andrew 3245bc3a66 Add support for the Allwinner i2c device. This is similar to the existing
Marvell twsi part, however uses different register locations, as such split
the existing driver into Marvell and Allwinner attachments.

While here clean a few style issues.

Submitted by:	Emmanuel Vadot <manu@bidouilliste.com>
Differential Revision:	https://reviews.freebsd.org/D4846
2016-02-15 15:11:26 +00:00

468 lines
11 KiB
C

/*-
* Copyright (c) 2013 Ganbold Tsagaankhuu <ganbold@freebsd.org>
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
/* Simple clock driver for Allwinner A10 */
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/bus.h>
#include <sys/kernel.h>
#include <sys/module.h>
#include <sys/malloc.h>
#include <sys/rman.h>
#include <machine/bus.h>
#include <dev/ofw/openfirm.h>
#include <dev/ofw/ofw_bus_subr.h>
#include "a10_clk.h"
struct a10_ccm_softc {
struct resource *res;
bus_space_tag_t bst;
bus_space_handle_t bsh;
int pll6_enabled;
};
static struct a10_ccm_softc *a10_ccm_sc = NULL;
#define ccm_read_4(sc, reg) \
bus_space_read_4((sc)->bst, (sc)->bsh, (reg))
#define ccm_write_4(sc, reg, val) \
bus_space_write_4((sc)->bst, (sc)->bsh, (reg), (val))
static int
a10_ccm_probe(device_t dev)
{
if (!ofw_bus_status_okay(dev))
return (ENXIO);
if (ofw_bus_is_compatible(dev, "allwinner,sun4i-ccm")) {
device_set_desc(dev, "Allwinner Clock Control Module");
return(BUS_PROBE_DEFAULT);
}
return (ENXIO);
}
static int
a10_ccm_attach(device_t dev)
{
struct a10_ccm_softc *sc = device_get_softc(dev);
int rid = 0;
if (a10_ccm_sc)
return (ENXIO);
sc->res = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid, RF_ACTIVE);
if (!sc->res) {
device_printf(dev, "could not allocate resource\n");
return (ENXIO);
}
sc->bst = rman_get_bustag(sc->res);
sc->bsh = rman_get_bushandle(sc->res);
a10_ccm_sc = sc;
return (0);
}
static device_method_t a10_ccm_methods[] = {
DEVMETHOD(device_probe, a10_ccm_probe),
DEVMETHOD(device_attach, a10_ccm_attach),
{ 0, 0 }
};
static driver_t a10_ccm_driver = {
"a10_ccm",
a10_ccm_methods,
sizeof(struct a10_ccm_softc),
};
static devclass_t a10_ccm_devclass;
EARLY_DRIVER_MODULE(a10_ccm, simplebus, a10_ccm_driver, a10_ccm_devclass, 0, 0,
BUS_PASS_TIMER + BUS_PASS_ORDER_MIDDLE);
int
a10_clk_usb_activate(void)
{
struct a10_ccm_softc *sc = a10_ccm_sc;
uint32_t reg_value;
if (sc == NULL)
return (ENXIO);
/* Gating AHB clock for USB */
reg_value = ccm_read_4(sc, CCM_AHB_GATING0);
reg_value |= CCM_AHB_GATING_USB0; /* AHB clock gate usb0 */
reg_value |= CCM_AHB_GATING_EHCI0; /* AHB clock gate ehci0 */
