freebsd-skq/sys/arm/mv/mv_pci.c
Oleksandr Tymoshenko 6534f93296 [mv_pci] Increase default PCI space size for mv_pci
mv_pci driver reads PCI memory window layout from DTB data and if the
data is incomplete falls back to default value. The value is too small
to fit two PCI spaces for mwlwifi devices on WRT3200ACM so the resource
allocation for them fails. Increase the default to 4Mb from 1Mb so
the devices can be properly attached.

MFC after:	1 week
2019-01-15 00:37:37 +00:00

1289 lines
32 KiB
C

/*-
* SPDX-License-Identifier: BSD-3-Clause
*
* Copyright (c) 2008 MARVELL INTERNATIONAL LTD.
* Copyright (c) 2010 The FreeBSD Foundation
* Copyright (c) 2010-2015 Semihalf
* All rights reserved.
*
* Developed by Semihalf.
*
* Portions of this software were developed by Semihalf
* under sponsorship from the FreeBSD Foundation.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. Neither the name of MARVELL nor the names of contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
/*
* Marvell integrated PCI/PCI-Express controller driver.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/kernel.h>
#include <sys/lock.h>
#include <sys/malloc.h>
#include <sys/module.h>
#include <sys/mutex.h>
#include <sys/queue.h>
#include <sys/bus.h>
#include <sys/rman.h>
#include <sys/endian.h>
#include <sys/devmap.h>
#include <machine/fdt.h>
#include <machine/intr.h>
#include <vm/vm.h>
#include <vm/pmap.h>
#include <dev/fdt/fdt_common.h>
#include <dev/ofw/ofw_bus.h>
#include <dev/ofw/ofw_bus_subr.h>
#include <dev/ofw/ofw_pci.h>
#include <dev/pci/pcivar.h>
#include <dev/pci/pcireg.h>
#include <dev/pci/pcib_private.h>
#include "ofw_bus_if.h"
#include "pcib_if.h"
#include <machine/resource.h>
#include <machine/bus.h>
#include <arm/mv/mvreg.h>
#include <arm/mv/mvvar.h>
#include <arm/mv/mvwin.h>
#ifdef DEBUG
#define debugf(fmt, args...) do { printf(fmt,##args); } while (0)
#else
#define debugf(fmt, args...)
#endif
/*
* Code and data related to fdt-based PCI configuration.
*
* This stuff used to be in dev/fdt/fdt_pci.c and fdt_common.h, but it was
* always Marvell-specific so that was deleted and the code now lives here.
*/
struct mv_pci_range {
u_long base_pci;
u_long base_parent;
u_long len;
};
#define FDT_RANGES_CELLS ((3 + 3 + 2) * 2)
#define PCI_SPACE_LEN 0x00400000
static void
mv_pci_range_dump(struct mv_pci_range *range)
{
#ifdef DEBUG
printf("\n");
printf(" base_pci = 0x%08lx\n", range->base_pci);
printf(" base_par = 0x%08lx\n", range->base_parent);
printf(" len = 0x%08lx\n", range->len);
#endif
}
static int
mv_pci_ranges_decode(phandle_t node, struct mv_pci_range *io_space,
struct mv_pci_range *mem_space)
{
pcell_t ranges[FDT_RANGES_CELLS];
struct mv_pci_range *pci_space;
pcell_t addr_cells, size_cells, par_addr_cells;
pcell_t *rangesptr;
pcell_t cell0, cell1, cell2;
int tuple_size, tuples, i, rv, offset_cells, len;
int portid, is_io_space;
/*
* Retrieve 'ranges' property.
*/
if ((fdt_addrsize_cells(node, &addr_cells, &size_cells)) != 0)
return (EINVAL);
if (addr_cells != 3 || size_cells != 2)
return (ERANGE);
par_addr_cells = fdt_parent_addr_cells(node);
if (par_addr_cells > 3)
return (ERANGE);
len = OF_getproplen(node, "ranges");
if (len > sizeof(ranges))
return (ENOMEM);
if (OF_getprop(node, "ranges", ranges, sizeof(ranges)) <= 0)
return (EINVAL);
tuple_size = sizeof(pcell_t) * (addr_cells + par_addr_cells +
size_cells);
tuples = len / tuple_size;
/*
* Initialize the ranges so that we don't have to worry about
* having them all defined in the FDT. In particular, it is
* perfectly fine not to want I/O space on PCI buses.
*/
bzero(io_space, sizeof(*io_space));
bzero(mem_space, sizeof(*mem_space));
rangesptr = &ranges[0];
offset_cells = 0;
for (i = 0; i < tuples; i++) {
cell0 = fdt_data_get((void *)rangesptr, 1);
rangesptr++;
cell1 = fdt_data_get((void *)rangesptr, 1);
rangesptr++;
cell2 = fdt_data_get((void *)rangesptr, 1);
rangesptr++;
portid = fdt_data_get((void *)(rangesptr+1), 1);
if (cell0 & 0x02000000) {
pci_space = mem_space;
is_io_space = 0;
} else if (cell0 & 0x01000000) {
pci_space = io_space;
is_io_space = 1;
} else {
rv = ERANGE;
goto out;
}
if (par_addr_cells == 3) {
/*
* This is a PCI subnode 'ranges'. Skip cell0 and
* cell1 of this entry and only use cell2.
