freebsd-skq/sys/dev/nfe/if_nfe.c
Pyun YongHyeon 1c88901672 Increase a maximum segment size of DMA to 4096. Previously it used
MCLBYTES for the segment size but it used too many Tx descriptors in
TSO case.
While I'm here adjust maximum size of the sum of all segment lengths
in a given DMA mapping to 65535, the maximum size, in bytes, of a IP
packet.
2007-06-12 02:35:01 +00:00

3203 lines
80 KiB
C

/* $OpenBSD: if_nfe.c,v 1.54 2006/04/07 12:38:12 jsg Exp $ */
/*-
* Copyright (c) 2006 Shigeaki Tagashira <shigeaki@se.hiroshima-u.ac.jp>
* Copyright (c) 2006 Damien Bergamini <damien.bergamini@free.fr>
* Copyright (c) 2005, 2006 Jonathan Gray <jsg@openbsd.org>
*
* Permission to use, copy, modify, and distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*/
/* Driver for NVIDIA nForce MCP Fast Ethernet and Gigabit Ethernet */
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#ifdef HAVE_KERNEL_OPTION_HEADERS
#include "opt_device_polling.h"
#endif
#include <sys/param.h>
#include <sys/endian.h>
#include <sys/systm.h>
#include <sys/sockio.h>
#include <sys/mbuf.h>
#include <sys/malloc.h>
#include <sys/module.h>
#include <sys/kernel.h>
#include <sys/queue.h>
#include <sys/socket.h>
#include <sys/sysctl.h>
#include <sys/taskqueue.h>
#include <net/if.h>
#include <net/if_arp.h>
#include <net/ethernet.h>
#include <net/if_dl.h>
#include <net/if_media.h>
#include <net/if_types.h>
#include <net/if_vlan_var.h>
#include <net/bpf.h>
#include <machine/bus.h>
#include <machine/resource.h>
#include <sys/bus.h>
#include <sys/rman.h>
#include <dev/mii/mii.h>
#include <dev/mii/miivar.h>
#include <dev/pci/pcireg.h>
#include <dev/pci/pcivar.h>
#include <dev/nfe/if_nfereg.h>
#include <dev/nfe/if_nfevar.h>
MODULE_DEPEND(nfe, pci, 1, 1, 1);
MODULE_DEPEND(nfe, ether, 1, 1, 1);
MODULE_DEPEND(nfe, miibus, 1, 1, 1);
/* "device miibus" required. See GENERIC if you get errors here. */
#include "miibus_if.h"
static int nfe_probe(device_t);
static int nfe_attach(device_t);
static int nfe_detach(device_t);
static int nfe_suspend(device_t);
static int nfe_resume(device_t);
static void nfe_shutdown(device_t);
static void nfe_power(struct nfe_softc *);
static int nfe_miibus_readreg(device_t, int, int);
static int nfe_miibus_writereg(device_t, int, int, int);
static void nfe_miibus_statchg(device_t);
static void nfe_link_task(void *, int);
static void nfe_set_intr(struct nfe_softc *);
static __inline void nfe_enable_intr(struct nfe_softc *);
static __inline void nfe_disable_intr(struct nfe_softc *);
static int nfe_ioctl(struct ifnet *, u_long, caddr_t);
static void nfe_alloc_msix(struct nfe_softc *, int);
static int nfe_intr(void *);
static void nfe_int_task(void *, int);
static void *nfe_jalloc(struct nfe_softc *);
static void nfe_jfree(void *, void *);
static __inline void nfe_discard_rxbuf(struct nfe_softc *, int);
static __inline void nfe_discard_jrxbuf(struct nfe_softc *, int);
static int nfe_newbuf(struct nfe_softc *, int);
static int nfe_jnewbuf(struct nfe_softc *, int);
static int nfe_rxeof(struct nfe_softc *, int);
static int nfe_jrxeof(struct nfe_softc *, int);
static void nfe_txeof(struct nfe_softc *);
static struct mbuf *nfe_defrag(struct mbuf *, int, int);
static int nfe_encap(struct nfe_softc *, struct mbuf **);
static void nfe_setmulti(struct nfe_softc *);
static void nfe_tx_task(void *, int);
static void nfe_start(struct ifnet *);
static void nfe_watchdog(struct ifnet *);
static void nfe_init(void *);
static void nfe_init_locked(void *);
static void nfe_stop(struct ifnet *);
static int nfe_alloc_rx_ring(struct nfe_softc *, struct nfe_rx_ring *);
static int nfe_alloc_jrx_ring(struct nfe_softc *, struct nfe_jrx_ring *);
static int nfe_init_rx_ring(struct nfe_softc *, struct nfe_rx_ring *);
static int nfe_init_jrx_ring(struct nfe_softc *, struct nfe_jrx_ring *);
static void nfe_free_rx_ring(struct nfe_softc *, struct nfe_rx_ring *);
static void nfe_free_jrx_ring(struct nfe_softc *, struct nfe_jrx_ring *);
static int nfe_alloc_tx_ring(struct nfe_softc *, struct nfe_tx_ring *);
static void nfe_init_tx_ring(struct nfe_softc *, struct nfe_tx_ring *);
static void nfe_free_tx_ring(struct nfe_softc *, struct nfe_tx_ring *);
static int nfe_ifmedia_upd(struct ifnet *);
static void nfe_ifmedia_sts(struct ifnet *, struct ifmediareq *);
static void nfe_tick(void *);
static void nfe_get_macaddr(struct nfe_softc *, uint8_t *);
static void nfe_set_macaddr(struct nfe_softc *, uint8_t *);
static void nfe_dma_map_segs(void *, bus_dma_segment_t *, int, int);
static int sysctl_int_range(SYSCTL_HANDLER_ARGS, int, int);
static int sysctl_hw_nfe_proc_limit(SYSCTL_HANDLER_ARGS);
#ifdef NFE_DEBUG
static int nfedebug = 0;
#define DPRINTF(sc, ...) do { \
if (nfedebug) \
device_printf((sc)->nfe_dev, __VA_ARGS__); \
} while (0)
#define DPRINTFN(sc, n, ...) do { \
if (nfedebug >= (n)) \
device_printf((sc)->nfe_dev, __VA_ARGS__); \
} while (0)
#else
#define DPRINTF(sc, ...)
#define DPRINTFN(sc, n, ...)
#endif
#define NFE_LOCK(_sc) mtx_lock(&(_sc)->nfe_mtx)
#define NFE_UNLOCK(_sc) mtx_unlock(&(_sc)->nfe_mtx)
#define NFE_LOCK_ASSERT(_sc) mtx_assert(&(_sc)->nfe_mtx, MA_OWNED)
#define NFE_JLIST_LOCK(_sc) mtx_lock(&(_sc)->nfe_jlist_mtx)
#define NFE_JLIST_UNLOCK(_sc) mtx_unlock(&(_sc)->nfe_jlist_mtx)
/* Tunables. */
static int msi_disable = 0;
static int msix_disable = 0;
TUNABLE_INT("hw.nfe.msi_disable", &msi_disable);
TUNABLE_INT("hw.nfe.msix_disable", &msix_disable);
static device_method_t nfe_methods[] = {
/* Device interface */
DEVMETHOD(device_probe, nfe_probe),
DEVMETHOD(device_attach, nfe_attach),
DEVMETHOD(device_detach, nfe_detach),
DEVMETHOD(device_suspend, nfe_suspend),
DEVMETHOD(device_resume, nfe_resume),
DEVMETHOD(device_shutdown, nfe_shutdown),
/* bus interface */
DEVMETHOD(bus_print_child, bus_generic_print_child),
DEVMETHOD(bus_driver_added, bus_generic_driver_added),
/* MII interface */
DEVMETHOD(miibus_readreg, nfe_miibus_readreg),
DEVMETHOD(miibus_writereg, nfe_miibus_writereg),
DEVMETHOD(miibus_statchg, nfe_miibus_statchg),
{ NULL, NULL }
};
static driver_t nfe_driver = {
"nfe",
nfe_methods,
sizeof(struct nfe_softc)
};
static devclass_t nfe_devclass;
DRIVER_MODULE(nfe, pci, nfe_driver, nfe_devclass, 0, 0);
DRIVER_MODULE(miibus, nfe, miibus_driver, miibus_devclass, 0, 0);
static struct nfe_type nfe_devs[] = {
{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE_LAN,
"NVIDIA nForce MCP Networking Adapter"},
{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE2_LAN,
"NVIDIA nForce2 MCP2 Networking Adapter"},
{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE2_400_LAN1,
"NVIDIA nForce2 400 MCP4 Networking Adapter"},
{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE2_400_LAN2,
"NVIDIA nForce2 400 MCP5 Networking Adapter"},
{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE3_LAN1,
"NVIDIA nForce3 MCP3 Networking Adapter"},
{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE3_250_LAN,
"NVIDIA nForce3 250 MCP6 Networking Adapter"},
{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE3_LAN4,
"NVIDIA nForce3 MCP7 Networking Adapter"},
{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE4_LAN1,
"NVIDIA nForce4 CK804 MCP8 Networking Adapter"},
{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE4_LAN2,
"NVIDIA nForce4 CK804 MCP9 Networking Adapter"},
{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP04_LAN1,
"NVIDIA nForce MCP04 Networking Adapter"}, /* MCP10 */
{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP04_LAN2,
"NVIDIA nForce MCP04 Networking Adapter"}, /* MCP11 */
{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE430_LAN1,
"NVIDIA nForce 430 MCP12 Networking Adapter"},
{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE430_LAN2,
"NVIDIA nForce 430 MCP13 Networking Adapter"},
{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP55_LAN1,
"NVIDIA nForce MCP55 Networking Adapter"},
{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP55_LAN2,
"NVIDIA nForce MCP55 Networking Adapter"},
{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP61_LAN1,
"NVIDIA nForce MCP61 Networking Adapter"},
{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP61_LAN2,
"NVIDIA nForce MCP61 Networking Adapter"},
{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP61_LAN3,
"NVIDIA nForce MCP61 Networking Adapter"},
{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP61_LAN4,
"NVIDIA nForce MCP61 Networking Adapter"},
{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP65_LAN1,
"NVIDIA nForce MCP65 Networking Adapter"},
{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP65_LAN2,
"NVIDIA nForce MCP65 Networking Adapter"},
{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP65_LAN3,
"NVIDIA nForce MCP65 Networking Adapter"},
{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP65_LAN4,
"NVIDIA nForce MCP65 Networking Adapter"},
{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP67_LAN1,
"NVIDIA nForce MCP67 Networking Adapter"},
{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP67_LAN2,
"NVIDIA nForce MCP67 Networking Adapter"},