reg_value |= CCM_AHB_GATING_EHCI1; /* AHB clock gate ehci1 */
ccm_write_4(sc, CCM_AHB_GATING0, reg_value);
/* Enable clock for USB */
reg_value = ccm_read_4(sc, CCM_USB_CLK);
reg_value |= CCM_USB_PHY; /* USBPHY */
reg_value |= CCM_USB0_RESET; /* disable reset for USB0 */
reg_value |= CCM_USB1_RESET; /* disable reset for USB1 */
reg_value |= CCM_USB2_RESET; /* disable reset for USB2 */
ccm_write_4(sc, CCM_USB_CLK, reg_value);
return (0);
}
int
a10_clk_usb_deactivate(void)
{
struct a10_ccm_softc *sc = a10_ccm_sc;
uint32_t reg_value;
if (sc == NULL)
return (ENXIO);
/* Disable clock for USB */
reg_value = ccm_read_4(sc, CCM_USB_CLK);
reg_value &= ~CCM_USB_PHY; /* USBPHY */
reg_value &= ~CCM_USB0_RESET; /* reset for USB0 */
reg_value &= ~CCM_USB1_RESET; /* reset for USB1 */
reg_value &= ~CCM_USB2_RESET; /* reset for USB2 */
ccm_write_4(sc, CCM_USB_CLK, reg_value);
/* Disable gating AHB clock for USB */
reg_value = ccm_read_4(sc, CCM_AHB_GATING0);
reg_value &= ~CCM_AHB_GATING_USB0; /* disable AHB clock gate usb0 */
reg_value &= ~CCM_AHB_GATING_EHCI0; /* disable AHB clock gate ehci0 */
reg_value &= ~CCM_AHB_GATING_EHCI1; /* disable AHB clock gate ehci1 */
ccm_write_4(sc, CCM_AHB_GATING0, reg_value);
return (0);
}
int
a10_clk_emac_activate(void)
{
struct a10_ccm_softc *sc = a10_ccm_sc;
uint32_t reg_value;
if (sc == NULL)
return (ENXIO);
/* Gating AHB clock for EMAC */
reg_value = ccm_read_4(sc, CCM_AHB_GATING0);
reg_value |= CCM_AHB_GATING_EMAC;
ccm_write_4(sc, CCM_AHB_GATING0, reg_value);
return (0);
}
int
a10_clk_gmac_activate(phandle_t node)
{
char *phy_type;
struct a10_ccm_softc *sc;
uint32_t reg_value;
sc = a10_ccm_sc;
if (sc == NULL)
return (ENXIO);
/* Gating AHB clock for GMAC */
reg_value = ccm_read_4(sc, CCM_AHB_GATING1);
reg_value |= CCM_AHB_GATING_GMAC;
ccm_write_4(sc, CCM_AHB_GATING1, reg_value);
/* Set GMAC mode. */
reg_value = CCM_GMAC_CLK_MII;
if (OF_getprop_alloc(node, "phy-mode", 1, (void **)&phy_type) > 0) {
if (strcasecmp(phy_type, "rgmii") == 0)
reg_value = CCM_GMAC_CLK_RGMII | CCM_GMAC_MODE_RGMII;
else if (strcasecmp(phy_type, "rgmii-bpi") == 0) {
reg_value = CCM_GMAC_CLK_RGMII | CCM_GMAC_MODE_RGMII;
reg_value |= (3 << CCM_GMAC_CLK_DELAY_SHIFT);
}
free(phy_type, M_OFWPROP);
}
ccm_write_4(sc, CCM_GMAC_CLK, reg_value);
return (0);
}
static void
a10_clk_pll6_enable(void)
{
struct a10_ccm_softc *sc;
uint32_t reg_value;
/*
* SATA needs PLL6 to be a 100MHz clock.
* The SATA output frequency is 24MHz * n * k / m / 6.
* To get to 100MHz, k & m must be equal and n must be 25.
* For other uses the output frequency is 24MHz * n * k / 2.
