freebsd-skq/sys/dev/netmap/netmap_mem2.c
Vincenzo Maffione 2a7db7a63d netmap: align codebase to the current upstream (sha 8374e1a7e6941)
Changelist:
    - Move large parts of VALE code to a new file and header netmap_bdg.[ch].
      This is useful to reuse the code within upcoming projects.
    - Improvements and bug fixes to pipes and monitors.
    - Introduce nm_os_onattach(), nm_os_onenter() and nm_os_onexit() to
      handle differences between FreeBSD and Linux.
    - Introduce some new helper functions to handle more host rings and fake
      rings (netmap_all_rings(), netmap_real_rings(), ...)
    - Added new sysctl to enable/disable hw checksum in emulated netmap mode.
    - nm_inject: add support for NS_MOREFRAG

Approved by:	gnn (mentor)
Differential Revision:	https://reviews.freebsd.org/D17364
2018-10-23 08:55:16 +00:00

2836 lines
68 KiB
C

/*-
* SPDX-License-Identifier: BSD-2-Clause-FreeBSD
*
* Copyright (C) 2012-2014 Matteo Landi
* Copyright (C) 2012-2016 Luigi Rizzo
* Copyright (C) 2012-2016 Giuseppe Lettieri
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#ifdef linux
#include "bsd_glue.h"
#endif /* linux */
#ifdef __APPLE__
#include "osx_glue.h"
#endif /* __APPLE__ */
#ifdef __FreeBSD__
#include <sys/cdefs.h> /* prerequisite */
__FBSDID("$FreeBSD$");
#include <sys/types.h>
#include <sys/malloc.h>
#include <sys/kernel.h> /* MALLOC_DEFINE */
#include <sys/proc.h>
#include <vm/vm.h> /* vtophys */
#include <vm/pmap.h> /* vtophys */
#include <sys/socket.h> /* sockaddrs */
#include <sys/selinfo.h>
#include <sys/sysctl.h>
#include <net/if.h>
#include <net/if_var.h>
#include <net/vnet.h>
#include <machine/bus.h> /* bus_dmamap_* */
/* M_NETMAP only used in here */
MALLOC_DECLARE(M_NETMAP);
MALLOC_DEFINE(M_NETMAP, "netmap", "Network memory map");
#endif /* __FreeBSD__ */
#ifdef _WIN32
#include <win_glue.h>
#endif
#include <net/netmap.h>
#include <dev/netmap/netmap_kern.h>
#include <net/netmap_virt.h>
#include "netmap_mem2.h"
#ifdef _WIN32_USE_SMALL_GENERIC_DEVICES_MEMORY
#define NETMAP_BUF_MAX_NUM 8*4096 /* if too big takes too much time to allocate */
#else
#define NETMAP_BUF_MAX_NUM 20*4096*2 /* large machine */
#endif
#define NETMAP_POOL_MAX_NAMSZ 32
enum {
NETMAP_IF_POOL = 0,
NETMAP_RING_POOL,
NETMAP_BUF_POOL,
NETMAP_POOLS_NR
};
struct netmap_obj_params {
u_int size;
u_int num;
u_int last_size;
u_int last_num;
};
struct netmap_obj_pool {
char name[NETMAP_POOL_MAX_NAMSZ]; /* name of the allocator */
/* ---------------------------------------------------*/
/* these are only meaningful if the pool is finalized */
/* (see 'finalized' field in netmap_mem_d) */
u_int objtotal; /* actual total number of objects. */
u_int memtotal; /* actual total memory space */
u_int numclusters; /* actual number of clusters */
u_int objfree; /* number of free objects. */
struct lut_entry *lut; /* virt,phys addresses, objtotal entries */
uint32_t *bitmap; /* one bit per buffer, 1 means free */
uint32_t *invalid_bitmap;/* one bit per buffer, 1 means invalid */
uint32_t bitmap_slots; /* number of uint32 entries in bitmap */
int alloc_done; /* we have allocated the memory */
/* ---------------------------------------------------*/
/* limits */
u_int objminsize; /* minimum object size */
u_int objmaxsize; /* maximum object size */
u_int nummin; /* minimum number of objects */
u_int nummax; /* maximum number of objects */
/* these are changed only by config */
u_int _objtotal; /* total number of objects */
u_int _objsize; /* object size */
u_int _clustsize; /* cluster size */
u_int _clustentries; /* objects per cluster */
u_int _numclusters; /* number of clusters */
/* requested values */
u_int r_objtotal;
u_int r_objsize;
};
#define NMA_LOCK_T NM_MTX_T
#define NMA_LOCK_INIT(n) NM_MTX_INIT((n)->nm_mtx)
#define NMA_LOCK_DESTROY(n) NM_MTX_DESTROY((n)->nm_mtx)
#define NMA_LOCK(n) NM_MTX_LOCK((n)->nm_mtx)
#define NMA_SPINLOCK(n) NM_MTX_SPINLOCK((n)->nm_mtx)
#define NMA_UNLOCK(n) NM_MTX_UNLOCK((n)->nm_mtx)
struct netmap_mem_ops {
int (*nmd_get_lut)(struct netmap_mem_d *, struct netmap_lut*);
int (*nmd_get_info)(struct netmap_mem_d *, uint64_t *size,
u_int *memflags, uint16_t *id);
vm_paddr_t (*nmd_ofstophys)(struct netmap_mem_d *, vm_ooffset_t);
int (*nmd_config)(struct netmap_mem_d *);
int (*nmd_finalize)(struct netmap_mem_d *);
void (*nmd_deref)(struct netmap_mem_d *);
ssize_t (*nmd_if_offset)(struct netmap_mem_d *, const void *vaddr);
void (*nmd_delete)(struct netmap_mem_d *);
struct netmap_if * (*nmd_if_new)(struct netmap_adapter *,
struct netmap_priv_d *);
void (*nmd_if_delete)(struct netmap_adapter *, struct netmap_if *);
int (*nmd_rings_create)(struct netmap_adapter *);
void (*nmd_rings_delete)(struct netmap_adapter *);
};
struct netmap_mem_d {
NMA_LOCK_T nm_mtx; /* protect the allocator */
u_int nm_totalsize; /* shorthand */
u_int flags;
#define NETMAP_MEM_FINALIZED 0x1 /* preallocation done */
#define NETMAP_MEM_HIDDEN 0x8 /* beeing prepared */
int lasterr; /* last error for curr config */
int active; /* active users */
int refcount;
/* the three allocators */
struct netmap_obj_pool pools[NETMAP_POOLS_NR];
nm_memid_t nm_id; /* allocator identifier */
int nm_grp; /* iommu groupd id */
/* list of all existing allocators, sorted by nm_id */
struct netmap_mem_d *prev, *next;
struct netmap_mem_ops *ops;
struct netmap_obj_params params[NETMAP_POOLS_NR];
#define NM_MEM_NAMESZ 16
char name[NM_MEM_NAMESZ];
};
int
netmap_mem_get_lut(struct netmap_mem_d *nmd, struct netmap_lut *lut)
{
int rv;
NMA_LOCK(nmd);
rv = nmd->ops->nmd_get_lut(nmd, lut);
NMA_UNLOCK(nmd);
return rv;
}
int
netmap_mem_get_info(struct netmap_mem_d *nmd, uint64_t *size,
u_int *memflags, nm_memid_t *memid)
{
int rv;
NMA_LOCK(nmd);
rv = nmd->ops->nmd_get_info(nmd, size, memflags, memid);
NMA_UNLOCK(nmd);
return rv;
}
vm_paddr_t
netmap_mem_ofstophys(struct netmap_mem_d *nmd, vm_ooffset_t off)
{
vm_paddr_t pa;
#if defined(__FreeBSD__)
/* This function is called by netmap_dev_pager_fault(), which holds a
* non-sleepable lock since FreeBSD 12. Since we cannot sleep, we
* spin on the trylock. */
NMA_SPINLOCK(nmd);
#else
NMA_LOCK(nmd);
#endif
pa = nmd->ops->nmd_ofstophys(nmd, off);
NMA_UNLOCK(nmd);
return pa;
}
static int
netmap_mem_config(struct netmap_mem_d *nmd)
{
if (nmd->active) {
/* already in use. Not fatal, but we
* cannot change the configuration
*/
return 0;
}
return nmd->ops->nmd_config(nmd);
}
ssize_t
netmap_mem_if_offset(struct netmap_mem_d *nmd, const void *off)
{
ssize_t rv;
NMA_LOCK(nmd);
rv = nmd->ops->nmd_if_offset(nmd, off);
NMA_UNLOCK(nmd);
return rv;
}
static void
netmap_mem_delete(struct netmap_mem_d *nmd)
{
nmd->ops->nmd_delete(nmd);
}
struct netmap_if *
netmap_mem_if_new(struct netmap_adapter *na, struct netmap_priv_d *priv)
{
struct netmap_if *nifp;
struct netmap_mem_d *nmd = na->nm_mem;
NMA_LOCK(nmd);
nifp = nmd->ops->nmd_if_new(na, priv);
NMA_UNLOCK(nmd);
return nifp;
}
void
netmap_mem_if_delete(struct netmap_adapter *na, struct netmap_if *nif)
{
struct netmap_mem_d *nmd = na->nm_mem;
NMA_LOCK(nmd);
nmd->ops->nmd_if_delete(na, nif);
NMA_UNLOCK(nmd);
}
int
netmap_mem_rings_create(struct netmap_adapter *na)
{
int rv;
struct netmap_mem_d *nmd = na->nm_mem;
NMA_LOCK(nmd);
rv = nmd->ops->nmd_rings_create(na);
NMA_UNLOCK(nmd);
return rv;
}
void
netmap_mem_rings_delete(struct netmap_adapter *na)
{
struct netmap_mem_d *nmd = na->nm_mem;
NMA_LOCK(nmd);
nmd->ops->nmd_rings_delete(na);
NMA_UNLOCK(nmd);
}
static int netmap_mem_map(struct netmap_obj_pool *, struct netmap_adapter *);
static int netmap_mem_unmap(struct netmap_obj_pool *, struct netmap_adapter *);
static int nm_mem_assign_group(struct netmap_mem_d *, struct device *);
static void nm_mem_release_id(struct netmap_mem_d *);
nm_memid_t
netmap_mem_get_id(struct netmap_mem_d *nmd)
{
return nmd->nm_id;
}
#ifdef NM_DEBUG_MEM_PUTGET
#define NM_DBG_REFC(nmd, func, line) \
nm_prinf("%s:%d mem[%d] -> %d\n", func, line, (nmd)->nm_id, (nmd)->refcount);
#else
#define NM_DBG_REFC(nmd, func, line)
#endif
/* circular list of all existing allocators */
static struct netmap_mem_d *netmap_last_mem_d = &nm_mem;
NM_MTX_T nm_mem_list_lock;
struct netmap_mem_d *
__netmap_mem_get(struct netmap_mem_d *nmd, const char *func, int line)
{
NM_MTX_LOCK(nm_mem_list_lock);
nmd->refcount++;
NM_DBG_REFC(nmd, func, line);
NM_MTX_UNLOCK(nm_mem_list_lock);
return nmd;
}
void
__netmap_mem_put(struct netmap_mem_d *nmd, const char *func, int line)
{
int last;
NM_MTX_LOCK(nm_mem_list_lock);
last = (--nmd->refcount == 0);
if (last)
nm_mem_release_id(nmd);
NM_DBG_REFC(nmd, func, line);
NM_MTX_UNLOCK(nm_mem_list_lock);
if (last)
netmap_mem_delete(nmd);
}
int
netmap_mem_finalize(struct netmap_mem_d *nmd, struct netmap_adapter *na)
{
int lasterr = 0;
if (nm_mem_assign_group(nmd, na->pdev) < 0) {
return ENOMEM;
}
NMA_LOCK(nmd);
if (netmap_mem_config(nmd))
goto out;
nmd->active++;
nmd->lasterr = nmd->ops->nmd_finalize(nmd);
if (!nmd->lasterr && na->pdev) {
nmd->lasterr = netmap_mem_map(&nmd->pools[NETMAP_BUF_POOL], na);
}
out:
lasterr = nmd->lasterr;
NMA_UNLOCK(nmd);
if (lasterr)
netmap_mem_deref(nmd, na);
return lasterr;
}
static int
nm_isset(uint32_t *bitmap, u_int i)
{
return bitmap[ (i>>5) ] & ( 1U << (i & 31U) );
}
static int
netmap_init_obj_allocator_bitmap(struct netmap_obj_pool *p)
{
u_int n, j;
if (p->bitmap == NULL) {
/* Allocate the bitmap */
n = (p->objtotal + 31) / 32;
p->bitmap = nm_os_malloc(sizeof(uint32_t) * n);
if (p->bitmap == NULL) {
D("Unable to create bitmap (%d entries) for allocator '%s'", (int)n,
p->name);
return ENOMEM;
}
p->bitmap_slots = n;
} else {
memset(p->bitmap, 0, p->bitmap_slots);
}
p->objfree = 0;
/*
* Set all the bits in the bitmap that have
* corresponding buffers to 1 to indicate they are
* free.