{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP67_LAN3,
"NVIDIA nForce MCP67 Networking Adapter"},
{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP67_LAN4,
"NVIDIA nForce MCP67 Networking Adapter"},
{0, 0, NULL}
};
/* Probe for supported hardware ID's */
static int
nfe_probe(device_t dev)
{
struct nfe_type *t;
t = nfe_devs;
/* Check for matching PCI DEVICE ID's */
while (t->name != NULL) {
if ((pci_get_vendor(dev) == t->vid_id) &&
(pci_get_device(dev) == t->dev_id)) {
device_set_desc(dev, t->name);
return (BUS_PROBE_DEFAULT);
}
t++;
}
return (ENXIO);
}
static void
nfe_alloc_msix(struct nfe_softc *sc, int count)
{
int rid;
rid = PCIR_BAR(2);
sc->nfe_msix_res = bus_alloc_resource_any(sc->nfe_dev, SYS_RES_MEMORY,
&rid, RF_ACTIVE);
if (sc->nfe_msix_res == NULL) {
device_printf(sc->nfe_dev,
"couldn't allocate MSIX table resource\n");
return;
}
rid = PCIR_BAR(3);
sc->nfe_msix_pba_res = bus_alloc_resource_any(sc->nfe_dev,
SYS_RES_MEMORY, &rid, RF_ACTIVE);
if (sc->nfe_msix_pba_res == NULL) {
device_printf(sc->nfe_dev,
"couldn't allocate MSIX PBA resource\n");
bus_release_resource(sc->nfe_dev, SYS_RES_MEMORY, PCIR_BAR(2),
sc->nfe_msix_res);
sc->nfe_msix_res = NULL;
return;
}
if (pci_alloc_msix(sc->nfe_dev, &count) == 0) {
if (count == NFE_MSI_MESSAGES) {
if (bootverbose)
device_printf(sc->nfe_dev,
"Using %d MSIX messages\n", count);
sc->nfe_msix = 1;
} else {
if (bootverbose)
device_printf(sc->nfe_dev,
"couldn't allocate MSIX\n");
pci_release_msi(sc->nfe_dev);
bus_release_resource(sc->nfe_dev, SYS_RES_MEMORY,
PCIR_BAR(3), sc->nfe_msix_pba_res);
bus_release_resource(sc->nfe_dev, SYS_RES_MEMORY,
PCIR_BAR(2), sc->nfe_msix_res);
sc->nfe_msix_pba_res = NULL;
sc->nfe_msix_res = NULL;
}
}
}
static int
nfe_attach(device_t dev)
{
struct nfe_softc *sc;
struct ifnet *ifp;
bus_addr_t dma_addr_max;
int error = 0, i, msic, reg, rid;
sc = device_get_softc(dev);
sc->nfe_dev = dev;
mtx_init(&sc->nfe_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
MTX_DEF);
mtx_init(&sc->nfe_jlist_mtx, "nfe_jlist_mtx", NULL, MTX_DEF);
callout_init_mtx(&sc->nfe_stat_ch, &sc->nfe_mtx, 0);
TASK_INIT(&sc->nfe_link_task, 0, nfe_link_task, sc);
SLIST_INIT(&sc->nfe_jfree_listhead);
SLIST_INIT(&sc->nfe_jinuse_listhead);
pci_enable_busmaster(dev);
rid = PCIR_BAR(0);
sc->nfe_res[0] = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid,
RF_ACTIVE);
if (sc->nfe_res[0] == NULL) {
device_printf(dev, "couldn't map memory resources\n");
mtx_destroy(&sc->nfe_mtx);
return (ENXIO);
}
if (pci_find_extcap(dev, PCIY_EXPRESS, &reg) == 0) {
uint16_t v, width;
v = pci_read_config(dev, reg + 0x08, 2);
/* Change max. read request size to 4096. */
v &= ~(7 << 12);
v |= (5 << 12);
pci_write_config(dev, reg + 0x08, v, 2);
v = pci_read_config(dev, reg + 0x0c, 2);
/* link capability */
v = (v >> 4) & 0x0f;
width = pci_read_config(dev, reg + 0x12, 2);
/* negotiated link width */
width = (width >> 4) & 0x3f;
if (v != width)
device_printf(sc->nfe_dev,
"warning, negotiated width of link(x%d) != "
"max. width of link(x%d)\n", width, v);
}
/* Allocate interrupt */
if (msix_disable == 0 || msi_disable == 0) {
if (msix_disable == 0 &&
(msic = pci_msix_count(dev)) == NFE_MSI_MESSAGES)
nfe_alloc_msix(sc, msic);
if (msi_disable == 0 && sc->nfe_msix == 0 &&
(msic = pci_msi_count(dev)) == NFE_MSI_MESSAGES &&
pci_alloc_msi(dev, &msic) == 0) {
if (msic == NFE_MSI_MESSAGES) {
if (bootverbose)
device_printf(dev,
"Using %d MSI messages\n", msic);
sc->nfe_msi = 1;
} else
pci_release_msi(dev);
}
}
if (sc->nfe_msix == 0 && sc->nfe_msi == 0) {
rid = 0;
sc->nfe_irq[0] = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
RF_SHAREABLE | RF_ACTIVE);
if (sc->nfe_irq[0] == NULL) {
device_printf(dev, "couldn't allocate IRQ resources\n");
error = ENXIO;
goto fail;
}
} else {
for (i = 0, rid = 1; i < NFE_MSI_MESSAGES; i++, rid++) {
sc->nfe_irq[i] = bus_alloc_resource_any(dev,
SYS_RES_IRQ, &rid, RF_ACTIVE);
if (sc->nfe_irq[i] == NULL) {
device_printf(dev,
"couldn't allocate IRQ resources for "
"message %d\n", rid);
error = ENXIO;
goto fail;
}
}
/* Map interrupts to vector 0. */
if (sc->nfe_msix != 0) {
NFE_WRITE(sc, NFE_MSIX_MAP0, 0);
NFE_WRITE(sc, NFE_MSIX_MAP1, 0);
} else if (sc->nfe_msi != 0) {
NFE_WRITE(sc, NFE_MSI_MAP0, 0);
NFE_WRITE(sc, NFE_MSI_MAP1, 0);
}
}
/* Set IRQ status/mask register. */
sc->nfe_irq_status = NFE_IRQ_STATUS;
sc->nfe_irq_mask = NFE_IRQ_MASK;
sc->nfe_intrs = NFE_IRQ_WANTED;
sc->nfe_nointrs = 0;
if (sc->nfe_msix != 0) {
sc->nfe_irq_status = NFE_MSIX_IRQ_STATUS;
sc->nfe_nointrs = NFE_IRQ_WANTED;
} else if (sc->nfe_msi != 0) {
sc->nfe_irq_mask = NFE_MSI_IRQ_MASK;
sc->nfe_intrs = NFE_MSI_VECTOR_0_ENABLED;
}
sc->nfe_devid = pci_get_device(dev);
sc->nfe_revid = pci_get_revid(dev);
sc->nfe_flags = 0;
switch (sc->nfe_devid) {
case PCI_PRODUCT_NVIDIA_NFORCE3_LAN2:
case PCI_PRODUCT_NVIDIA_NFORCE3_LAN3:
case PCI_PRODUCT_NVIDIA_NFORCE3_LAN4:
case PCI_PRODUCT_NVIDIA_NFORCE3_LAN5:
sc->nfe_flags |= NFE_JUMBO_SUP | NFE_HW_CSUM;
break;
case PCI_PRODUCT_NVIDIA_MCP51_LAN1:
case PCI_PRODUCT_NVIDIA_MCP51_LAN2:
sc->nfe_flags |= NFE_40BIT_ADDR | NFE_PWR_MGMT;
break;
case PCI_PRODUCT_NVIDIA_CK804_LAN1:
case PCI_PRODUCT_NVIDIA_CK804_LAN2:
case PCI_PRODUCT_NVIDIA_MCP04_LAN1:
case PCI_PRODUCT_NVIDIA_MCP04_LAN2:
sc->nfe_flags |= NFE_JUMBO_SUP | NFE_40BIT_ADDR | NFE_HW_CSUM;
break;
case PCI_PRODUCT_NVIDIA_MCP55_LAN1:
case PCI_PRODUCT_NVIDIA_MCP55_LAN2:
sc->nfe_flags |= NFE_JUMBO_SUP | NFE_40BIT_ADDR | NFE_HW_CSUM |
NFE_HW_VLAN | NFE_PWR_MGMT | NFE_TX_FLOW_CTRL;
break;
case PCI_PRODUCT_NVIDIA_MCP61_LAN1:
case PCI_PRODUCT_NVIDIA_MCP61_LAN2:
case PCI_PRODUCT_NVIDIA_MCP61_LAN3:
case PCI_PRODUCT_NVIDIA_MCP61_LAN4:
case PCI_PRODUCT_NVIDIA_MCP67_LAN1:
case PCI_PRODUCT_NVIDIA_MCP67_LAN2:
case PCI_PRODUCT_NVIDIA_MCP67_LAN3:
case PCI_PRODUCT_NVIDIA_MCP67_LAN4:
sc->nfe_flags |= NFE_40BIT_ADDR | NFE_PWR_MGMT |
NFE_TX_FLOW_CTRL;
break;
case PCI_PRODUCT_NVIDIA_MCP65_LAN1:
case PCI_PRODUCT_NVIDIA_MCP65_LAN2:
case PCI_PRODUCT_NVIDIA_MCP65_LAN3:
case PCI_PRODUCT_NVIDIA_MCP65_LAN4:
sc->nfe_flags |= NFE_JUMBO_SUP | NFE_40BIT_ADDR |
NFE_PWR_MGMT | NFE_TX_FLOW_CTRL;
break;
}
nfe_power(sc);
/* Check for reversed ethernet address */
if ((NFE_READ(sc, NFE_TX_UNK) & NFE_MAC_ADDR_INORDER) != 0)
sc->nfe_flags |= NFE_CORRECT_MACADDR;
nfe_get_macaddr(sc, sc->eaddr);
/*
* Allocate the parent bus DMA tag appropriate for PCI.
*/
dma_addr_max = BUS_SPACE_MAXADDR_32BIT;
if ((sc->nfe_flags & NFE_40BIT_ADDR) != 0)
dma_addr_max = NFE_DMA_MAXADDR;
error = bus_dma_tag_create(
bus_get_dma_tag(sc->nfe_dev), /* parent */
1, 0, /* alignment, boundary */
dma_addr_max, /* lowaddr */
BUS_SPACE_MAXADDR, /* highaddr */
NULL, NULL, /* filter, filterarg */
BUS_SPACE_MAXSIZE_32BIT, 0, /* maxsize, nsegments */
BUS_SPACE_MAXSIZE_32BIT, /* maxsegsize */
0, /* flags */
NULL, NULL, /* lockfunc, lockarg */
&sc->nfe_parent_tag);
if (error)
goto fail;
ifp = sc->nfe_ifp = if_alloc(IFT_ETHER);
if (ifp == NULL) {
device_printf(dev, "can not if_alloc()\n");
error = ENOSPC;
goto fail;
}
TASK_INIT(&sc->nfe_tx_task, 1, nfe_tx_task, ifp);
/*
* Allocate Tx and Rx rings.
*/
if ((error = nfe_alloc_tx_ring(sc, &sc->txq)) != 0)
goto fail;
if ((error = nfe_alloc_rx_ring(sc, &sc->rxq)) != 0)
goto fail;
if ((error = nfe_alloc_jrx_ring(sc, &sc->jrxq)) != 0)
goto fail;
SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev),
SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
OID_AUTO, "process_limit", CTLTYPE_INT | CTLFLAG_RW,
&sc->nfe_process_limit, 0, sysctl_hw_nfe_proc_limit, "I",
"max number of Rx events to process");
sc->nfe_process_limit = NFE_PROC_DEFAULT;
error = resource_int_value(device_get_name(dev), device_get_unit(dev),
"process_limit", &sc->nfe_process_limit);
if (error == 0) {
if (sc->nfe_process_limit < NFE_PROC_MIN ||
sc->nfe_process_limit > NFE_PROC_MAX) {
device_printf(dev, "process_limit value out of range; "
"using default: %d\n", NFE_PROC_DEFAULT);
sc->nfe_process_limit = NFE_PROC_DEFAULT;
}
}
ifp->if_softc = sc;
if_initname(ifp, device_get_name(dev), device_get_unit(dev));
ifp->if_mtu = ETHERMTU;
ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
ifp->if_ioctl = nfe_ioctl;
ifp->if_start = nfe_start;
ifp->if_hwassist = 0;
ifp->if_capabilities = 0;
ifp->if_watchdog = NULL;
ifp->if_init = nfe_init;
IFQ_SET_MAXLEN(&ifp->if_snd, NFE_TX_RING_COUNT - 1);
ifp->if_snd.ifq_drv_maxlen = NFE_TX_RING_COUNT - 1;
IFQ_SET_READY(&ifp->if_snd);
if (sc->nfe_flags & NFE_HW_CSUM) {
ifp->if_capabilities |= IFCAP_HWCSUM | IFCAP_TSO4;
ifp->if_hwassist |= NFE_CSUM_FEATURES | CSUM_TSO;
}
ifp->if_capenable = ifp->if_capabilities;
sc->nfe_framesize = ifp->if_mtu + NFE_RX_HEADERS;
/* VLAN capability setup. */
ifp->if_capabilities |= IFCAP_VLAN_MTU;
if ((sc->nfe_flags & NFE_HW_VLAN) != 0) {
ifp->if_capabilities |= IFCAP_VLAN_HWTAGGING;
if ((ifp->if_capabilities & IFCAP_HWCSUM) != 0)
ifp->if_capabilities |= IFCAP_VLAN_HWCSUM;
}
ifp->if_capenable = ifp->if_capabilities;
/*
* Tell the upper layer(s) we support long frames.
* Must appear after the call to ether_ifattach() because
* ether_ifattach() sets ifi_hdrlen to the default value.