*/
offset_cells = 2;
rangesptr += offset_cells;
}
if ((par_addr_cells - offset_cells) > 2) {
rv = ERANGE;
goto out;
}
pci_space->base_parent = fdt_data_get((void *)rangesptr,
par_addr_cells - offset_cells);
rangesptr += par_addr_cells - offset_cells;
if (size_cells > 2) {
rv = ERANGE;
goto out;
}
pci_space->len = fdt_data_get((void *)rangesptr, size_cells);
rangesptr += size_cells;
pci_space->base_pci = cell2;
if (pci_space->len == 0) {
pci_space->len = PCI_SPACE_LEN;
pci_space->base_parent = fdt_immr_va +
PCI_SPACE_LEN * ( 2 * portid + is_io_space);
}
}
rv = 0;
out:
return (rv);
}
static int
mv_pci_ranges(phandle_t node, struct mv_pci_range *io_space,
struct mv_pci_range *mem_space)
{
int err;
debugf("Processing PCI node: %x\n", node);
if ((err = mv_pci_ranges_decode(node, io_space, mem_space)) != 0) {
debugf("could not decode parent PCI node 'ranges'\n");
return (err);
}
debugf("Post fixup dump:\n");
mv_pci_range_dump(io_space);
mv_pci_range_dump(mem_space);
return (0);
}
int
mv_pci_devmap(phandle_t node, struct devmap_entry *devmap, vm_offset_t io_va,
vm_offset_t mem_va)
{
struct mv_pci_range io_space, mem_space;
int error;
if ((error = mv_pci_ranges_decode(node, &io_space, &mem_space)) != 0)
return (error);
devmap->pd_va = (io_va ? io_va : io_space.base_parent);
devmap->pd_pa = io_space.base_parent;
devmap->pd_size = io_space.len;
devmap++;
devmap->pd_va = (mem_va ? mem_va : mem_space.base_parent);
devmap->pd_pa = mem_space.base_parent;
devmap->pd_size = mem_space.len;
return (0);
}
/*
* Code and data related to the Marvell pcib driver.
*/
#define PCI_CFG_ENA (1U << 31)
#define PCI_CFG_BUS(bus) (((bus) & 0xff) << 16)
#define PCI_CFG_DEV(dev) (((dev) & 0x1f) << 11)
#define PCI_CFG_FUN(fun) (((fun) & 0x7) << 8)
#define PCI_CFG_PCIE_REG(reg) ((reg) & 0xfc)
#define PCI_REG_CFG_ADDR 0x0C78
#define PCI_REG_CFG_DATA 0x0C7C
#define PCIE_REG_CFG_ADDR 0x18F8
#define PCIE_REG_CFG_DATA 0x18FC
#define PCIE_REG_CONTROL 0x1A00
#define PCIE_CTRL_LINK1X 0x00000001
#define PCIE_REG_STATUS 0x1A04
#define PCIE_REG_IRQ_MASK 0x1910
#define PCIE_CONTROL_ROOT_CMPLX (1 << 1)
#define PCIE_CONTROL_HOT_RESET (1 << 24)
#define PCIE_LINK_TIMEOUT 1000000
#define PCIE_STATUS_LINK_DOWN 1
#define PCIE_STATUS_DEV_OFFS 16
/* Minimum PCI Memory and I/O allocations taken from PCI spec (in bytes) */
#define PCI_MIN_IO_ALLOC 4
#define PCI_MIN_MEM_ALLOC 16
#define BITS_PER_UINT32 (NBBY * sizeof(uint32_t))
struct mv_pcib_softc {
device_t sc_dev;
struct rman sc_mem_rman;
bus_addr_t sc_mem_base;
bus_addr_t sc_mem_size;
uint32_t sc_mem_map[MV_PCI_MEM_SLICE_SIZE /
(PCI_MIN_MEM_ALLOC * BITS_PER_UINT32)];
int sc_win_target;
int sc_mem_win_attr;
struct rman sc_io_rman;
bus_addr_t sc_io_base;
bus_addr_t sc_io_size;
uint32_t sc_io_map[MV_PCI_IO_SLICE_SIZE /
(PCI_MIN_IO_ALLOC * BITS_PER_UINT32)];
int sc_io_win_attr;
struct resource *sc_res;
bus_space_handle_t sc_bsh;
bus_space_tag_t sc_bst;
int sc_rid;
struct mtx sc_msi_mtx;
uint32_t sc_msi_bitmap;
int sc_busnr; /* Host bridge bus number */
int sc_devnr; /* Host bridge device number */
int sc_type;
int sc_mode; /* Endpoint / Root Complex */
int sc_msi_supported;
int sc_skip_enable_procedure;
int sc_enable_find_root_slot;
struct ofw_bus_iinfo sc_pci_iinfo;
int ap_segment; /* PCI domain */
};
/* Local forward prototypes */
static int mv_pcib_decode_win(phandle_t, struct mv_pcib_softc *);
static void mv_pcib_hw_cfginit(void);
static uint32_t mv_pcib_hw_cfgread(struct mv_pcib_softc *, u_int, u_int,
u_int, u_int, int);
static void mv_pcib_hw_cfgwrite(struct mv_pcib_softc *, u_int, u_int,
u_int, u_int, uint32_t, int);
static int mv_pcib_init(struct mv_pcib_softc *, int, int);
static int mv_pcib_init_all_bars(struct mv_pcib_softc *, int, int, int, int);
static void mv_pcib_init_bridge(struct mv_pcib_softc *, int, int, int);
static inline void pcib_write_irq_mask(struct mv_pcib_softc *, uint32_t);
static void mv_pcib_enable(struct mv_pcib_softc *, uint32_t);
static int mv_pcib_mem_init(struct mv_pcib_softc *);
/* Forward prototypes */
static int mv_pcib_probe(device_t);
static int mv_pcib_attach(device_t);
static struct resource *mv_pcib_alloc_resource(device_t, device_t, int, int *,
rman_res_t, rman_res_t, rman_res_t, u_int);
static int mv_pcib_release_resource(device_t, device_t, int, int,
struct resource *);
static int mv_pcib_read_ivar(device_t, device_t, int, uintptr_t *);
static int mv_pcib_write_ivar(device_t, device_t, int, uintptr_t);
static int mv_pcib_maxslots(device_t);
static uint32_t mv_pcib_read_config(device_t, u_int, u_int, u_int, u_int, int);
static void mv_pcib_write_config(device_t, u_int, u_int, u_int, u_int,
uint32_t, int);
static int mv_pcib_route_interrupt(device_t, device_t, int);
static int mv_pcib_alloc_msi(device_t, device_t, int, int, int *);
static int mv_pcib_map_msi(device_t, device_t, int, uint64_t *, uint32_t *);
static int mv_pcib_release_msi(device_t, device_t, int, int *);
/*
* Bus interface definitions.
