le, l3hdr, th,
tcp_data_len, ~csum);
th->th_sum = csum; /* Restore checksum */
#ifdef TCPHPTS
if ((le->flags & CAN_USE_ACKCMP) ||
(le->inp &&
(le->inp->inp_flags2 & (INP_MBUF_ACKCMP|INP_SUPPORTS_MBUFQ)))) {
/*
* Mbuf queued and ACKCMP packets have their BPF and csum
* done here in LRO. They will still end up looking at the
* headers and such (IP/TCP) but we don't want to proceed
* with any bad csum!
*/
m = do_bpf_and_csum(le->inp, lc, le, eh, m, bpf_peers_present(lc->ifp->if_bpf), locked);
if (m == NULL) {
/* Bad csum, accounting already done */
if (locked) {
INP_WUNLOCK(le->inp);
}
return (0);
}
le->strip_cnt++;
}
if ((need_flush == 0) &&
(th->th_flags & TH_ACK) &&
(tcp_data_len == 0) &&
(le->flags & CAN_USE_ACKCMP)) {
/*
* Ok this is a pure ack lets find out if our
* last packet already has one of these.
*/
struct mbuf *nm;
struct tcp_ackent *ack_ent;
int idx;
INP_WLOCK_ASSERT(le->inp);
if (le->m_head == NULL) {
/* Ok can we still use the end of the inp's? */
nm = tcp_lro_get_last_if_ackcmp(lc, le, le->inp);
if (nm == NULL) {
/* gone or full */
goto new_one;
}
/* We can add in to the one on the tail */
ack_ent = mtod(nm, struct tcp_ackent *);
idx = (nm->m_len / sizeof(struct tcp_ackent));
build_ack_entry(&ack_ent[idx], th, m, hdr_len, iptos);
/* Bump the size of both pkt-hdr and len */
nm->m_len += sizeof(struct tcp_ackent);
nm->m_pkthdr.len += sizeof(struct tcp_ackent);
le->ack_seq = th->th_ack;
le->window = th->th_win;
m_freem(m);
counter_u64_add(tcp_extra_mbuf, 1);
INP_WUNLOCK(le->inp);
return (0);
} else if (le->m_last_mbuf->m_flags & M_ACKCMP) {
/* Yes we might be able to be appended to */
nm = le->m_last_mbuf;
if (M_TRAILINGSPACE(nm) < sizeof(struct tcp_ackent)) {
if ((le->inp->inp_flags2 & INP_MBUF_L_ACKS) == 0) {
counter_u64_add(tcp_would_have_but, 1);
le->inp->inp_flags2 |= INP_MBUF_L_ACKS;
}
goto new_one;
}
/* we have room */
ack_ent = mtod(nm, struct tcp_ackent *);
idx = (nm->m_len / sizeof(struct tcp_ackent));
build_ack_entry(&ack_ent[idx], th, m, hdr_len, iptos);
/* Bump the size of both pkt-hdr and len */
nm->m_len += sizeof(struct tcp_ackent);
nm->m_pkthdr.len += sizeof(struct tcp_ackent);
m_freem(m);
le->flags |= HAS_COMP_ENTRIES;
le->cmp_ack_cnt++;
goto compressed;
} else {
/* Nope we need a new one */
new_one:
if (le->inp->inp_flags2 & INP_MBUF_L_ACKS)
nm = m_getcl(M_NOWAIT, MT_DATA, (M_ACKCMP|M_PKTHDR));
else {
nm = m_gethdr(M_NOWAIT, MT_DATA);
nm->m_flags |= M_ACKCMP;
}
if (nm) {
nm->m_pkthdr.rcvif = lc->ifp;
ack_ent = mtod(nm, struct tcp_ackent *);
build_ack_entry(ack_ent, th, m, hdr_len, iptos);
m_freem(m);
m = nm;
m->m_pkthdr.len = m->m_len = sizeof(struct tcp_ackent);
le->flags |= HAS_COMP_ENTRIES;
le->cmp_ack_cnt++;
}
/* We fall through and append */
}
}
if (m->m_flags & M_ACKCMP) {
counter_u64_add(tcp_comp_total, 1);
} else {
counter_u64_add(tcp_uncomp_total, 1);
}
#endif
/* Save off the tail I am appending too (prev) */
m->m_nextpkt = NULL;
if (le->m_head == NULL) {
/*
* Case where we wer chaining off the inp
* and now no-longer can.