*/
ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
#ifdef DEVICE_POLLING
ifp->if_capabilities |= IFCAP_POLLING;
#endif
/* Do MII setup */
if (mii_phy_probe(dev, &sc->nfe_miibus, nfe_ifmedia_upd,
nfe_ifmedia_sts)) {
device_printf(dev, "MII without any phy!\n");
error = ENXIO;
goto fail;
}
ether_ifattach(ifp, sc->eaddr);
TASK_INIT(&sc->nfe_int_task, 0, nfe_int_task, sc);
sc->nfe_tq = taskqueue_create_fast("nfe_taskq", M_WAITOK,
taskqueue_thread_enqueue, &sc->nfe_tq);
taskqueue_start_threads(&sc->nfe_tq, 1, PI_NET, "%s taskq",
device_get_nameunit(sc->nfe_dev));
error = 0;
if (sc->nfe_msi == 0 && sc->nfe_msix == 0) {
error = bus_setup_intr(dev, sc->nfe_irq[0],
INTR_TYPE_NET | INTR_MPSAFE, nfe_intr, NULL, sc,
&sc->nfe_intrhand[0]);
} else {
for (i = 0; i < NFE_MSI_MESSAGES; i++) {
error = bus_setup_intr(dev, sc->nfe_irq[i],
INTR_TYPE_NET | INTR_MPSAFE, nfe_intr, NULL, sc,
&sc->nfe_intrhand[i]);
if (error != 0)
break;
}
}
if (error) {
device_printf(dev, "couldn't set up irq\n");
taskqueue_free(sc->nfe_tq);
sc->nfe_tq = NULL;
ether_ifdetach(ifp);
goto fail;
}
fail:
if (error)
nfe_detach(dev);
return (error);
}
static int
nfe_detach(device_t dev)
{
struct nfe_softc *sc;
struct ifnet *ifp;
uint8_t eaddr[ETHER_ADDR_LEN];
int i, rid;
sc = device_get_softc(dev);
KASSERT(mtx_initialized(&sc->nfe_mtx), ("nfe mutex not initialized"));
ifp = sc->nfe_ifp;
#ifdef DEVICE_POLLING
if (ifp != NULL && ifp->if_capenable & IFCAP_POLLING)
ether_poll_deregister(ifp);
#endif
if (device_is_attached(dev)) {
NFE_LOCK(sc);
nfe_stop(ifp);
ifp->if_flags &= ~IFF_UP;
NFE_UNLOCK(sc);
callout_drain(&sc->nfe_stat_ch);
taskqueue_drain(taskqueue_fast, &sc->nfe_tx_task);
taskqueue_drain(taskqueue_swi, &sc->nfe_link_task);
ether_ifdetach(ifp);
}
if (ifp) {
/* restore ethernet address */
if ((sc->nfe_flags & NFE_CORRECT_MACADDR) == 0) {
for (i = 0; i < ETHER_ADDR_LEN; i++) {
eaddr[i] = sc->eaddr[5 - i];
}
} else
bcopy(sc->eaddr, eaddr, ETHER_ADDR_LEN);
nfe_set_macaddr(sc, eaddr);
if_free(ifp);
}
if (sc->nfe_miibus)
device_delete_child(dev, sc->nfe_miibus);
bus_generic_detach(dev);
if (sc->nfe_tq != NULL) {
taskqueue_drain(sc->nfe_tq, &sc->nfe_int_task);
taskqueue_free(sc->nfe_tq);
sc->nfe_tq = NULL;
}
for (i = 0; i < NFE_MSI_MESSAGES; i++) {
if (sc->nfe_intrhand[i] != NULL) {
bus_teardown_intr(dev, sc->nfe_irq[i],
sc->nfe_intrhand[i]);
sc->nfe_intrhand[i] = NULL;
}
}
if (sc->nfe_msi == 0 && sc->nfe_msix == 0) {
if (sc->nfe_irq[0] != NULL)
bus_release_resource(dev, SYS_RES_IRQ, 0,
sc->nfe_irq[0]);
} else {
for (i = 0, rid = 1; i < NFE_MSI_MESSAGES; i++, rid++) {
if (sc->nfe_irq[i] != NULL) {
bus_release_resource(dev, SYS_RES_IRQ, rid,
sc->nfe_irq[i]);
sc->nfe_irq[i] = NULL;
}
}
pci_release_msi(dev);
}
if (sc->nfe_msix_pba_res != NULL) {
bus_release_resource(dev, SYS_RES_MEMORY, PCIR_BAR(3),
sc->nfe_msix_pba_res);
sc->nfe_msix_pba_res = NULL;
}
if (sc->nfe_msix_res != NULL) {
bus_release_resource(dev, SYS_RES_MEMORY, PCIR_BAR(2),
sc->nfe_msix_res);
sc->nfe_msix_res = NULL;
}
if (sc->nfe_res[0] != NULL) {
bus_release_resource(dev, SYS_RES_MEMORY, PCIR_BAR(0),
sc->nfe_res[0]);
sc->nfe_res[0] = NULL;
}
nfe_free_tx_ring(sc, &sc->txq);
nfe_free_rx_ring(sc, &sc->rxq);
nfe_free_jrx_ring(sc, &sc->jrxq);
if (sc->nfe_parent_tag) {
bus_dma_tag_destroy(sc->nfe_parent_tag);
sc->nfe_parent_tag = NULL;
}
mtx_destroy(&sc->nfe_jlist_mtx);
mtx_destroy(&sc->nfe_mtx);
return (0);
}
static int
nfe_suspend(device_t dev)
{
struct nfe_softc *sc;
sc = device_get_softc(dev);
NFE_LOCK(sc);
nfe_stop(sc->nfe_ifp);
sc->nfe_suspended = 1;
NFE_UNLOCK(sc);
return (0);
}
static int
nfe_resume(device_t dev)
{
struct nfe_softc *sc;
struct ifnet *ifp;
sc = device_get_softc(dev);
NFE_LOCK(sc);
ifp = sc->nfe_ifp;
if (ifp->if_flags & IFF_UP)
nfe_init_locked(sc);
sc->nfe_suspended = 0;
NFE_UNLOCK(sc);
return (0);
}
/* Take PHY/NIC out of powerdown, from Linux */
static void
nfe_power(struct nfe_softc *sc)
{
uint32_t pwr;
if ((sc->nfe_flags & NFE_PWR_MGMT) == 0)
return;
NFE_WRITE(sc, NFE_RXTX_CTL, NFE_RXTX_RESET | NFE_RXTX_BIT2);
NFE_WRITE(sc, NFE_MAC_RESET, NFE_MAC_RESET_MAGIC);
DELAY(100);
NFE_WRITE(sc, NFE_MAC_RESET, 0);
DELAY(100);
NFE_WRITE(sc, NFE_RXTX_CTL, NFE_RXTX_BIT2);
pwr = NFE_READ(sc, NFE_PWR2_CTL);
pwr &= ~NFE_PWR2_WAKEUP_MASK;
if (sc->nfe_revid >= 0xa3 &&
(sc->nfe_devid == PCI_PRODUCT_NVIDIA_NFORCE430_LAN1 ||
sc->nfe_devid == PCI_PRODUCT_NVIDIA_NFORCE430_LAN2))
pwr |= NFE_PWR2_REVA3;
NFE_WRITE(sc, NFE_PWR2_CTL, pwr);
}
static void
nfe_miibus_statchg(device_t dev)
{
struct nfe_softc *sc;
sc = device_get_softc(dev);
taskqueue_enqueue(taskqueue_swi, &sc->nfe_link_task);
}
static void
nfe_link_task(void *arg, int pending)
{
struct nfe_softc *sc;
struct mii_data *mii;
struct ifnet *ifp;
uint32_t phy, seed, misc = NFE_MISC1_MAGIC, link = NFE_MEDIA_SET;
uint32_t gmask, rxctl, txctl, val;
sc = (struct nfe_softc *)arg;
NFE_LOCK(sc);
mii = device_get_softc(sc->nfe_miibus);
ifp = sc->nfe_ifp;
if (mii == NULL || ifp == NULL) {
NFE_UNLOCK(sc);
return;
}
if (mii->mii_media_status & IFM_ACTIVE) {
if (IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE)
sc->nfe_link = 1;
} else
sc->nfe_link = 0;
phy = NFE_READ(sc, NFE_PHY_IFACE);
phy &= ~(NFE_PHY_HDX | NFE_PHY_100TX | NFE_PHY_1000T);
seed = NFE_READ(sc, NFE_RNDSEED);
seed &= ~NFE_SEED_MASK;
if (((mii->mii_media_active & IFM_GMASK) & IFM_FDX) == 0) {
phy |= NFE_PHY_HDX; /* half-duplex */
misc |= NFE_MISC1_HDX;
}
switch (IFM_SUBTYPE(mii->mii_media_active)) {
case IFM_1000_T: /* full-duplex only */
link |= NFE_MEDIA_1000T;
seed |= NFE_SEED_1000T;
phy |= NFE_PHY_1000T;
break;
case IFM_100_TX:
link |= NFE_MEDIA_100TX;
seed |= NFE_SEED_100TX;
phy |= NFE_PHY_100TX;
break;
case IFM_10_T:
link |= NFE_MEDIA_10T;
seed |= NFE_SEED_10T;
break;
}
if ((phy & 0x10000000) != 0) {
if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T)
val = NFE_R1_MAGIC_1000;
else
val = NFE_R1_MAGIC_10_100;
} else
val = NFE_R1_MAGIC_DEFAULT;
NFE_WRITE(sc, NFE_SETUP_R1, val);
NFE_WRITE(sc, NFE_RNDSEED, seed); /* XXX: gigabit NICs only? */
NFE_WRITE(sc, NFE_PHY_IFACE, phy);
NFE_WRITE(sc, NFE_MISC1, misc);
NFE_WRITE(sc, NFE_LINKSPEED, link);
gmask = mii->mii_media_active & IFM_GMASK;
if ((gmask & IFM_FDX) != 0) {
/* It seems all hardwares supports Rx pause frames. */
val = NFE_READ(sc, NFE_RXFILTER);
if ((gmask & IFM_FLAG0) != 0)
val |= NFE_PFF_RX_PAUSE;
else
val &= ~NFE_PFF_RX_PAUSE;
NFE_WRITE(sc, NFE_RXFILTER, val);
if ((sc->nfe_flags & NFE_TX_FLOW_CTRL) != 0) {
val = NFE_READ(sc, NFE_MISC1);
if ((gmask & IFM_FLAG1) != 0) {
NFE_WRITE(sc, NFE_TX_PAUSE_FRAME,
NFE_TX_PAUSE_FRAME_ENABLE);
val |= NFE_MISC1_TX_PAUSE;
} else {
val &= ~NFE_MISC1_TX_PAUSE;
NFE_WRITE(sc, NFE_TX_PAUSE_FRAME,
NFE_TX_PAUSE_FRAME_DISABLE);
}
NFE_WRITE(sc, NFE_MISC1, val);
}
} else {
/* disable rx/tx pause frames */
val = NFE_READ(sc, NFE_RXFILTER);
val &= ~NFE_PFF_RX_PAUSE;
NFE_WRITE(sc, NFE_RXFILTER, val);
if ((sc->nfe_flags & NFE_TX_FLOW_CTRL) != 0) {
NFE_WRITE(sc, NFE_TX_PAUSE_FRAME,
NFE_TX_PAUSE_FRAME_DISABLE);
val = NFE_READ(sc, NFE_MISC1);
val &= ~NFE_MISC1_TX_PAUSE;
NFE_WRITE(sc, NFE_MISC1, val);
}
}
txctl = NFE_READ(sc, NFE_TX_CTL);
rxctl = NFE_READ(sc, NFE_RX_CTL);
if (sc->nfe_link != 0 && (ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
txctl |= NFE_TX_START;
rxctl |= NFE_RX_START;
} else {
txctl &= ~NFE_TX_START;
rxctl &= ~NFE_RX_START;
}
NFE_WRITE(sc, NFE_TX_CTL, NFE_TX_START);
NFE_WRITE(sc, NFE_RX_CTL, NFE_RX_START);
NFE_UNLOCK(sc);
}
static int
nfe_miibus_readreg(device_t dev, int phy, int reg)
{
struct nfe_softc *sc = device_get_softc(dev);
uint32_t val;
int ntries;
NFE_WRITE(sc, NFE_PHY_STATUS, 0xf);
if (NFE_READ(sc, NFE_PHY_CTL) & NFE_PHY_BUSY) {
NFE_WRITE(sc, NFE_PHY_CTL, NFE_PHY_BUSY);
DELAY(100);
}
NFE_WRITE(sc, NFE_PHY_CTL, (phy << NFE_PHYADD_SHIFT) | reg);
for (ntries = 0; ntries < NFE_TIMEOUT; ntries++) {
DELAY(100);
if (!(NFE_READ(sc, NFE_PHY_CTL) & NFE_PHY_BUSY))
break;
}
if (ntries == NFE_TIMEOUT) {
DPRINTFN(sc, 2, "timeout waiting for PHY\n");
return 0;
}
if (NFE_READ(sc, NFE_PHY_STATUS) & NFE_PHY_ERROR) {
DPRINTFN(sc, 2, "could not read PHY\n");
return 0;
}
val = NFE_READ(sc, NFE_PHY_DATA);
if (val != 0xffffffff && val != 0)
sc->mii_phyaddr = phy;
DPRINTFN(sc, 2, "mii read phy %d reg 0x%x ret 0x%x\n", phy, reg, val);
return (val);
}
static int
nfe_miibus_writereg(device_t dev, int phy, int reg, int val)
{
struct nfe_softc *sc = device_get_softc(dev);
uint32_t ctl;
int ntries;
NFE_WRITE(sc, NFE_PHY_STATUS, 0xf);
if (NFE_READ(sc, NFE_PHY_CTL) & NFE_PHY_BUSY) {
NFE_WRITE(sc, NFE_PHY_CTL, NFE_PHY_BUSY);
DELAY(100);
}
NFE_WRITE(sc, NFE_PHY_DATA, val);
ctl = NFE_PHY_WRITE | (phy << NFE_PHYADD_SHIFT) | reg;
NFE_WRITE(sc, NFE_PHY_CTL, ctl);
for (ntries = 0; ntries < NFE_TIMEOUT; ntries++) {
DELAY(100);
if (!(NFE_READ(sc, NFE_PHY_CTL) & NFE_PHY_BUSY))
break;
}
#ifdef NFE_DEBUG
if (nfedebug >= 2 && ntries == NFE_TIMEOUT)
device_printf(sc->nfe_dev, "could not write to PHY\n");
#endif
return (0);
}
/*
* Allocate a jumbo buffer.
*/
static void *
nfe_jalloc(struct nfe_softc *sc)
{
struct nfe_jpool_entry *entry;
NFE_JLIST_LOCK(sc);
entry = SLIST_FIRST(&sc->nfe_jfree_listhead);
if (entry == NULL) {
NFE_JLIST_UNLOCK(sc);
return (NULL);
}
SLIST_REMOVE_HEAD(&sc->nfe_jfree_listhead, jpool_entries);
SLIST_INSERT_HEAD(&sc->nfe_jinuse_listhead, entry, jpool_entries);
NFE_JLIST_UNLOCK(sc);
return (sc->jrxq.jslots[entry->slot]);
}
/*
* Release a jumbo buffer.
*/
static void
nfe_jfree(void *buf, void *args)
{
struct nfe_softc *sc;
struct nfe_jpool_entry *entry;
int i;
/* Extract the softc struct pointer. */
sc = (struct nfe_softc *)args;
KASSERT(sc != NULL, ("%s: can't find softc pointer!", __func__));
NFE_JLIST_LOCK(sc);
/* Calculate the slot this buffer belongs to. */
i = ((vm_offset_t)buf
- (vm_offset_t)sc->jrxq.jpool) / NFE_JLEN;
KASSERT(i >= 0 && i < NFE_JSLOTS,
("%s: asked to free buffer that we don't manage!", __func__));
entry = SLIST_FIRST(&sc->nfe_jinuse_listhead);
KASSERT(entry != NULL, ("%s: buffer not in use!", __func__));
entry->slot = i;
SLIST_REMOVE_HEAD(&sc->nfe_jinuse_listhead, jpool_entries);
SLIST_INSERT_HEAD(&sc->nfe_jfree_listhead, entry, jpool_entries);
if (SLIST_EMPTY(&sc->nfe_jinuse_listhead))
wakeup(sc);
NFE_JLIST_UNLOCK(sc);
}
struct nfe_dmamap_arg {
bus_addr_t nfe_busaddr;
};
static int
nfe_alloc_rx_ring(struct nfe_softc *sc, struct nfe_rx_ring *ring)
{
struct nfe_dmamap_arg ctx;
struct nfe_rx_data *data;
void *desc;
int i, error, descsize;
if (sc->nfe_flags & NFE_40BIT_ADDR) {
desc = ring->desc64;
descsize = sizeof (struct nfe_desc64);
} else {
desc = ring->desc32;
descsize = sizeof (struct nfe_desc32);
}
ring->cur = ring->next = 0;
error = bus_dma_tag_create(sc->nfe_parent_tag,
NFE_RING_ALIGN, 0, /* alignment, boundary */
BUS_SPACE_MAXADDR, /* lowaddr */
BUS_SPACE_MAXADDR, /* highaddr */
NULL, NULL, /* filter, filterarg */
NFE_RX_RING_COUNT * descsize, 1, /* maxsize, nsegments */
NFE_RX_RING_COUNT * descsize, /* maxsegsize */
0, /* flags */
NULL, NULL, /* lockfunc, lockarg */
&ring->rx_desc_tag);
if (error != 0) {
device_printf(sc->nfe_dev, "could not create desc DMA tag\n");
goto fail;
}
/* allocate memory to desc */
error = bus_dmamem_alloc(ring->rx_desc_tag, &desc, BUS_DMA_WAITOK |
BUS_DMA_COHERENT | BUS_DMA_ZERO, &ring->rx_desc_map);
if (error != 0) {
device_printf(sc->nfe_dev, "could not create desc DMA map\n");
goto fail;
}
if (sc->nfe_flags & NFE_40BIT_ADDR)
ring->desc64 = desc;
else
ring->desc32 = desc;
/* map desc to device visible address space */
ctx.nfe_busaddr = 0;
error = bus_dmamap_load(ring->rx_desc_tag, ring->rx_desc_map, desc,
NFE_RX_RING_COUNT * descsize, nfe_dma_map_segs, &ctx, 0);
if (error != 0) {
device_printf(sc->nfe_dev, "could not load desc DMA map\n");
goto fail;
}
ring->physaddr = ctx.nfe_busaddr;
error = bus_dma_tag_create(sc->nfe_parent_tag,
1, 0, /* alignment, boundary */
BUS_SPACE_MAXADDR, /* lowaddr */
BUS_SPACE_MAXADDR, /* highaddr */
NULL, NULL, /* filter, filterarg */
MCLBYTES, 1, /* maxsize, nsegments */
MCLBYTES, /* maxsegsize */
0, /* flags */
NULL, NULL, /* lockfunc, lockarg */
&ring->rx_data_tag);
if (error != 0) {
device_printf(sc->nfe_dev, "could not create Rx DMA tag\n");
goto fail;
}
error = bus_dmamap_create(ring->rx_data_tag, 0, &ring->rx_spare_map);
if (error != 0) {
device_printf(sc->nfe_dev,
"could not create Rx DMA spare map\n");
goto fail;
}
/*
* Pre-allocate Rx buffers and populate Rx ring.
