freebsd-skq/sys/dev/otus/if_otus.c
Bjoern A. Zeeb c6167b4bf5 WiFi: fix ieee80211_media_change() callers
In r178354 with the introduction of multi-bss ("vap") support factoring
out started and with r193340 ieee80211_media_change() no longer returned
ENETRESET but only 0 or error.
As ieee80211(9) tells the ieee80211_media_change() function should not
be called directly but is registered with ieee80211_vap_attach() instead.

Some drivers have not been fully converted.  After fixing the return
checking some of these functions were simply wrappers between
ieee80211_vap_attach() and ieee80211_media_change(), so remove the extra
function, where possible as well.

PR:		248955
Submitted by:	Tong Zhang (ztong0001 gmail.com) (original)
MFC after:	3 days
Sponsored by:	The FreeBSD Foundation
2020-09-07 15:35:40 +00:00

3321 lines
83 KiB
C

/* $OpenBSD: if_otus.c,v 1.49 2015/11/24 13:33:18 mpi Exp $ */
/*-
* Copyright (c) 2009 Damien Bergamini <damien.bergamini@free.fr>
* Copyright (c) 2015 Adrian Chadd <adrian@FreeBSD.org>
*
* Permission to use, copy, modify, and distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*/
/*
* Driver for Atheros AR9001U chipset.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include "opt_wlan.h"
#include <sys/param.h>
#include <sys/endian.h>
#include <sys/sockio.h>
#include <sys/mbuf.h>
#include <sys/kernel.h>
#include <sys/malloc.h>
#include <sys/socket.h>
#include <sys/systm.h>
#include <sys/conf.h>
#include <sys/bus.h>
#include <sys/rman.h>
#include <sys/firmware.h>
#include <sys/module.h>
#include <sys/taskqueue.h>
#include <machine/bus.h>
#include <machine/resource.h>
#include <net/bpf.h>
#include <net/if.h>
#include <net/if_var.h>
#include <net/if_arp.h>
#include <net/if_dl.h>
#include <net/if_media.h>
#include <netinet/in.h>
#include <netinet/in_systm.h>
#include <netinet/in_var.h>
#include <netinet/if_ether.h>
#include <netinet/ip.h>
#include <net80211/ieee80211_var.h>
#include <net80211/ieee80211_regdomain.h>
#include <net80211/ieee80211_radiotap.h>
#include <net80211/ieee80211_ratectl.h>
#ifdef IEEE80211_SUPPORT_SUPERG
#include <net80211/ieee80211_superg.h>
#endif
#include <dev/usb/usb.h>
#include <dev/usb/usbdi.h>
#include "usbdevs.h"
#define USB_DEBUG_VAR otus_debug
#include <dev/usb/usb_debug.h>
#include "if_otusreg.h"
static int otus_debug = 0;
static SYSCTL_NODE(_hw_usb, OID_AUTO, otus, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
"USB otus");
SYSCTL_INT(_hw_usb_otus, OID_AUTO, debug, CTLFLAG_RWTUN, &otus_debug, 0,
"Debug level");
#define OTUS_DEBUG_XMIT 0x00000001
#define OTUS_DEBUG_RECV 0x00000002
#define OTUS_DEBUG_TXDONE 0x00000004
#define OTUS_DEBUG_RXDONE 0x00000008
#define OTUS_DEBUG_CMD 0x00000010
#define OTUS_DEBUG_CMDDONE 0x00000020
#define OTUS_DEBUG_RESET 0x00000040
#define OTUS_DEBUG_STATE 0x00000080
#define OTUS_DEBUG_CMDNOTIFY 0x00000100
#define OTUS_DEBUG_REGIO 0x00000200
#define OTUS_DEBUG_IRQ 0x00000400
#define OTUS_DEBUG_TXCOMP 0x00000800
#define OTUS_DEBUG_RX_BUFFER 0x00001000
#define OTUS_DEBUG_ANY 0xffffffff
#define OTUS_DPRINTF(sc, dm, ...) \
do { \
if ((dm == OTUS_DEBUG_ANY) || (dm & otus_debug)) \
device_printf(sc->sc_dev, __VA_ARGS__); \
} while (0)
#define OTUS_DEV(v, p) { USB_VPI(v, p, 0) }
static const STRUCT_USB_HOST_ID otus_devs[] = {
OTUS_DEV(USB_VENDOR_ACCTON, USB_PRODUCT_ACCTON_WN7512),
OTUS_DEV(USB_VENDOR_ATHEROS2, USB_PRODUCT_ATHEROS2_3CRUSBN275),
OTUS_DEV(USB_VENDOR_ATHEROS2, USB_PRODUCT_ATHEROS2_TG121N),
OTUS_DEV(USB_VENDOR_ATHEROS2, USB_PRODUCT_ATHEROS2_AR9170),
OTUS_DEV(USB_VENDOR_ATHEROS2, USB_PRODUCT_ATHEROS2_WN612),
OTUS_DEV(USB_VENDOR_ATHEROS2, USB_PRODUCT_ATHEROS2_WN821NV2),
OTUS_DEV(USB_VENDOR_AVM, USB_PRODUCT_AVM_FRITZWLAN),
OTUS_DEV(USB_VENDOR_CACE, USB_PRODUCT_CACE_AIRPCAPNX),
OTUS_DEV(USB_VENDOR_DLINK2, USB_PRODUCT_DLINK2_DWA130D1),
OTUS_DEV(USB_VENDOR_DLINK2, USB_PRODUCT_DLINK2_DWA160A1),
OTUS_DEV(USB_VENDOR_DLINK2, USB_PRODUCT_DLINK2_DWA160A2),
OTUS_DEV(USB_VENDOR_IODATA, USB_PRODUCT_IODATA_WNGDNUS2),
OTUS_DEV(USB_VENDOR_NEC, USB_PRODUCT_NEC_WL300NUG),
OTUS_DEV(USB_VENDOR_NETGEAR, USB_PRODUCT_NETGEAR_WN111V2),
OTUS_DEV(USB_VENDOR_NETGEAR, USB_PRODUCT_NETGEAR_WNA1000),
OTUS_DEV(USB_VENDOR_NETGEAR, USB_PRODUCT_NETGEAR_WNDA3100),
OTUS_DEV(USB_VENDOR_PLANEX2, USB_PRODUCT_PLANEX2_GW_US300),
OTUS_DEV(USB_VENDOR_WISTRONNEWEB, USB_PRODUCT_WISTRONNEWEB_O8494),
OTUS_DEV(USB_VENDOR_WISTRONNEWEB, USB_PRODUCT_WISTRONNEWEB_WNC0600),
OTUS_DEV(USB_VENDOR_ZCOM, USB_PRODUCT_ZCOM_UB81),
OTUS_DEV(USB_VENDOR_ZCOM, USB_PRODUCT_ZCOM_UB82),
OTUS_DEV(USB_VENDOR_ZYDAS, USB_PRODUCT_ZYDAS_ZD1221),
OTUS_DEV(USB_VENDOR_ZYXEL, USB_PRODUCT_ZYXEL_NWD271N),
};
static device_probe_t otus_match;
static device_attach_t otus_attach;
static device_detach_t otus_detach;
static int otus_attachhook(struct otus_softc *);
static void otus_getradiocaps(struct ieee80211com *, int, int *,
struct ieee80211_channel[]);
int otus_load_firmware(struct otus_softc *, const char *,
uint32_t);
int otus_open_pipes(struct otus_softc *);
void otus_close_pipes(struct otus_softc *);
static int otus_alloc_tx_cmd_list(struct otus_softc *);
static void otus_free_tx_cmd_list(struct otus_softc *);
static int otus_alloc_rx_list(struct otus_softc *);
static void otus_free_rx_list(struct otus_softc *);
static int otus_alloc_tx_list(struct otus_softc *);
static void otus_free_tx_list(struct otus_softc *);
static void otus_free_list(struct otus_softc *, struct otus_data [], int);
static struct otus_data *_otus_getbuf(struct otus_softc *);
static struct otus_data *otus_getbuf(struct otus_softc *);
static void otus_freebuf(struct otus_softc *, struct otus_data *);
static struct otus_tx_cmd *_otus_get_txcmd(struct otus_softc *);
static struct otus_tx_cmd *otus_get_txcmd(struct otus_softc *);
static void otus_free_txcmd(struct otus_softc *, struct otus_tx_cmd *);
void otus_next_scan(void *, int);
static void otus_tx_task(void *, int pending);
void otus_do_async(struct otus_softc *,
void (*)(struct otus_softc *, void *), void *, int);
int otus_newstate(struct ieee80211vap *, enum ieee80211_state,
int);
int otus_cmd(struct otus_softc *, uint8_t, const void *, int,
void *, int);
void otus_write(struct otus_softc *, uint32_t, uint32_t);