*/
for (j = 0; j < p->objtotal; j++) {
if (p->invalid_bitmap && nm_isset(p->invalid_bitmap, j)) {
D("skipping %s %d", p->name, j);
continue;
}
p->bitmap[ (j>>5) ] |= ( 1U << (j & 31U) );
p->objfree++;
}
ND("%s free %u", p->name, p->objfree);
if (p->objfree == 0)
return ENOMEM;
return 0;
}
static int
netmap_mem_init_bitmaps(struct netmap_mem_d *nmd)
{
int i, error = 0;
for (i = 0; i < NETMAP_POOLS_NR; i++) {
struct netmap_obj_pool *p = &nmd->pools[i];
error = netmap_init_obj_allocator_bitmap(p);
if (error)
return error;
}
/*
* buffers 0 and 1 are reserved
*/
if (nmd->pools[NETMAP_BUF_POOL].objfree < 2) {
return ENOMEM;
}
nmd->pools[NETMAP_BUF_POOL].objfree -= 2;
if (nmd->pools[NETMAP_BUF_POOL].bitmap) {
/* XXX This check is a workaround that prevents a
* NULL pointer crash which currently happens only
* with ptnetmap guests.
* Removed shared-info --> is the bug still there? */
nmd->pools[NETMAP_BUF_POOL].bitmap[0] = ~3U;
}
return 0;
}
int
netmap_mem_deref(struct netmap_mem_d *nmd, struct netmap_adapter *na)
{
int last_user = 0;
NMA_LOCK(nmd);
if (na->active_fds <= 0)
netmap_mem_unmap(&nmd->pools[NETMAP_BUF_POOL], na);
if (nmd->active == 1) {
last_user = 1;
/*
* Reset the allocator when it falls out of use so that any
* pool resources leaked by unclean application exits are
* reclaimed.
*/
netmap_mem_init_bitmaps(nmd);
}
nmd->ops->nmd_deref(nmd);
nmd->active--;
if (!nmd->active)
nmd->nm_grp = -1;
NMA_UNLOCK(nmd);
return last_user;
}
/* accessor functions */
static int
netmap_mem2_get_lut(struct netmap_mem_d *nmd, struct netmap_lut *lut)
{
lut->lut = nmd->pools[NETMAP_BUF_POOL].lut;
#ifdef __FreeBSD__
lut->plut = lut->lut;
#endif
lut->objtotal = nmd->pools[NETMAP_BUF_POOL].objtotal;
lut->objsize = nmd->pools[NETMAP_BUF_POOL]._objsize;
return 0;
}
static struct netmap_obj_params netmap_min_priv_params[NETMAP_POOLS_NR] = {
[NETMAP_IF_POOL] = {
.size = 1024,
.num = 2,
},
[NETMAP_RING_POOL] = {
.size = 5*PAGE_SIZE,
.num = 4,
},
[NETMAP_BUF_POOL] = {
.size = 2048,
.num = 4098,
},
};
/*
* nm_mem is the memory allocator used for all physical interfaces
* running in netmap mode.
* Virtual (VALE) ports will have each its own allocator.
*/
extern struct netmap_mem_ops netmap_mem_global_ops; /* forward */
struct netmap_mem_d nm_mem = { /* Our memory allocator. */
.pools = {
[NETMAP_IF_POOL] = {
.name = "netmap_if",
.objminsize = sizeof(struct netmap_if),
.objmaxsize = 4096,
.nummin = 10, /* don't be stingy */
.nummax = 10000, /* XXX very large */
},
[NETMAP_RING_POOL] = {
.name = "netmap_ring",
.objminsize = sizeof(struct netmap_ring),
.objmaxsize = 32*PAGE_SIZE,
.nummin = 2,
.nummax = 1024,
},
[NETMAP_BUF_POOL] = {
.name = "netmap_buf",
.objminsize = 64,
.objmaxsize = 65536,
.nummin = 4,
.nummax = 1000000, /* one million! */
},
},
.params = {
[NETMAP_IF_POOL] = {
.size = 1024,
.num = 100,
},
[NETMAP_RING_POOL] = {
.size = 9*PAGE_SIZE,
.num = 200,
},
[NETMAP_BUF_POOL] = {
.size = 2048,
.num = NETMAP_BUF_MAX_NUM,
},
},
.nm_id = 1,
.nm_grp = -1,
.prev = &nm_mem,
.next = &nm_mem,
.ops = &netmap_mem_global_ops,
.name = "1"
};
/* blueprint for the private memory allocators */
/* XXX clang is not happy about using name as a print format */
static const struct netmap_mem_d nm_blueprint = {
.pools = {
[NETMAP_IF_POOL] = {
.name = "%s_if",
.objminsize = sizeof(struct netmap_if),
.objmaxsize = 4096,
.nummin = 1,
.nummax = 100,
},
[NETMAP_RING_POOL] = {
.name = "%s_ring",
.objminsize = sizeof(struct netmap_ring),
.objmaxsize = 32*PAGE_SIZE,
.nummin = 2,
.nummax = 1024,
},
[NETMAP_BUF_POOL] = {
.name = "%s_buf",
.objminsize = 64,
.objmaxsize = 65536,
.nummin = 4,
.nummax = 1000000, /* one million! */
},
},
.nm_grp = -1,
.flags = NETMAP_MEM_PRIVATE,
.ops = &netmap_mem_global_ops,
};
/* memory allocator related sysctls */
#define STRINGIFY(x) #x
#define DECLARE_SYSCTLS(id, name) \
SYSBEGIN(mem2_ ## name); \
SYSCTL_INT(_dev_netmap, OID_AUTO, name##_size, \
CTLFLAG_RW, &nm_mem.params[id].size, 0, "Requested size of netmap " STRINGIFY(name) "s"); \
SYSCTL_INT(_dev_netmap, OID_AUTO, name##_curr_size, \
CTLFLAG_RD, &nm_mem.pools[id]._objsize, 0, "Current size of netmap " STRINGIFY(name) "s"); \
SYSCTL_INT(_dev_netmap, OID_AUTO, name##_num, \
CTLFLAG_RW, &nm_mem.params[id].num, 0, "Requested number of netmap " STRINGIFY(name) "s"); \
SYSCTL_INT(_dev_netmap, OID_AUTO, name##_curr_num, \
CTLFLAG_RD, &nm_mem.pools[id].objtotal, 0, "Current number of netmap " STRINGIFY(name) "s"); \
SYSCTL_INT(_dev_netmap, OID_AUTO, priv_##name##_size, \
CTLFLAG_RW, &netmap_min_priv_params[id].size, 0, \
"Default size of private netmap " STRINGIFY(name) "s"); \
SYSCTL_INT(_dev_netmap, OID_AUTO, priv_##name##_num, \
CTLFLAG_RW, &netmap_min_priv_params[id].num, 0, \
"Default number of private netmap " STRINGIFY(name) "s"); \
SYSEND
SYSCTL_DECL(_dev_netmap);
DECLARE_SYSCTLS(NETMAP_IF_POOL, if);
DECLARE_SYSCTLS(NETMAP_RING_POOL, ring);
DECLARE_SYSCTLS(NETMAP_BUF_POOL, buf);
/* call with nm_mem_list_lock held */
static int
nm_mem_assign_id_locked(struct netmap_mem_d *nmd)
{
nm_memid_t id;
struct netmap_mem_d *scan = netmap_last_mem_d;
int error = ENOMEM;
do {
/* we rely on unsigned wrap around */
id = scan->nm_id + 1;
if (id == 0) /* reserve 0 as error value */
id = 1;
scan = scan->next;
if (id != scan->nm_id) {
nmd->nm_id = id;
nmd->prev = scan->prev;
nmd->next = scan;
scan->prev->next = nmd;
scan->prev = nmd;
netmap_last_mem_d = nmd;
nmd->refcount = 1;
NM_DBG_REFC(nmd, __FUNCTION__, __LINE__);
error = 0;
break;
}
} while (scan != netmap_last_mem_d);
return error;
}
/* call with nm_mem_list_lock *not* held */
static int
nm_mem_assign_id(struct netmap_mem_d *nmd)
{
int ret;
NM_MTX_LOCK(nm_mem_list_lock);
ret = nm_mem_assign_id_locked(nmd);
NM_MTX_UNLOCK(nm_mem_list_lock);
return ret;
}
/* call with nm_mem_list_lock held */
static void
nm_mem_release_id(struct netmap_mem_d *nmd)
{
nmd->prev->next = nmd->next;
nmd->next->prev = nmd->prev;
if (netmap_last_mem_d == nmd)
netmap_last_mem_d = nmd->prev;
nmd->prev = nmd->next = NULL;
}
struct netmap_mem_d *
netmap_mem_find(nm_memid_t id)
{
struct netmap_mem_d *nmd;
NM_MTX_LOCK(nm_mem_list_lock);
nmd = netmap_last_mem_d;
do {
if (!(nmd->flags & NETMAP_MEM_HIDDEN) && nmd->nm_id == id) {
nmd->refcount++;
NM_DBG_REFC(nmd, __FUNCTION__, __LINE__);
NM_MTX_UNLOCK(nm_mem_list_lock);
return nmd;
}
nmd = nmd->next;
} while (nmd != netmap_last_mem_d);
NM_MTX_UNLOCK(nm_mem_list_lock);
return NULL;
}
static int
nm_mem_assign_group(struct netmap_mem_d *nmd, struct device *dev)
{
int err = 0, id;
id = nm_iommu_group_id(dev);
if (netmap_verbose)
D("iommu_group %d", id);
NMA_LOCK(nmd);
if (nmd->nm_grp < 0)
nmd->nm_grp = id;
if (nmd->nm_grp != id)
nmd->lasterr = err = ENOMEM;
NMA_UNLOCK(nmd);
return err;
}
static struct lut_entry *
nm_alloc_lut(u_int nobj)
{
size_t n = sizeof(struct lut_entry) * nobj;
struct lut_entry *lut;
#ifdef linux
lut = vmalloc(n);
#else
lut = nm_os_malloc(n);
#endif
return lut;
}
static void
nm_free_lut(struct lut_entry *lut, u_int objtotal)
{
bzero(lut, sizeof(struct lut_entry) * objtotal);
#ifdef linux
vfree(lut);
#else
nm_os_free(lut);
#endif
}
#if defined(linux) || defined(_WIN32)
static struct plut_entry *
nm_alloc_plut(u_int nobj)
{
size_t n = sizeof(struct plut_entry) * nobj;
struct plut_entry *lut;
lut = vmalloc(n);
return lut;
}
static void
nm_free_plut(struct plut_entry * lut)
{
vfree(lut);
}
#endif /* linux or _WIN32 */
/*
* First, find the allocator that contains the requested offset,
* then locate the cluster through a lookup table.