*/
for (i = 0; i < NFE_RX_RING_COUNT; i++) {
data = &sc->rxq.data[i];
data->rx_data_map = NULL;
data->m = NULL;
error = bus_dmamap_create(ring->rx_data_tag, 0,
&data->rx_data_map);
if (error != 0) {
device_printf(sc->nfe_dev,
"could not create Rx DMA map\n");
goto fail;
}
}
fail:
return (error);
}
static int
nfe_alloc_jrx_ring(struct nfe_softc *sc, struct nfe_jrx_ring *ring)
{
struct nfe_dmamap_arg ctx;
struct nfe_rx_data *data;
void *desc;
struct nfe_jpool_entry *entry;
uint8_t *ptr;
int i, error, descsize;
if ((sc->nfe_flags & NFE_JUMBO_SUP) == 0)
return (0);
if (sc->nfe_flags & NFE_40BIT_ADDR) {
desc = ring->jdesc64;
descsize = sizeof (struct nfe_desc64);
} else {
desc = ring->jdesc32;
descsize = sizeof (struct nfe_desc32);
}
ring->jcur = ring->jnext = 0;
/* Create DMA tag for jumbo Rx ring. */
error = bus_dma_tag_create(sc->nfe_parent_tag,
NFE_RING_ALIGN, 0, /* alignment, boundary */
BUS_SPACE_MAXADDR, /* lowaddr */
BUS_SPACE_MAXADDR, /* highaddr */
NULL, NULL, /* filter, filterarg */
NFE_JUMBO_RX_RING_COUNT * descsize, /* maxsize */
1, /* nsegments */
NFE_JUMBO_RX_RING_COUNT * descsize, /* maxsegsize */
0, /* flags */
NULL, NULL, /* lockfunc, lockarg */
&ring->jrx_desc_tag);
if (error != 0) {
device_printf(sc->nfe_dev,
"could not create jumbo ring DMA tag\n");
goto fail;
}
/* Create DMA tag for jumbo buffer blocks. */
error = bus_dma_tag_create(sc->nfe_parent_tag,
PAGE_SIZE, 0, /* alignment, boundary */
BUS_SPACE_MAXADDR, /* lowaddr */
BUS_SPACE_MAXADDR, /* highaddr */
NULL, NULL, /* filter, filterarg */
NFE_JMEM, /* maxsize */
1, /* nsegments */
NFE_JMEM, /* maxsegsize */
0, /* flags */
NULL, NULL, /* lockfunc, lockarg */
&ring->jrx_jumbo_tag);
if (error != 0) {
device_printf(sc->nfe_dev,
"could not create jumbo Rx buffer block DMA tag\n");
goto fail;
}
/* Create DMA tag for jumbo Rx buffers. */
error = bus_dma_tag_create(sc->nfe_parent_tag,
PAGE_SIZE, 0, /* alignment, boundary */
BUS_SPACE_MAXADDR, /* lowaddr */
BUS_SPACE_MAXADDR, /* highaddr */
NULL, NULL, /* filter, filterarg */
NFE_JLEN, /* maxsize */
1, /* nsegments */
NFE_JLEN, /* maxsegsize */
0, /* flags */
NULL, NULL, /* lockfunc, lockarg */
&ring->jrx_data_tag);
if (error != 0) {
device_printf(sc->nfe_dev,
"could not create jumbo Rx buffer DMA tag\n");
goto fail;
}
/* Allocate DMA'able memory and load the DMA map for jumbo Rx ring. */
error = bus_dmamem_alloc(ring->jrx_desc_tag, &desc, BUS_DMA_WAITOK |
BUS_DMA_COHERENT | BUS_DMA_ZERO, &ring->jrx_desc_map);
if (error != 0) {
device_printf(sc->nfe_dev,
"could not allocate DMA'able memory for jumbo Rx ring\n");
goto fail;
}
if (sc->nfe_flags & NFE_40BIT_ADDR)
ring->jdesc64 = desc;
else
ring->jdesc32 = desc;
ctx.nfe_busaddr = 0;
error = bus_dmamap_load(ring->jrx_desc_tag, ring->jrx_desc_map, desc,
NFE_JUMBO_RX_RING_COUNT * descsize, nfe_dma_map_segs, &ctx, 0);
if (error != 0) {
device_printf(sc->nfe_dev,
"could not load DMA'able memory for jumbo Rx ring\n");
goto fail;
}
ring->jphysaddr = ctx.nfe_busaddr;
/* Create DMA maps for jumbo Rx buffers. */
error = bus_dmamap_create(ring->jrx_data_tag, 0, &ring->jrx_spare_map);
if (error != 0) {
device_printf(sc->nfe_dev,
"could not create jumbo Rx DMA spare map\n");
goto fail;
}
for (i = 0; i < NFE_JUMBO_RX_RING_COUNT; i++) {
data = &sc->jrxq.jdata[i];
data->rx_data_map = NULL;
data->m = NULL;
error = bus_dmamap_create(ring->jrx_data_tag, 0,
&data->rx_data_map);
if (error != 0) {
device_printf(sc->nfe_dev,
"could not create jumbo Rx DMA map\n");
goto fail;
}
}
/* Allocate DMA'able memory and load the DMA map for jumbo buf. */
error = bus_dmamem_alloc(ring->jrx_jumbo_tag, (void **)&ring->jpool,
BUS_DMA_WAITOK | BUS_DMA_COHERENT | BUS_DMA_ZERO,
&ring->jrx_jumbo_map);
if (error != 0) {
device_printf(sc->nfe_dev,
"could not allocate DMA'able memory for jumbo pool\n");
goto fail;
}
ctx.nfe_busaddr = 0;
error = bus_dmamap_load(ring->jrx_jumbo_tag, ring->jrx_jumbo_map,
ring->jpool, NFE_JMEM, nfe_dma_map_segs, &ctx, 0);
if (error != 0) {
device_printf(sc->nfe_dev,
"could not load DMA'able memory for jumbo pool\n");
goto fail;
}
/*
* Now divide it up into 9K pieces and save the addresses
* in an array.
*/
ptr = ring->jpool;
for (i = 0; i < NFE_JSLOTS; i++) {
ring->jslots[i] = ptr;
ptr += NFE_JLEN;
entry = malloc(sizeof(struct nfe_jpool_entry), M_DEVBUF,
M_WAITOK);
if (entry == NULL) {
device_printf(sc->nfe_dev,
"no memory for jumbo buffers!\n");
error = ENOMEM;
goto fail;
}
entry->slot = i;
SLIST_INSERT_HEAD(&sc->nfe_jfree_listhead, entry,
jpool_entries);
}
return (0);
fail:
nfe_free_jrx_ring(sc, ring);
return (error);
}
static int
nfe_init_rx_ring(struct nfe_softc *sc, struct nfe_rx_ring *ring)
{
void *desc;
size_t descsize;
int i;
ring->cur = ring->next = 0;
if (sc->nfe_flags & NFE_40BIT_ADDR) {
desc = ring->desc64;
descsize = sizeof (struct nfe_desc64);
} else {
desc = ring->desc32;
descsize = sizeof (struct nfe_desc32);
}
bzero(desc, descsize * NFE_RX_RING_COUNT);
for (i = 0; i < NFE_RX_RING_COUNT; i++) {
if (nfe_newbuf(sc, i) != 0)
return (ENOBUFS);
}
bus_dmamap_sync(ring->rx_desc_tag, ring->rx_desc_map,
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
return (0);
}
static int
nfe_init_jrx_ring(struct nfe_softc *sc, struct nfe_jrx_ring *ring)
{
void *desc;
size_t descsize;
int i;
ring->jcur = ring->jnext = 0;
if (sc->nfe_flags & NFE_40BIT_ADDR) {
desc = ring->jdesc64;
descsize = sizeof (struct nfe_desc64);
} else {
desc = ring->jdesc32;
descsize = sizeof (struct nfe_desc32);
}
bzero(desc, descsize * NFE_RX_RING_COUNT);
for (i = 0; i < NFE_JUMBO_RX_RING_COUNT; i++) {
if (nfe_jnewbuf(sc, i) != 0)
return (ENOBUFS);
}
bus_dmamap_sync(ring->jrx_desc_tag, ring->jrx_desc_map,
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
return (0);
}
static void
nfe_free_rx_ring(struct nfe_softc *sc, struct nfe_rx_ring *ring)
{
struct nfe_rx_data *data;
void *desc;
int i, descsize;
if (sc->nfe_flags & NFE_40BIT_ADDR) {
desc = ring->desc64;
descsize = sizeof (struct nfe_desc64);
} else {
desc = ring->desc32;
descsize = sizeof (struct nfe_desc32);
}
for (i = 0; i < NFE_RX_RING_COUNT; i++) {
data = &ring->data[i];
if (data->rx_data_map != NULL) {
bus_dmamap_destroy(ring->rx_data_tag,
data->rx_data_map);
data->rx_data_map = NULL;
}
if (data->m != NULL) {
m_freem(data->m);
data->m = NULL;
}
}
if (ring->rx_data_tag != NULL) {
if (ring->rx_spare_map != NULL) {
bus_dmamap_destroy(ring->rx_data_tag,
ring->rx_spare_map);
ring->rx_spare_map = NULL;
}
bus_dma_tag_destroy(ring->rx_data_tag);
ring->rx_data_tag = NULL;
}
if (desc != NULL) {
bus_dmamap_unload(ring->rx_desc_tag, ring->rx_desc_map);
bus_dmamem_free(ring->rx_desc_tag, desc, ring->rx_desc_map);
ring->desc64 = NULL;
ring->desc32 = NULL;
ring->rx_desc_map = NULL;
}
if (ring->rx_desc_tag != NULL) {
bus_dma_tag_destroy(ring->rx_desc_tag);
ring->rx_desc_tag = NULL;
}
}
static void
nfe_free_jrx_ring(struct nfe_softc *sc, struct nfe_jrx_ring *ring)
{
struct nfe_jpool_entry *entry;
struct nfe_rx_data *data;
void *desc;
int i, descsize;
if ((sc->nfe_flags & NFE_JUMBO_SUP) == 0)
return;
NFE_JLIST_LOCK(sc);
while ((entry = SLIST_FIRST(&sc->nfe_jinuse_listhead))) {
device_printf(sc->nfe_dev,
"asked to free buffer that is in use!\n");
SLIST_REMOVE_HEAD(&sc->nfe_jinuse_listhead, jpool_entries);
SLIST_INSERT_HEAD(&sc->nfe_jfree_listhead, entry,
jpool_entries);
}
while (!SLIST_EMPTY(&sc->nfe_jfree_listhead)) {
entry = SLIST_FIRST(&sc->nfe_jfree_listhead);
SLIST_REMOVE_HEAD(&sc->nfe_jfree_listhead, jpool_entries);
free(entry, M_DEVBUF);
}
NFE_JLIST_UNLOCK(sc);
if (sc->nfe_flags & NFE_40BIT_ADDR) {
desc = ring->jdesc64;
descsize = sizeof (struct nfe_desc64);
} else {
desc = ring->jdesc32;
descsize = sizeof (struct nfe_desc32);
}
for (i = 0; i < NFE_JUMBO_RX_RING_COUNT; i++) {
data = &ring->jdata[i];
if (data->rx_data_map != NULL) {
bus_dmamap_destroy(ring->jrx_data_tag,
data->rx_data_map);
data->rx_data_map = NULL;
}
if (data->m != NULL) {
m_freem(data->m);
data->m = NULL;
}
}
if (ring->jrx_data_tag != NULL) {
if (ring->jrx_spare_map != NULL) {
bus_dmamap_destroy(ring->jrx_data_tag,
ring->jrx_spare_map);
ring->jrx_spare_map = NULL;
}
bus_dma_tag_destroy(ring->jrx_data_tag);
ring->jrx_data_tag = NULL;
}
if (desc != NULL) {
bus_dmamap_unload(ring->jrx_desc_tag, ring->jrx_desc_map);