int otus_write_barrier(struct otus_softc *);
static struct ieee80211_node *otus_node_alloc(struct ieee80211vap *vap,
const uint8_t mac[IEEE80211_ADDR_LEN]);
int otus_read_eeprom(struct otus_softc *);
void otus_newassoc(struct ieee80211_node *, int);
void otus_cmd_rxeof(struct otus_softc *, uint8_t *, int);
void otus_sub_rxeof(struct otus_softc *, uint8_t *, int,
struct mbufq *);
static int otus_tx(struct otus_softc *, struct ieee80211_node *,
struct mbuf *, struct otus_data *,
const struct ieee80211_bpf_params *);
int otus_ioctl(struct ifnet *, u_long, caddr_t);
int otus_set_multi(struct otus_softc *);
static int otus_updateedca(struct ieee80211com *);
static void otus_updateedca_locked(struct otus_softc *);
static void otus_updateslot(struct otus_softc *);
static void otus_set_operating_mode(struct otus_softc *sc);
static void otus_set_rx_filter(struct otus_softc *sc);
int otus_init_mac(struct otus_softc *);
uint32_t otus_phy_get_def(struct otus_softc *, uint32_t);
int otus_set_board_values(struct otus_softc *,
struct ieee80211_channel *);
int otus_program_phy(struct otus_softc *,
struct ieee80211_channel *);
int otus_set_rf_bank4(struct otus_softc *,
struct ieee80211_channel *);
void otus_get_delta_slope(uint32_t, uint32_t *, uint32_t *);
static int otus_set_chan(struct otus_softc *, struct ieee80211_channel *,
int);
int otus_set_key(struct ieee80211com *, struct ieee80211_node *,
struct ieee80211_key *);
void otus_set_key_cb(struct otus_softc *, void *);
void otus_delete_key(struct ieee80211com *, struct ieee80211_node *,
struct ieee80211_key *);
void otus_delete_key_cb(struct otus_softc *, void *);
void otus_calibrate_to(void *, int);
int otus_set_bssid(struct otus_softc *, const uint8_t *);
int otus_set_macaddr(struct otus_softc *, const uint8_t *);
void otus_led_newstate_type1(struct otus_softc *);
void otus_led_newstate_type2(struct otus_softc *);
void otus_led_newstate_type3(struct otus_softc *);
int otus_init(struct otus_softc *sc);
void otus_stop(struct otus_softc *sc);
static device_method_t otus_methods[] = {
DEVMETHOD(device_probe, otus_match),
DEVMETHOD(device_attach, otus_attach),
DEVMETHOD(device_detach, otus_detach),
DEVMETHOD_END
};
static driver_t otus_driver = {
.name = "otus",
.methods = otus_methods,
.size = sizeof(struct otus_softc)
};
static devclass_t otus_devclass;
DRIVER_MODULE(otus, uhub, otus_driver, otus_devclass, NULL, 0);
MODULE_DEPEND(otus, wlan, 1, 1, 1);
MODULE_DEPEND(otus, usb, 1, 1, 1);
MODULE_DEPEND(otus, firmware, 1, 1, 1);
MODULE_VERSION(otus, 1);
static usb_callback_t otus_bulk_tx_callback;
static usb_callback_t otus_bulk_rx_callback;
static usb_callback_t otus_bulk_irq_callback;
static usb_callback_t otus_bulk_cmd_callback;
static const struct usb_config otus_config[OTUS_N_XFER] = {
[OTUS_BULK_TX] = {
.type = UE_BULK,
.endpoint = UE_ADDR_ANY,
.direction = UE_DIR_OUT,
.bufsize = 0x200,
.flags = {.pipe_bof = 1,.force_short_xfer = 1,},
.callback = otus_bulk_tx_callback,
.timeout = 5000, /* ms */
},
[OTUS_BULK_RX] = {
.type = UE_BULK,
.endpoint = UE_ADDR_ANY,
.direction = UE_DIR_IN,
.bufsize = OTUS_RXBUFSZ,
.flags = { .ext_buffer = 1, .pipe_bof = 1,.short_xfer_ok = 1,},
.callback = otus_bulk_rx_callback,
},
[OTUS_BULK_IRQ] = {
.type = UE_INTERRUPT,
.endpoint = UE_ADDR_ANY,
.direction = UE_DIR_IN,
.bufsize = OTUS_MAX_CTRLSZ,
.flags = {.pipe_bof = 1,.short_xfer_ok = 1,},
.callback = otus_bulk_irq_callback,
},
[OTUS_BULK_CMD] = {
.type = UE_INTERRUPT,
.endpoint = UE_ADDR_ANY,
.direction = UE_DIR_OUT,
.bufsize = OTUS_MAX_CTRLSZ,
.flags = {.pipe_bof = 1,.force_short_xfer = 1,},
.callback = otus_bulk_cmd_callback,
.timeout = 5000, /* ms */
},
};
static int
otus_match(device_t self)
{
struct usb_attach_arg *uaa = device_get_ivars(self);
if (uaa->usb_mode != USB_MODE_HOST ||
uaa->info.bIfaceIndex != 0 ||
uaa->info.bConfigIndex != 0)
return (ENXIO);
return (usbd_lookup_id_by_uaa(otus_devs, sizeof(otus_devs), uaa));
}
static int
otus_attach(device_t self)
{
struct usb_attach_arg *uaa = device_get_ivars(self);
struct otus_softc *sc = device_get_softc(self);
int error;
uint8_t iface_index;
device_set_usb_desc(self);
sc->sc_udev = uaa->device;
sc->sc_dev = self;
mtx_init(&sc->sc_mtx, device_get_nameunit(self), MTX_NETWORK_LOCK,
MTX_DEF);
TIMEOUT_TASK_INIT(taskqueue_thread, &sc->scan_to, 0, otus_next_scan, sc);
TIMEOUT_TASK_INIT(taskqueue_thread, &sc->calib_to, 0, otus_calibrate_to, sc);
TASK_INIT(&sc->tx_task, 0, otus_tx_task, sc);
mbufq_init(&sc->sc_snd, ifqmaxlen);
iface_index = 0;
error = usbd_transfer_setup(uaa->device, &iface_index, sc->sc_xfer,
otus_config, OTUS_N_XFER, sc, &sc->sc_mtx);
if (error) {
device_printf(sc->sc_dev,
"could not allocate USB transfers, err=%s\n",
usbd_errstr(error));
goto fail_usb;
}
if ((error = otus_open_pipes(sc)) != 0) {
device_printf(sc->sc_dev, "%s: could not open pipes\n",
__func__);
goto fail;
}
/* XXX check return status; fail out if appropriate */
if (otus_attachhook(sc) != 0)
goto fail;
return (0);
fail:
otus_close_pipes(sc);
fail_usb:
mtx_destroy(&sc->sc_mtx);
return (ENXIO);
}
static int
otus_detach(device_t self)
{
struct otus_softc *sc = device_get_softc(self);
struct ieee80211com *ic = &sc->sc_ic;
otus_stop(sc);
usbd_transfer_unsetup(sc->sc_xfer, OTUS_N_XFER);
taskqueue_drain_timeout(taskqueue_thread, &sc->scan_to);
taskqueue_drain_timeout(taskqueue_thread, &sc->calib_to);
taskqueue_drain(taskqueue_thread, &sc->tx_task);
otus_close_pipes(sc);
#if 0
/* Wait for all queued asynchronous commands to complete. */
usb_rem_wait_task(sc->sc_udev, &sc->sc_task);
usbd_ref_wait(sc->sc_udev);
#endif
ieee80211_ifdetach(ic);
mtx_destroy(&sc->sc_mtx);
return 0;
}
static void
otus_delay_ms(struct otus_softc *sc, int ms)
{
DELAY(1000 * ms);
}
static struct ieee80211vap *
otus_vap_create(struct ieee80211com *ic, const char name[IFNAMSIZ], int unit,
enum ieee80211_opmode opmode, int flags,
const uint8_t bssid[IEEE80211_ADDR_LEN],
const uint8_t mac[IEEE80211_ADDR_LEN])
{
struct otus_vap *uvp;
struct ieee80211vap *vap;
if (!TAILQ_EMPTY(&ic->ic_vaps)) /* only one at a time */
return (NULL);
uvp = malloc(sizeof(struct otus_vap), M_80211_VAP, M_WAITOK | M_ZERO);
vap = &uvp->vap;