*/
static vm_paddr_t
netmap_mem2_ofstophys(struct netmap_mem_d* nmd, vm_ooffset_t offset)
{
int i;
vm_ooffset_t o = offset;
vm_paddr_t pa;
struct netmap_obj_pool *p;
p = nmd->pools;
for (i = 0; i < NETMAP_POOLS_NR; offset -= p[i].memtotal, i++) {
if (offset >= p[i].memtotal)
continue;
// now lookup the cluster's address
#ifndef _WIN32
pa = vtophys(p[i].lut[offset / p[i]._objsize].vaddr) +
offset % p[i]._objsize;
#else
pa = vtophys(p[i].lut[offset / p[i]._objsize].vaddr);
pa.QuadPart += offset % p[i]._objsize;
#endif
return pa;
}
/* this is only in case of errors */
D("invalid ofs 0x%x out of 0x%x 0x%x 0x%x", (u_int)o,
p[NETMAP_IF_POOL].memtotal,
p[NETMAP_IF_POOL].memtotal
+ p[NETMAP_RING_POOL].memtotal,
p[NETMAP_IF_POOL].memtotal
+ p[NETMAP_RING_POOL].memtotal
+ p[NETMAP_BUF_POOL].memtotal);
#ifndef _WIN32
return 0; /* bad address */
#else
vm_paddr_t res;
res.QuadPart = 0;
return res;
#endif
}
#ifdef _WIN32
/*
* win32_build_virtual_memory_for_userspace
*
* This function get all the object making part of the pools and maps
* a contiguous virtual memory space for the userspace
* It works this way
* 1 - allocate a Memory Descriptor List wide as the sum
* of the memory needed for the pools
* 2 - cycle all the objects in every pool and for every object do
*
* 2a - cycle all the objects in every pool, get the list
* of the physical address descriptors
* 2b - calculate the offset in the array of pages desciptor in the
* main MDL
* 2c - copy the descriptors of the object in the main MDL
*
* 3 - return the resulting MDL that needs to be mapped in userland
*
* In this way we will have an MDL that describes all the memory for the
* objects in a single object
*/
PMDL
win32_build_user_vm_map(struct netmap_mem_d* nmd)
{
u_int memflags, ofs = 0;
PMDL mainMdl, tempMdl;
uint64_t memsize;
int i, j;
if (netmap_mem_get_info(nmd, &memsize, &memflags, NULL)) {
D("memory not finalised yet");
return NULL;
}
mainMdl = IoAllocateMdl(NULL, memsize, FALSE, FALSE, NULL);
if (mainMdl == NULL) {
D("failed to allocate mdl");
return NULL;
}
NMA_LOCK(nmd);
for (i = 0; i < NETMAP_POOLS_NR; i++) {
struct netmap_obj_pool *p = &nmd->pools[i];
int clsz = p->_clustsize;
int clobjs = p->_clustentries; /* objects per cluster */
int mdl_len = sizeof(PFN_NUMBER) * BYTES_TO_PAGES(clsz);
PPFN_NUMBER pSrc, pDst;
/* each pool has a different cluster size so we need to reallocate */
tempMdl = IoAllocateMdl(p->lut[0].vaddr, clsz, FALSE, FALSE, NULL);
if (tempMdl == NULL) {
NMA_UNLOCK(nmd);
D("fail to allocate tempMdl");
IoFreeMdl(mainMdl);
return NULL;
}
pSrc = MmGetMdlPfnArray(tempMdl);
/* create one entry per cluster, the lut[] has one entry per object */
for (j = 0; j < p->numclusters; j++, ofs += clsz) {
pDst = &MmGetMdlPfnArray(mainMdl)[BYTES_TO_PAGES(ofs)];
MmInitializeMdl(tempMdl, p->lut[j*clobjs].vaddr, clsz);
MmBuildMdlForNonPagedPool(tempMdl); /* compute physical page addresses */
RtlCopyMemory(pDst, pSrc, mdl_len); /* copy the page descriptors */
mainMdl->MdlFlags = tempMdl->MdlFlags; /* XXX what is in here ? */
}
IoFreeMdl(tempMdl);
}
NMA_UNLOCK(nmd);
return mainMdl;
}
#endif /* _WIN32 */
/*
* helper function for OS-specific mmap routines (currently only windows).
* Given an nmd and a pool index, returns the cluster size and number of clusters.
* Returns 0 if memory is finalised and the pool is valid, otherwise 1.
* It should be called under NMA_LOCK(nmd) otherwise the underlying info can change.
*/
int
netmap_mem2_get_pool_info(struct netmap_mem_d* nmd, u_int pool, u_int *clustsize, u_int *numclusters)
{
if (!nmd || !clustsize || !numclusters || pool >= NETMAP_POOLS_NR)
return 1; /* invalid arguments */
// NMA_LOCK_ASSERT(nmd);
if (!(nmd->flags & NETMAP_MEM_FINALIZED)) {
*clustsize = *numclusters = 0;
return 1; /* not ready yet */
}
*clustsize = nmd->pools[pool]._clustsize;
*numclusters = nmd->pools[pool].numclusters;
return 0; /* success */
}
static int
netmap_mem2_get_info(struct netmap_mem_d* nmd, uint64_t* size,
u_int *memflags, nm_memid_t *id)
{
int error = 0;
error = netmap_mem_config(nmd);
if (error)
goto out;
if (size) {
if (nmd->flags & NETMAP_MEM_FINALIZED) {
*size = nmd->nm_totalsize;
} else {
int i;
*size = 0;
for (i = 0; i < NETMAP_POOLS_NR; i++) {
struct netmap_obj_pool *p = nmd->pools + i;
*size += (p->_numclusters * p->_clustsize);
}
}
}
if (memflags)
*memflags = nmd->flags;
if (id)
*id = nmd->nm_id;
out:
return error;
}
/*
* we store objects by kernel address, need to find the offset
* within the pool to export the value to userspace.
* Algorithm: scan until we find the cluster, then add the
* actual offset in the cluster
*/
static ssize_t
netmap_obj_offset(struct netmap_obj_pool *p, const void *vaddr)
{
int i, k = p->_clustentries, n = p->objtotal;
ssize_t ofs = 0;
for (i = 0; i < n; i += k, ofs += p->_clustsize) {
const char *base = p->lut[i].vaddr;
ssize_t relofs = (const char *) vaddr - base;
if (relofs < 0 || relofs >= p->_clustsize)
continue;
ofs = ofs + relofs;
ND("%s: return offset %d (cluster %d) for pointer %p",
p->name, ofs, i, vaddr);
return ofs;
}
D("address %p is not contained inside any cluster (%s)",
vaddr, p->name);
return 0; /* An error occurred */
}
/* Helper functions which convert virtual addresses to offsets */
#define netmap_if_offset(n, v) \
netmap_obj_offset(&(n)->pools[NETMAP_IF_POOL], (v))
#define netmap_ring_offset(n, v) \
((n)->pools[NETMAP_IF_POOL].memtotal + \
netmap_obj_offset(&(n)->pools[NETMAP_RING_POOL], (v)))
static ssize_t
netmap_mem2_if_offset(struct netmap_mem_d *nmd, const void *addr)
{
return netmap_if_offset(nmd, addr);
}
/*
* report the index, and use start position as a hint,
* otherwise buffer allocation becomes terribly expensive.
*/
static void *
netmap_obj_malloc(struct netmap_obj_pool *p, u_int len, uint32_t *start, uint32_t *index)
{
uint32_t i = 0; /* index in the bitmap */
uint32_t mask, j = 0; /* slot counter */
void *vaddr = NULL;
if (len > p->_objsize) {
D("%s request size %d too large", p->name, len);
return NULL;
}
if (p->objfree == 0) {
D("no more %s objects", p->name);
return NULL;
}
if (start)
i = *start;
/* termination is guaranteed by p->free, but better check bounds on i */
while (vaddr == NULL && i < p->bitmap_slots) {
uint32_t cur = p->bitmap[i];
if (cur == 0) { /* bitmask is fully used */
i++;
continue;
}
/* locate a slot */
for (j = 0, mask = 1; (cur & mask) == 0; j++, mask <<= 1)
;
p->bitmap[i] &= ~mask; /* mark object as in use */
p->objfree--;
vaddr = p->lut[i * 32 + j].vaddr;
if (index)
*index = i * 32 + j;
}
ND("%s allocator: allocated object @ [%d][%d]: vaddr %p",p->name, i, j, vaddr);
if (start)
*start = i;
return vaddr;
}
/*
* free by index, not by address.
* XXX should we also cleanup the content ?