*/
static device_method_t mv_pcib_methods[] = {
/* Device interface */
DEVMETHOD(device_probe, mv_pcib_probe),
DEVMETHOD(device_attach, mv_pcib_attach),
/* Bus interface */
DEVMETHOD(bus_read_ivar, mv_pcib_read_ivar),
DEVMETHOD(bus_write_ivar, mv_pcib_write_ivar),
DEVMETHOD(bus_alloc_resource, mv_pcib_alloc_resource),
DEVMETHOD(bus_release_resource, mv_pcib_release_resource),
DEVMETHOD(bus_activate_resource, bus_generic_activate_resource),
DEVMETHOD(bus_deactivate_resource, bus_generic_deactivate_resource),
DEVMETHOD(bus_setup_intr, bus_generic_setup_intr),
DEVMETHOD(bus_teardown_intr, bus_generic_teardown_intr),
/* pcib interface */
DEVMETHOD(pcib_maxslots, mv_pcib_maxslots),
DEVMETHOD(pcib_read_config, mv_pcib_read_config),
DEVMETHOD(pcib_write_config, mv_pcib_write_config),
DEVMETHOD(pcib_route_interrupt, mv_pcib_route_interrupt),
DEVMETHOD(pcib_request_feature, pcib_request_feature_allow),
DEVMETHOD(pcib_alloc_msi, mv_pcib_alloc_msi),
DEVMETHOD(pcib_release_msi, mv_pcib_release_msi),
DEVMETHOD(pcib_map_msi, mv_pcib_map_msi),
/* OFW bus interface */
DEVMETHOD(ofw_bus_get_compat, ofw_bus_gen_get_compat),
DEVMETHOD(ofw_bus_get_model, ofw_bus_gen_get_model),
DEVMETHOD(ofw_bus_get_name, ofw_bus_gen_get_name),
DEVMETHOD(ofw_bus_get_node, ofw_bus_gen_get_node),
DEVMETHOD(ofw_bus_get_type, ofw_bus_gen_get_type),
DEVMETHOD_END
};
static driver_t mv_pcib_driver = {
"pcib",
mv_pcib_methods,
sizeof(struct mv_pcib_softc),
};
devclass_t pcib_devclass;
DRIVER_MODULE(pcib, ofwbus, mv_pcib_driver, pcib_devclass, 0, 0);
DRIVER_MODULE(pcib, pcib_ctrl, mv_pcib_driver, pcib_devclass, 0, 0);
static struct mtx pcicfg_mtx;
static int
mv_pcib_probe(device_t self)
{
phandle_t node;
node = ofw_bus_get_node(self);
if (!mv_fdt_is_type(node, "pci"))
return (ENXIO);
if (!(ofw_bus_is_compatible(self, "mrvl,pcie") ||
ofw_bus_is_compatible(self, "mrvl,pci") ||
ofw_bus_node_is_compatible(
OF_parent(node), "marvell,armada-370-pcie")))
return (ENXIO);
if (!ofw_bus_status_okay(self))
return (ENXIO);
device_set_desc(self, "Marvell Integrated PCI/PCI-E Controller");
return (BUS_PROBE_DEFAULT);
}
static int
mv_pcib_attach(device_t self)
{
struct mv_pcib_softc *sc;
phandle_t node, parnode;
uint32_t val, reg0;
int err, bus, devfn, port_id;
sc = device_get_softc(self);
sc->sc_dev = self;
node = ofw_bus_get_node(self);
parnode = OF_parent(node);
if (OF_getencprop(node, "marvell,pcie-port", &(port_id),
sizeof(port_id)) <= 0) {
/* If port ID does not exist in the FDT set value to 0 */
if (!OF_hasprop(node, "marvell,pcie-port"))
port_id = 0;
else
return(ENXIO);
}
sc->ap_segment = port_id;
if (ofw_bus_node_is_compatible(node, "mrvl,pcie")) {
sc->sc_type = MV_TYPE_PCIE;
sc->sc_win_target = MV_WIN_PCIE_TARGET(port_id);
sc->sc_mem_win_attr = MV_WIN_PCIE_MEM_ATTR(port_id);
sc->sc_io_win_attr = MV_WIN_PCIE_IO_ATTR(port_id);
#if __ARM_ARCH >= 6
sc->sc_skip_enable_procedure = 1;
#endif
} else if (ofw_bus_node_is_compatible(parnode, "marvell,armada-370-pcie")) {
sc->sc_type = MV_TYPE_PCIE;
sc->sc_win_target = MV_WIN_PCIE_TARGET_ARMADA38X(port_id);
sc->sc_mem_win_attr = MV_WIN_PCIE_MEM_ATTR_ARMADA38X(port_id);
sc->sc_io_win_attr = MV_WIN_PCIE_IO_ATTR_ARMADA38X(port_id);
sc->sc_enable_find_root_slot = 1;
} else if (ofw_bus_node_is_compatible(node, "mrvl,pci")) {
sc->sc_type = MV_TYPE_PCI;
sc->sc_win_target = MV_WIN_PCI_TARGET;
sc->sc_mem_win_attr = MV_WIN_PCI_MEM_ATTR;
sc->sc_io_win_attr = MV_WIN_PCI_IO_ATTR;
} else
return (ENXIO);
/*
* Retrieve our mem-mapped registers range.