if (ieee80211_vap_setup(ic, vap, name, unit, opmode,
flags, bssid) != 0) {
/* out of memory */
free(uvp, M_80211_VAP);
return (NULL);
}
/* override state transition machine */
uvp->newstate = vap->iv_newstate;
vap->iv_newstate = otus_newstate;
vap->iv_ampdu_density = IEEE80211_HTCAP_MPDUDENSITY_8;
vap->iv_ampdu_rxmax = IEEE80211_HTCAP_MAXRXAMPDU_64K;
ieee80211_ratectl_init(vap);
/* complete setup */
ieee80211_vap_attach(vap, ieee80211_media_change,
ieee80211_media_status, mac);
ic->ic_opmode = opmode;
return (vap);
}
static void
otus_vap_delete(struct ieee80211vap *vap)
{
struct otus_vap *uvp = OTUS_VAP(vap);
ieee80211_ratectl_deinit(vap);
ieee80211_vap_detach(vap);
free(uvp, M_80211_VAP);
}
static void
otus_parent(struct ieee80211com *ic)
{
struct otus_softc *sc = ic->ic_softc;
int startall = 0;
if (ic->ic_nrunning > 0) {
if (!sc->sc_running) {
otus_init(sc);
startall = 1;
} else {
(void) otus_set_multi(sc);
}
} else if (sc->sc_running)
otus_stop(sc);
if (startall)
ieee80211_start_all(ic);
}
static void
otus_drain_mbufq(struct otus_softc *sc)
{
struct mbuf *m;
struct ieee80211_node *ni;
OTUS_LOCK_ASSERT(sc);
while ((m = mbufq_dequeue(&sc->sc_snd)) != NULL) {
ni = (struct ieee80211_node *) m->m_pkthdr.rcvif;
m->m_pkthdr.rcvif = NULL;
ieee80211_free_node(ni);
m_freem(m);
}
}
static void
otus_tx_start(struct otus_softc *sc)
{
taskqueue_enqueue(taskqueue_thread, &sc->tx_task);
}
static int
otus_transmit(struct ieee80211com *ic, struct mbuf *m)
{
struct otus_softc *sc = ic->ic_softc;
int error;
OTUS_LOCK(sc);
if (! sc->sc_running) {
OTUS_UNLOCK(sc);
return (ENXIO);
}
/* XXX TODO: handle fragments */
error = mbufq_enqueue(&sc->sc_snd, m);
if (error) {
OTUS_DPRINTF(sc, OTUS_DEBUG_XMIT,
"%s: mbufq_enqueue failed: %d\n",
__func__,
error);
OTUS_UNLOCK(sc);
return (error);
}
OTUS_UNLOCK(sc);
/* Kick TX */
otus_tx_start(sc);
return (0);
}
static void
_otus_start(struct otus_softc *sc)
{
struct ieee80211_node *ni;
struct otus_data *bf;
struct mbuf *m;
OTUS_LOCK_ASSERT(sc);
while ((m = mbufq_dequeue(&sc->sc_snd)) != NULL) {
bf = otus_getbuf(sc);
if (bf == NULL) {
OTUS_DPRINTF(sc, OTUS_DEBUG_XMIT,
"%s: failed to get buffer\n", __func__);
mbufq_prepend(&sc->sc_snd, m);
break;
}
ni = (struct ieee80211_node *)m->m_pkthdr.rcvif;
m->m_pkthdr.rcvif = NULL;
if (otus_tx(sc, ni, m, bf, NULL) != 0) {
OTUS_DPRINTF(sc, OTUS_DEBUG_XMIT,
"%s: failed to transmit\n", __func__);
if_inc_counter(ni->ni_vap->iv_ifp,
IFCOUNTER_OERRORS, 1);
otus_freebuf(sc, bf);
ieee80211_free_node(ni);
m_freem(m);
break;
}
}
}
static void
otus_tx_task(void *arg, int pending)
{
struct otus_softc *sc = arg;
OTUS_LOCK(sc);
_otus_start(sc);
OTUS_UNLOCK(sc);
}
static int
otus_raw_xmit(struct ieee80211_node *ni, struct mbuf *m,
const struct ieee80211_bpf_params *params)
{
struct ieee80211com *ic= ni->ni_ic;
struct otus_softc *sc = ic->ic_softc;
struct otus_data *bf = NULL;
int error = 0;
/* Don't transmit if we're not running */
OTUS_LOCK(sc);
if (! sc->sc_running) {
error = ENETDOWN;
goto error;
}
bf = otus_getbuf(sc);
if (bf == NULL) {
error = ENOBUFS;
goto error;
}
if (otus_tx(sc, ni, m, bf, params) != 0) {
error = EIO;
goto error;
}
OTUS_UNLOCK(sc);
return (0);
error:
if (bf)
otus_freebuf(sc, bf);
OTUS_UNLOCK(sc);
m_freem(m);
return (ENXIO);
}
static void
otus_update_chw(struct ieee80211com *ic)
{
printf("%s: TODO\n", __func__);
}
static void
otus_set_channel(struct ieee80211com *ic)
{
struct otus_softc *sc = ic->ic_softc;
OTUS_DPRINTF(sc, OTUS_DEBUG_RESET, "%s: set channel: %d\n",
__func__,
ic->ic_curchan->ic_freq);
OTUS_LOCK(sc);
(void) otus_set_chan(sc, ic->ic_curchan, 0);
OTUS_UNLOCK(sc);
}
static int
otus_ampdu_enable(struct ieee80211_node *ni, struct ieee80211_tx_ampdu *tap)
{
/* For now, no A-MPDU TX support in the driver */
return (0);
}
static void
otus_scan_start(struct ieee80211com *ic)
{
// printf("%s: TODO\n", __func__);
}
static void
otus_scan_end(struct ieee80211com *ic)
{
// printf("%s: TODO\n", __func__);
}
static void
otus_update_mcast(struct ieee80211com *ic)
{
struct otus_softc *sc = ic->ic_softc;
(void) otus_set_multi(sc);
}
static int
otus_attachhook(struct otus_softc *sc)
{
struct ieee80211com *ic = &sc->sc_ic;
usb_device_request_t req;
uint32_t in, out;
int error;
/* Not locked */
error = otus_load_firmware(sc, "otusfw_init", AR_FW_INIT_ADDR);
if (error != 0) {
device_printf(sc->sc_dev, "%s: could not load %s firmware\n",
__func__, "init");
return (ENXIO);
}
/* XXX not locked? */
otus_delay_ms(sc, 1000);
/* Not locked */
error = otus_load_firmware(sc, "otusfw_main", AR_FW_MAIN_ADDR);
if (error != 0) {
device_printf(sc->sc_dev, "%s: could not load %s firmware\n",
__func__, "main");
return (ENXIO);
}
OTUS_LOCK(sc);
/* Tell device that firmware transfer is complete. */
req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
req.bRequest = AR_FW_DOWNLOAD_COMPLETE;
USETW(req.wValue, 0);
USETW(req.wIndex, 0);
USETW(req.wLength, 0);
if (usbd_do_request_flags(sc->sc_udev, &sc->sc_mtx, &req, NULL,
0, NULL, 250) != 0) {
OTUS_UNLOCK(sc);
device_printf(sc->sc_dev,
"%s: firmware initialization failed\n",
__func__);
return (ENXIO);
}
/* Send an ECHO command to check that everything is settled. */
in = 0xbadc0ffe;
if (otus_cmd(sc, AR_CMD_ECHO, &in, sizeof in, &out, sizeof(out)) != 0) {
OTUS_UNLOCK(sc);
device_printf(sc->sc_dev,
"%s: echo command failed\n", __func__);
return (ENXIO);
}
if (in != out) {
OTUS_UNLOCK(sc);
device_printf(sc->sc_dev,
"%s: echo reply mismatch: 0x%08x!=0x%08x\n",
__func__, in, out);
return (ENXIO);
}
/* Read entire EEPROM. */
if (otus_read_eeprom(sc) != 0) {
OTUS_UNLOCK(sc);
device_printf(sc->sc_dev,
"%s: could not read EEPROM\n",
__func__);
return (ENXIO);
}
OTUS_UNLOCK(sc);
sc->txmask = sc->eeprom.baseEepHeader.txMask;
sc->rxmask = sc->eeprom.baseEepHeader.rxMask;
sc->capflags = sc->eeprom.baseEepHeader.opCapFlags;
IEEE80211_ADDR_COPY(ic->ic_macaddr, sc->eeprom.baseEepHeader.macAddr);
sc->sc_led_newstate = otus_led_newstate_type3; /* XXX */
if (sc->txmask == 0x5)
ic->ic_txstream = 2;
else
ic->ic_txstream = 1;
if (sc->rxmask == 0x5)
ic->ic_rxstream = 2;
else
ic->ic_rxstream = 1;
device_printf(sc->sc_dev,
"MAC/BBP AR9170, RF AR%X, MIMO %dT%dR, address %s\n",
(sc->capflags & AR5416_OPFLAGS_11A) ?