*/
le->m_head = m;
le->m_tail = m_last(m);
le->m_last_mbuf = m;
le->m_prev_last = NULL;
} else {
le->m_prev_last = le->m_last_mbuf;
/* Mark me in the last spot */
le->m_last_mbuf->m_nextpkt = m;
/* Now set the tail to me */
le->m_last_mbuf = m;
le->tcp_tot_p_len += tcp_data_len;
}
#ifdef TCPHPTS
compressed:
#endif
le->mbuf_cnt++;
/* Add to the total size of data */
lro_set_mtime(&le->mtime, &arrv);
if (locked)
INP_WUNLOCK(le->inp);
return (0);
}
/* Try to find an empty slot. */
if (LIST_EMPTY(&lc->lro_free))
return (TCP_LRO_NO_ENTRIES);
/* Start a new segment chain. */
le = LIST_FIRST(&lc->lro_free);
LIST_REMOVE(le, next);
tcp_lro_active_insert(lc, bucket, le);
lro_set_mtime(&le->mtime, &arrv);
/* Start filling in details. */
switch (eh_type) {
#ifdef INET6
case ETHERTYPE_IPV6:
le->le_ip6 = ip6;
le->source_ip6 = ip6->ip6_src;
le->dest_ip6 = ip6->ip6_dst;
le->eh_type = eh_type;
le->p_len = m->m_pkthdr.len - ETHER_HDR_LEN - sizeof(*ip6);
break;
#endif
#ifdef INET
case ETHERTYPE_IP:
le->le_ip4 = ip4;
le->source_ip4 = ip4->ip_src.s_addr;
le->dest_ip4 = ip4->ip_dst.s_addr;
le->eh_type = eh_type;
le->p_len = m->m_pkthdr.len - ETHER_HDR_LEN;
break;
#endif
}
le->source_port = th->th_sport;
le->dest_port = th->th_dport;
le->next_seq = seq + tcp_data_len;
le->ack_seq = th->th_ack;
le->window = th->th_win;
if (hdr_len != 0) {
le->timestamp = 1;
le->tsval = ntohl(*(ts_ptr + 1));
le->tsecr = *(ts_ptr + 2);
}
KASSERT(le->ulp_csum == 0, ("%s: le=%p le->ulp_csum=0x%04x\n",
__func__, le, le->ulp_csum));
le->append_cnt = 0;
le->ulp_csum = tcp_lro_rx_csum_fixup(le, l3hdr, th, tcp_data_len,
~csum);
le->append_cnt++;
th->th_sum = csum; /* Restore checksum */
m->m_pkthdr.rcvif = lc->ifp;
m->m_pkthdr.lro_len = tcp_data_len;
le->mbuf_cnt = 1;
le->cmp_ack_cnt = 0;
le->flags = 0;
#ifdef TCPHPTS
/*
* Lets find out if we can use the mbuf-compression.
*/
if ((tcplro_stacks_wanting_mbufq == 0) || (m->m_flags & M_VLANTAG))
goto skip_lookup_b;
CURVNET_SET(lc->ifp->if_vnet);
le->inp = tcp_lro_lookup(lc, le);
if (le->inp && ((le->inp->inp_flags & (INP_DROPPED|INP_TIMEWAIT)) ||
(le->inp->inp_flags2 & INP_FREED))) {
INP_WUNLOCK(le->inp);
le->inp = NULL;
}
if (le->inp) {
if ((need_flush == 1) &&
(le->inp->inp_flags2 & (INP_MBUF_ACKCMP|INP_SUPPORTS_MBUFQ)) &&
((th->th_flags & ~(TH_ACK | TH_PUSH | TH_ECE | TH_CWR)) == 0)) {
/*
* For MBUF queuing or ACKCMP we can accept ECE and CWR
* since each packet is sent to the transport (or the
* compressed state including the ECN bits).