bus_dmamem_free(ring->jrx_desc_tag, desc, ring->jrx_desc_map);
ring->jdesc64 = NULL;
ring->jdesc32 = NULL;
ring->jrx_desc_map = NULL;
}
/* Destroy jumbo buffer block. */
if (ring->jrx_jumbo_map != NULL)
bus_dmamap_unload(ring->jrx_jumbo_tag, ring->jrx_jumbo_map);
if (ring->jrx_jumbo_map != NULL) {
bus_dmamem_free(ring->jrx_jumbo_tag, ring->jpool,
ring->jrx_jumbo_map);
ring->jpool = NULL;
ring->jrx_jumbo_map = NULL;
}
if (ring->jrx_desc_tag != NULL) {
bus_dma_tag_destroy(ring->jrx_desc_tag);
ring->jrx_desc_tag = NULL;
}
}
static int
nfe_alloc_tx_ring(struct nfe_softc *sc, struct nfe_tx_ring *ring)
{
struct nfe_dmamap_arg ctx;
int i, error;
void *desc;
int descsize;
if (sc->nfe_flags & NFE_40BIT_ADDR) {
desc = ring->desc64;
descsize = sizeof (struct nfe_desc64);
} else {
desc = ring->desc32;
descsize = sizeof (struct nfe_desc32);
}
ring->queued = 0;
ring->cur = ring->next = 0;
error = bus_dma_tag_create(sc->nfe_parent_tag,
NFE_RING_ALIGN, 0, /* alignment, boundary */
BUS_SPACE_MAXADDR, /* lowaddr */
BUS_SPACE_MAXADDR, /* highaddr */
NULL, NULL, /* filter, filterarg */
NFE_TX_RING_COUNT * descsize, 1, /* maxsize, nsegments */
NFE_TX_RING_COUNT * descsize, /* maxsegsize */
0, /* flags */
NULL, NULL, /* lockfunc, lockarg */
&ring->tx_desc_tag);
if (error != 0) {
device_printf(sc->nfe_dev, "could not create desc DMA tag\n");
goto fail;
}
error = bus_dmamem_alloc(ring->tx_desc_tag, &desc, BUS_DMA_WAITOK |
BUS_DMA_COHERENT | BUS_DMA_ZERO, &ring->tx_desc_map);
if (error != 0) {
device_printf(sc->nfe_dev, "could not create desc DMA map\n");
goto fail;
}
if (sc->nfe_flags & NFE_40BIT_ADDR)
ring->desc64 = desc;
else
ring->desc32 = desc;
ctx.nfe_busaddr = 0;
error = bus_dmamap_load(ring->tx_desc_tag, ring->tx_desc_map, desc,
NFE_TX_RING_COUNT * descsize, nfe_dma_map_segs, &ctx, 0);
if (error != 0) {
device_printf(sc->nfe_dev, "could not load desc DMA map\n");
goto fail;
}
ring->physaddr = ctx.nfe_busaddr;
error = bus_dma_tag_create(sc->nfe_parent_tag,
1, 0,
BUS_SPACE_MAXADDR,
BUS_SPACE_MAXADDR,
NULL, NULL,
NFE_TSO_MAXSIZE,
NFE_MAX_SCATTER,
NFE_TSO_MAXSGSIZE,
0,
NULL, NULL,
&ring->tx_data_tag);
if (error != 0) {
device_printf(sc->nfe_dev, "could not create Tx DMA tag\n");
goto fail;
}
for (i = 0; i < NFE_TX_RING_COUNT; i++) {
error = bus_dmamap_create(ring->tx_data_tag, 0,
&ring->data[i].tx_data_map);
if (error != 0) {
device_printf(sc->nfe_dev,
"could not create Tx DMA map\n");
goto fail;
}
}
fail:
return (error);
}
static void
nfe_init_tx_ring(struct nfe_softc *sc, struct nfe_tx_ring *ring)
{
void *desc;
size_t descsize;
sc->nfe_force_tx = 0;
ring->queued = 0;
ring->cur = ring->next = 0;
if (sc->nfe_flags & NFE_40BIT_ADDR) {
desc = ring->desc64;
descsize = sizeof (struct nfe_desc64);
} else {
desc = ring->desc32;
descsize = sizeof (struct nfe_desc32);
}
bzero(desc, descsize * NFE_TX_RING_COUNT);
bus_dmamap_sync(ring->tx_desc_tag, ring->tx_desc_map,
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
}
static void
nfe_free_tx_ring(struct nfe_softc *sc, struct nfe_tx_ring *ring)
{
struct nfe_tx_data *data;
void *desc;
int i, descsize;
if (sc->nfe_flags & NFE_40BIT_ADDR) {
desc = ring->desc64;
descsize = sizeof (struct nfe_desc64);
} else {
desc = ring->desc32;
descsize = sizeof (struct nfe_desc32);
}
for (i = 0; i < NFE_TX_RING_COUNT; i++) {
data = &ring->data[i];
if (data->m != NULL) {
bus_dmamap_sync(ring->tx_data_tag, data->tx_data_map,
BUS_DMASYNC_POSTWRITE);
bus_dmamap_unload(ring->tx_data_tag, data->tx_data_map);
m_freem(data->m);
data->m = NULL;
}
if (data->tx_data_map != NULL) {
bus_dmamap_destroy(ring->tx_data_tag,
data->tx_data_map);
data->tx_data_map = NULL;
}
}
if (ring->tx_data_tag != NULL) {
bus_dma_tag_destroy(ring->tx_data_tag);
ring->tx_data_tag = NULL;
}
if (desc != NULL) {
bus_dmamap_sync(ring->tx_desc_tag, ring->tx_desc_map,
BUS_DMASYNC_POSTWRITE);
bus_dmamap_unload(ring->tx_desc_tag, ring->tx_desc_map);
bus_dmamem_free(ring->tx_desc_tag, desc, ring->tx_desc_map);
ring->desc64 = NULL;
ring->desc32 = NULL;
ring->tx_desc_map = NULL;
bus_dma_tag_destroy(ring->tx_desc_tag);
ring->tx_desc_tag = NULL;
}
}
#ifdef DEVICE_POLLING
static poll_handler_t nfe_poll;
static void
nfe_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
{
struct nfe_softc *sc = ifp->if_softc;
uint32_t r;
NFE_LOCK(sc);
if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) {
NFE_UNLOCK(sc);
return;
}
nfe_rxeof(sc, count);
nfe_txeof(sc);
if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
taskqueue_enqueue_fast(taskqueue_fast, &sc->nfe_tx_task);
if (cmd == POLL_AND_CHECK_STATUS) {
if ((r = NFE_READ(sc, sc->nfe_irq_status)) == 0) {
NFE_UNLOCK(sc);
return;
}
NFE_WRITE(sc, sc->nfe_irq_status, r);
if (r & NFE_IRQ_LINK) {
NFE_READ(sc, NFE_PHY_STATUS);
NFE_WRITE(sc, NFE_PHY_STATUS, 0xf);
DPRINTF(sc, "link state changed\n");
}
}
NFE_UNLOCK(sc);
}
#endif /* DEVICE_POLLING */
static void
nfe_set_intr(struct nfe_softc *sc)
{
if (sc->nfe_msi != 0)
NFE_WRITE(sc, NFE_IRQ_MASK, NFE_IRQ_WANTED);
}
/* In MSIX, a write to mask reegisters behaves as XOR. */
static __inline void
nfe_enable_intr(struct nfe_softc *sc)
{
if (sc->nfe_msix != 0) {
/* XXX Should have a better way to enable interrupts! */
if (NFE_READ(sc, sc->nfe_irq_mask) == 0)
NFE_WRITE(sc, sc->nfe_irq_mask, sc->nfe_intrs);
} else
NFE_WRITE(sc, sc->nfe_irq_mask, sc->nfe_intrs);
}
static __inline void
nfe_disable_intr(struct nfe_softc *sc)
{
if (sc->nfe_msix != 0) {
/* XXX Should have a better way to disable interrupts! */
if (NFE_READ(sc, sc->nfe_irq_mask) != 0)
NFE_WRITE(sc, sc->nfe_irq_mask, sc->nfe_nointrs);
} else
NFE_WRITE(sc, sc->nfe_irq_mask, sc->nfe_nointrs);
}
static int
nfe_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
{
struct nfe_softc *sc;
struct ifreq *ifr;
struct mii_data *mii;
int error, init, mask;
sc = ifp->if_softc;
ifr = (struct ifreq *) data;
error = 0;
init = 0;
switch (cmd) {
case SIOCSIFMTU:
if (ifr->ifr_mtu < ETHERMIN || ifr->ifr_mtu > NFE_JUMBO_MTU)
error = EINVAL;
else if (ifp->if_mtu != ifr->ifr_mtu) {
if ((sc->nfe_flags & NFE_JUMBO_SUP) == 0 &&
ifr->ifr_mtu > ETHERMTU)
error = EINVAL;
else {
NFE_LOCK(sc);
ifp->if_mtu = ifr->ifr_mtu;
if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
nfe_init_locked(sc);
NFE_UNLOCK(sc);
}
}
break;
case SIOCSIFFLAGS:
NFE_LOCK(sc);
if (ifp->if_flags & IFF_UP) {
/*
* If only the PROMISC or ALLMULTI flag changes, then
* don't do a full re-init of the chip, just update
* the Rx filter.
*/
if ((ifp->if_drv_flags & IFF_DRV_RUNNING) &&
((ifp->if_flags ^ sc->nfe_if_flags) &
(IFF_ALLMULTI | IFF_PROMISC)) != 0)
nfe_setmulti(sc);
else
nfe_init_locked(sc);
} else {
if (ifp->if_drv_flags & IFF_DRV_RUNNING)
nfe_stop(ifp);
}
sc->nfe_if_flags = ifp->if_flags;
NFE_UNLOCK(sc);
error = 0;
break;
case SIOCADDMULTI:
case SIOCDELMULTI:
if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
NFE_LOCK(sc);
nfe_setmulti(sc);
NFE_UNLOCK(sc);
error = 0;
}
break;
case SIOCSIFMEDIA:
case SIOCGIFMEDIA:
mii = device_get_softc(sc->nfe_miibus);
error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, cmd);
break;
case SIOCSIFCAP:
mask = ifr->ifr_reqcap ^ ifp->if_capenable;
#ifdef DEVICE_POLLING
if ((mask & IFCAP_POLLING) != 0) {
if ((ifr->ifr_reqcap & IFCAP_POLLING) != 0) {
error = ether_poll_register(nfe_poll, ifp);
if (error)
break;
NFE_LOCK(sc);
nfe_disable_intr(sc);
ifp->if_capenable |= IFCAP_POLLING;
NFE_UNLOCK(sc);
} else {
error = ether_poll_deregister(ifp);
/* Enable interrupt even in error case */
NFE_LOCK(sc);
nfe_enable_intr(sc);
ifp->if_capenable &= ~IFCAP_POLLING;
NFE_UNLOCK(sc);
}
}
#endif /* DEVICE_POLLING */
if ((sc->nfe_flags & NFE_HW_CSUM) != 0 &&
(mask & IFCAP_HWCSUM) != 0) {
ifp->if_capenable ^= IFCAP_HWCSUM;
if ((IFCAP_TXCSUM & ifp->if_capenable) != 0 &&
(IFCAP_TXCSUM & ifp->if_capabilities) != 0)
ifp->if_hwassist |= NFE_CSUM_FEATURES;
else
ifp->if_hwassist &= ~NFE_CSUM_FEATURES;
init++;
}
if ((sc->nfe_flags & NFE_HW_VLAN) != 0 &&
(mask & IFCAP_VLAN_HWTAGGING) != 0) {
ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING;
init++;
}
/*
* XXX
* It seems that VLAN stripping requires Rx checksum offload.
* Unfortunately FreeBSD has no way to disable only Rx side
* VLAN stripping. So when we know Rx checksum offload is
* disabled turn entire hardware VLAN assist off.