0x9104 : ((sc->txmask == 0x5) ? 0x9102 : 0x9101),
(sc->txmask == 0x5) ? 2 : 1, (sc->rxmask == 0x5) ? 2 : 1,
ether_sprintf(ic->ic_macaddr));
ic->ic_softc = sc;
ic->ic_name = device_get_nameunit(sc->sc_dev);
ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */
ic->ic_opmode = IEEE80211_M_STA; /* default to BSS mode */
/* Set device capabilities. */
ic->ic_caps =
IEEE80211_C_STA | /* station mode */
#if 0
IEEE80211_C_BGSCAN | /* Background scan. */
#endif
IEEE80211_C_SHPREAMBLE | /* Short preamble supported. */
IEEE80211_C_WME | /* WME/QoS */
IEEE80211_C_SHSLOT | /* Short slot time supported. */
IEEE80211_C_FF | /* Atheros fast-frames supported. */
IEEE80211_C_MONITOR | /* Enable monitor mode */
IEEE80211_C_SWAMSDUTX | /* Do software A-MSDU TX */
IEEE80211_C_WPA; /* WPA/RSN. */
ic->ic_htcaps =
IEEE80211_HTC_HT |
#if 0
IEEE80211_HTC_AMPDU |
#endif
IEEE80211_HTC_AMSDU |
IEEE80211_HTCAP_MAXAMSDU_3839 |
IEEE80211_HTCAP_SMPS_OFF;
otus_getradiocaps(ic, IEEE80211_CHAN_MAX, &ic->ic_nchans,
ic->ic_channels);
ieee80211_ifattach(ic);
ic->ic_raw_xmit = otus_raw_xmit;
ic->ic_scan_start = otus_scan_start;
ic->ic_scan_end = otus_scan_end;
ic->ic_set_channel = otus_set_channel;
ic->ic_getradiocaps = otus_getradiocaps;
ic->ic_vap_create = otus_vap_create;
ic->ic_vap_delete = otus_vap_delete;
ic->ic_update_mcast = otus_update_mcast;
ic->ic_update_promisc = otus_update_mcast;
ic->ic_parent = otus_parent;
ic->ic_transmit = otus_transmit;
ic->ic_update_chw = otus_update_chw;
ic->ic_ampdu_enable = otus_ampdu_enable;
ic->ic_wme.wme_update = otus_updateedca;
ic->ic_newassoc = otus_newassoc;
ic->ic_node_alloc = otus_node_alloc;
#ifdef notyet
ic->ic_set_key = otus_set_key;
ic->ic_delete_key = otus_delete_key;
#endif
ieee80211_radiotap_attach(ic, &sc->sc_txtap.wt_ihdr,
sizeof(sc->sc_txtap), OTUS_TX_RADIOTAP_PRESENT,
&sc->sc_rxtap.wr_ihdr, sizeof(sc->sc_rxtap),
OTUS_RX_RADIOTAP_PRESENT);
return (0);
}
static void
otus_getradiocaps(struct ieee80211com *ic,
int maxchans, int *nchans, struct ieee80211_channel chans[])
{
struct otus_softc *sc = ic->ic_softc;
uint8_t bands[IEEE80211_MODE_BYTES];
/* Set supported .11b and .11g rates. */
memset(bands, 0, sizeof(bands));
if (sc->eeprom.baseEepHeader.opCapFlags & AR5416_OPFLAGS_11G) {
setbit(bands, IEEE80211_MODE_11B);
setbit(bands, IEEE80211_MODE_11G);
setbit(bands, IEEE80211_MODE_11NG);
ieee80211_add_channel_list_2ghz(chans, maxchans, nchans,
ar_chans, 14, bands, 0);
}
if (sc->eeprom.baseEepHeader.opCapFlags & AR5416_OPFLAGS_11A) {
setbit(bands, IEEE80211_MODE_11A);
setbit(bands, IEEE80211_MODE_11NA);
ieee80211_add_channel_list_5ghz(chans, maxchans, nchans,
&ar_chans[14], nitems(ar_chans) - 14, bands, 0);
}
}
int
otus_load_firmware(struct otus_softc *sc, const char *name, uint32_t addr)
{
usb_device_request_t req;
char *ptr;
const struct firmware *fw;
int mlen, error, size;
error = 0;
/* Read firmware image from the filesystem. */
if ((fw = firmware_get(name)) == NULL) {
device_printf(sc->sc_dev,
"%s: failed loadfirmware of file %s\n", __func__, name);
return (ENXIO);
}
req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
req.bRequest = AR_FW_DOWNLOAD;
USETW(req.wIndex, 0);
OTUS_LOCK(sc);
/* XXX const */
ptr = __DECONST(char *, fw->data);
size = fw->datasize;
addr >>= 8;
while (size > 0) {
mlen = MIN(size, 4096);
USETW(req.wValue, addr);
USETW(req.wLength, mlen);
if (usbd_do_request_flags(sc->sc_udev, &sc->sc_mtx,
&req, ptr, 0, NULL, 250) != 0) {
error = EIO;
break;
}
addr += mlen >> 8;
ptr += mlen;
size -= mlen;
}
OTUS_UNLOCK(sc);
firmware_put(fw, FIRMWARE_UNLOAD);
if (error != 0)
device_printf(sc->sc_dev,
"%s: %s: error=%d\n", __func__, name, error);
return error;
}
int
otus_open_pipes(struct otus_softc *sc)
{
#if 0
int isize, error;
int i;
#endif
int error;
OTUS_UNLOCK_ASSERT(sc);
if ((error = otus_alloc_tx_cmd_list(sc)) != 0) {
device_printf(sc->sc_dev,
"%s: could not allocate command xfer\n",
__func__);
goto fail;
}
if ((error = otus_alloc_tx_list(sc)) != 0) {
device_printf(sc->sc_dev, "%s: could not allocate Tx xfers\n",
__func__);
goto fail;
}
if ((error = otus_alloc_rx_list(sc)) != 0) {
device_printf(sc->sc_dev, "%s: could not allocate Rx xfers\n",
__func__);
goto fail;
}
/* Enable RX transfers; needed for initial firmware messages */
OTUS_LOCK(sc);
usbd_transfer_start(sc->sc_xfer[OTUS_BULK_RX]);
usbd_transfer_start(sc->sc_xfer[OTUS_BULK_IRQ]);
OTUS_UNLOCK(sc);
return 0;
fail: otus_close_pipes(sc);
return error;
}
void
otus_close_pipes(struct otus_softc *sc)
{
OTUS_LOCK(sc);
otus_free_tx_cmd_list(sc);
otus_free_tx_list(sc);
otus_free_rx_list(sc);
OTUS_UNLOCK(sc);
usbd_transfer_unsetup(sc->sc_xfer, OTUS_N_XFER);
}
static void
otus_free_cmd_list(struct otus_softc *sc, struct otus_tx_cmd cmd[], int ndata)
{
int i;
/* XXX TODO: someone has to have waken up waiters! */
for (i = 0; i < ndata; i++) {
struct otus_tx_cmd *dp = &cmd[i];
if (dp->buf != NULL) {
free(dp->buf, M_USBDEV);
dp->buf = NULL;
}
}
}
static int
otus_alloc_cmd_list(struct otus_softc *sc, struct otus_tx_cmd cmd[],
int ndata, int maxsz)
{
int i, error;
for (i = 0; i < ndata; i++) {
struct otus_tx_cmd *dp = &cmd[i];
dp->buf = malloc(maxsz, M_USBDEV, M_NOWAIT | M_ZERO);
dp->odata = NULL;
if (dp->buf == NULL) {
device_printf(sc->sc_dev,
"could not allocate buffer\n");
error = ENOMEM;
goto fail;
}
}
return (0);
fail:
otus_free_cmd_list(sc, cmd, ndata);
return (error);
}
static int
otus_alloc_tx_cmd_list(struct otus_softc *sc)
{
int error, i;
error = otus_alloc_cmd_list(sc, sc->sc_cmd, OTUS_CMD_LIST_COUNT,
OTUS_MAX_TXCMDSZ);
if (error != 0)
return (error);
STAILQ_INIT(&sc->sc_cmd_active);
STAILQ_INIT(&sc->sc_cmd_inactive);
STAILQ_INIT(&sc->sc_cmd_pending);
STAILQ_INIT(&sc->sc_cmd_waiting);
for (i = 0; i < OTUS_CMD_LIST_COUNT; i++)
STAILQ_INSERT_HEAD(&sc->sc_cmd_inactive, &sc->sc_cmd[i],
next_cmd);
return (0);
}
static void
otus_free_tx_cmd_list(struct otus_softc *sc)
{
/*
* XXX TODO: something needs to wake up any pending/sleeping
* waiters!