*/
sc->sc_rid = 0;
sc->sc_res = bus_alloc_resource_any(self, SYS_RES_MEMORY, &sc->sc_rid,
RF_ACTIVE);
if (sc->sc_res == NULL) {
device_printf(self, "could not map memory\n");
return (ENXIO);
}
sc->sc_bst = rman_get_bustag(sc->sc_res);
sc->sc_bsh = rman_get_bushandle(sc->sc_res);
val = bus_space_read_4(sc->sc_bst, sc->sc_bsh, PCIE_REG_CONTROL);
sc->sc_mode = (val & PCIE_CONTROL_ROOT_CMPLX ? MV_MODE_ROOT :
MV_MODE_ENDPOINT);
/*
* Get PCI interrupt info.
*/
if (sc->sc_mode == MV_MODE_ROOT)
ofw_bus_setup_iinfo(node, &sc->sc_pci_iinfo, sizeof(pcell_t));
/*
* Configure decode windows for PCI(E) access.
*/
if (mv_pcib_decode_win(node, sc) != 0)
return (ENXIO);
mv_pcib_hw_cfginit();
/*
* Enable PCIE device.
*/
mv_pcib_enable(sc, port_id);
/*
* Memory management.
*/
err = mv_pcib_mem_init(sc);
if (err)
return (err);
/*
* Preliminary bus enumeration to find first linked devices and set
* appropriate bus number from which should start the actual enumeration
*/
for (bus = 0; bus < PCI_BUSMAX; bus++) {
for (devfn = 0; devfn < mv_pcib_maxslots(self); devfn++) {
reg0 = mv_pcib_read_config(self, bus, devfn, devfn & 0x7, 0x0, 4);
if (reg0 == (~0U))
continue; /* no device */
else {
sc->sc_busnr = bus; /* update bus number */
break;
}
}
}
if (sc->sc_mode == MV_MODE_ROOT) {
err = mv_pcib_init(sc, sc->sc_busnr,
mv_pcib_maxslots(sc->sc_dev));
if (err)
goto error;
device_add_child(self, "pci", -1);
} else {
sc->sc_devnr = 1;
bus_space_write_4(sc->sc_bst, sc->sc_bsh,
PCIE_REG_STATUS, 1 << PCIE_STATUS_DEV_OFFS);
device_add_child(self, "pci_ep", -1);
}
mtx_init(&sc->sc_msi_mtx, "msi_mtx", NULL, MTX_DEF);
return (bus_generic_attach(self));
error:
/* XXX SYS_RES_ should be released here */
rman_fini(&sc->sc_mem_rman);
rman_fini(&sc->sc_io_rman);
return (err);
}
static void
mv_pcib_enable(struct mv_pcib_softc *sc, uint32_t unit)
{
uint32_t val;
int timeout;
if (sc->sc_skip_enable_procedure)
goto pcib_enable_root_mode;
/*
* Check if PCIE device is enabled.
*/
if ((sc->sc_skip_enable_procedure == 0) &&
(read_cpu_ctrl(CPU_CONTROL) & CPU_CONTROL_PCIE_DISABLE(unit))) {
write_cpu_ctrl(CPU_CONTROL, read_cpu_ctrl(CPU_CONTROL) &
~(CPU_CONTROL_PCIE_DISABLE(unit)));
timeout = PCIE_LINK_TIMEOUT;
val = bus_space_read_4(sc->sc_bst, sc->sc_bsh,
PCIE_REG_STATUS);
while (((val & PCIE_STATUS_LINK_DOWN) == 1) && (timeout > 0)) {
DELAY(1000);
timeout -= 1000;
val = bus_space_read_4(sc->sc_bst, sc->sc_bsh,
PCIE_REG_STATUS);
}
}
pcib_enable_root_mode:
if (sc->sc_mode == MV_MODE_ROOT) {
/*
* Enable PCI bridge.
*/
val = bus_space_read_4(sc->sc_bst, sc->sc_bsh, PCIR_COMMAND);
val |= PCIM_CMD_SERRESPEN | PCIM_CMD_BUSMASTEREN |
PCIM_CMD_MEMEN | PCIM_CMD_PORTEN;
bus_space_write_4(sc->sc_bst, sc->sc_bsh, PCIR_COMMAND, val);
}
}
static int
mv_pcib_mem_init(struct mv_pcib_softc *sc)
{
int err;
/*
* Memory management.