*/
if ((sc->nfe_flags & (NFE_HW_CSUM | NFE_HW_VLAN)) ==
(NFE_HW_CSUM | NFE_HW_VLAN)) {
if ((ifp->if_capenable & IFCAP_RXCSUM) == 0)
ifp->if_capenable &= ~IFCAP_VLAN_HWTAGGING;
}
if ((sc->nfe_flags & NFE_HW_CSUM) != 0 &&
(mask & IFCAP_TSO4) != 0) {
ifp->if_capenable ^= IFCAP_TSO4;
if ((IFCAP_TSO4 & ifp->if_capenable) != 0 &&
(IFCAP_TSO4 & ifp->if_capabilities) != 0)
ifp->if_hwassist |= CSUM_TSO;
else
ifp->if_hwassist &= ~CSUM_TSO;
}
if (init > 0 && (ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
nfe_init(sc);
}
if ((sc->nfe_flags & NFE_HW_VLAN) != 0)
VLAN_CAPABILITIES(ifp);
break;
default:
error = ether_ioctl(ifp, cmd, data);
break;
}
return (error);
}
static int
nfe_intr(void *arg)
{
struct nfe_softc *sc;
uint32_t status;
sc = (struct nfe_softc *)arg;
status = NFE_READ(sc, sc->nfe_irq_status);
if (status == 0 || status == 0xffffffff)
return (FILTER_STRAY);
nfe_disable_intr(sc);
taskqueue_enqueue_fast(taskqueue_fast, &sc->nfe_int_task);
return (FILTER_HANDLED);
}
static void
nfe_int_task(void *arg, int pending)
{
struct nfe_softc *sc = arg;
struct ifnet *ifp = sc->nfe_ifp;
uint32_t r;
int domore;
NFE_LOCK(sc);
if ((r = NFE_READ(sc, sc->nfe_irq_status)) == 0) {
nfe_enable_intr(sc);
NFE_UNLOCK(sc);
return; /* not for us */
}
NFE_WRITE(sc, sc->nfe_irq_status, r);
DPRINTFN(sc, 5, "nfe_intr: interrupt register %x\n", r);
#ifdef DEVICE_POLLING
if (ifp->if_capenable & IFCAP_POLLING) {
NFE_UNLOCK(sc);
return;
}
#endif
if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) {
NFE_UNLOCK(sc);
nfe_enable_intr(sc);
return;
}
if (r & NFE_IRQ_LINK) {
NFE_READ(sc, NFE_PHY_STATUS);
NFE_WRITE(sc, NFE_PHY_STATUS, 0xf);
DPRINTF(sc, "link state changed\n");
}
domore = 0;
/* check Rx ring */
if (sc->nfe_framesize > MCLBYTES - ETHER_HDR_LEN)
domore = nfe_jrxeof(sc, sc->nfe_process_limit);
else
domore = nfe_rxeof(sc, sc->nfe_process_limit);
/* check Tx ring */
nfe_txeof(sc);
if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
taskqueue_enqueue_fast(taskqueue_fast, &sc->nfe_tx_task);
NFE_UNLOCK(sc);
if (domore || (NFE_READ(sc, sc->nfe_irq_status) != 0)) {
taskqueue_enqueue_fast(taskqueue_fast, &sc->nfe_int_task);
return;
}
/* Reenable interrupts. */
nfe_enable_intr(sc);
}
static __inline void
nfe_discard_rxbuf(struct nfe_softc *sc, int idx)
{
struct nfe_desc32 *desc32;
struct nfe_desc64 *desc64;
struct nfe_rx_data *data;
struct mbuf *m;
data = &sc->rxq.data[idx];
m = data->m;
if (sc->nfe_flags & NFE_40BIT_ADDR) {
desc64 = &sc->rxq.desc64[idx];
/* VLAN packet may have overwritten it. */
desc64->physaddr[0] = htole32(NFE_ADDR_HI(data->paddr));
desc64->physaddr[1] = htole32(NFE_ADDR_LO(data->paddr));
desc64->length = htole16(m->m_len);
desc64->flags = htole16(NFE_RX_READY);
} else {
desc32 = &sc->rxq.desc32[idx];
desc32->length = htole16(m->m_len);
desc32->flags = htole16(NFE_RX_READY);
}
}
static __inline void
nfe_discard_jrxbuf(struct nfe_softc *sc, int idx)
{
struct nfe_desc32 *desc32;
struct nfe_desc64 *desc64;
struct nfe_rx_data *data;
struct mbuf *m;
data = &sc->jrxq.jdata[idx];
m = data->m;
if (sc->nfe_flags & NFE_40BIT_ADDR) {
desc64 = &sc->jrxq.jdesc64[idx];
/* VLAN packet may have overwritten it. */
desc64->physaddr[0] = htole32(NFE_ADDR_HI(data->paddr));
desc64->physaddr[1] = htole32(NFE_ADDR_LO(data->paddr));
desc64->length = htole16(m->m_len);
desc64->flags = htole16(NFE_RX_READY);
} else {
desc32 = &sc->jrxq.jdesc32[idx];
desc32->length = htole16(m->m_len);
desc32->flags = htole16(NFE_RX_READY);
}
}
static int
nfe_newbuf(struct nfe_softc *sc, int idx)
{
struct nfe_rx_data *data;
struct nfe_desc32 *desc32;
struct nfe_desc64 *desc64;
struct mbuf *m;
bus_dma_segment_t segs[1];
bus_dmamap_t map;
int nsegs;
m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
if (m == NULL)
return (ENOBUFS);
m->m_len = m->m_pkthdr.len = MCLBYTES;
m_adj(m, ETHER_ALIGN);
if (bus_dmamap_load_mbuf_sg(sc->rxq.rx_data_tag, sc->rxq.rx_spare_map,
m, segs, &nsegs, BUS_DMA_NOWAIT) != 0) {
m_freem(m);
return (ENOBUFS);
}
KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
data = &sc->rxq.data[idx];
if (data->m != NULL) {
bus_dmamap_sync(sc->rxq.rx_data_tag, data->rx_data_map,
BUS_DMASYNC_POSTREAD);
bus_dmamap_unload(sc->rxq.rx_data_tag, data->rx_data_map);
}
map = data->rx_data_map;
data->rx_data_map = sc->rxq.rx_spare_map;
sc->rxq.rx_spare_map = map;
bus_dmamap_sync(sc->rxq.rx_data_tag, data->rx_data_map,
BUS_DMASYNC_PREREAD);
data->paddr = segs[0].ds_addr;
data->m = m;
/* update mapping address in h/w descriptor */
if (sc->nfe_flags & NFE_40BIT_ADDR) {
desc64 = &sc->rxq.desc64[idx];
desc64->physaddr[0] = htole32(NFE_ADDR_HI(segs[0].ds_addr));
desc64->physaddr[1] = htole32(NFE_ADDR_LO(segs[0].ds_addr));
desc64->length = htole16(segs[0].ds_len);
desc64->flags = htole16(NFE_RX_READY);
} else {
desc32 = &sc->rxq.desc32[idx];
desc32->physaddr = htole32(NFE_ADDR_LO(segs[0].ds_addr));
desc32->length = htole16(segs[0].ds_len);
desc32->flags = htole16(NFE_RX_READY);
}
return (0);
}
static int
nfe_jnewbuf(struct nfe_softc *sc, int idx)
{
struct nfe_rx_data *data;
struct nfe_desc32 *desc32;
struct nfe_desc64 *desc64;
struct mbuf *m;
bus_dma_segment_t segs[1];
bus_dmamap_t map;
int nsegs;
void *buf;
MGETHDR(m, M_DONTWAIT, MT_DATA);
if (m == NULL)
return (ENOBUFS);
buf = nfe_jalloc(sc);
if (buf == NULL) {
m_freem(m);
return (ENOBUFS);
}
/* Attach the buffer to the mbuf. */
MEXTADD(m, buf, NFE_JLEN, nfe_jfree, (struct nfe_softc *)sc, 0,
EXT_NET_DRV);
if ((m->m_flags & M_EXT) == 0) {
m_freem(m);
return (ENOBUFS);
}
m->m_pkthdr.len = m->m_len = NFE_JLEN;
m_adj(m, ETHER_ALIGN);
if (bus_dmamap_load_mbuf_sg(sc->jrxq.jrx_data_tag,
sc->jrxq.jrx_spare_map, m, segs, &nsegs, BUS_DMA_NOWAIT) != 0) {
m_freem(m);
return (ENOBUFS);
}
KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
data = &sc->jrxq.jdata[idx];
if (data->m != NULL) {
bus_dmamap_sync(sc->jrxq.jrx_data_tag, data->rx_data_map,
BUS_DMASYNC_POSTREAD);
bus_dmamap_unload(sc->jrxq.jrx_data_tag, data->rx_data_map);
}
map = data->rx_data_map;
data->rx_data_map = sc->jrxq.jrx_spare_map;
sc->jrxq.jrx_spare_map = map;
bus_dmamap_sync(sc->jrxq.jrx_data_tag, data->rx_data_map,
BUS_DMASYNC_PREREAD);
data->paddr = segs[0].ds_addr;
data->m = m;
/* update mapping address in h/w descriptor */
if (sc->nfe_flags & NFE_40BIT_ADDR) {
desc64 = &sc->jrxq.jdesc64[idx];
desc64->physaddr[0] = htole32(NFE_ADDR_HI(segs[0].ds_addr));
desc64->physaddr[1] = htole32(NFE_ADDR_LO(segs[0].ds_addr));
desc64->length = htole16(segs[0].ds_len);
desc64->flags = htole16(NFE_RX_READY);
} else {
desc32 = &sc->jrxq.jdesc32[idx];
desc32->physaddr = htole32(NFE_ADDR_LO(segs[0].ds_addr));
desc32->length = htole16(segs[0].ds_len);
desc32->flags = htole16(NFE_RX_READY);
}
return (0);
}
static int
nfe_rxeof(struct nfe_softc *sc, int count)
{
struct ifnet *ifp = sc->nfe_ifp;
struct nfe_desc32 *desc32;
struct nfe_desc64 *desc64;
struct nfe_rx_data *data;
struct mbuf *m;
uint16_t flags;
int len, prog;
uint32_t vtag = 0;
NFE_LOCK_ASSERT(sc);
bus_dmamap_sync(sc->rxq.rx_desc_tag, sc->rxq.rx_desc_map,
BUS_DMASYNC_POSTREAD);
for (prog = 0;;NFE_INC(sc->rxq.cur, NFE_RX_RING_COUNT), vtag = 0) {
if (count <= 0)
break;
count--;
data = &sc->rxq.data[sc->rxq.cur];
if (sc->nfe_flags & NFE_40BIT_ADDR) {
desc64 = &sc->rxq.desc64[sc->rxq.cur];
vtag = le32toh(desc64->physaddr[1]);
flags = le16toh(desc64->flags);
len = le16toh(desc64->length) & NFE_RX_LEN_MASK;
} else {
desc32 = &sc->rxq.desc32[sc->rxq.cur];
flags = le16toh(desc32->flags);
len = le16toh(desc32->length) & NFE_RX_LEN_MASK;
}
if (flags & NFE_RX_READY)
break;
prog++;
if ((sc->nfe_flags & (NFE_JUMBO_SUP | NFE_40BIT_ADDR)) == 0) {
if (!(flags & NFE_RX_VALID_V1)) {
ifp->if_ierrors++;
nfe_discard_rxbuf(sc, sc->rxq.cur);
continue;
}
if ((flags & NFE_RX_FIXME_V1) == NFE_RX_FIXME_V1) {
flags &= ~NFE_RX_ERROR;
len--; /* fix buffer length */
}
} else {
if (!(flags & NFE_RX_VALID_V2)) {
ifp->if_ierrors++;
nfe_discard_rxbuf(sc, sc->rxq.cur);
continue;
}
if ((flags & NFE_RX_FIXME_V2) == NFE_RX_FIXME_V2) {
flags &= ~NFE_RX_ERROR;
len--; /* fix buffer length */
}
}
if (flags & NFE_RX_ERROR) {
ifp->if_ierrors++;
nfe_discard_rxbuf(sc, sc->rxq.cur);
continue;
}
m = data->m;
if (nfe_newbuf(sc, sc->rxq.cur) != 0) {
ifp->if_iqdrops++;
nfe_discard_rxbuf(sc, sc->rxq.cur);
continue;
}
if ((vtag & NFE_RX_VTAG) != 0 &&
(ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0) {
m->m_pkthdr.ether_vtag = vtag & 0xffff;
m->m_flags |= M_VLANTAG;
}
m->m_pkthdr.len = m->m_len = len;
m->m_pkthdr.rcvif = ifp;
if ((ifp->if_capenable & IFCAP_RXCSUM) != 0) {
if ((flags & NFE_RX_IP_CSUMOK) != 0) {
m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
if ((flags & NFE_RX_TCP_CSUMOK) != 0 ||
(flags & NFE_RX_UDP_CSUMOK) != 0) {
m->m_pkthdr.csum_flags |=
CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
m->m_pkthdr.csum_data = 0xffff;
}
}
}
ifp->if_ipackets++;
NFE_UNLOCK(sc);
(*ifp->if_input)(ifp, m);
NFE_LOCK(sc);
}
if (prog > 0)
bus_dmamap_sync(sc->rxq.rx_desc_tag, sc->rxq.rx_desc_map,
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
return (count > 0 ? 0 : EAGAIN);
}
static int
nfe_jrxeof(struct nfe_softc *sc, int count)
{
struct ifnet *ifp = sc->nfe_ifp;
struct nfe_desc32 *desc32;
struct nfe_desc64 *desc64;
struct nfe_rx_data *data;
struct mbuf *m;
uint16_t flags;
int len, prog;
uint32_t vtag = 0;
NFE_LOCK_ASSERT(sc);
bus_dmamap_sync(sc->jrxq.jrx_desc_tag, sc->jrxq.jrx_desc_map,
BUS_DMASYNC_POSTREAD);
for (prog = 0;;NFE_INC(sc->jrxq.jcur, NFE_JUMBO_RX_RING_COUNT),
vtag = 0) {
if (count <= 0)
break;
count--;
data = &sc->jrxq.jdata[sc->jrxq.jcur];
if (sc->nfe_flags & NFE_40BIT_ADDR) {
desc64 = &sc->jrxq.jdesc64[sc->jrxq.jcur];
vtag = le32toh(desc64->physaddr[1]);
flags = le16toh(desc64->flags);
len = le16toh(desc64->length) & NFE_RX_LEN_MASK;
} else {
desc32 = &sc->jrxq.jdesc32[sc->jrxq.jcur];
flags = le16toh(desc32->flags);
len = le16toh(desc32->length) & NFE_RX_LEN_MASK;
}
if (flags & NFE_RX_READY)
break;
prog++;
if ((sc->nfe_flags & (NFE_JUMBO_SUP | NFE_40BIT_ADDR)) == 0) {
if (!(flags & NFE_RX_VALID_V1)) {
ifp->if_ierrors++;
nfe_discard_jrxbuf(sc, sc->jrxq.jcur);
continue;
}
if ((flags & NFE_RX_FIXME_V1) == NFE_RX_FIXME_V1) {
flags &= ~NFE_RX_ERROR;
len--; /* fix buffer length */
}
} else {
if (!(flags & NFE_RX_VALID_V2)) {
ifp->if_ierrors++;
nfe_discard_jrxbuf(sc, sc->jrxq.jcur);
continue;
}
if ((flags & NFE_RX_FIXME_V2) == NFE_RX_FIXME_V2) {
flags &= ~NFE_RX_ERROR;
len--; /* fix buffer length */
}
}
if (flags & NFE_RX_ERROR) {
ifp->if_ierrors++;
nfe_discard_jrxbuf(sc, sc->jrxq.jcur);
continue;
}
m = data->m;
if (nfe_jnewbuf(sc, sc->jrxq.jcur) != 0) {
ifp->if_iqdrops++;
nfe_discard_jrxbuf(sc, sc->jrxq.jcur);
continue;
}
if ((vtag & NFE_RX_VTAG) != 0 &&
(ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0) {
m->m_pkthdr.ether_vtag = vtag & 0xffff;
m->m_flags |= M_VLANTAG;
}
m->m_pkthdr.len = m->m_len = len;
m->m_pkthdr.rcvif = ifp;
if ((ifp->if_capenable & IFCAP_RXCSUM) != 0) {
if ((flags & NFE_RX_IP_CSUMOK) != 0) {
m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
if ((flags & NFE_RX_TCP_CSUMOK) != 0 ||
(flags & NFE_RX_UDP_CSUMOK) != 0) {
m->m_pkthdr.csum_flags |=
CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
m->m_pkthdr.csum_data = 0xffff;
}
}
}
ifp->if_ipackets++;
NFE_UNLOCK(sc);
(*ifp->if_input)(ifp, m);
NFE_LOCK(sc);
}
if (prog > 0)
bus_dmamap_sync(sc->jrxq.jrx_desc_tag, sc->jrxq.jrx_desc_map,
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
return (count > 0 ? 0 : EAGAIN);
}
static void
nfe_txeof(struct nfe_softc *sc)
{
struct ifnet *ifp = sc->nfe_ifp;
struct nfe_desc32 *desc32;
struct nfe_desc64 *desc64;
struct nfe_tx_data *data = NULL;
uint16_t flags;
int cons, prog;
NFE_LOCK_ASSERT(sc);
bus_dmamap_sync(sc->txq.tx_desc_tag, sc->txq.tx_desc_map,
BUS_DMASYNC_POSTREAD);
prog = 0;
for (cons = sc->txq.next; cons != sc->txq.cur;
NFE_INC(cons, NFE_TX_RING_COUNT)) {
if (sc->nfe_flags & NFE_40BIT_ADDR) {
desc64 = &sc->txq.desc64[cons];
flags = le16toh(desc64->flags);
} else {
desc32 = &sc->txq.desc32[cons];
flags = le16toh(desc32->flags);
}
if (flags & NFE_TX_VALID)
break;
prog++;
sc->txq.queued--;
data = &sc->txq.data[cons];
if ((sc->nfe_flags & (NFE_JUMBO_SUP | NFE_40BIT_ADDR)) == 0) {
if ((flags & NFE_TX_LASTFRAG_V1) == 0)
continue;
if ((flags & NFE_TX_ERROR_V1) != 0) {
device_printf(sc->nfe_dev,
"tx v1 error 0x%4b\n", flags, NFE_V1_TXERR);
ifp->if_oerrors++;
} else
ifp->if_opackets++;
} else {
if ((flags & NFE_TX_LASTFRAG_V2) == 0)
continue;
if ((flags & NFE_TX_ERROR_V2) != 0) {
device_printf(sc->nfe_dev,
"tx v2 error 0x%4b\n", flags, NFE_V2_TXERR);
ifp->if_oerrors++;
} else
ifp->if_opackets++;
}
/* last fragment of the mbuf chain transmitted */
KASSERT(data->m != NULL, ("%s: freeing NULL mbuf!", __func__));
bus_dmamap_sync(sc->txq.tx_data_tag, data->tx_data_map,
BUS_DMASYNC_POSTWRITE);
bus_dmamap_unload(sc->txq.tx_data_tag, data->tx_data_map);
m_freem(data->m);
data->m = NULL;
}
if (prog > 0) {
sc->nfe_force_tx = 0;
sc->txq.next = cons;
ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
if (sc->txq.queued == 0)
sc->nfe_watchdog_timer = 0;
}
}
/*
* It's copy of ath_defrag(ath(4)).