*/
static int
netmap_obj_free(struct netmap_obj_pool *p, uint32_t j)
{
uint32_t *ptr, mask;
if (j >= p->objtotal) {
D("invalid index %u, max %u", j, p->objtotal);
return 1;
}
ptr = &p->bitmap[j / 32];
mask = (1 << (j % 32));
if (*ptr & mask) {
D("ouch, double free on buffer %d", j);
return 1;
} else {
*ptr |= mask;
p->objfree++;
return 0;
}
}
/*
* free by address. This is slow but is only used for a few
* objects (rings, nifp)
*/
static void
netmap_obj_free_va(struct netmap_obj_pool *p, void *vaddr)
{
u_int i, j, n = p->numclusters;
for (i = 0, j = 0; i < n; i++, j += p->_clustentries) {
void *base = p->lut[i * p->_clustentries].vaddr;
ssize_t relofs = (ssize_t) vaddr - (ssize_t) base;
/* Given address, is out of the scope of the current cluster.*/
if (base == NULL || vaddr < base || relofs >= p->_clustsize)
continue;
j = j + relofs / p->_objsize;
/* KASSERT(j != 0, ("Cannot free object 0")); */
netmap_obj_free(p, j);
return;
}
D("address %p is not contained inside any cluster (%s)",
vaddr, p->name);
}
unsigned
netmap_mem_bufsize(struct netmap_mem_d *nmd)
{
return nmd->pools[NETMAP_BUF_POOL]._objsize;
}
#define netmap_if_malloc(n, len) netmap_obj_malloc(&(n)->pools[NETMAP_IF_POOL], len, NULL, NULL)
#define netmap_if_free(n, v) netmap_obj_free_va(&(n)->pools[NETMAP_IF_POOL], (v))
#define netmap_ring_malloc(n, len) netmap_obj_malloc(&(n)->pools[NETMAP_RING_POOL], len, NULL, NULL)
#define netmap_ring_free(n, v) netmap_obj_free_va(&(n)->pools[NETMAP_RING_POOL], (v))
#define netmap_buf_malloc(n, _pos, _index) \
netmap_obj_malloc(&(n)->pools[NETMAP_BUF_POOL], netmap_mem_bufsize(n), _pos, _index)
#if 0 /* currently unused */
/* Return the index associated to the given packet buffer */
#define netmap_buf_index(n, v) \
(netmap_obj_offset(&(n)->pools[NETMAP_BUF_POOL], (v)) / NETMAP_BDG_BUF_SIZE(n))
#endif
/*
* allocate extra buffers in a linked list.
* returns the actual number.
*/
uint32_t
netmap_extra_alloc(struct netmap_adapter *na, uint32_t *head, uint32_t n)
{
struct netmap_mem_d *nmd = na->nm_mem;
uint32_t i, pos = 0; /* opaque, scan position in the bitmap */
NMA_LOCK(nmd);
*head = 0; /* default, 'null' index ie empty list */
for (i = 0 ; i < n; i++) {
uint32_t cur = *head; /* save current head */
uint32_t *p = netmap_buf_malloc(nmd, &pos, head);
if (p == NULL) {
D("no more buffers after %d of %d", i, n);
*head = cur; /* restore */
break;
}
ND(5, "allocate buffer %d -> %d", *head, cur);
*p = cur; /* link to previous head */
}
NMA_UNLOCK(nmd);
return i;
}
static void
netmap_extra_free(struct netmap_adapter *na, uint32_t head)
{
struct lut_entry *lut = na->na_lut.lut;
struct netmap_mem_d *nmd = na->nm_mem;
struct netmap_obj_pool *p = &nmd->pools[NETMAP_BUF_POOL];
uint32_t i, cur, *buf;
ND("freeing the extra list");
for (i = 0; head >=2 && head < p->objtotal; i++) {
cur = head;
buf = lut[head].vaddr;
head = *buf;
*buf = 0;
if (netmap_obj_free(p, cur))
break;
}
if (head != 0)
D("breaking with head %d", head);
if (netmap_verbose)
D("freed %d buffers", i);
}
/* Return nonzero on error */
static int
netmap_new_bufs(struct netmap_mem_d *nmd, struct netmap_slot *slot, u_int n)
{
struct netmap_obj_pool *p = &nmd->pools[NETMAP_BUF_POOL];
u_int i = 0; /* slot counter */
uint32_t pos = 0; /* slot in p->bitmap */
uint32_t index = 0; /* buffer index */
for (i = 0; i < n; i++) {
void *vaddr = netmap_buf_malloc(nmd, &pos, &index);
if (vaddr == NULL) {
D("no more buffers after %d of %d", i, n);
goto cleanup;
}
slot[i].buf_idx = index;
slot[i].len = p->_objsize;
slot[i].flags = 0;
slot[i].ptr = 0;
}
ND("%s: allocated %d buffers, %d available, first at %d", p->name, n, p->objfree, pos);
return (0);
cleanup:
while (i > 0) {
i--;
netmap_obj_free(p, slot[i].buf_idx);
}
bzero(slot, n * sizeof(slot[0]));
return (ENOMEM);
}
static void
netmap_mem_set_ring(struct netmap_mem_d *nmd, struct netmap_slot *slot, u_int n, uint32_t index)
{
struct netmap_obj_pool *p = &nmd->pools[NETMAP_BUF_POOL];
u_int i;
for (i = 0; i < n; i++) {
slot[i].buf_idx = index;
slot[i].len = p->_objsize;
slot[i].flags = 0;
}
}
static void
netmap_free_buf(struct netmap_mem_d *nmd, uint32_t i)
{
struct netmap_obj_pool *p = &nmd->pools[NETMAP_BUF_POOL];
if (i < 2 || i >= p->objtotal) {
D("Cannot free buf#%d: should be in [2, %d[", i, p->objtotal);
return;
}
netmap_obj_free(p, i);
}
static void
netmap_free_bufs(struct netmap_mem_d *nmd, struct netmap_slot *slot, u_int n)
{
u_int i;
for (i = 0; i < n; i++) {
if (slot[i].buf_idx > 1)
netmap_free_buf(nmd, slot[i].buf_idx);
}
ND("%s: released some buffers, available: %u",
p->name, p->objfree);
}
static void
netmap_reset_obj_allocator(struct netmap_obj_pool *p)
{
if (p == NULL)
return;
if (p->bitmap)
nm_os_free(p->bitmap);
p->bitmap = NULL;
if (p->invalid_bitmap)
nm_os_free(p->invalid_bitmap);
p->invalid_bitmap = NULL;
if (!p->alloc_done) {
/* allocation was done by somebody else.
* Let them clean up after themselves.
*/
return;
}
if (p->lut) {
u_int i;
/*
* Free each cluster allocated in
* netmap_finalize_obj_allocator(). The cluster start
* addresses are stored at multiples of p->_clusterentries
* in the lut.
*/
for (i = 0; i < p->objtotal; i += p->_clustentries) {
contigfree(p->lut[i].vaddr, p->_clustsize, M_NETMAP);
}
nm_free_lut(p->lut, p->objtotal);
}
p->lut = NULL;
p->objtotal = 0;
p->memtotal = 0;
p->numclusters = 0;
p->objfree = 0;
p->alloc_done = 0;
}
/*
* Free all resources related to an allocator.
*/
static void
netmap_destroy_obj_allocator(struct netmap_obj_pool *p)
{
if (p == NULL)
return;
netmap_reset_obj_allocator(p);
}
/*
* We receive a request for objtotal objects, of size objsize each.
* Internally we may round up both numbers, as we allocate objects
* in small clusters multiple of the page size.
* We need to keep track of objtotal and clustentries,
* as they are needed when freeing memory.
*
* XXX note -- userspace needs the buffers to be contiguous,
* so we cannot afford gaps at the end of a cluster.
*/
/* call with NMA_LOCK held */
static int
netmap_config_obj_allocator(struct netmap_obj_pool *p, u_int objtotal, u_int objsize)
{
int i;
u_int clustsize; /* the cluster size, multiple of page size */
u_int clustentries; /* how many objects per entry */
/* we store the current request, so we can
* detect configuration changes later */
p->r_objtotal = objtotal;
p->r_objsize = objsize;
#define MAX_CLUSTSIZE (1<<22) // 4 MB
#define LINE_ROUND NM_CACHE_ALIGN // 64
if (objsize >= MAX_CLUSTSIZE) {
/* we could do it but there is no point */
D("unsupported allocation for %d bytes", objsize);
return EINVAL;
}
/* make sure objsize is a multiple of LINE_ROUND */
i = (objsize & (LINE_ROUND - 1));
if (i) {
D("XXX aligning object by %d bytes", LINE_ROUND - i);
objsize += LINE_ROUND - i;
}
if (objsize < p->objminsize || objsize > p->objmaxsize) {
D("requested objsize %d out of range [%d, %d]",
objsize, p->objminsize, p->objmaxsize);
return EINVAL;
}
if (objtotal < p->nummin || objtotal > p->nummax) {
D("requested objtotal %d out of range [%d, %d]",
objtotal, p->nummin, p->nummax);
return EINVAL;
}
/*
* Compute number of objects using a brute-force approach:
* given a max cluster size,
* we try to fill it with objects keeping track of the
* wasted space to the next page boundary.
*/
for (clustentries = 0, i = 1;; i++) {
u_int delta, used = i * objsize;
if (used > MAX_CLUSTSIZE)
break;
delta = used % PAGE_SIZE;
if (delta == 0) { // exact solution
clustentries = i;
break;
}
}
/* exact solution not found */
if (clustentries == 0) {
D("unsupported allocation for %d bytes", objsize);
return EINVAL;
}
/* compute clustsize */
clustsize = clustentries * objsize;
if (netmap_verbose)
D("objsize %d clustsize %d objects %d",
objsize, clustsize, clustentries);
/*
* The number of clusters is n = ceil(objtotal/clustentries)
* objtotal' = n * clustentries
*/
p->_clustentries = clustentries;
p->_clustsize = clustsize;
p->_numclusters = (objtotal + clustentries - 1) / clustentries;
/* actual values (may be larger than requested) */
p->_objsize = objsize;
p->_objtotal = p->_numclusters * clustentries;
return 0;
}
/* call with NMA_LOCK held */
static int
netmap_finalize_obj_allocator(struct netmap_obj_pool *p)
{
int i; /* must be signed */
size_t n;
if (p->lut) {
/* if the lut is already there we assume that also all the
* clusters have already been allocated, possibily by somebody
* else (e.g., extmem). In the latter case, the alloc_done flag
* will remain at zero, so that we will not attempt to
* deallocate the clusters by ourselves in
* netmap_reset_obj_allocator.
*/
return 0;
}
/* optimistically assume we have enough memory */
p->numclusters = p->_numclusters;
p->objtotal = p->_objtotal;
p->alloc_done = 1;
p->lut = nm_alloc_lut(p->objtotal);
if (p->lut == NULL) {
D("Unable to create lookup table for '%s'", p->name);
goto clean;
}
/*
* Allocate clusters, init pointers
*/
n = p->_clustsize;
for (i = 0; i < (int)p->objtotal;) {
int lim = i + p->_clustentries;
char *clust;
/*
* XXX Note, we only need contigmalloc() for buffers attached
* to native interfaces. In all other cases (nifp, netmap rings
* and even buffers for VALE ports or emulated interfaces) we
* can live with standard malloc, because the hardware will not
* access the pages directly.
*/
clust = contigmalloc(n, M_NETMAP, M_NOWAIT | M_ZERO,
(size_t)0, -1UL, PAGE_SIZE, 0);
if (clust == NULL) {
/*
* If we get here, there is a severe memory shortage,
* so halve the allocated memory to reclaim some.
*/
D("Unable to create cluster at %d for '%s' allocator",
i, p->name);
if (i < 2) /* nothing to halve */
goto out;
lim = i / 2;
for (i--; i >= lim; i--) {
if (i % p->_clustentries == 0 && p->lut[i].vaddr)
contigfree(p->lut[i].vaddr,
n, M_NETMAP);
p->lut[i].vaddr = NULL;
}
out:
p->objtotal = i;
/* we may have stopped in the middle of a cluster */
p->numclusters = (i + p->_clustentries - 1) / p->_clustentries;
break;
}
/*
* Set lut state for all buffers in the current cluster.