*/
sc->sc_mem_rman.rm_type = RMAN_ARRAY;
err = rman_init(&sc->sc_mem_rman);
if (err)
return (err);
sc->sc_io_rman.rm_type = RMAN_ARRAY;
err = rman_init(&sc->sc_io_rman);
if (err) {
rman_fini(&sc->sc_mem_rman);
return (err);
}
err = rman_manage_region(&sc->sc_mem_rman, sc->sc_mem_base,
sc->sc_mem_base + sc->sc_mem_size - 1);
if (err)
goto error;
err = rman_manage_region(&sc->sc_io_rman, sc->sc_io_base,
sc->sc_io_base + sc->sc_io_size - 1);
if (err)
goto error;
return (0);
error:
rman_fini(&sc->sc_mem_rman);
rman_fini(&sc->sc_io_rman);
return (err);
}
static inline uint32_t
pcib_bit_get(uint32_t *map, uint32_t bit)
{
uint32_t n = bit / BITS_PER_UINT32;
bit = bit % BITS_PER_UINT32;
return (map[n] & (1 << bit));
}
static inline void
pcib_bit_set(uint32_t *map, uint32_t bit)
{
uint32_t n = bit / BITS_PER_UINT32;
bit = bit % BITS_PER_UINT32;
map[n] |= (1 << bit);
}
static inline uint32_t
pcib_map_check(uint32_t *map, uint32_t start, uint32_t bits)
{
uint32_t i;
for (i = start; i < start + bits; i++)
if (pcib_bit_get(map, i))
return (0);
return (1);
}
static inline void
pcib_map_set(uint32_t *map, uint32_t start, uint32_t bits)
{
uint32_t i;
for (i = start; i < start + bits; i++)
pcib_bit_set(map, i);
}
/*
* The idea of this allocator is taken from ARM No-Cache memory
* management code (sys/arm/arm/vm_machdep.c).
*/
static bus_addr_t
pcib_alloc(struct mv_pcib_softc *sc, uint32_t smask)
{
uint32_t bits, bits_limit, i, *map, min_alloc, size;
bus_addr_t addr = 0;
bus_addr_t base;
if (smask & 1) {
base = sc->sc_io_base;
min_alloc = PCI_MIN_IO_ALLOC;
bits_limit = sc->sc_io_size / min_alloc;
map = sc->sc_io_map;
smask &= ~0x3;
} else {
base = sc->sc_mem_base;
min_alloc = PCI_MIN_MEM_ALLOC;
bits_limit = sc->sc_mem_size / min_alloc;
map = sc->sc_mem_map;
smask &= ~0xF;
}
size = ~smask + 1;
bits = size / min_alloc;
for (i = 0; i + bits <= bits_limit; i += bits)
if (pcib_map_check(map, i, bits)) {
pcib_map_set(map, i, bits);
addr = base + (i * min_alloc);
return (addr);
}
return (addr);
}
static int
mv_pcib_init_bar(struct mv_pcib_softc *sc, int bus, int slot, int func,
int barno)
{
uint32_t addr, bar;
int reg, width;
reg = PCIR_BAR(barno);
/*
* Need to init the BAR register with 0xffffffff before correct
* value can be read.
*/
mv_pcib_write_config(sc->sc_dev, bus, slot, func, reg, ~0, 4);
bar = mv_pcib_read_config(sc->sc_dev, bus, slot, func, reg, 4);
if (bar == 0)
return (1);
/* Calculate BAR size: 64 or 32 bit (in 32-bit units) */
width = ((bar & 7) == 4) ? 2 : 1;
addr = pcib_alloc(sc, bar);
if (!addr)
return (-1);
if (bootverbose)
printf("PCI %u:%u:%u: reg %x: smask=%08x: addr=%08x\n",
bus, slot, func, reg, bar, addr);
mv_pcib_write_config(sc->sc_dev, bus, slot, func, reg, addr, 4);
if (width == 2)
mv_pcib_write_config(sc->sc_dev, bus, slot, func, reg + 4,
0, 4);
return (width);
}
static void
mv_pcib_init_bridge(struct mv_pcib_softc *sc, int bus, int slot, int func)
{
bus_addr_t io_base, mem_base;
uint32_t io_limit, mem_limit;
int secbus;
io_base = sc->sc_io_base;
io_limit = io_base + sc->sc_io_size - 1;
mem_base = sc->sc_mem_base;
mem_limit = mem_base + sc->sc_mem_size - 1;
/* Configure I/O decode registers */
mv_pcib_write_config(sc->sc_dev, bus, slot, func, PCIR_IOBASEL_1,
io_base >> 8, 1);
mv_pcib_write_config(sc->sc_dev, bus, slot, func, PCIR_IOBASEH_1,
io_base >> 16, 2);
mv_pcib_write_config(sc->sc_dev, bus, slot, func, PCIR_IOLIMITL_1,
io_limit >> 8, 1);
mv_pcib_write_config(sc->sc_dev, bus, slot, func, PCIR_IOLIMITH_1,
io_limit >> 16, 2);
/* Configure memory decode registers */
mv_pcib_write_config(sc->sc_dev, bus, slot, func, PCIR_MEMBASE_1,
mem_base >> 16, 2);
mv_pcib_write_config(sc->sc_dev, bus, slot, func, PCIR_MEMLIMIT_1,
mem_limit >> 16, 2);
/* Disable memory prefetch decode */
mv_pcib_write_config(sc->sc_dev, bus, slot, func, PCIR_PMBASEL_1,
0x10, 2);
mv_pcib_write_config(sc->sc_dev, bus, slot, func, PCIR_PMBASEH_1,
0x0, 4);
mv_pcib_write_config(sc->sc_dev, bus, slot, func, PCIR_PMLIMITL_1,
0xF, 2);
mv_pcib_write_config(sc->sc_dev, bus, slot, func, PCIR_PMLIMITH_1,
0x0, 4);
secbus = mv_pcib_read_config(sc->sc_dev, bus, slot, func,
PCIR_SECBUS_1, 1);
/* Configure buses behind the bridge */
mv_pcib_init(sc, secbus, PCI_SLOTMAX);
}
static int
mv_pcib_init(struct mv_pcib_softc *sc, int bus, int maxslot)
{