*/
STAILQ_INIT(&sc->sc_cmd_active);
STAILQ_INIT(&sc->sc_cmd_inactive);
STAILQ_INIT(&sc->sc_cmd_pending);
STAILQ_INIT(&sc->sc_cmd_waiting);
otus_free_cmd_list(sc, sc->sc_cmd, OTUS_CMD_LIST_COUNT);
}
static int
otus_alloc_list(struct otus_softc *sc, struct otus_data data[],
int ndata, int maxsz)
{
int i, error;
for (i = 0; i < ndata; i++) {
struct otus_data *dp = &data[i];
dp->sc = sc;
dp->m = NULL;
dp->buf = malloc(maxsz, M_USBDEV, M_NOWAIT | M_ZERO);
if (dp->buf == NULL) {
device_printf(sc->sc_dev,
"could not allocate buffer\n");
error = ENOMEM;
goto fail;
}
dp->ni = NULL;
}
return (0);
fail:
otus_free_list(sc, data, ndata);
return (error);
}
static int
otus_alloc_rx_list(struct otus_softc *sc)
{
int error, i;
error = otus_alloc_list(sc, sc->sc_rx, OTUS_RX_LIST_COUNT,
OTUS_RXBUFSZ);
if (error != 0)
return (error);
STAILQ_INIT(&sc->sc_rx_active);
STAILQ_INIT(&sc->sc_rx_inactive);
for (i = 0; i < OTUS_RX_LIST_COUNT; i++)
STAILQ_INSERT_HEAD(&sc->sc_rx_inactive, &sc->sc_rx[i], next);
return (0);
}
static int
otus_alloc_tx_list(struct otus_softc *sc)
{
int error, i;
error = otus_alloc_list(sc, sc->sc_tx, OTUS_TX_LIST_COUNT,
OTUS_TXBUFSZ);
if (error != 0)
return (error);
STAILQ_INIT(&sc->sc_tx_inactive);
for (i = 0; i != OTUS_N_XFER; i++) {
STAILQ_INIT(&sc->sc_tx_active[i]);
STAILQ_INIT(&sc->sc_tx_pending[i]);
}
for (i = 0; i < OTUS_TX_LIST_COUNT; i++) {
STAILQ_INSERT_HEAD(&sc->sc_tx_inactive, &sc->sc_tx[i], next);
}
return (0);
}
static void
otus_free_tx_list(struct otus_softc *sc)
{
int i;
/* prevent further allocations from TX list(s) */
STAILQ_INIT(&sc->sc_tx_inactive);
for (i = 0; i != OTUS_N_XFER; i++) {
STAILQ_INIT(&sc->sc_tx_active[i]);
STAILQ_INIT(&sc->sc_tx_pending[i]);
}
otus_free_list(sc, sc->sc_tx, OTUS_TX_LIST_COUNT);
}
static void
otus_free_rx_list(struct otus_softc *sc)
{
/* prevent further allocations from RX list(s) */
STAILQ_INIT(&sc->sc_rx_inactive);
STAILQ_INIT(&sc->sc_rx_active);
otus_free_list(sc, sc->sc_rx, OTUS_RX_LIST_COUNT);
}
static void
otus_free_list(struct otus_softc *sc, struct otus_data data[], int ndata)
{
int i;
for (i = 0; i < ndata; i++) {
struct otus_data *dp = &data[i];
if (dp->buf != NULL) {
free(dp->buf, M_USBDEV);
dp->buf = NULL;
}
if (dp->ni != NULL) {
ieee80211_free_node(dp->ni);
dp->ni = NULL;
}
}
}
static struct otus_data *
_otus_getbuf(struct otus_softc *sc)
{
struct otus_data *bf;
bf = STAILQ_FIRST(&sc->sc_tx_inactive);
if (bf != NULL)
STAILQ_REMOVE_HEAD(&sc->sc_tx_inactive, next);
else
bf = NULL;
/* XXX bzero? */
return (bf);
}
static struct otus_data *
otus_getbuf(struct otus_softc *sc)
{
struct otus_data *bf;
OTUS_LOCK_ASSERT(sc);
bf = _otus_getbuf(sc);
return (bf);
}
static void
otus_freebuf(struct otus_softc *sc, struct otus_data *bf)
{
OTUS_LOCK_ASSERT(sc);
STAILQ_INSERT_TAIL(&sc->sc_tx_inactive, bf, next);
}
static struct otus_tx_cmd *
_otus_get_txcmd(struct otus_softc *sc)
{
struct otus_tx_cmd *bf;
bf = STAILQ_FIRST(&sc->sc_cmd_inactive);
if (bf != NULL)
STAILQ_REMOVE_HEAD(&sc->sc_cmd_inactive, next_cmd);
else
bf = NULL;
return (bf);
}
static struct otus_tx_cmd *
otus_get_txcmd(struct otus_softc *sc)
{
struct otus_tx_cmd *bf;
OTUS_LOCK_ASSERT(sc);
bf = _otus_get_txcmd(sc);
if (bf == NULL) {
device_printf(sc->sc_dev, "%s: no tx cmd buffers\n",
__func__);
}
return (bf);
}
static void
otus_free_txcmd(struct otus_softc *sc, struct otus_tx_cmd *bf)
{
OTUS_LOCK_ASSERT(sc);
STAILQ_INSERT_TAIL(&sc->sc_cmd_inactive, bf, next_cmd);
}
void
otus_next_scan(void *arg, int pending)
{
#if 0
struct otus_softc *sc = arg;
if (usbd_is_dying(sc->sc_udev))
return;
usbd_ref_incr(sc->sc_udev);
if (sc->sc_ic.ic_state == IEEE80211_S_SCAN)
ieee80211_next_scan(&sc->sc_ic.ic_if);
usbd_ref_decr(sc->sc_udev);
#endif
}
int
otus_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg)
{
struct otus_vap *uvp = OTUS_VAP(vap);
struct ieee80211com *ic = vap->iv_ic;
struct otus_softc *sc = ic->ic_softc;
enum ieee80211_state ostate;
ostate = vap->iv_state;
OTUS_DPRINTF(sc, OTUS_DEBUG_STATE, "%s: %s -> %s\n", __func__,
ieee80211_state_name[ostate],
ieee80211_state_name[nstate]);
IEEE80211_UNLOCK(ic);
OTUS_LOCK(sc);
/* XXX TODO: more fleshing out! */
switch (nstate) {
case IEEE80211_S_INIT:
otus_set_operating_mode(sc);
otus_set_rx_filter(sc);
break;
case IEEE80211_S_RUN:
if (ic->ic_opmode == IEEE80211_M_STA) {
otus_updateslot(sc);
otus_set_operating_mode(sc);
otus_set_rx_filter(sc);
/* Start calibration timer. */
taskqueue_enqueue_timeout(taskqueue_thread,
&sc->calib_to, hz);
}
break;
default:
break;
}
/* XXX TODO: calibration? */
sc->sc_led_newstate(sc);
OTUS_UNLOCK(sc);
IEEE80211_LOCK(ic);
return (uvp->newstate(vap, nstate, arg));
}
int
otus_cmd(struct otus_softc *sc, uint8_t code, const void *idata, int ilen,
void *odata, int odatalen)
{
struct otus_tx_cmd *cmd;
struct ar_cmd_hdr *hdr;
int xferlen, error;
OTUS_LOCK_ASSERT(sc);
/* Always bulk-out a multiple of 4 bytes. */
xferlen = (sizeof (*hdr) + ilen + 3) & ~3;
if (xferlen > OTUS_MAX_TXCMDSZ) {
device_printf(sc->sc_dev, "%s: command (0x%02x) size (%d) > %d\n",
__func__,
code,
xferlen,
OTUS_MAX_TXCMDSZ);
return (EIO);
}
cmd = otus_get_txcmd(sc);
if (cmd == NULL) {
device_printf(sc->sc_dev, "%s: failed to get buf\n",
__func__);
return (EIO);
}
hdr = (struct ar_cmd_hdr *)cmd->buf;
hdr->code = code;
hdr->len = ilen;
hdr->token = ++sc->token; /* Don't care about endianness. */
cmd->token = hdr->token;
/* XXX TODO: check max cmd length? */
memcpy((uint8_t *)&hdr[1], idata, ilen);
OTUS_DPRINTF(sc, OTUS_DEBUG_CMD,
"%s: sending command code=0x%02x len=%d token=%d\n",
__func__, code, ilen, hdr->token);
cmd->odata = odata;
cmd->odatalen = odatalen;
cmd->buflen = xferlen;
/* Queue the command to the endpoint */
STAILQ_INSERT_TAIL(&sc->sc_cmd_pending, cmd, next_cmd);
usbd_transfer_start(sc->sc_xfer[OTUS_BULK_CMD]);
/* Sleep on the command; wait for it to complete */
error = msleep(cmd, &sc->sc_mtx, PCATCH, "otuscmd", hz);
/*
* At this point we don't own cmd any longer; it'll be
* freed by the cmd bulk path or the RX notification
* path. If the data is made available then it'll be copied
* to the caller. All that is left to do is communicate
* status back to the caller.