*
* [i, lim) is the set of buffer indexes that cover the
* current cluster.
*
* 'clust' is really the address of the current buffer in
* the current cluster as we index through it with a stride
* of p->_objsize.
*/
for (; i < lim; i++, clust += p->_objsize) {
p->lut[i].vaddr = clust;
#if !defined(linux) && !defined(_WIN32)
p->lut[i].paddr = vtophys(clust);
#endif
}
}
p->memtotal = p->numclusters * p->_clustsize;
if (netmap_verbose)
D("Pre-allocated %d clusters (%d/%dKB) for '%s'",
p->numclusters, p->_clustsize >> 10,
p->memtotal >> 10, p->name);
return 0;
clean:
netmap_reset_obj_allocator(p);
return ENOMEM;
}
/* call with lock held */
static int
netmap_mem_params_changed(struct netmap_obj_params* p)
{
int i, rv = 0;
for (i = 0; i < NETMAP_POOLS_NR; i++) {
if (p[i].last_size != p[i].size || p[i].last_num != p[i].num) {
p[i].last_size = p[i].size;
p[i].last_num = p[i].num;
rv = 1;
}
}
return rv;
}
static void
netmap_mem_reset_all(struct netmap_mem_d *nmd)
{
int i;
if (netmap_verbose)
D("resetting %p", nmd);
for (i = 0; i < NETMAP_POOLS_NR; i++) {
netmap_reset_obj_allocator(&nmd->pools[i]);
}
nmd->flags &= ~NETMAP_MEM_FINALIZED;
}
static int
netmap_mem_unmap(struct netmap_obj_pool *p, struct netmap_adapter *na)
{
int i, lim = p->objtotal;
struct netmap_lut *lut = &na->na_lut;
if (na == NULL || na->pdev == NULL)
return 0;
#if defined(__FreeBSD__)
/* On FreeBSD mapping and unmapping is performed by the txsync
* and rxsync routine, packet by packet. */
(void)i;
(void)lim;
(void)lut;
#elif defined(_WIN32)
(void)i;
(void)lim;
(void)lut;
D("unsupported on Windows");
#else /* linux */
ND("unmapping and freeing plut for %s", na->name);
if (lut->plut == NULL)
return 0;
for (i = 0; i < lim; i += p->_clustentries) {
if (lut->plut[i].paddr)
netmap_unload_map(na, (bus_dma_tag_t) na->pdev, &lut->plut[i].paddr, p->_clustsize);
}
nm_free_plut(lut->plut);
lut->plut = NULL;
#endif /* linux */
return 0;
}
static int
netmap_mem_map(struct netmap_obj_pool *p, struct netmap_adapter *na)
{
int error = 0;
int i, lim = p->objtotal;
struct netmap_lut *lut = &na->na_lut;
if (na->pdev == NULL)
return 0;
#if defined(__FreeBSD__)
/* On FreeBSD mapping and unmapping is performed by the txsync
* and rxsync routine, packet by packet. */
(void)i;
(void)lim;
(void)lut;
#elif defined(_WIN32)
(void)i;
(void)lim;
(void)lut;
D("unsupported on Windows");
#else /* linux */
if (lut->plut != NULL) {
ND("plut already allocated for %s", na->name);
return 0;
}
ND("allocating physical lut for %s", na->name);
lut->plut = nm_alloc_plut(lim);
if (lut->plut == NULL) {
D("Failed to allocate physical lut for %s", na->name);
return ENOMEM;
}
for (i = 0; i < lim; i += p->_clustentries) {
lut->plut[i].paddr = 0;
}
for (i = 0; i < lim; i += p->_clustentries) {
int j;
if (p->lut[i].vaddr == NULL)
continue;
error = netmap_load_map(na, (bus_dma_tag_t) na->pdev, &lut->plut[i].paddr,
p->lut[i].vaddr, p->_clustsize);
if (error) {
D("Failed to map cluster #%d from the %s pool", i, p->name);
break;
}
for (j = 1; j < p->_clustentries; j++) {
lut->plut[i + j].paddr = lut->plut[i + j - 1].paddr + p->_objsize;
}
}
if (error)
netmap_mem_unmap(p, na);
#endif /* linux */
return error;
}
static int
netmap_mem_finalize_all(struct netmap_mem_d *nmd)
{
int i;
if (nmd->flags & NETMAP_MEM_FINALIZED)
return 0;
nmd->lasterr = 0;
nmd->nm_totalsize = 0;
for (i = 0; i < NETMAP_POOLS_NR; i++) {
nmd->lasterr = netmap_finalize_obj_allocator(&nmd->pools[i]);
if (nmd->lasterr)
goto error;
nmd->nm_totalsize += nmd->pools[i].memtotal;
}
nmd->lasterr = netmap_mem_init_bitmaps(nmd);
if (nmd->lasterr)
goto error;
nmd->flags |= NETMAP_MEM_FINALIZED;
if (netmap_verbose)
D("interfaces %d KB, rings %d KB, buffers %d MB",
nmd->pools[NETMAP_IF_POOL].memtotal >> 10,
nmd->pools[NETMAP_RING_POOL].memtotal >> 10,
nmd->pools[NETMAP_BUF_POOL].memtotal >> 20);
if (netmap_verbose)
D("Free buffers: %d", nmd->pools[NETMAP_BUF_POOL].objfree);
return 0;
error:
netmap_mem_reset_all(nmd);
return nmd->lasterr;
}
/*
* allocator for private memory
*/
static void *
_netmap_mem_private_new(size_t size, struct netmap_obj_params *p,
struct netmap_mem_ops *ops, int *perr)
{
struct netmap_mem_d *d = NULL;
int i, err = 0;
d = nm_os_malloc(size);
if (d == NULL) {
err = ENOMEM;
goto error;
}
*d = nm_blueprint;
d->ops = ops;
err = nm_mem_assign_id(d);
if (err)
goto error_free;
snprintf(d->name, NM_MEM_NAMESZ, "%d", d->nm_id);
for (i = 0; i < NETMAP_POOLS_NR; i++) {
snprintf(d->pools[i].name, NETMAP_POOL_MAX_NAMSZ,
nm_blueprint.pools[i].name,
d->name);
d->params[i].num = p[i].num;
d->params[i].size = p[i].size;
}
NMA_LOCK_INIT(d);
err = netmap_mem_config(d);
if (err)
goto error_rel_id;
d->flags &= ~NETMAP_MEM_FINALIZED;
return d;
error_rel_id:
NMA_LOCK_DESTROY(d);
nm_mem_release_id(d);
error_free:
nm_os_free(d);
error:
if (perr)
*perr = err;
return NULL;
}
struct netmap_mem_d *
netmap_mem_private_new(u_int txr, u_int txd, u_int rxr, u_int rxd,
u_int extra_bufs, u_int npipes, int *perr)
{
struct netmap_mem_d *d = NULL;
struct netmap_obj_params p[NETMAP_POOLS_NR];
int i;
u_int v, maxd;
/* account for the fake host rings */
txr++;
rxr++;
/* copy the min values */
for (i = 0; i < NETMAP_POOLS_NR; i++) {
p[i] = netmap_min_priv_params[i];
}
/* possibly increase them to fit user request */
v = sizeof(struct netmap_if) + sizeof(ssize_t) * (txr + rxr);
if (p[NETMAP_IF_POOL].size < v)
p[NETMAP_IF_POOL].size = v;
v = 2 + 4 * npipes;
if (p[NETMAP_IF_POOL].num < v)
p[NETMAP_IF_POOL].num = v;
maxd = (txd > rxd) ? txd : rxd;
v = sizeof(struct netmap_ring) + sizeof(struct netmap_slot) * maxd;
if (p[NETMAP_RING_POOL].size < v)
p[NETMAP_RING_POOL].size = v;
/* each pipe endpoint needs two tx rings (1 normal + 1 host, fake)
* and two rx rings (again, 1 normal and 1 fake host)
*/
v = txr + rxr + 8 * npipes;
if (p[NETMAP_RING_POOL].num < v)
p[NETMAP_RING_POOL].num = v;
/* for each pipe we only need the buffers for the 4 "real" rings.
* On the other end, the pipe ring dimension may be different from
* the parent port ring dimension. As a compromise, we allocate twice the
* space actually needed if the pipe rings were the same size as the parent rings
*/
v = (4 * npipes + rxr) * rxd + (4 * npipes + txr) * txd + 2 + extra_bufs;
/* the +2 is for the tx and rx fake buffers (indices 0 and 1) */
if (p[NETMAP_BUF_POOL].num < v)
p[NETMAP_BUF_POOL].num = v;
if (netmap_verbose)
D("req if %d*%d ring %d*%d buf %d*%d",
p[NETMAP_IF_POOL].num,
p[NETMAP_IF_POOL].size,
p[NETMAP_RING_POOL].num,
p[NETMAP_RING_POOL].size,
p[NETMAP_BUF_POOL].num,
p[NETMAP_BUF_POOL].size);
d = _netmap_mem_private_new(sizeof(*d), p, &netmap_mem_global_ops, perr);
return d;
}
/* call with lock held */
static int
netmap_mem2_config(struct netmap_mem_d *nmd)
{
int i;
if (!netmap_mem_params_changed(nmd->params))
goto out;
ND("reconfiguring");
if (nmd->flags & NETMAP_MEM_FINALIZED) {
/* reset previous allocation */
for (i = 0; i < NETMAP_POOLS_NR; i++) {
netmap_reset_obj_allocator(&nmd->pools[i]);
}
nmd->flags &= ~NETMAP_MEM_FINALIZED;
}
for (i = 0; i < NETMAP_POOLS_NR; i++) {
nmd->lasterr = netmap_config_obj_allocator(&nmd->pools[i],
nmd->params[i].num, nmd->params[i].size);
if (nmd->lasterr)
goto out;
}
out:
return nmd->lasterr;
}
static int
netmap_mem2_finalize(struct netmap_mem_d *nmd)
{
if (nmd->flags & NETMAP_MEM_FINALIZED)
goto out;
if (netmap_mem_finalize_all(nmd))
goto out;
nmd->lasterr = 0;
out:
return nmd->lasterr;
}
static void
netmap_mem2_delete(struct netmap_mem_d *nmd)
{
int i;
for (i = 0; i < NETMAP_POOLS_NR; i++) {
netmap_destroy_obj_allocator(&nmd->pools[i]);
}
NMA_LOCK_DESTROY(nmd);
if (nmd != &nm_mem)
nm_os_free(nmd);
}
#ifdef WITH_EXTMEM
/* doubly linekd list of all existing external allocators */
static struct netmap_mem_ext *netmap_mem_ext_list = NULL;
NM_MTX_T nm_mem_ext_list_lock;
#endif /* WITH_EXTMEM */
int
netmap_mem_init(void)
{
NM_MTX_INIT(nm_mem_list_lock);
NMA_LOCK_INIT(&nm_mem);
netmap_mem_get(&nm_mem);
#ifdef WITH_EXTMEM
NM_MTX_INIT(nm_mem_ext_list_lock);
#endif /* WITH_EXTMEM */
return (0);
}
void
netmap_mem_fini(void)
{
netmap_mem_put(&nm_mem);
}
static void
netmap_free_rings(struct netmap_adapter *na)
{
enum txrx t;
for_rx_tx(t) {
u_int i;
for (i = 0; i < netmap_all_rings(na, t); i++) {
struct netmap_kring *kring = NMR(na, t)[i];
struct netmap_ring *ring = kring->ring;
if (ring == NULL || kring->users > 0 || (kring->nr_kflags & NKR_NEEDRING)) {
if (netmap_verbose)
D("NOT deleting ring %s (ring %p, users %d neekring %d)",
kring->name, ring, kring->users, kring->nr_kflags & NKR_NEEDRING);
continue;
}
if (netmap_verbose)
D("deleting ring %s", kring->name);
if (!(kring->nr_kflags & NKR_FAKERING)) {
ND("freeing bufs for %s", kring->name);
netmap_free_bufs(na->nm_mem, ring->slot, kring->nkr_num_slots);
} else {
ND("NOT freeing bufs for %s", kring->name);
}
netmap_ring_free(na->nm_mem, ring);
kring->ring = NULL;
}
}
}
/* call with NMA_LOCK held *
*
* Allocate netmap rings and buffers for this card
* The rings are contiguous, but have variable size.