int slot, func, maxfunc, error;
uint8_t hdrtype, command, class, subclass;
for (slot = 0; slot <= maxslot; slot++) {
maxfunc = 0;
for (func = 0; func <= maxfunc; func++) {
hdrtype = mv_pcib_read_config(sc->sc_dev, bus, slot,
func, PCIR_HDRTYPE, 1);
if ((hdrtype & PCIM_HDRTYPE) > PCI_MAXHDRTYPE)
continue;
if (func == 0 && (hdrtype & PCIM_MFDEV))
maxfunc = PCI_FUNCMAX;
command = mv_pcib_read_config(sc->sc_dev, bus, slot,
func, PCIR_COMMAND, 1);
command &= ~(PCIM_CMD_MEMEN | PCIM_CMD_PORTEN);
mv_pcib_write_config(sc->sc_dev, bus, slot, func,
PCIR_COMMAND, command, 1);
error = mv_pcib_init_all_bars(sc, bus, slot, func,
hdrtype);
if (error)
return (error);
command |= PCIM_CMD_BUSMASTEREN | PCIM_CMD_MEMEN |
PCIM_CMD_PORTEN;
mv_pcib_write_config(sc->sc_dev, bus, slot, func,
PCIR_COMMAND, command, 1);
/* Handle PCI-PCI bridges */
class = mv_pcib_read_config(sc->sc_dev, bus, slot,
func, PCIR_CLASS, 1);
subclass = mv_pcib_read_config(sc->sc_dev, bus, slot,
func, PCIR_SUBCLASS, 1);
if (class != PCIC_BRIDGE ||
subclass != PCIS_BRIDGE_PCI)
continue;
mv_pcib_init_bridge(sc, bus, slot, func);
}
}
/* Enable all ABCD interrupts */
pcib_write_irq_mask(sc, (0xF << 24));
return (0);
}
static int
mv_pcib_init_all_bars(struct mv_pcib_softc *sc, int bus, int slot,
int func, int hdrtype)
{
int maxbar, bar, i;
maxbar = (hdrtype & PCIM_HDRTYPE) ? 0 : 6;
bar = 0;
/* Program the base address registers */
while (bar < maxbar) {
i = mv_pcib_init_bar(sc, bus, slot, func, bar);
bar += i;
if (i < 0) {
device_printf(sc->sc_dev,
"PCI IO/Memory space exhausted\n");
return (ENOMEM);
}
}
return (0);
}
static struct resource *
mv_pcib_alloc_resource(device_t dev, device_t child, int type, int *rid,
rman_res_t start, rman_res_t end, rman_res_t count, u_int flags)
{
struct mv_pcib_softc *sc = device_get_softc(dev);
struct rman *rm = NULL;
struct resource *res;
switch (type) {
case SYS_RES_IOPORT:
rm = &sc->sc_io_rman;
break;
case SYS_RES_MEMORY:
rm = &sc->sc_mem_rman;
break;
#ifdef PCI_RES_BUS
case PCI_RES_BUS:
return (pci_domain_alloc_bus(sc->ap_segment, child, rid, start,
end, count, flags));
#endif
default:
return (BUS_ALLOC_RESOURCE(device_get_parent(dev), dev,
type, rid, start, end, count, flags));
}
if (RMAN_IS_DEFAULT_RANGE(start, end)) {
start = sc->sc_mem_base;
end = sc->sc_mem_base + sc->sc_mem_size - 1;
count = sc->sc_mem_size;
}
if ((start < sc->sc_mem_base) || (start + count - 1 != end) ||
(end > sc->sc_mem_base + sc->sc_mem_size - 1))
return (NULL);
res = rman_reserve_resource(rm, start, end, count, flags, child);
if (res == NULL)
return (NULL);
rman_set_rid(res, *rid);
rman_set_bustag(res, fdtbus_bs_tag);
rman_set_bushandle(res, start);
if (flags & RF_ACTIVE)
if (bus_activate_resource(child, type, *rid, res)) {
rman_release_resource(res);
return (NULL);
}
return (res);
}
static int
mv_pcib_release_resource(device_t dev, device_t child, int type, int rid,
struct resource *res)
{
#ifdef PCI_RES_BUS
struct mv_pcib_softc *sc = device_get_softc(dev);
if (type == PCI_RES_BUS)
return (pci_domain_release_bus(sc->ap_segment, child, rid, res));
#endif
if (type != SYS_RES_IOPORT && type != SYS_RES_MEMORY)
return (BUS_RELEASE_RESOURCE(device_get_parent(dev), child,
type, rid, res));
return (rman_release_resource(res));
}
static int
mv_pcib_read_ivar(device_t dev, device_t child, int which, uintptr_t *result)
{
struct mv_pcib_softc *sc = device_get_softc(dev);
switch (which) {
case PCIB_IVAR_BUS:
*result = sc->sc_busnr;
return (0);
case PCIB_IVAR_DOMAIN:
*result = device_get_unit(dev);
return (0);
}
return (ENOENT);
}
static int
mv_pcib_write_ivar(device_t dev, device_t child, int which, uintptr_t value)
{
struct mv_pcib_softc *sc = device_get_softc(dev);
switch (which) {
case PCIB_IVAR_BUS:
sc->sc_busnr = value;
return (0);
}
return (ENOENT);
}
static inline void
pcib_write_irq_mask(struct mv_pcib_softc *sc, uint32_t mask)
{
if (sc->sc_type != MV_TYPE_PCIE)
return;
bus_space_write_4(sc->sc_bst, sc->sc_bsh, PCIE_REG_IRQ_MASK, mask);
}
static void
mv_pcib_hw_cfginit(void)
{
static int opened = 0;
if (opened)
return;
mtx_init(&pcicfg_mtx, "pcicfg", NULL, MTX_SPIN);
opened = 1;
}
static uint32_t
mv_pcib_hw_cfgread(struct mv_pcib_softc *sc, u_int bus, u_int slot,
u_int func, u_int reg, int bytes)
{
uint32_t addr, data, ca, cd;
ca = (sc->sc_type != MV_TYPE_PCI) ?