*/
if (error != 0) {
device_printf(sc->sc_dev,
"%s: timeout waiting for command 0x%02x reply\n",
__func__, code);
}
return error;
}
void
otus_write(struct otus_softc *sc, uint32_t reg, uint32_t val)
{
OTUS_LOCK_ASSERT(sc);
sc->write_buf[sc->write_idx].reg = htole32(reg);
sc->write_buf[sc->write_idx].val = htole32(val);
if (++sc->write_idx > (AR_MAX_WRITE_IDX-1))
(void)otus_write_barrier(sc);
}
int
otus_write_barrier(struct otus_softc *sc)
{
int error;
OTUS_LOCK_ASSERT(sc);
if (sc->write_idx == 0)
return 0; /* Nothing to flush. */
OTUS_DPRINTF(sc, OTUS_DEBUG_REGIO, "%s: called; %d updates\n",
__func__,
sc->write_idx);
error = otus_cmd(sc, AR_CMD_WREG, sc->write_buf,
sizeof (sc->write_buf[0]) * sc->write_idx, NULL, 0);
sc->write_idx = 0;
return error;
}
static struct ieee80211_node *
otus_node_alloc(struct ieee80211vap *vap, const uint8_t mac[IEEE80211_ADDR_LEN])
{
return malloc(sizeof (struct otus_node), M_80211_NODE,
M_NOWAIT | M_ZERO);
}
int
otus_read_eeprom(struct otus_softc *sc)
{
uint32_t regs[8], reg;
uint8_t *eep;
int i, j, error;
OTUS_LOCK_ASSERT(sc);
/* Read EEPROM by blocks of 32 bytes. */
eep = (uint8_t *)&sc->eeprom;
reg = AR_EEPROM_OFFSET;
for (i = 0; i < sizeof (sc->eeprom) / 32; i++) {
for (j = 0; j < 8; j++, reg += 4)
regs[j] = htole32(reg);
error = otus_cmd(sc, AR_CMD_RREG, regs, sizeof regs, eep, 32);
if (error != 0)
break;
eep += 32;
}
return error;
}
void
otus_newassoc(struct ieee80211_node *ni, int isnew)
{
struct ieee80211com *ic = ni->ni_ic;
struct otus_softc *sc = ic->ic_softc;
struct otus_node *on = OTUS_NODE(ni);
OTUS_DPRINTF(sc, OTUS_DEBUG_STATE, "new assoc isnew=%d addr=%s\n",
isnew, ether_sprintf(ni->ni_macaddr));
on->tx_done = 0;
on->tx_err = 0;
on->tx_retries = 0;
}
static void
otus_cmd_handle_response(struct otus_softc *sc, struct ar_cmd_hdr *hdr)
{
struct otus_tx_cmd *cmd;
OTUS_LOCK_ASSERT(sc);
OTUS_DPRINTF(sc, OTUS_DEBUG_CMDDONE,
"%s: received reply code=0x%02x len=%d token=%d\n",
__func__,
hdr->code, hdr->len, hdr->token);
/*
* Walk the list, freeing items that aren't ours,
* stopping when we hit our token.
*/
while ((cmd = STAILQ_FIRST(&sc->sc_cmd_waiting)) != NULL) {
STAILQ_REMOVE_HEAD(&sc->sc_cmd_waiting, next_cmd);
OTUS_DPRINTF(sc, OTUS_DEBUG_CMDDONE,
"%s: cmd=%p; hdr.token=%d, cmd.token=%d\n",
__func__,
cmd,
(int) hdr->token,
(int) cmd->token);
if (hdr->token == cmd->token) {
/* Copy answer into caller's supplied buffer. */
if (cmd->odata != NULL) {
if (hdr->len != cmd->odatalen) {
device_printf(sc->sc_dev,
"%s: code 0x%02x, len=%d, olen=%d\n",
__func__,
(int) hdr->code,
(int) hdr->len,
(int) cmd->odatalen);
}
memcpy(cmd->odata, &hdr[1],
MIN(cmd->odatalen, hdr->len));
}
wakeup(cmd);
}
STAILQ_INSERT_TAIL(&sc->sc_cmd_inactive, cmd, next_cmd);
}
}
void
otus_cmd_rxeof(struct otus_softc *sc, uint8_t *buf, int len)
{
struct ieee80211com *ic = &sc->sc_ic;
struct ar_cmd_hdr *hdr;
OTUS_LOCK_ASSERT(sc);
if (__predict_false(len < sizeof (*hdr))) {
OTUS_DPRINTF(sc, OTUS_DEBUG_CMDDONE,
"cmd too small %d\n", len);
return;
}
hdr = (struct ar_cmd_hdr *)buf;
if (__predict_false(sizeof (*hdr) + hdr->len > len ||
sizeof (*hdr) + hdr->len > 64)) {
OTUS_DPRINTF(sc, OTUS_DEBUG_CMDDONE,
"cmd too large %d\n", hdr->len);
return;
}
OTUS_DPRINTF(sc, OTUS_DEBUG_RXDONE,
"%s: code=%.02x\n",
__func__,
hdr->code);
/*
* This has to reach into the cmd queue "waiting for
* an RX response" list, grab the head entry and check
* if we need to wake anyone up.
*/
if ((hdr->code & 0xc0) != 0xc0) {
otus_cmd_handle_response(sc, hdr);
return;
}
/* Received unsolicited notification. */
switch (hdr->code & 0x3f) {
case AR_EVT_BEACON:
break;
case AR_EVT_TX_COMP:
{
struct ar_evt_tx_comp *tx = (struct ar_evt_tx_comp *)&hdr[1];
struct ieee80211_node *ni;
ni = ieee80211_find_node(&ic->ic_sta, tx->macaddr);
if (ni == NULL) {
device_printf(sc->sc_dev,
"%s: txcomp on unknown node (%s)\n",
__func__,
ether_sprintf(tx->macaddr));
break;
}
OTUS_DPRINTF(sc, OTUS_DEBUG_TXCOMP,
"tx completed %s status=%d phy=0x%x\n",
ether_sprintf(tx->macaddr), le16toh(tx->status),
le32toh(tx->phy));
switch (le16toh(tx->status)) {
case AR_TX_STATUS_COMP:
#if 0
ackfailcnt = 0;
ieee80211_ratectl_tx_complete(ni->ni_vap, ni,
IEEE80211_RATECTL_TX_SUCCESS, &ackfailcnt, NULL);
#endif
/*
* We don't get the above; only error notifications.
* Sigh. So, don't worry about this.
*/
break;
case AR_TX_STATUS_RETRY_COMP:
OTUS_NODE(ni)->tx_retries++;
break;
case AR_TX_STATUS_FAILED:
OTUS_NODE(ni)->tx_err++;
break;
}
ieee80211_free_node(ni);
break;
}
case AR_EVT_TBTT:
break;
case AR_EVT_DO_BB_RESET:
/*
* This is "tell driver to reset baseband" from ar9170-fw.
*
* I'm not sure what we should do here, so I'm going to
* fall through; it gets generated when RTSRetryCnt internally
* reaches '5' - I guess the firmware authors thought that
* meant that the BB may have gone deaf or something.
*/
default:
device_printf(sc->sc_dev,
"%s: received notification code=0x%02x len=%d\n",
__func__,
hdr->code, hdr->len);
}
}
/*
* Handle a single MPDU.
*
* This may be a single MPDU, or it may be a sub-frame from an A-MPDU.
* In the latter case some of the header details need to be adjusted.
*/
void
otus_sub_rxeof(struct otus_softc *sc, uint8_t *buf, int len, struct mbufq *rxq)
{
struct ieee80211com *ic = &sc->sc_ic;
struct ieee80211_rx_stats rxs;
#if 0
struct ieee80211_node *ni;
#endif
struct ar_rx_macstatus *mac_status = NULL;
struct ar_rx_phystatus *phy_status = NULL;
struct ieee80211_frame *wh;
struct mbuf *m;
// int s;
if (otus_debug & OTUS_DEBUG_RX_BUFFER) {
device_printf(sc->sc_dev, "%s: %*D\n",
__func__, len, buf, "-");
}
/*
* Before any data path stuff - check to see if this is a command
* response.
*
* All bits in the PLCP header are set to 1 for non-MPDU.
*/
if ((len >= AR_PLCP_HDR_LEN) &&
memcmp(buf, AR_PLCP_HDR_INTR, AR_PLCP_HDR_LEN) == 0) {
otus_cmd_rxeof(sc, buf + AR_PLCP_HDR_LEN,
len - AR_PLCP_HDR_LEN);
return;
}
/*
* First step - get the status for the given frame.
* This will tell us whether it's a single MPDU or
* an A-MPDU subframe.
*/
if (len < sizeof(*mac_status)) {
OTUS_DPRINTF(sc, OTUS_DEBUG_RXDONE,
"%s: sub-xfer too short (no mac_status) (len %d)\n",
__func__, len);
counter_u64_add(ic->ic_ierrors, 1);
return;
}
/*
* Remove the mac_status from the payload length.