* The kring array must follow the layout described
* in netmap_krings_create().
*/
static int
netmap_mem2_rings_create(struct netmap_adapter *na)
{
enum txrx t;
for_rx_tx(t) {
u_int i;
for (i = 0; i < netmap_all_rings(na, t); i++) {
struct netmap_kring *kring = NMR(na, t)[i];
struct netmap_ring *ring = kring->ring;
u_int len, ndesc;
if (ring || (!kring->users && !(kring->nr_kflags & NKR_NEEDRING))) {
/* uneeded, or already created by somebody else */
if (netmap_verbose)
D("NOT creating ring %s (ring %p, users %d neekring %d)",
kring->name, ring, kring->users, kring->nr_kflags & NKR_NEEDRING);
continue;
}
if (netmap_verbose)
D("creating %s", kring->name);
ndesc = kring->nkr_num_slots;
len = sizeof(struct netmap_ring) +
ndesc * sizeof(struct netmap_slot);
ring = netmap_ring_malloc(na->nm_mem, len);
if (ring == NULL) {
D("Cannot allocate %s_ring", nm_txrx2str(t));
goto cleanup;
}
ND("txring at %p", ring);
kring->ring = ring;
*(uint32_t *)(uintptr_t)&ring->num_slots = ndesc;
*(int64_t *)(uintptr_t)&ring->buf_ofs =
(na->nm_mem->pools[NETMAP_IF_POOL].memtotal +
na->nm_mem->pools[NETMAP_RING_POOL].memtotal) -
netmap_ring_offset(na->nm_mem, ring);
/* copy values from kring */
ring->head = kring->rhead;
ring->cur = kring->rcur;
ring->tail = kring->rtail;
*(uint32_t *)(uintptr_t)&ring->nr_buf_size =
netmap_mem_bufsize(na->nm_mem);
ND("%s h %d c %d t %d", kring->name,
ring->head, ring->cur, ring->tail);
ND("initializing slots for %s_ring", nm_txrx2str(t));
if (!(kring->nr_kflags & NKR_FAKERING)) {
/* this is a real ring */
ND("allocating buffers for %s", kring->name);
if (netmap_new_bufs(na->nm_mem, ring->slot, ndesc)) {
D("Cannot allocate buffers for %s_ring", nm_txrx2str(t));
goto cleanup;
}
} else {
/* this is a fake ring, set all indices to 0 */
ND("NOT allocating buffers for %s", kring->name);
netmap_mem_set_ring(na->nm_mem, ring->slot, ndesc, 0);
}
/* ring info */
*(uint16_t *)(uintptr_t)&ring->ringid = kring->ring_id;
*(uint16_t *)(uintptr_t)&ring->dir = kring->tx;
}
}
return 0;
cleanup:
/* we cannot actually cleanup here, since we don't own kring->users
* and kring->nr_klags & NKR_NEEDRING. The caller must decrement
* the first or zero-out the second, then call netmap_free_rings()
* to do the cleanup
*/
return ENOMEM;
}
static void
netmap_mem2_rings_delete(struct netmap_adapter *na)
{
/* last instance, release bufs and rings */
netmap_free_rings(na);
}
/* call with NMA_LOCK held */
/*
* Allocate the per-fd structure netmap_if.
*
* We assume that the configuration stored in na
* (number of tx/rx rings and descs) does not change while
* the interface is in netmap mode.
*/
static struct netmap_if *
netmap_mem2_if_new(struct netmap_adapter *na, struct netmap_priv_d *priv)
{
struct netmap_if *nifp;
ssize_t base; /* handy for relative offsets between rings and nifp */
u_int i, len, n[NR_TXRX], ntot;
enum txrx t;
ntot = 0;
for_rx_tx(t) {
/* account for the (eventually fake) host rings */
n[t] = netmap_all_rings(na, t);
ntot += n[t];
}
/*
* the descriptor is followed inline by an array of offsets
* to the tx and rx rings in the shared memory region.
*/
len = sizeof(struct netmap_if) + (ntot * sizeof(ssize_t));
nifp = netmap_if_malloc(na->nm_mem, len);
if (nifp == NULL) {
NMA_UNLOCK(na->nm_mem);
return NULL;
}
/* initialize base fields -- override const */
*(u_int *)(uintptr_t)&nifp->ni_tx_rings = na->num_tx_rings;
*(u_int *)(uintptr_t)&nifp->ni_rx_rings = na->num_rx_rings;
strncpy(nifp->ni_name, na->name, (size_t)IFNAMSIZ);
/*
* fill the slots for the rx and tx rings. They contain the offset
* between the ring and nifp, so the information is usable in
* userspace to reach the ring from the nifp.
*/
base = netmap_if_offset(na->nm_mem, nifp);
for (i = 0; i < n[NR_TX]; i++) {
/* XXX instead of ofs == 0 maybe use the offset of an error
* ring, like we do for buffers? */
ssize_t ofs = 0;
if (na->tx_rings[i]->ring != NULL && i >= priv->np_qfirst[NR_TX]
&& i < priv->np_qlast[NR_TX]) {
ofs = netmap_ring_offset(na->nm_mem,
na->tx_rings[i]->ring) - base;
}
*(ssize_t *)(uintptr_t)&nifp->ring_ofs[i] = ofs;
}
for (i = 0; i < n[NR_RX]; i++) {
/* XXX instead of ofs == 0 maybe use the offset of an error
* ring, like we do for buffers? */
ssize_t ofs = 0;
if (na->rx_rings[i]->ring != NULL && i >= priv->np_qfirst[NR_RX]
&& i < priv->np_qlast[NR_RX]) {
ofs = netmap_ring_offset(na->nm_mem,
na->rx_rings[i]->ring) - base;
}
*(ssize_t *)(uintptr_t)&nifp->ring_ofs[i+n[NR_TX]] = ofs;
}
return (nifp);
}
static void
netmap_mem2_if_delete(struct netmap_adapter *na, struct netmap_if *nifp)
{
if (nifp == NULL)
/* nothing to do */
return;
if (nifp->ni_bufs_head)
netmap_extra_free(na, nifp->ni_bufs_head);
netmap_if_free(na->nm_mem, nifp);
}
static void
netmap_mem2_deref(struct netmap_mem_d *nmd)
{
if (netmap_verbose)
D("active = %d", nmd->active);
}
struct netmap_mem_ops netmap_mem_global_ops = {
.nmd_get_lut = netmap_mem2_get_lut,
.nmd_get_info = netmap_mem2_get_info,
.nmd_ofstophys = netmap_mem2_ofstophys,
.nmd_config = netmap_mem2_config,
.nmd_finalize = netmap_mem2_finalize,
.nmd_deref = netmap_mem2_deref,
.nmd_delete = netmap_mem2_delete,
.nmd_if_offset = netmap_mem2_if_offset,
.nmd_if_new = netmap_mem2_if_new,
.nmd_if_delete = netmap_mem2_if_delete,
.nmd_rings_create = netmap_mem2_rings_create,
.nmd_rings_delete = netmap_mem2_rings_delete
};
int
netmap_mem_pools_info_get(struct nmreq_pools_info *req,
struct netmap_mem_d *nmd)
{
int ret;
ret = netmap_mem_get_info(nmd, &req->nr_memsize, NULL,
&req->nr_mem_id);
if (ret) {
return ret;
}
NMA_LOCK(nmd);
req->nr_if_pool_offset = 0;
req->nr_if_pool_objtotal = nmd->pools[NETMAP_IF_POOL].objtotal;
req->nr_if_pool_objsize = nmd->pools[NETMAP_IF_POOL]._objsize;
req->nr_ring_pool_offset = nmd->pools[NETMAP_IF_POOL].memtotal;
req->nr_ring_pool_objtotal = nmd->pools[NETMAP_RING_POOL].objtotal;
req->nr_ring_pool_objsize = nmd->pools[NETMAP_RING_POOL]._objsize;
req->nr_buf_pool_offset = nmd->pools[NETMAP_IF_POOL].memtotal +
nmd->pools[NETMAP_RING_POOL].memtotal;
req->nr_buf_pool_objtotal = nmd->pools[NETMAP_BUF_POOL].objtotal;
req->nr_buf_pool_objsize = nmd->pools[NETMAP_BUF_POOL]._objsize;
NMA_UNLOCK(nmd);
return 0;
}
#ifdef WITH_EXTMEM
struct netmap_mem_ext {
struct netmap_mem_d up;
struct nm_os_extmem *os;
struct netmap_mem_ext *next, *prev;
};
/* call with nm_mem_list_lock held */
static void
netmap_mem_ext_register(struct netmap_mem_ext *e)
{
NM_MTX_LOCK(nm_mem_ext_list_lock);
if (netmap_mem_ext_list)
netmap_mem_ext_list->prev = e;
e->next = netmap_mem_ext_list;
netmap_mem_ext_list = e;
e->prev = NULL;
NM_MTX_UNLOCK(nm_mem_ext_list_lock);
}
/* call with nm_mem_list_lock held */
static void
netmap_mem_ext_unregister(struct netmap_mem_ext *e)
{
if (e->prev)
e->prev->next = e->next;
else
netmap_mem_ext_list = e->next;
if (e->next)
e->next->prev = e->prev;
e->prev = e->next = NULL;
}
static struct netmap_mem_ext *
netmap_mem_ext_search(struct nm_os_extmem *os)
{
struct netmap_mem_ext *e;
NM_MTX_LOCK(nm_mem_ext_list_lock);
for (e = netmap_mem_ext_list; e; e = e->next) {
if (nm_os_extmem_isequal(e->os, os)) {
netmap_mem_get(&e->up);
break;
}
}
NM_MTX_UNLOCK(nm_mem_ext_list_lock);
return e;
}
static void
netmap_mem_ext_delete(struct netmap_mem_d *d)
{
int i;
struct netmap_mem_ext *e =
(struct netmap_mem_ext *)d;
netmap_mem_ext_unregister(e);
for (i = 0; i < NETMAP_POOLS_NR; i++) {
struct netmap_obj_pool *p = &d->pools[i];
if (p->lut) {
nm_free_lut(p->lut, p->objtotal);
p->lut = NULL;
}
}
if (e->os)
nm_os_extmem_delete(e->os);
netmap_mem2_delete(d);
}
static int
netmap_mem_ext_config(struct netmap_mem_d *nmd)
{
return 0;
}
struct netmap_mem_ops netmap_mem_ext_ops = {
.nmd_get_lut = netmap_mem2_get_lut,
.nmd_get_info = netmap_mem2_get_info,
.nmd_ofstophys = netmap_mem2_ofstophys,
.nmd_config = netmap_mem_ext_config,
.nmd_finalize = netmap_mem2_finalize,
.nmd_deref = netmap_mem2_deref,
.nmd_delete = netmap_mem_ext_delete,
.nmd_if_offset = netmap_mem2_if_offset,
.nmd_if_new = netmap_mem2_if_new,
.nmd_if_delete = netmap_mem2_if_delete,
.nmd_rings_create = netmap_mem2_rings_create,
.nmd_rings_delete = netmap_mem2_rings_delete
};
struct netmap_mem_d *
netmap_mem_ext_create(uint64_t usrptr, struct nmreq_pools_info *pi, int *perror)
{