*/
sc = a10_ccm_sc;
if (sc->pll6_enabled)
return;
reg_value = ccm_read_4(sc, CCM_PLL6_CFG);
reg_value &= ~CCM_PLL_CFG_BYPASS;
reg_value &= ~(CCM_PLL_CFG_FACTOR_K | CCM_PLL_CFG_FACTOR_M |
CCM_PLL_CFG_FACTOR_N);
reg_value |= (25 << CCM_PLL_CFG_FACTOR_N_SHIFT);
reg_value |= CCM_PLL6_CFG_SATA_CLKEN;
reg_value |= CCM_PLL_CFG_ENABLE;
ccm_write_4(sc, CCM_PLL6_CFG, reg_value);
sc->pll6_enabled = 1;
}
static unsigned int
a10_clk_pll6_get_rate(void)
{
struct a10_ccm_softc *sc;
uint32_t k, n, reg_value;
sc = a10_ccm_sc;
reg_value = ccm_read_4(sc, CCM_PLL6_CFG);
n = ((reg_value & CCM_PLL_CFG_FACTOR_N) >> CCM_PLL_CFG_FACTOR_N_SHIFT);
k = ((reg_value & CCM_PLL_CFG_FACTOR_K) >> CCM_PLL_CFG_FACTOR_K_SHIFT) +
1;
return ((CCM_CLK_REF_FREQ * n * k) / 2);
}
static int
a10_clk_pll2_set_rate(unsigned int freq)
{
struct a10_ccm_softc *sc;
uint32_t reg_value;
unsigned int prediv, postdiv, n;
sc = a10_ccm_sc;
if (sc == NULL)
return (ENXIO);
reg_value = ccm_read_4(sc, CCM_PLL2_CFG);
reg_value &= ~(CCM_PLL2_CFG_PREDIV | CCM_PLL2_CFG_POSTDIV |
CCM_PLL_CFG_FACTOR_N);
/*
* Audio Codec needs PLL2 to be either 24576000 Hz or 22579200 Hz
*
* PLL2 output frequency is 24MHz * n / prediv / postdiv.
* To get as close as possible to the desired rate, we use a
* pre-divider of 21 and a post-divider of 4. With these values,
* a multiplier of 86 or 79 gets us close to the target rates.
*/
prediv = 21;
postdiv = 4;
switch (freq) {
case 24576000:
n = 86;
reg_value |= CCM_PLL_CFG_ENABLE;
break;
case 22579200:
n = 79;
reg_value |= CCM_PLL_CFG_ENABLE;
break;
case 0:
n = 1;
reg_value &= ~CCM_PLL_CFG_ENABLE;
break;
default:
return (EINVAL);
}
reg_value |= (prediv << CCM_PLL2_CFG_PREDIV_SHIFT);
reg_value |= (postdiv << CCM_PLL2_CFG_POSTDIV_SHIFT);
reg_value |= (n << CCM_PLL_CFG_FACTOR_N_SHIFT);
ccm_write_4(sc, CCM_PLL2_CFG, reg_value);
return (0);
}
int
a10_clk_ahci_activate(void)
{
struct a10_ccm_softc *sc;
uint32_t reg_value;
sc = a10_ccm_sc;
if (sc == NULL)
return (ENXIO);
a10_clk_pll6_enable();
/* Gating AHB clock for SATA */
reg_value = ccm_read_4(sc, CCM_AHB_GATING0);
reg_value |= CCM_AHB_GATING_SATA;
ccm_write_4(sc, CCM_AHB_GATING0, reg_value);
DELAY(1000);
ccm_write_4(sc, CCM_SATA_CLK, CCM_PLL_CFG_ENABLE);
return (0);
}
int
a10_clk_mmc_activate(int devid)
{
struct a10_ccm_softc *sc;
uint32_t reg_value;
sc = a10_ccm_sc;
if (sc == NULL)
return (ENXIO);
a10_clk_pll6_enable();
/* Gating AHB clock for SD/MMC */
reg_value = ccm_read_4(sc, CCM_AHB_GATING0);
reg_value |= CCM_AHB_GATING_SDMMC0 << devid;