*
* Defragment an mbuf chain, returning at most maxfrags separate
* mbufs+clusters. If this is not possible NULL is returned and
* the original mbuf chain is left in it's present (potentially
* modified) state. We use two techniques: collapsing consecutive
* mbufs and replacing consecutive mbufs by a cluster.
*/
static struct mbuf *
nfe_defrag(struct mbuf *m0, int how, int maxfrags)
{
struct mbuf *m, *n, *n2, **prev;
u_int curfrags;
/*
* Calculate the current number of frags.
*/
curfrags = 0;
for (m = m0; m != NULL; m = m->m_next)
curfrags++;
/*
* First, try to collapse mbufs. Note that we always collapse
* towards the front so we don't need to deal with moving the
* pkthdr. This may be suboptimal if the first mbuf has much
* less data than the following.
*/
m = m0;
again:
for (;;) {
n = m->m_next;
if (n == NULL)
break;
if ((m->m_flags & M_RDONLY) == 0 &&
n->m_len < M_TRAILINGSPACE(m)) {
bcopy(mtod(n, void *), mtod(m, char *) + m->m_len,
n->m_len);
m->m_len += n->m_len;
m->m_next = n->m_next;
m_free(n);
if (--curfrags <= maxfrags)
return (m0);
} else
m = n;
}
KASSERT(maxfrags > 1,
("maxfrags %u, but normal collapse failed", maxfrags));
/*
* Collapse consecutive mbufs to a cluster.
*/
prev = &m0->m_next; /* NB: not the first mbuf */
while ((n = *prev) != NULL) {
if ((n2 = n->m_next) != NULL &&
n->m_len + n2->m_len < MCLBYTES) {
m = m_getcl(how, MT_DATA, 0);
if (m == NULL)
goto bad;
bcopy(mtod(n, void *), mtod(m, void *), n->m_len);
bcopy(mtod(n2, void *), mtod(m, char *) + n->m_len,
n2->m_len);
m->m_len = n->m_len + n2->m_len;
m->m_next = n2->m_next;
*prev = m;
m_free(n);
m_free(n2);
if (--curfrags <= maxfrags) /* +1 cl -2 mbufs */
return m0;
/*
* Still not there, try the normal collapse
* again before we allocate another cluster.
*/
goto again;
}
prev = &n->m_next;
}
/*
* No place where we can collapse to a cluster; punt.
* This can occur if, for example, you request 2 frags
* but the packet requires that both be clusters (we
* never reallocate the first mbuf to avoid moving the
* packet header).
*/
bad:
return (NULL);
}
static int
nfe_encap(struct nfe_softc *sc, struct mbuf **m_head)
{
struct nfe_desc32 *desc32 = NULL;
struct nfe_desc64 *desc64 = NULL;
bus_dmamap_t map;
bus_dma_segment_t segs[NFE_MAX_SCATTER];
int error, i, nsegs, prod, si;
uint32_t tso_segsz;
uint16_t cflags, flags;
struct mbuf *m;
prod = si = sc->txq.cur;
map = sc->txq.data[prod].tx_data_map;
error = bus_dmamap_load_mbuf_sg(sc->txq.tx_data_tag, map, *m_head, segs,
&nsegs, BUS_DMA_NOWAIT);
if (error == EFBIG) {
m = nfe_defrag(*m_head, M_DONTWAIT, NFE_MAX_SCATTER);
if (m == NULL) {
m_freem(*m_head);
*m_head = NULL;
return (ENOBUFS);
}
*m_head = m;
error = bus_dmamap_load_mbuf_sg(sc->txq.tx_data_tag, map,
*m_head, segs, &nsegs, BUS_DMA_NOWAIT);
if (error != 0) {
m_freem(*m_head);
*m_head = NULL;
return (ENOBUFS);
}
} else if (error != 0)
return (error);
if (nsegs == 0) {
m_freem(*m_head);
*m_head = NULL;
return (EIO);
}
if (sc->txq.queued + nsegs >= NFE_TX_RING_COUNT - 2) {
bus_dmamap_unload(sc->txq.tx_data_tag, map);
return (ENOBUFS);
}
m = *m_head;
cflags = flags = 0;
tso_segsz = 0;
if ((m->m_pkthdr.csum_flags & NFE_CSUM_FEATURES) != 0) {
if ((m->m_pkthdr.csum_flags & CSUM_IP) != 0)
cflags |= NFE_TX_IP_CSUM;
if ((m->m_pkthdr.csum_flags & CSUM_TCP) != 0)
cflags |= NFE_TX_TCP_UDP_CSUM;
if ((m->m_pkthdr.csum_flags & CSUM_UDP) != 0)
cflags |= NFE_TX_TCP_UDP_CSUM;
}
if ((m->m_pkthdr.csum_flags & CSUM_TSO) != 0) {
tso_segsz = (uint32_t)m->m_pkthdr.tso_segsz <<
NFE_TX_TSO_SHIFT;
cflags &= ~(NFE_TX_IP_CSUM | NFE_TX_TCP_UDP_CSUM);
cflags |= NFE_TX_TSO;
}
for (i = 0; i < nsegs; i++) {
if (sc->nfe_flags & NFE_40BIT_ADDR) {
desc64 = &sc->txq.desc64[prod];
desc64->physaddr[0] =
htole32(NFE_ADDR_HI(segs[i].ds_addr));
desc64->physaddr[1] =
htole32(NFE_ADDR_LO(segs[i].ds_addr));
desc64->vtag = 0;
desc64->length = htole16(segs[i].ds_len - 1);
desc64->flags = htole16(flags);
} else {
desc32 = &sc->txq.desc32[prod];
desc32->physaddr =
htole32(NFE_ADDR_LO(segs[i].ds_addr));
desc32->length = htole16(segs[i].ds_len - 1);
desc32->flags = htole16(flags);
}
/*
* Setting of the valid bit in the first descriptor is
* deferred until the whole chain is fully setup.
*/
flags |= NFE_TX_VALID;
sc->txq.queued++;
NFE_INC(prod, NFE_TX_RING_COUNT);
}
/*
* the whole mbuf chain has been DMA mapped, fix last/first descriptor.
* csum flags, vtag and TSO belong to the first fragment only.
*/
if (sc->nfe_flags & NFE_40BIT_ADDR) {
desc64->flags |= htole16(NFE_TX_LASTFRAG_V2);
desc64 = &sc->txq.desc64[si];
if ((m->m_flags & M_VLANTAG) != 0)
desc64->vtag = htole32(NFE_TX_VTAG |
m->m_pkthdr.ether_vtag);
if (tso_segsz != 0) {
/*
* XXX
* The following indicates the descriptor element
* is a 32bit quantity.
*/
desc64->length |= htole16((uint16_t)tso_segsz);
desc64->flags |= htole16(tso_segsz >> 16);
}
/*
* finally, set the valid/checksum/TSO bit in the first
* descriptor.
*/
desc64->flags |= htole16(NFE_TX_VALID | cflags);
} else {
if (sc->nfe_flags & NFE_JUMBO_SUP)
desc32->flags |= htole16(NFE_TX_LASTFRAG_V2);
else
desc32->flags |= htole16(NFE_TX_LASTFRAG_V1);
desc32 = &sc->txq.desc32[si];
if (tso_segsz != 0) {
/*
* XXX
* The following indicates the descriptor element
* is a 32bit quantity.
*/
desc32->length |= htole16((uint16_t)tso_segsz);
desc32->flags |= htole16(tso_segsz >> 16);
}
/*
* finally, set the valid/checksum/TSO bit in the first
* descriptor.
*/
desc32->flags |= htole16(NFE_TX_VALID | cflags);
}
sc->txq.cur = prod;
prod = (prod + NFE_TX_RING_COUNT - 1) % NFE_TX_RING_COUNT;
sc->txq.data[si].tx_data_map = sc->txq.data[prod].tx_data_map;
sc->txq.data[prod].tx_data_map = map;
sc->txq.data[prod].m = m;
bus_dmamap_sync(sc->txq.tx_data_tag, map, BUS_DMASYNC_PREWRITE);
return (0);
}
static void
nfe_setmulti(struct nfe_softc *sc)
{
struct ifnet *ifp = sc->nfe_ifp;
struct ifmultiaddr *ifma;
int i;
uint32_t filter;
uint8_t addr[ETHER_ADDR_LEN], mask[ETHER_ADDR_LEN];
uint8_t etherbroadcastaddr[ETHER_ADDR_LEN] = {
0xff, 0xff, 0xff, 0xff, 0xff, 0xff
};
NFE_LOCK_ASSERT(sc);
if ((ifp->if_flags & (IFF_ALLMULTI | IFF_PROMISC)) != 0) {
bzero(addr, ETHER_ADDR_LEN);
bzero(mask, ETHER_ADDR_LEN);
goto done;
}
bcopy(etherbroadcastaddr, addr, ETHER_ADDR_LEN);
bcopy(etherbroadcastaddr, mask, ETHER_ADDR_LEN);
IF_ADDR_LOCK(ifp);
TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
u_char *addrp;
if (ifma->ifma_addr->sa_family != AF_LINK)
continue;
addrp = LLADDR((struct sockaddr_dl *) ifma->ifma_addr);
for (i = 0; i < ETHER_ADDR_LEN; i++) {
u_int8_t mcaddr = addrp[i];
addr[i] &= mcaddr;
mask[i] &= ~mcaddr;
}
}
IF_ADDR_UNLOCK(ifp);
for (i = 0; i < ETHER_ADDR_LEN; i++) {
mask[i] |= addr[i];
}
done:
addr[0] |= 0x01; /* make sure multicast bit is set */
NFE_WRITE(sc, NFE_MULTIADDR_HI,
addr[3] << 24 | addr[2] << 16 | addr[1] << 8 | addr[0]);
NFE_WRITE(sc, NFE_MULTIADDR_LO,
addr[5] << 8 | addr[4]);
NFE_WRITE(sc, NFE_MULTIMASK_HI,
mask[3] << 24 | mask[2] << 16 | mask[1] << 8 | mask[0]);
NFE_WRITE(sc, NFE_MULTIMASK_LO,
mask[5] << 8 | mask[4]);
filter = NFE_READ(sc, NFE_RXFILTER);
filter &= NFE_PFF_RX_PAUSE;
filter |= NFE_RXFILTER_MAGIC;
filter |= (ifp->if_flags & IFF_PROMISC) ? NFE_PFF_PROMISC : NFE_PFF_U2M;
NFE_WRITE(sc, NFE_RXFILTER, filter);
}
static void
nfe_tx_task(void *arg, int pending)
{
struct ifnet *ifp;
ifp = (struct ifnet *)arg;
nfe_start(ifp);
}
static void
nfe_start(struct ifnet *ifp)
{
struct nfe_softc *sc = ifp->if_softc;
struct mbuf *m0;
int enq;
NFE_LOCK(sc);
if ((ifp->if_drv_flags & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
IFF_DRV_RUNNING || sc->nfe_link == 0) {
NFE_UNLOCK(sc);
return;
}
for (enq = 0; !IFQ_DRV_IS_EMPTY(&ifp->if_snd);) {
IFQ_DRV_DEQUEUE(&ifp->if_snd, m0);
if (m0 == NULL)
break;
if (nfe_encap(sc, &m0) != 0) {
if (m0 == NULL)
break;
IFQ_DRV_PREPEND(&ifp->if_snd, m0);
ifp->if_drv_flags |= IFF_DRV_OACTIVE;
break;
}
enq++;
ETHER_BPF_MTAP(ifp, m0);
}
if (enq > 0) {
bus_dmamap_sync(sc->txq.tx_desc_tag, sc->txq.tx_desc_map,
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
/* kick Tx */
NFE_WRITE(sc, NFE_RXTX_CTL, NFE_RXTX_KICKTX | sc->rxtxctl);
/*
* Set a timeout in case the chip goes out to lunch.