int error = 0;
int i, j;
struct netmap_mem_ext *nme;
char *clust;
size_t off;
struct nm_os_extmem *os = NULL;
int nr_pages;
// XXX sanity checks
if (pi->nr_if_pool_objtotal == 0)
pi->nr_if_pool_objtotal = netmap_min_priv_params[NETMAP_IF_POOL].num;
if (pi->nr_if_pool_objsize == 0)
pi->nr_if_pool_objsize = netmap_min_priv_params[NETMAP_IF_POOL].size;
if (pi->nr_ring_pool_objtotal == 0)
pi->nr_ring_pool_objtotal = netmap_min_priv_params[NETMAP_RING_POOL].num;
if (pi->nr_ring_pool_objsize == 0)
pi->nr_ring_pool_objsize = netmap_min_priv_params[NETMAP_RING_POOL].size;
if (pi->nr_buf_pool_objtotal == 0)
pi->nr_buf_pool_objtotal = netmap_min_priv_params[NETMAP_BUF_POOL].num;
if (pi->nr_buf_pool_objsize == 0)
pi->nr_buf_pool_objsize = netmap_min_priv_params[NETMAP_BUF_POOL].size;
D("if %d %d ring %d %d buf %d %d",
pi->nr_if_pool_objtotal, pi->nr_if_pool_objsize,
pi->nr_ring_pool_objtotal, pi->nr_ring_pool_objsize,
pi->nr_buf_pool_objtotal, pi->nr_buf_pool_objsize);
os = nm_os_extmem_create(usrptr, pi, &error);
if (os == NULL) {
D("os extmem creation failed");
goto out;
}
nme = netmap_mem_ext_search(os);
if (nme) {
nm_os_extmem_delete(os);
return &nme->up;
}
D("not found, creating new");
nme = _netmap_mem_private_new(sizeof(*nme),
(struct netmap_obj_params[]){
{ pi->nr_if_pool_objsize, pi->nr_if_pool_objtotal },
{ pi->nr_ring_pool_objsize, pi->nr_ring_pool_objtotal },
{ pi->nr_buf_pool_objsize, pi->nr_buf_pool_objtotal }},
&netmap_mem_ext_ops,
&error);
if (nme == NULL)
goto out_unmap;
nr_pages = nm_os_extmem_nr_pages(os);
/* from now on pages will be released by nme destructor;
* we let res = 0 to prevent release in out_unmap below
*/
nme->os = os;
os = NULL; /* pass ownership */
clust = nm_os_extmem_nextpage(nme->os);
off = 0;
for (i = 0; i < NETMAP_POOLS_NR; i++) {
struct netmap_obj_pool *p = &nme->up.pools[i];
struct netmap_obj_params *o = &nme->up.params[i];
p->_objsize = o->size;
p->_clustsize = o->size;
p->_clustentries = 1;
p->lut = nm_alloc_lut(o->num);
if (p->lut == NULL) {
error = ENOMEM;
goto out_delete;
}
p->bitmap_slots = (o->num + sizeof(uint32_t) - 1) / sizeof(uint32_t);
p->invalid_bitmap = nm_os_malloc(sizeof(uint32_t) * p->bitmap_slots);
if (p->invalid_bitmap == NULL) {
error = ENOMEM;
goto out_delete;
}
if (nr_pages == 0) {
p->objtotal = 0;
p->memtotal = 0;
p->objfree = 0;
continue;
}
for (j = 0; j < o->num && nr_pages > 0; j++) {
size_t noff;
p->lut[j].vaddr = clust + off;
#if !defined(linux) && !defined(_WIN32)
p->lut[j].paddr = vtophys(p->lut[j].vaddr);
#endif
ND("%s %d at %p", p->name, j, p->lut[j].vaddr);
noff = off + p->_objsize;
if (noff < PAGE_SIZE) {
off = noff;
continue;
}
ND("too big, recomputing offset...");
while (noff >= PAGE_SIZE) {
char *old_clust = clust;
noff -= PAGE_SIZE;
clust = nm_os_extmem_nextpage(nme->os);
nr_pages--;
ND("noff %zu page %p nr_pages %d", noff,
page_to_virt(*pages), nr_pages);
if (noff > 0 && !nm_isset(p->invalid_bitmap, j) &&
(nr_pages == 0 ||
old_clust + PAGE_SIZE != clust))
{
/* out of space or non contiguous,
* drop this object
* */
p->invalid_bitmap[ (j>>5) ] |= 1U << (j & 31U);
ND("non contiguous at off %zu, drop", noff);
}
if (nr_pages == 0)
break;
}
off = noff;
}
p->objtotal = j;
p->numclusters = p->objtotal;
p->memtotal = j * p->_objsize;
ND("%d memtotal %u", j, p->memtotal);
}
netmap_mem_ext_register(nme);
return &nme->up;
out_delete:
netmap_mem_put(&nme->up);
out_unmap:
if (os)
nm_os_extmem_delete(os);
out:
if (perror)
*perror = error;
return NULL;
}
#endif /* WITH_EXTMEM */
#ifdef WITH_PTNETMAP_GUEST
struct mem_pt_if {
struct mem_pt_if *next;
struct ifnet *ifp;
unsigned int nifp_offset;
};
/* Netmap allocator for ptnetmap guests. */
struct netmap_mem_ptg {
struct netmap_mem_d up;
vm_paddr_t nm_paddr; /* physical address in the guest */
void *nm_addr; /* virtual address in the guest */
struct netmap_lut buf_lut; /* lookup table for BUF pool in the guest */
nm_memid_t host_mem_id; /* allocator identifier in the host */
struct ptnetmap_memdev *ptn_dev;/* ptnetmap memdev */
struct mem_pt_if *pt_ifs; /* list of interfaces in passthrough */
};
/* Link a passthrough interface to a passthrough netmap allocator. */
static int
netmap_mem_pt_guest_ifp_add(struct netmap_mem_d *nmd, struct ifnet *ifp,
unsigned int nifp_offset)
{
struct netmap_mem_ptg *ptnmd = (struct netmap_mem_ptg *)nmd;
struct mem_pt_if *ptif = nm_os_malloc(sizeof(*ptif));
if (!ptif) {
return ENOMEM;
}
NMA_LOCK(nmd);
ptif->ifp = ifp;
ptif->nifp_offset = nifp_offset;
if (ptnmd->pt_ifs) {
ptif->next = ptnmd->pt_ifs;
}
ptnmd->pt_ifs = ptif;
NMA_UNLOCK(nmd);
D("added (ifp=%p,nifp_offset=%u)", ptif->ifp, ptif->nifp_offset);
return 0;
}
/* Called with NMA_LOCK(nmd) held. */
static struct mem_pt_if *
netmap_mem_pt_guest_ifp_lookup(struct netmap_mem_d *nmd, struct ifnet *ifp)
{
struct netmap_mem_ptg *ptnmd = (struct netmap_mem_ptg *)nmd;
struct mem_pt_if *curr;
for (curr = ptnmd->pt_ifs; curr; curr = curr->next) {
if (curr->ifp == ifp) {
return curr;
}
}
return NULL;
}
/* Unlink a passthrough interface from a passthrough netmap allocator. */
int
netmap_mem_pt_guest_ifp_del(struct netmap_mem_d *nmd, struct ifnet *ifp)
{
struct netmap_mem_ptg *ptnmd = (struct netmap_mem_ptg *)nmd;
struct mem_pt_if *prev = NULL;
struct mem_pt_if *curr;
int ret = -1;
NMA_LOCK(nmd);
for (curr = ptnmd->pt_ifs; curr; curr = curr->next) {
if (curr->ifp == ifp) {
if (prev) {
prev->next = curr->next;
} else {
ptnmd->pt_ifs = curr->next;
}
D("removed (ifp=%p,nifp_offset=%u)",
curr->ifp, curr->nifp_offset);
nm_os_free(curr);
ret = 0;
break;
}
prev = curr;
}
NMA_UNLOCK(nmd);
return ret;
}
static int
netmap_mem_pt_guest_get_lut(struct netmap_mem_d *nmd, struct netmap_lut *lut)
{
struct netmap_mem_ptg *ptnmd = (struct netmap_mem_ptg *)nmd;
if (!(nmd->flags & NETMAP_MEM_FINALIZED)) {
return EINVAL;
}
*lut = ptnmd->buf_lut;
return 0;
}
static int
netmap_mem_pt_guest_get_info(struct netmap_mem_d *nmd, uint64_t *size,
u_int *memflags, uint16_t *id)
{
int error = 0;
error = nmd->ops->nmd_config(nmd);
if (error)
goto out;
if (size)
*size = nmd->nm_totalsize;
if (memflags)
*memflags = nmd->flags;
if (id)
*id = nmd->nm_id;
out:
return error;
}
static vm_paddr_t
netmap_mem_pt_guest_ofstophys(struct netmap_mem_d *nmd, vm_ooffset_t off)
{
struct netmap_mem_ptg *ptnmd = (struct netmap_mem_ptg *)nmd;
vm_paddr_t paddr;
/* if the offset is valid, just return csb->base_addr + off */
paddr = (vm_paddr_t)(ptnmd->nm_paddr + off);
ND("off %lx padr %lx", off, (unsigned long)paddr);
return paddr;
}
static int
netmap_mem_pt_guest_config(struct netmap_mem_d *nmd)
{
/* nothing to do, we are configured on creation
* and configuration never changes thereafter
*/
return 0;
}
static int
netmap_mem_pt_guest_finalize(struct netmap_mem_d *nmd)
{
struct netmap_mem_ptg *ptnmd = (struct netmap_mem_ptg *)nmd;
uint64_t mem_size;
uint32_t bufsize;
uint32_t nbuffers;
uint32_t poolofs;
vm_paddr_t paddr;
char *vaddr;
int i;
int error = 0;
if (nmd->flags & NETMAP_MEM_FINALIZED)
goto out;
if (ptnmd->ptn_dev == NULL) {
D("ptnetmap memdev not attached");
error = ENOMEM;
goto out;
}
/* Map memory through ptnetmap-memdev BAR. */
error = nm_os_pt_memdev_iomap(ptnmd->ptn_dev, &ptnmd->nm_paddr,
&ptnmd->nm_addr, &mem_size);
if (error)
goto out;
/* Initialize the lut using the information contained in the
* ptnetmap memory device. */
bufsize = nm_os_pt_memdev_ioread(ptnmd->ptn_dev,
PTNET_MDEV_IO_BUF_POOL_OBJSZ);
nbuffers = nm_os_pt_memdev_ioread(ptnmd->ptn_dev,
PTNET_MDEV_IO_BUF_POOL_OBJNUM);
/* allocate the lut */
if (ptnmd->buf_lut.lut == NULL) {
D("allocating lut");
ptnmd->buf_lut.lut = nm_alloc_lut(nbuffers);
if (ptnmd->buf_lut.lut == NULL) {
D("lut allocation failed");
return ENOMEM;
}
}
/* we have physically contiguous memory mapped through PCI BAR */
poolofs = nm_os_pt_memdev_ioread(ptnmd->ptn_dev,
PTNET_MDEV_IO_BUF_POOL_OFS);
vaddr = (char *)(ptnmd->nm_addr) + poolofs;
paddr = ptnmd->nm_paddr + poolofs;
for (i = 0; i < nbuffers; i++) {
ptnmd->buf_lut.lut[i].vaddr = vaddr;
vaddr += bufsize;
paddr += bufsize;
}
ptnmd->buf_lut.objtotal = nbuffers;
ptnmd->buf_lut.objsize = bufsize;
nmd->nm_totalsize = (unsigned int)mem_size;
/* Initialize these fields as are needed by
* netmap_mem_bufsize().