PCIE_REG_CFG_ADDR : PCI_REG_CFG_ADDR;
cd = (sc->sc_type != MV_TYPE_PCI) ?
PCIE_REG_CFG_DATA : PCI_REG_CFG_DATA;
addr = PCI_CFG_ENA | PCI_CFG_BUS(bus) | PCI_CFG_DEV(slot) |
PCI_CFG_FUN(func) | PCI_CFG_PCIE_REG(reg);
mtx_lock_spin(&pcicfg_mtx);
bus_space_write_4(sc->sc_bst, sc->sc_bsh, ca, addr);
data = ~0;
switch (bytes) {
case 1:
data = bus_space_read_1(sc->sc_bst, sc->sc_bsh,
cd + (reg & 3));
break;
case 2:
data = le16toh(bus_space_read_2(sc->sc_bst, sc->sc_bsh,
cd + (reg & 2)));
break;
case 4:
data = le32toh(bus_space_read_4(sc->sc_bst, sc->sc_bsh,
cd));
break;
}
mtx_unlock_spin(&pcicfg_mtx);
return (data);
}
static void
mv_pcib_hw_cfgwrite(struct mv_pcib_softc *sc, u_int bus, u_int slot,
u_int func, u_int reg, uint32_t data, int bytes)
{
uint32_t addr, ca, cd;
ca = (sc->sc_type != MV_TYPE_PCI) ?
PCIE_REG_CFG_ADDR : PCI_REG_CFG_ADDR;
cd = (sc->sc_type != MV_TYPE_PCI) ?
PCIE_REG_CFG_DATA : PCI_REG_CFG_DATA;
addr = PCI_CFG_ENA | PCI_CFG_BUS(bus) | PCI_CFG_DEV(slot) |
PCI_CFG_FUN(func) | PCI_CFG_PCIE_REG(reg);
mtx_lock_spin(&pcicfg_mtx);
bus_space_write_4(sc->sc_bst, sc->sc_bsh, ca, addr);
switch (bytes) {
case 1:
bus_space_write_1(sc->sc_bst, sc->sc_bsh,
cd + (reg & 3), data);
break;
case 2:
bus_space_write_2(sc->sc_bst, sc->sc_bsh,
cd + (reg & 2), htole16(data));
break;
case 4:
bus_space_write_4(sc->sc_bst, sc->sc_bsh,
cd, htole32(data));
break;
}
mtx_unlock_spin(&pcicfg_mtx);
}
static int
mv_pcib_maxslots(device_t dev)
{
struct mv_pcib_softc *sc = device_get_softc(dev);
return ((sc->sc_type != MV_TYPE_PCI) ? 1 : PCI_SLOTMAX);
}
static int
mv_pcib_root_slot(device_t dev, u_int bus, u_int slot, u_int func)
{
struct mv_pcib_softc *sc = device_get_softc(dev);
uint32_t vendor, device;
/* On platforms other than Armada38x, root link is always at slot 0 */
if (!sc->sc_enable_find_root_slot)
return (slot == 0);
vendor = mv_pcib_hw_cfgread(sc, bus, slot, func, PCIR_VENDOR,
PCIR_VENDOR_LENGTH);
device = mv_pcib_hw_cfgread(sc, bus, slot, func, PCIR_DEVICE,
PCIR_DEVICE_LENGTH) & MV_DEV_FAMILY_MASK;
return (vendor == PCI_VENDORID_MRVL && device == MV_DEV_ARMADA38X);
}
static uint32_t
mv_pcib_read_config(device_t dev, u_int bus, u_int slot, u_int func,
u_int reg, int bytes)
{
struct mv_pcib_softc *sc = device_get_softc(dev);
/* Return ~0 if link is inactive or trying to read from Root */
if ((bus_space_read_4(sc->sc_bst, sc->sc_bsh, PCIE_REG_STATUS) &
PCIE_STATUS_LINK_DOWN) || mv_pcib_root_slot(dev, bus, slot, func))
return (~0U);
return (mv_pcib_hw_cfgread(sc, bus, slot, func, reg, bytes));
}
static void
mv_pcib_write_config(device_t dev, u_int bus, u_int slot, u_int func,
u_int reg, uint32_t val, int bytes)
{
struct mv_pcib_softc *sc = device_get_softc(dev);
/* Return if link is inactive or trying to write to Root */
if ((bus_space_read_4(sc->sc_bst, sc->sc_bsh, PCIE_REG_STATUS) &
PCIE_STATUS_LINK_DOWN) || mv_pcib_root_slot(dev, bus, slot, func))
return;
mv_pcib_hw_cfgwrite(sc, bus, slot, func, reg, val, bytes);
}
static int
mv_pcib_route_interrupt(device_t bus, device_t dev, int pin)
{
struct mv_pcib_softc *sc;
struct ofw_pci_register reg;
uint32_t pintr, mintr[4];
int icells;
phandle_t iparent;
sc = device_get_softc(bus);
pintr = pin;
/* Fabricate imap information in case this isn't an OFW device */