*
* Note: cheating, don't reallocate the buffer!
*/
mac_status = (struct ar_rx_macstatus *)(buf + len - sizeof(*mac_status));
len -= sizeof(*mac_status);
OTUS_DPRINTF(sc, OTUS_DEBUG_RXDONE, "%s: mac status=0x%x\n",
__func__, mac_status->status);
/*
* Next - check the MAC status before doing anything else.
* Extract out the PLCP header for single and first frames;
* since there's a single RX path we can shove PLCP headers
* from both into sc->ar_last_rx_plcp[] so it can be reused.
*/
if (((mac_status->status & AR_RX_STATUS_MPDU_MASK) == AR_RX_STATUS_MPDU_SINGLE) ||
((mac_status->status & AR_RX_STATUS_MPDU_MASK) == AR_RX_STATUS_MPDU_FIRST)) {
/*
* Ok, we need to at least have a PLCP header at
* this point.
*/
if (len < AR_PLCP_HDR_LEN) {
OTUS_DPRINTF(sc, OTUS_DEBUG_RXDONE,
"%s sub-xfer too short (no mac+plcp) (len %d\n)",
__func__, len);
counter_u64_add(ic->ic_ierrors, 1);
return;
}
memcpy(sc->ar_last_rx_plcp, buf, AR_PLCP_HDR_LEN);
/*
* At this point we can just consume the PLCP header.
* The beginning of the frame should thus be data.
*/
buf += AR_PLCP_HDR_LEN;
len -= AR_PLCP_HDR_LEN;
}
/*
* Next - see if we have a PHY status.
*
* The PHY status is at the end of the final A-MPDU subframe
* or a single MPDU frame.
*
* We'll use this to tag frames with noise floor / RSSI
* if they have valid information.
*/
if (((mac_status->status & AR_RX_STATUS_MPDU_MASK) == AR_RX_STATUS_MPDU_SINGLE) ||
((mac_status->status & AR_RX_STATUS_MPDU_MASK) == AR_RX_STATUS_MPDU_LAST)) {
if (len < sizeof(*phy_status)) {
OTUS_DPRINTF(sc, OTUS_DEBUG_RXDONE,
"%s sub-xfer too short (no phy status) (len %d\n)",
__func__, len);
counter_u64_add(ic->ic_ierrors, 1);
return;
}
/*
* Take a pointer to the phy status and remove the length
* from the end of the buffer.
*
* Note: we're cheating here; don't reallocate the buffer!
*/
phy_status = (struct ar_rx_phystatus *)
(buf + len - sizeof(*phy_status));
len -= sizeof(*phy_status);
}
/*
* Middle frames just have a MAC status (stripped above.)
* No PHY status, and PLCP is from ar_last_rx_plcp.
*/
/*
* Discard error frames; don't discard BAD_RA (eg monitor mode);
* let net80211 do that
*/
if (__predict_false((mac_status->error & ~AR_RX_ERROR_BAD_RA) != 0)) {
OTUS_DPRINTF(sc, OTUS_DEBUG_RXDONE, "error frame 0x%02x\n", mac_status->error);
if (mac_status->error & AR_RX_ERROR_FCS) {
OTUS_DPRINTF(sc, OTUS_DEBUG_RXDONE, "bad FCS\n");
} else if (mac_status->error & AR_RX_ERROR_MMIC) {
/* Report Michael MIC failures to net80211. */
#if 0
ieee80211_notify_michael_failure(ni->ni_vap, wh, keyidx);
#endif
device_printf(sc->sc_dev, "%s: MIC failure\n", __func__);
}
counter_u64_add(ic->ic_ierrors, 1);
return;
}
/*
* Make sure there's room for an 802.11 header + FCS.
*
* Note: a CTS/ACK is 14 bytes (FC, DUR, RA, FCS).
* Making it IEEE80211_MIN_LEN misses CTS/ACKs.
*
* This won't be tossed at this point; eventually once
* rx radiotap is implemented this will allow for
* CTS/ACK frames. Passing them up to net80211 will
* currently make it angry (too short packets.)
*/
if (len < 2 + 2 + IEEE80211_ADDR_LEN + IEEE80211_CRC_LEN) {
OTUS_DPRINTF(sc, OTUS_DEBUG_RXDONE,
"%s: too short for 802.11 (len %d)\n",
__func__, len);
counter_u64_add(ic->ic_ierrors, 1);
return;
}
len -= IEEE80211_CRC_LEN; /* strip 802.11 FCS */
wh = (struct ieee80211_frame *) buf;
/*
* The firmware does seem to spit out a bunch of frames
* with invalid frame control values here. Just toss them
* rather than letting net80211 get angry and log.
*/
if ((wh->i_fc[0] & IEEE80211_FC0_VERSION_MASK) !=
IEEE80211_FC0_VERSION_0) {
OTUS_DPRINTF(sc, OTUS_DEBUG_RXDONE,
"%s: invalid 802.11 fc version (firmware bug?)\n",
__func__);
counter_u64_add(ic->ic_ierrors, 1);
return;
}
m = m_get2(len, M_NOWAIT, MT_DATA, M_PKTHDR);
if (m == NULL) {
device_printf(sc->sc_dev, "%s: failed m_get2() (len=%d)\n",
__func__, len);
counter_u64_add(ic->ic_ierrors, 1);
return;
}
/* Finalize mbuf. */
memcpy(mtod(m, uint8_t *), wh, len);
m->m_pkthdr.len = m->m_len = len;
/* XXX TODO: add setting rx radiotap fields here */
/*
* Ok, check the frame length and toss if it's too short
* for net80211. This will toss ACK/CTS.
*/
if (m->m_len < IEEE80211_MIN_LEN) {
/* XXX TODO: add radiotap receive here */
m_free(m); m = NULL;
return;
}
/* Add RSSI to this mbuf if we have a PHY header */
bzero(&rxs, sizeof(rxs));
rxs.r_flags = IEEE80211_R_NF;
rxs.c_nf = sc->sc_nf[0]; /* XXX chain 0 != combined rssi/nf */
if (phy_status != NULL) {
rxs.r_flags |= IEEE80211_R_RSSI;
rxs.c_rssi = phy_status->rssi;
}
/* XXX TODO: add MIMO RSSI/NF as well */
if (ieee80211_add_rx_params(m, &rxs) == 0) {
counter_u64_add(ic->ic_ierrors, 1);
return;
}
/* XXX make a method */
STAILQ_INSERT_TAIL(&rxq->mq_head, m, m_stailqpkt);
#if 0
OTUS_UNLOCK(sc);
ni = ieee80211_find_rxnode(ic, wh);
rxi.rxi_flags = 0;
rxi.rxi_rssi = tail->rssi;
rxi.rxi_tstamp = 0; /* unused */
ieee80211_input(ifp, m, ni, &rxi);
/* Node is no longer needed. */
ieee80211_release_node(ic, ni);
OTUS_LOCK(sc);
#endif
}
static void
otus_rxeof(struct usb_xfer *xfer, struct otus_data *data, struct mbufq *rxq)
{
struct otus_softc *sc = usbd_xfer_softc(xfer);
caddr_t buf = data->buf;
struct ar_rx_head *head;
uint16_t hlen;
int len, offset = 0;
usbd_xfer_status(xfer, &len, NULL, NULL, NULL);
OTUS_DPRINTF(sc, OTUS_DEBUG_RXDONE,
"%s: transfer completed; len=%d\n",
__func__, len);
if (otus_debug & OTUS_DEBUG_RX_BUFFER) {
device_printf(sc->sc_dev, "%s: %*D\n",
__func__, len, buf, "-");
}
while (len >= sizeof (*head)) {
head = (struct ar_rx_head *)buf;
if (__predict_false(head->tag != htole16(AR_RX_HEAD_TAG))) {
OTUS_DPRINTF(sc, OTUS_DEBUG_RXDONE,
"tag not valid 0x%x\n", le16toh(head->tag));
break;
}
hlen = le16toh(head->len);
OTUS_DPRINTF(sc, OTUS_DEBUG_RXDONE, "%s: hlen=%d\n",
__func__, hlen);
if (__predict_false(sizeof (*head) + hlen > len)) {
OTUS_DPRINTF(sc, OTUS_DEBUG_RXDONE,
"xfer too short %d/%d\n", len, hlen);
break;
}
/* Process sub-xfer. */
otus_sub_rxeof(sc, (uint8_t *) (((uint8_t *) buf) + 4), hlen, rxq);
/* Next sub-xfer is aligned on a 32-bit boundary. */
hlen = (sizeof (*head) + hlen + 3) & ~3;
offset += hlen;
OTUS_DPRINTF(sc, OTUS_DEBUG_RXDONE,
"%s: rounded size is %d, next packet starts at %d\n",
__func__, hlen, offset);
buf += hlen;
len -= hlen;
}
OTUS_DPRINTF(sc, OTUS_DEBUG_RXDONE, "%s: done!\n", __func__);
}
static void
otus_bulk_rx_callback(struct usb_xfer *xfer, usb_error_t error)
{
struct epoch_tracker et;
struct otus_softc *sc = usbd_xfer_softc(xfer);
struct ieee80211com *ic = &sc->sc_ic;
struct ieee80211_frame *wh;
struct ieee80211_node *ni;
struct mbuf *m;
struct mbufq scrx;
struct otus_data *data;
OTUS_LOCK_ASSERT(sc);
mbufq_init(&scrx, 1024);
#if 0
device_printf(sc->sc_dev, "%s: called; state=%d; error=%d\n",
__func__,
USB_GET_STATE(xfer),
error);
#endif
switch (USB_GET_STATE(xfer)) {
case USB_ST_TRANSFERRED:
data = STAILQ_FIRST(&sc->sc_rx_active);
if (data == NULL)
goto tr_setup;
STAILQ_REMOVE_HEAD(&sc->sc_rx_active, next);
otus_rxeof(xfer, data, &scrx);
STAILQ_INSERT_TAIL(&sc->sc_rx_inactive, data, next);
/* FALLTHROUGH */
case USB_ST_SETUP:
tr_setup:
/*
* XXX TODO: what if sc_rx isn't empty, but data
* is empty? Then we leak mbufs.