* XXX please improve this, why do we need this
* replication? maybe we nmd->pools[] should no be
* there for the guest allocator? */
nmd->pools[NETMAP_BUF_POOL]._objsize = bufsize;
nmd->pools[NETMAP_BUF_POOL]._objtotal = nbuffers;
nmd->flags |= NETMAP_MEM_FINALIZED;
out:
return error;
}
static void
netmap_mem_pt_guest_deref(struct netmap_mem_d *nmd)
{
struct netmap_mem_ptg *ptnmd = (struct netmap_mem_ptg *)nmd;
if (nmd->active == 1 &&
(nmd->flags & NETMAP_MEM_FINALIZED)) {
nmd->flags &= ~NETMAP_MEM_FINALIZED;
/* unmap ptnetmap-memdev memory */
if (ptnmd->ptn_dev) {
nm_os_pt_memdev_iounmap(ptnmd->ptn_dev);
}
ptnmd->nm_addr = NULL;
ptnmd->nm_paddr = 0;
}
}
static ssize_t
netmap_mem_pt_guest_if_offset(struct netmap_mem_d *nmd, const void *vaddr)
{
struct netmap_mem_ptg *ptnmd = (struct netmap_mem_ptg *)nmd;
return (const char *)(vaddr) - (char *)(ptnmd->nm_addr);
}
static void
netmap_mem_pt_guest_delete(struct netmap_mem_d *nmd)
{
if (nmd == NULL)
return;
if (netmap_verbose)
D("deleting %p", nmd);
if (nmd->active > 0)
D("bug: deleting mem allocator with active=%d!", nmd->active);
if (netmap_verbose)
D("done deleting %p", nmd);
NMA_LOCK_DESTROY(nmd);
nm_os_free(nmd);
}
static struct netmap_if *
netmap_mem_pt_guest_if_new(struct netmap_adapter *na, struct netmap_priv_d *priv)
{
struct netmap_mem_ptg *ptnmd = (struct netmap_mem_ptg *)na->nm_mem;
struct mem_pt_if *ptif;
struct netmap_if *nifp = NULL;
ptif = netmap_mem_pt_guest_ifp_lookup(na->nm_mem, na->ifp);
if (ptif == NULL) {
D("Error: interface %p is not in passthrough", na->ifp);
goto out;
}
nifp = (struct netmap_if *)((char *)(ptnmd->nm_addr) +
ptif->nifp_offset);
out:
return nifp;
}
static void
netmap_mem_pt_guest_if_delete(struct netmap_adapter *na, struct netmap_if *nifp)
{
struct mem_pt_if *ptif;
ptif = netmap_mem_pt_guest_ifp_lookup(na->nm_mem, na->ifp);
if (ptif == NULL) {
D("Error: interface %p is not in passthrough", na->ifp);
}
}
static int
netmap_mem_pt_guest_rings_create(struct netmap_adapter *na)
{
struct netmap_mem_ptg *ptnmd = (struct netmap_mem_ptg *)na->nm_mem;
struct mem_pt_if *ptif;
struct netmap_if *nifp;
int i, error = -1;
ptif = netmap_mem_pt_guest_ifp_lookup(na->nm_mem, na->ifp);
if (ptif == NULL) {
D("Error: interface %p is not in passthrough", na->ifp);
goto out;
}
/* point each kring to the corresponding backend ring */
nifp = (struct netmap_if *)((char *)ptnmd->nm_addr + ptif->nifp_offset);
for (i = 0; i < netmap_all_rings(na, NR_TX); i++) {
struct netmap_kring *kring = na->tx_rings[i];
if (kring->ring)
continue;
kring->ring = (struct netmap_ring *)
((char *)nifp + nifp->ring_ofs[i]);
}
for (i = 0; i < netmap_all_rings(na, NR_RX); i++) {
struct netmap_kring *kring = na->rx_rings[i];
if (kring->ring)
continue;
kring->ring = (struct netmap_ring *)
((char *)nifp +
nifp->ring_ofs[i + na->num_tx_rings + 1]);
}
error = 0;
out:
return error;
}
static void
netmap_mem_pt_guest_rings_delete(struct netmap_adapter *na)
{
#if 0
enum txrx t;
for_rx_tx(t) {
u_int i;
for (i = 0; i < nma_get_nrings(na, t) + 1; i++) {
struct netmap_kring *kring = &NMR(na, t)[i];
kring->ring = NULL;
}
}
#endif
}
static struct netmap_mem_ops netmap_mem_pt_guest_ops = {
.nmd_get_lut = netmap_mem_pt_guest_get_lut,
.nmd_get_info = netmap_mem_pt_guest_get_info,
.nmd_ofstophys = netmap_mem_pt_guest_ofstophys,
.nmd_config = netmap_mem_pt_guest_config,
.nmd_finalize = netmap_mem_pt_guest_finalize,
.nmd_deref = netmap_mem_pt_guest_deref,
.nmd_if_offset = netmap_mem_pt_guest_if_offset,
.nmd_delete = netmap_mem_pt_guest_delete,
.nmd_if_new = netmap_mem_pt_guest_if_new,
.nmd_if_delete = netmap_mem_pt_guest_if_delete,
.nmd_rings_create = netmap_mem_pt_guest_rings_create,
.nmd_rings_delete = netmap_mem_pt_guest_rings_delete
};
/* Called with nm_mem_list_lock held. */
static struct netmap_mem_d *
netmap_mem_pt_guest_find_memid(nm_memid_t mem_id)
{
struct netmap_mem_d *mem = NULL;
struct netmap_mem_d *scan = netmap_last_mem_d;
do {
/* find ptnetmap allocator through host ID */
if (scan->ops->nmd_deref == netmap_mem_pt_guest_deref &&
((struct netmap_mem_ptg *)(scan))->host_mem_id == mem_id) {
mem = scan;
mem->refcount++;
NM_DBG_REFC(mem, __FUNCTION__, __LINE__);
break;
}
scan = scan->next;
} while (scan != netmap_last_mem_d);
return mem;
}
/* Called with nm_mem_list_lock held. */
static struct netmap_mem_d *
netmap_mem_pt_guest_create(nm_memid_t mem_id)
{
struct netmap_mem_ptg *ptnmd;
int err = 0;
ptnmd = nm_os_malloc(sizeof(struct netmap_mem_ptg));
if (ptnmd == NULL) {
err = ENOMEM;
goto error;
}
ptnmd->up.ops = &netmap_mem_pt_guest_ops;
ptnmd->host_mem_id = mem_id;
ptnmd->pt_ifs = NULL;
/* Assign new id in the guest (We have the lock) */
err = nm_mem_assign_id_locked(&ptnmd->up);
if (err)
goto error;
ptnmd->up.flags &= ~NETMAP_MEM_FINALIZED;
ptnmd->up.flags |= NETMAP_MEM_IO;
NMA_LOCK_INIT(&ptnmd->up);
snprintf(ptnmd->up.name, NM_MEM_NAMESZ, "%d", ptnmd->up.nm_id);
return &ptnmd->up;
error:
netmap_mem_pt_guest_delete(&ptnmd->up);
return NULL;
}
/*
* find host id in guest allocators and create guest allocator
* if it is not there
*/
static struct netmap_mem_d *
netmap_mem_pt_guest_get(nm_memid_t mem_id)
{
struct netmap_mem_d *nmd;
NM_MTX_LOCK(nm_mem_list_lock);
nmd = netmap_mem_pt_guest_find_memid(mem_id);
if (nmd == NULL) {
nmd = netmap_mem_pt_guest_create(mem_id);
}
NM_MTX_UNLOCK(nm_mem_list_lock);
return nmd;
}
/*
* The guest allocator can be created by ptnetmap_memdev (during the device
* attach) or by ptnetmap device (ptnet), during the netmap_attach.
*
* The order is not important (we have different order in LINUX and FreeBSD).
* The first one, creates the device, and the second one simply attaches it.
*/
/* Called when ptnetmap_memdev is attaching, to attach a new allocator in
* the guest */
struct netmap_mem_d *
netmap_mem_pt_guest_attach(struct ptnetmap_memdev *ptn_dev, nm_memid_t mem_id)
{
struct netmap_mem_d *nmd;
struct netmap_mem_ptg *ptnmd;
nmd = netmap_mem_pt_guest_get(mem_id);
/* assign this device to the guest allocator */
if (nmd) {
ptnmd = (struct netmap_mem_ptg *)nmd;
ptnmd->ptn_dev = ptn_dev;
}
return nmd;
}
/* Called when ptnet device is attaching */
struct netmap_mem_d *
netmap_mem_pt_guest_new(struct ifnet *ifp,
unsigned int nifp_offset,
unsigned int memid)
{
struct netmap_mem_d *nmd;
if (ifp == NULL) {
return NULL;
}
nmd = netmap_mem_pt_guest_get((nm_memid_t)memid);
if (nmd) {
netmap_mem_pt_guest_ifp_add(nmd, ifp, nifp_offset);
}
return nmd;
}
#endif /* WITH_PTNETMAP_GUEST */