*/
sc->nfe_watchdog_timer = 5;
}
NFE_UNLOCK(sc);
}
static void
nfe_watchdog(struct ifnet *ifp)
{
struct nfe_softc *sc = ifp->if_softc;
if (sc->nfe_watchdog_timer == 0 || --sc->nfe_watchdog_timer)
return;
/* Check if we've lost Tx completion interrupt. */
nfe_txeof(sc);
if (sc->txq.queued == 0) {
if_printf(ifp, "watchdog timeout (missed Tx interrupts) "
"-- recovering\n");
if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
taskqueue_enqueue_fast(taskqueue_fast,
&sc->nfe_tx_task);
return;
}
/* Check if we've lost start Tx command. */
sc->nfe_force_tx++;
if (sc->nfe_force_tx <= 3) {
/*
* If this is the case for watchdog timeout, the following
* code should go to nfe_txeof().
*/
NFE_WRITE(sc, NFE_RXTX_CTL, NFE_RXTX_KICKTX | sc->rxtxctl);
return;
}
sc->nfe_force_tx = 0;
if_printf(ifp, "watchdog timeout\n");
ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
ifp->if_oerrors++;
nfe_init_locked(sc);
}
static void
nfe_init(void *xsc)
{
struct nfe_softc *sc = xsc;
NFE_LOCK(sc);
nfe_init_locked(sc);
NFE_UNLOCK(sc);
}
static void
nfe_init_locked(void *xsc)
{
struct nfe_softc *sc = xsc;
struct ifnet *ifp = sc->nfe_ifp;
struct mii_data *mii;
uint32_t val;
int error;
NFE_LOCK_ASSERT(sc);
mii = device_get_softc(sc->nfe_miibus);
if (ifp->if_drv_flags & IFF_DRV_RUNNING)
return;
nfe_stop(ifp);
sc->nfe_framesize = ifp->if_mtu + NFE_RX_HEADERS;
nfe_init_tx_ring(sc, &sc->txq);
if (sc->nfe_framesize > (MCLBYTES - ETHER_HDR_LEN))
error = nfe_init_jrx_ring(sc, &sc->jrxq);
else
error = nfe_init_rx_ring(sc, &sc->rxq);
if (error != 0) {
device_printf(sc->nfe_dev,
"initialization failed: no memory for rx buffers\n");
nfe_stop(ifp);
return;
}
val = 0;
if ((sc->nfe_flags & NFE_CORRECT_MACADDR) != 0)
val |= NFE_MAC_ADDR_INORDER;
NFE_WRITE(sc, NFE_TX_UNK, val);
NFE_WRITE(sc, NFE_STATUS, 0);
if ((sc->nfe_flags & NFE_TX_FLOW_CTRL) != 0)
NFE_WRITE(sc, NFE_TX_PAUSE_FRAME, NFE_TX_PAUSE_FRAME_DISABLE);
sc->rxtxctl = NFE_RXTX_BIT2;
if (sc->nfe_flags & NFE_40BIT_ADDR)
sc->rxtxctl |= NFE_RXTX_V3MAGIC;
else if (sc->nfe_flags & NFE_JUMBO_SUP)
sc->rxtxctl |= NFE_RXTX_V2MAGIC;
if ((ifp->if_capenable & IFCAP_RXCSUM) != 0)
sc->rxtxctl |= NFE_RXTX_RXCSUM;
if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0)
sc->rxtxctl |= NFE_RXTX_VTAG_INSERT | NFE_RXTX_VTAG_STRIP;
NFE_WRITE(sc, NFE_RXTX_CTL, NFE_RXTX_RESET | sc->rxtxctl);
DELAY(10);
NFE_WRITE(sc, NFE_RXTX_CTL, sc->rxtxctl);
if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0)
NFE_WRITE(sc, NFE_VTAG_CTL, NFE_VTAG_ENABLE);
else
NFE_WRITE(sc, NFE_VTAG_CTL, 0);
NFE_WRITE(sc, NFE_SETUP_R6, 0);
/* set MAC address */
nfe_set_macaddr(sc, IF_LLADDR(ifp));
/* tell MAC where rings are in memory */
if (sc->nfe_framesize > MCLBYTES - ETHER_HDR_LEN) {
NFE_WRITE(sc, NFE_RX_RING_ADDR_HI,
NFE_ADDR_HI(sc->jrxq.jphysaddr));
NFE_WRITE(sc, NFE_RX_RING_ADDR_LO,
NFE_ADDR_LO(sc->jrxq.jphysaddr));
} else {
NFE_WRITE(sc, NFE_RX_RING_ADDR_HI,
NFE_ADDR_HI(sc->rxq.physaddr));
NFE_WRITE(sc, NFE_RX_RING_ADDR_LO,
NFE_ADDR_LO(sc->rxq.physaddr));
}
NFE_WRITE(sc, NFE_TX_RING_ADDR_HI, NFE_ADDR_HI(sc->txq.physaddr));
NFE_WRITE(sc, NFE_TX_RING_ADDR_LO, NFE_ADDR_LO(sc->txq.physaddr));
NFE_WRITE(sc, NFE_RING_SIZE,
(NFE_RX_RING_COUNT - 1) << 16 |
(NFE_TX_RING_COUNT - 1));
NFE_WRITE(sc, NFE_RXBUFSZ, sc->nfe_framesize);
/* force MAC to wakeup */
val = NFE_READ(sc, NFE_PWR_STATE);
if ((val & NFE_PWR_WAKEUP) == 0)
NFE_WRITE(sc, NFE_PWR_STATE, val | NFE_PWR_WAKEUP);
DELAY(10);
val = NFE_READ(sc, NFE_PWR_STATE);
NFE_WRITE(sc, NFE_PWR_STATE, val | NFE_PWR_VALID);
#if 1
/* configure interrupts coalescing/mitigation */
NFE_WRITE(sc, NFE_IMTIMER, NFE_IM_DEFAULT);
#else
/* no interrupt mitigation: one interrupt per packet */
NFE_WRITE(sc, NFE_IMTIMER, 970);
#endif
NFE_WRITE(sc, NFE_SETUP_R1, NFE_R1_MAGIC_10_100);
NFE_WRITE(sc, NFE_SETUP_R2, NFE_R2_MAGIC);
NFE_WRITE(sc, NFE_SETUP_R6, NFE_R6_MAGIC);
/* update MAC knowledge of PHY; generates a NFE_IRQ_LINK interrupt */
NFE_WRITE(sc, NFE_STATUS, sc->mii_phyaddr << 24 | NFE_STATUS_MAGIC);
NFE_WRITE(sc, NFE_SETUP_R4, NFE_R4_MAGIC);
NFE_WRITE(sc, NFE_WOL_CTL, NFE_WOL_MAGIC);
sc->rxtxctl &= ~NFE_RXTX_BIT2;
NFE_WRITE(sc, NFE_RXTX_CTL, sc->rxtxctl);
DELAY(10);
NFE_WRITE(sc, NFE_RXTX_CTL, NFE_RXTX_BIT1 | sc->rxtxctl);
/* set Rx filter */
nfe_setmulti(sc);
/* enable Rx */
NFE_WRITE(sc, NFE_RX_CTL, NFE_RX_START);
/* enable Tx */
NFE_WRITE(sc, NFE_TX_CTL, NFE_TX_START);
NFE_WRITE(sc, NFE_PHY_STATUS, 0xf);
#ifdef DEVICE_POLLING
if (ifp->if_capenable & IFCAP_POLLING)
nfe_disable_intr(sc);
else
#endif
nfe_set_intr(sc);
nfe_enable_intr(sc); /* enable interrupts */
ifp->if_drv_flags |= IFF_DRV_RUNNING;
ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
sc->nfe_link = 0;
mii_mediachg(mii);
callout_reset(&sc->nfe_stat_ch, hz, nfe_tick, sc);
}
static void
nfe_stop(struct ifnet *ifp)
{
struct nfe_softc *sc = ifp->if_softc;
struct nfe_rx_ring *rx_ring;
struct nfe_jrx_ring *jrx_ring;
struct nfe_tx_ring *tx_ring;
struct nfe_rx_data *rdata;
struct nfe_tx_data *tdata;
int i;
NFE_LOCK_ASSERT(sc);
sc->nfe_watchdog_timer = 0;
ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
callout_stop(&sc->nfe_stat_ch);
/* abort Tx */
NFE_WRITE(sc, NFE_TX_CTL, 0);
/* disable Rx */
NFE_WRITE(sc, NFE_RX_CTL, 0);
/* disable interrupts */
nfe_disable_intr(sc);
sc->nfe_link = 0;
/* free Rx and Tx mbufs still in the queues. */
rx_ring = &sc->rxq;
for (i = 0; i < NFE_RX_RING_COUNT; i++) {
rdata = &rx_ring->data[i];
if (rdata->m != NULL) {
bus_dmamap_sync(rx_ring->rx_data_tag,
rdata->rx_data_map, BUS_DMASYNC_POSTREAD);
bus_dmamap_unload(rx_ring->rx_data_tag,
rdata->rx_data_map);
m_freem(rdata->m);
rdata->m = NULL;
}
}
if ((sc->nfe_flags & NFE_JUMBO_SUP) != 0) {
jrx_ring = &sc->jrxq;
for (i = 0; i < NFE_JUMBO_RX_RING_COUNT; i++) {
rdata = &jrx_ring->jdata[i];
if (rdata->m != NULL) {
bus_dmamap_sync(jrx_ring->jrx_data_tag,
rdata->rx_data_map, BUS_DMASYNC_POSTREAD);
bus_dmamap_unload(jrx_ring->jrx_data_tag,
rdata->rx_data_map);
m_freem(rdata->m);
rdata->m = NULL;
}
}
}
tx_ring = &sc->txq;
for (i = 0; i < NFE_RX_RING_COUNT; i++) {
tdata = &tx_ring->data[i];
if (tdata->m != NULL) {
bus_dmamap_sync(tx_ring->tx_data_tag,
tdata->tx_data_map, BUS_DMASYNC_POSTWRITE);
bus_dmamap_unload(tx_ring->tx_data_tag,
tdata->tx_data_map);
m_freem(tdata->m);
tdata->m = NULL;
}
}
}
static int
nfe_ifmedia_upd(struct ifnet *ifp)
{
struct nfe_softc *sc = ifp->if_softc;
struct mii_data *mii;
NFE_LOCK(sc);
mii = device_get_softc(sc->nfe_miibus);
mii_mediachg(mii);
NFE_UNLOCK(sc);
return (0);
}
static void
nfe_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
{
struct nfe_softc *sc;
struct mii_data *mii;
sc = ifp->if_softc;
NFE_LOCK(sc);
mii = device_get_softc(sc->nfe_miibus);
mii_pollstat(mii);
NFE_UNLOCK(sc);
ifmr->ifm_active = mii->mii_media_active;
ifmr->ifm_status = mii->mii_media_status;
}
void
nfe_tick(void *xsc)
{
struct nfe_softc *sc;
struct mii_data *mii;
struct ifnet *ifp;
sc = (struct nfe_softc *)xsc;
NFE_LOCK_ASSERT(sc);
ifp = sc->nfe_ifp;
mii = device_get_softc(sc->nfe_miibus);
mii_tick(mii);
nfe_watchdog(ifp);
callout_reset(&sc->nfe_stat_ch, hz, nfe_tick, sc);
}
static void
nfe_shutdown(device_t dev)
{
struct nfe_softc *sc;
struct ifnet *ifp;
sc = device_get_softc(dev);
NFE_LOCK(sc);
ifp = sc->nfe_ifp;
nfe_stop(ifp);
/* nfe_reset(sc); */
NFE_UNLOCK(sc);
}
static void
nfe_get_macaddr(struct nfe_softc *sc, uint8_t *addr)
{
uint32_t val;
if ((sc->nfe_flags & NFE_CORRECT_MACADDR) == 0) {
val = NFE_READ(sc, NFE_MACADDR_LO);
addr[0] = (val >> 8) & 0xff;
addr[1] = (val & 0xff);
val = NFE_READ(sc, NFE_MACADDR_HI);
addr[2] = (val >> 24) & 0xff;
addr[3] = (val >> 16) & 0xff;
addr[4] = (val >> 8) & 0xff;
addr[5] = (val & 0xff);
} else {
val = NFE_READ(sc, NFE_MACADDR_LO);
addr[5] = (val >> 8) & 0xff;
addr[4] = (val & 0xff);
val = NFE_READ(sc, NFE_MACADDR_HI);
addr[3] = (val >> 24) & 0xff;
addr[2] = (val >> 16) & 0xff;
addr[1] = (val >> 8) & 0xff;
addr[0] = (val & 0xff);
}
}
static void
nfe_set_macaddr(struct nfe_softc *sc, uint8_t *addr)
{
NFE_WRITE(sc, NFE_MACADDR_LO, addr[5] << 8 | addr[4]);
NFE_WRITE(sc, NFE_MACADDR_HI, addr[3] << 24 | addr[2] << 16 |
addr[1] << 8 | addr[0]);
}
/*
* Map a single buffer address.
*/
static void
nfe_dma_map_segs(void *arg, bus_dma_segment_t *segs, int nseg, int error)
{
struct nfe_dmamap_arg *ctx;
if (error != 0)
return;
KASSERT(nseg == 1, ("too many DMA segments, %d should be 1", nseg));
ctx = (struct nfe_dmamap_arg *)arg;
ctx->nfe_busaddr = segs[0].ds_addr;
}
static int
sysctl_int_range(SYSCTL_HANDLER_ARGS, int low, int high)
{
int error, value;
if (!arg1)
return (EINVAL);
value = *(int *)arg1;
error = sysctl_handle_int(oidp, &value, 0, req);
if (error || !req->newptr)
return (error);
if (value < low || value > high)
return (EINVAL);
*(int *)arg1 = value;
return (0);
}
static int
sysctl_hw_nfe_proc_limit(SYSCTL_HANDLER_ARGS)
{
return (sysctl_int_range(oidp, arg1, arg2, req, NFE_PROC_MIN,
NFE_PROC_MAX));
}