*/
need_flush = 0;
}
locked = 1;
if (le->inp->inp_flags2 & INP_MBUF_ACKCMP)
le->flags |= CAN_USE_ACKCMP;
if ((le->flags & CAN_USE_ACKCMP) ||
(le->inp &&
(le->inp->inp_flags2 & (INP_MBUF_ACKCMP|INP_SUPPORTS_MBUFQ)))) {
m = do_bpf_and_csum(le->inp, lc, le, eh, m, bpf_peers_present(lc->ifp->if_bpf), locked);
if (m == NULL) {
/* Bad csum, accounting already done */
INP_WUNLOCK(le->inp);
le->inp = NULL;
return (0);
}
le->strip_cnt++;
}
in_pcbref(le->inp);
}
CURVNET_RESTORE();
if ((need_flush == 0) &&
(th->th_flags & TH_ACK) &&
(tcp_data_len == 0) &&
(le->flags & CAN_USE_ACKCMP)) {
/* Ok this is a pure ack lets build our special COMPRESS mbuf */
struct mbuf *nm;
struct tcp_ackent *ack_ent;
/* Question what is going on with the last mbuf on the inp queue, can we use it? */
INP_WLOCK_ASSERT(le->inp);
nm = tcp_lro_get_last_if_ackcmp(lc, le, le->inp);
if (nm) {
int idx;
/* We can add in to the one on the tail */
ack_ent = mtod(nm, struct tcp_ackent *);
idx = (nm->m_len / sizeof(struct tcp_ackent));
build_ack_entry(&ack_ent[idx], th, m, hdr_len, iptos);
nm->m_len += sizeof(struct tcp_ackent);
nm->m_pkthdr.len += sizeof(struct tcp_ackent);
le->ack_seq = th->th_ack;
le->window = th->th_win;
m_freem(m);
counter_u64_add(tcp_extra_mbuf, 1);
le->m_head = NULL;
le->m_tail = NULL;
le->m_last_mbuf = NULL;
le->m_prev_last = NULL;
INP_WUNLOCK(le->inp);
return (0);
} else {
if (le->inp->inp_flags2 & INP_MBUF_L_ACKS)
nm = m_getcl(M_NOWAIT, MT_DATA, (M_ACKCMP|M_PKTHDR));
else {
nm = m_gethdr(M_NOWAIT, MT_DATA);
nm->m_flags |= M_ACKCMP;
}
if (nm) {
nm->m_pkthdr.rcvif = lc->ifp;
ack_ent = mtod(nm, struct tcp_ackent *);
build_ack_entry(ack_ent, th, m, hdr_len, iptos);
m_freem(m);
m = nm;
m->m_pkthdr.len = m->m_len = sizeof(struct tcp_ackent);
le->flags |= HAS_COMP_ENTRIES;
le->cmp_ack_cnt++;
}
}
}
if (m->m_flags & M_ACKCMP) {
counter_u64_add(tcp_comp_total, 1);
} else {
counter_u64_add(tcp_uncomp_total, 1);
}
skip_lookup_b:
#endif
if (need_flush)
le->need_wakeup = need_flush;
else
le->need_wakeup = 0;
m->m_nextpkt = NULL;
le->m_head = m;
le->m_tail = m_last(m);
le->m_last_mbuf = m;
le->m_prev_last = NULL;
/*
* We keep the total size here for cross checking when we may need
* to flush/wakeup in the MBUF_QUEUE case.
*/
le->tcp_tot_p_len = tcp_data_len;
if (locked)
INP_WUNLOCK(le->inp);
return (0);
}
int
tcp_lro_rx(struct lro_ctrl *lc, struct mbuf *m, uint32_t csum)
{
return tcp_lro_rx2(lc, m, csum, 1);
}
void
tcp_lro_queue_mbuf(struct lro_ctrl *lc, struct mbuf *mb)
{
struct timespec arrv;
/* sanity checks */
if (__predict_false(lc->ifp == NULL || lc->lro_mbuf_data == NULL ||
lc->lro_mbuf_max == 0)) {
/* packet drop */
m_freem(mb);
return;
}
/* check if packet is not LRO capable */
if (__predict_false(mb->m_pkthdr.csum_flags == 0 ||
(lc->ifp->if_capenable & IFCAP_LRO) == 0)) {
/* input packet to network layer */
(*lc->ifp->if_input) (lc->ifp, mb);
return;
}
/* Arrival Stamp the packet */
if ((mb->m_flags & M_TSTMP) == 0) {
/* If no hardware or arrival stamp on the packet add arrival */
nanouptime(&arrv);
mb->m_pkthdr.rcv_tstmp = ((arrv.tv_sec * 1000000000) +
arrv.tv_nsec);
mb->m_flags |= M_TSTMP_LRO;
}
/* create sequence number */
lc->lro_mbuf_data[lc->lro_mbuf_count].seq =
(((uint64_t)M_HASHTYPE_GET(mb)) << 56) |
(((uint64_t)mb->m_pkthdr.flowid) << 24) |
((uint64_t)lc->lro_mbuf_count);
/* enter mbuf */
lc->lro_mbuf_data[lc->lro_mbuf_count].mb = mb;
/* flush if array is full */
if (__predict_false(++lc->lro_mbuf_count == lc->lro_mbuf_max))
tcp_lro_flush_all(lc);
}
/* end */