ccm_write_4(sc, CCM_AHB_GATING0, reg_value);
return (0);
}
int
a10_clk_mmc_cfg(int devid, int freq)
{
struct a10_ccm_softc *sc;
uint32_t clksrc, m, n, ophase, phase, reg_value;
unsigned int pll_freq;
sc = a10_ccm_sc;
if (sc == NULL)
return (ENXIO);
freq /= 1000;
if (freq <= 400) {
pll_freq = CCM_CLK_REF_FREQ / 1000;
clksrc = CCM_SD_CLK_SRC_SEL_OSC24M;
ophase = 0;
phase = 0;
n = 2;
} else if (freq <= 25000) {
pll_freq = a10_clk_pll6_get_rate() / 1000;
clksrc = CCM_SD_CLK_SRC_SEL_PLL6;
ophase = 0;
phase = 5;
n = 2;
} else if (freq <= 50000) {
pll_freq = a10_clk_pll6_get_rate() / 1000;
clksrc = CCM_SD_CLK_SRC_SEL_PLL6;
ophase = 3;
phase = 5;
n = 0;
} else
return (EINVAL);
m = ((pll_freq / (1 << n)) / (freq)) - 1;
reg_value = ccm_read_4(sc, CCM_MMC0_SCLK_CFG + (devid * 4));
reg_value &= ~CCM_SD_CLK_SRC_SEL;
reg_value |= (clksrc << CCM_SD_CLK_SRC_SEL_SHIFT);
reg_value &= ~CCM_SD_CLK_PHASE_CTR;
reg_value |= (phase << CCM_SD_CLK_PHASE_CTR_SHIFT);
reg_value &= ~CCM_SD_CLK_DIV_RATIO_N;
reg_value |= (n << CCM_SD_CLK_DIV_RATIO_N_SHIFT);
reg_value &= ~CCM_SD_CLK_OPHASE_CTR;
reg_value |= (ophase << CCM_SD_CLK_OPHASE_CTR_SHIFT);
reg_value &= ~CCM_SD_CLK_DIV_RATIO_M;
reg_value |= m;
reg_value |= CCM_PLL_CFG_ENABLE;
ccm_write_4(sc, CCM_MMC0_SCLK_CFG + (devid * 4), reg_value);
return (0);
}
int
a10_clk_i2c_activate(int devid)
{
struct a10_ccm_softc *sc;
uint32_t reg_value;
sc = a10_ccm_sc;
if (sc == NULL)
return (ENXIO);
a10_clk_pll6_enable();
/* Gating APB clock for I2C/TWI */
reg_value = ccm_read_4(sc, CCM_APB1_GATING);
if (devid == 4)
reg_value |= CCM_APB1_GATING_TWI << 15;
else
reg_value |= CCM_APB1_GATING_TWI << devid;
ccm_write_4(sc, CCM_APB1_GATING, reg_value);
return (0);
}
int
a10_clk_dmac_activate(void)
{
struct a10_ccm_softc *sc;
uint32_t reg_value;
sc = a10_ccm_sc;
if (sc == NULL)
return (ENXIO);
/* Gating AHB clock for DMA controller */
reg_value = ccm_read_4(sc, CCM_AHB_GATING0);
reg_value |= CCM_AHB_GATING_DMA;
ccm_write_4(sc, CCM_AHB_GATING0, reg_value);
return (0);
}
int
a10_clk_codec_activate(unsigned int freq)
{
struct a10_ccm_softc *sc;
uint32_t reg_value;
sc = a10_ccm_sc;
if (sc == NULL)
return (ENXIO);
a10_clk_pll2_set_rate(freq);
/* Gating APB clock for ADDA */
reg_value = ccm_read_4(sc, CCM_APB0_GATING);
reg_value |= CCM_APB0_GATING_ADDA;
ccm_write_4(sc, CCM_APB0_GATING, reg_value);
/* Enable audio codec clock */
reg_value = ccm_read_4(sc, CCM_AUDIO_CODEC_CLK);
reg_value |= CCM_AUDIO_CODEC_ENABLE;
ccm_write_4(sc, CCM_AUDIO_CODEC_CLK, reg_value);
return (0);
}