bzero(&reg, sizeof(reg));
reg.phys_hi = (pci_get_bus(dev) << OFW_PCI_PHYS_HI_BUSSHIFT) |
(pci_get_slot(dev) << OFW_PCI_PHYS_HI_DEVICESHIFT) |
(pci_get_function(dev) << OFW_PCI_PHYS_HI_FUNCTIONSHIFT);
icells = ofw_bus_lookup_imap(ofw_bus_get_node(dev), &sc->sc_pci_iinfo,
&reg, sizeof(reg), &pintr, sizeof(pintr), mintr, sizeof(mintr),
&iparent);
if (icells > 0)
return (ofw_bus_map_intr(dev, iparent, icells, mintr));
/* Maybe it's a real interrupt, not an intpin */
if (pin > 4)
return (pin);
device_printf(bus, "could not route pin %d for device %d.%d\n",
pin, pci_get_slot(dev), pci_get_function(dev));
return (PCI_INVALID_IRQ);
}
static int
mv_pcib_decode_win(phandle_t node, struct mv_pcib_softc *sc)
{
struct mv_pci_range io_space, mem_space;
device_t dev;
int error;
dev = sc->sc_dev;
if ((error = mv_pci_ranges(node, &io_space, &mem_space)) != 0) {
device_printf(dev, "could not retrieve 'ranges' data\n");
return (error);
}
/* Configure CPU decoding windows */
error = decode_win_cpu_set(sc->sc_win_target,
sc->sc_io_win_attr, io_space.base_parent, io_space.len, ~0);
if (error < 0) {
device_printf(dev, "could not set up CPU decode "
"window for PCI IO\n");
return (ENXIO);
}
error = decode_win_cpu_set(sc->sc_win_target,
sc->sc_mem_win_attr, mem_space.base_parent, mem_space.len,
mem_space.base_parent);
if (error < 0) {
device_printf(dev, "could not set up CPU decode "
"windows for PCI MEM\n");
return (ENXIO);
}
sc->sc_io_base = io_space.base_parent;
sc->sc_io_size = io_space.len;
sc->sc_mem_base = mem_space.base_parent;
sc->sc_mem_size = mem_space.len;
return (0);
}
static int
mv_pcib_map_msi(device_t dev, device_t child, int irq, uint64_t *addr,
uint32_t *data)
{
struct mv_pcib_softc *sc;
sc = device_get_softc(dev);
if (!sc->sc_msi_supported)
return (ENOTSUP);
irq = irq - MSI_IRQ;
/* validate parameters */
if (isclr(&sc->sc_msi_bitmap, irq)) {
device_printf(dev, "invalid MSI 0x%x\n", irq);
return (EINVAL);
}
#if __ARM_ARCH >= 6
mv_msi_data(irq, addr, data);
#endif
debugf("%s: irq: %d addr: %jx data: %x\n",
__func__, irq, *addr, *data);
return (0);
}
static int
mv_pcib_alloc_msi(device_t dev, device_t child, int count,
int maxcount __unused, int *irqs)
{
struct mv_pcib_softc *sc;
u_int start = 0, i;
sc = device_get_softc(dev);
if (!sc->sc_msi_supported)
return (ENOTSUP);
if (powerof2(count) == 0 || count > MSI_IRQ_NUM)
return (EINVAL);
mtx_lock(&sc->sc_msi_mtx);
for (start = 0; (start + count) < MSI_IRQ_NUM; start++) {
for (i = start; i < start + count; i++) {
if (isset(&sc->sc_msi_bitmap, i))
break;
}
if (i == start + count)
break;
}
if ((start + count) == MSI_IRQ_NUM) {
mtx_unlock(&sc->sc_msi_mtx);
return (ENXIO);
}
for (i = start; i < start + count; i++) {
setbit(&sc->sc_msi_bitmap, i);
*irqs++ = MSI_IRQ + i;
}
debugf("%s: start: %x count: %x\n", __func__, start, count);
mtx_unlock(&sc->sc_msi_mtx);
return (0);
}
static int
mv_pcib_release_msi(device_t dev, device_t child, int count, int *irqs)
{
struct mv_pcib_softc *sc;
u_int i;
sc = device_get_softc(dev);
if(!sc->sc_msi_supported)
return (ENOTSUP);
mtx_lock(&sc->sc_msi_mtx);
for (i = 0; i < count; i++)
clrbit(&sc->sc_msi_bitmap, irqs[i] - MSI_IRQ);
mtx_unlock(&sc->sc_msi_mtx);
return (0);
}