*/
data = STAILQ_FIRST(&sc->sc_rx_inactive);
if (data == NULL) {
//KASSERT(m == NULL, ("mbuf isn't NULL"));
return;
}
STAILQ_REMOVE_HEAD(&sc->sc_rx_inactive, next);
STAILQ_INSERT_TAIL(&sc->sc_rx_active, data, next);
usbd_xfer_set_frame_data(xfer, 0, data->buf,
usbd_xfer_max_len(xfer));
usbd_transfer_submit(xfer);
/*
* To avoid LOR we should unlock our private mutex here to call
* ieee80211_input() because here is at the end of a USB
* callback and safe to unlock.
*/
OTUS_UNLOCK(sc);
NET_EPOCH_ENTER(et);
while ((m = mbufq_dequeue(&scrx)) != NULL) {
wh = mtod(m, struct ieee80211_frame *);
ni = ieee80211_find_rxnode(ic,
(struct ieee80211_frame_min *)wh);
if (ni != NULL) {
if (ni->ni_flags & IEEE80211_NODE_HT)
m->m_flags |= M_AMPDU;
(void)ieee80211_input_mimo(ni, m);
ieee80211_free_node(ni);
} else
(void)ieee80211_input_mimo_all(ic, m);
}
NET_EPOCH_EXIT(et);
#ifdef IEEE80211_SUPPORT_SUPERG
ieee80211_ff_age_all(ic, 100);
#endif
OTUS_LOCK(sc);
break;
default:
/* needs it to the inactive queue due to a error. */
data = STAILQ_FIRST(&sc->sc_rx_active);
if (data != NULL) {
STAILQ_REMOVE_HEAD(&sc->sc_rx_active, next);
STAILQ_INSERT_TAIL(&sc->sc_rx_inactive, data, next);
}
if (error != USB_ERR_CANCELLED) {
usbd_xfer_set_stall(xfer);
counter_u64_add(ic->ic_ierrors, 1);
goto tr_setup;
}
break;
}
}
static void
otus_txeof(struct usb_xfer *xfer, struct otus_data *data)
{
struct otus_softc *sc = usbd_xfer_softc(xfer);
OTUS_DPRINTF(sc, OTUS_DEBUG_TXDONE,
"%s: called; data=%p\n", __func__, data);
OTUS_LOCK_ASSERT(sc);
if (sc->sc_tx_n_active == 0) {
device_printf(sc->sc_dev,
"%s: completed but tx_active=0\n",
__func__);
} else {
sc->sc_tx_n_active--;
}
if (data->m) {
/* XXX status? */
/* XXX we get TX status via the RX path.. */
ieee80211_tx_complete(data->ni, data->m, 0);
data->m = NULL;
data->ni = NULL;
}
}
static void
otus_txcmdeof(struct usb_xfer *xfer, struct otus_tx_cmd *cmd)
{
struct otus_softc *sc = usbd_xfer_softc(xfer);
OTUS_LOCK_ASSERT(sc);
OTUS_DPRINTF(sc, OTUS_DEBUG_CMDDONE,
"%s: called; data=%p; odata=%p\n",
__func__, cmd, cmd->odata);
/*
* Non-response commands still need wakeup so the caller
* knows it was submitted and completed OK; response commands should
* wait until they're ACKed by the firmware with a response.
*/
if (cmd->odata) {
STAILQ_INSERT_TAIL(&sc->sc_cmd_waiting, cmd, next_cmd);
} else {
wakeup(cmd);
otus_free_txcmd(sc, cmd);
}
}
static void
otus_bulk_tx_callback(struct usb_xfer *xfer, usb_error_t error)
{
uint8_t which = OTUS_BULK_TX;
struct otus_softc *sc = usbd_xfer_softc(xfer);
struct ieee80211com *ic = &sc->sc_ic;
struct otus_data *data;
OTUS_LOCK_ASSERT(sc);
switch (USB_GET_STATE(xfer)) {
case USB_ST_TRANSFERRED:
data = STAILQ_FIRST(&sc->sc_tx_active[which]);
if (data == NULL)
goto tr_setup;
OTUS_DPRINTF(sc, OTUS_DEBUG_TXDONE,
"%s: transfer done %p\n", __func__, data);
STAILQ_REMOVE_HEAD(&sc->sc_tx_active[which], next);
otus_txeof(xfer, data);
otus_freebuf(sc, data);
/* FALLTHROUGH */
case USB_ST_SETUP:
tr_setup:
data = STAILQ_FIRST(&sc->sc_tx_pending[which]);
if (data == NULL) {
OTUS_DPRINTF(sc, OTUS_DEBUG_XMIT,
"%s: empty pending queue sc %p\n", __func__, sc);
sc->sc_tx_n_active = 0;
goto finish;
}
STAILQ_REMOVE_HEAD(&sc->sc_tx_pending[which], next);
STAILQ_INSERT_TAIL(&sc->sc_tx_active[which], data, next);
usbd_xfer_set_frame_data(xfer, 0, data->buf, data->buflen);
OTUS_DPRINTF(sc, OTUS_DEBUG_XMIT,
"%s: submitting transfer %p\n", __func__, data);
usbd_transfer_submit(xfer);
sc->sc_tx_n_active++;
break;
default:
data = STAILQ_FIRST(&sc->sc_tx_active[which]);
if (data != NULL) {
STAILQ_REMOVE_HEAD(&sc->sc_tx_active[which], next);
otus_txeof(xfer, data);
otus_freebuf(sc, data);
}
counter_u64_add(ic->ic_oerrors, 1);
if (error != USB_ERR_CANCELLED) {
usbd_xfer_set_stall(xfer);
goto tr_setup;
}
break;
}
finish:
#ifdef IEEE80211_SUPPORT_SUPERG
/*
* If the TX active queue drops below a certain
* threshold, ensure we age fast-frames out so they're
* transmitted.
*/
if (sc->sc_tx_n_active < 2) {
/* XXX ew - net80211 should defer this for us! */
OTUS_UNLOCK(sc);
ieee80211_ff_flush(ic, WME_AC_VO);
ieee80211_ff_flush(ic, WME_AC_VI);
ieee80211_ff_flush(ic, WME_AC_BE);
ieee80211_ff_flush(ic, WME_AC_BK);
OTUS_LOCK(sc);
}
#endif
/* Kick TX */
otus_tx_start(sc);
}
static void
otus_bulk_cmd_callback(struct usb_xfer *xfer, usb_error_t error)
{
struct otus_softc *sc = usbd_xfer_softc(xfer);
#if 0
struct ieee80211com *ic = &sc->sc_ic;
#endif
struct otus_tx_cmd *cmd;
OTUS_LOCK_ASSERT(sc);
switch (USB_GET_STATE(xfer)) {
case USB_ST_TRANSFERRED:
cmd = STAILQ_FIRST(&sc->sc_cmd_active);
if (cmd == NULL)
goto tr_setup;
OTUS_DPRINTF(sc, OTUS_DEBUG_CMDDONE,
"%s: transfer done %p\n", __func__, cmd);
STAILQ_REMOVE_HEAD(&sc->sc_cmd_active, next_cmd);
otus_txcmdeof(xfer, cmd);
/* FALLTHROUGH */
case USB_ST_SETUP:
tr_setup:
cmd = STAILQ_FIRST(&sc->sc_cmd_pending);
if (cmd == NULL) {
OTUS_DPRINTF(sc, OTUS_DEBUG_CMD,
"%s: empty pending queue sc %p\n", __func__, sc);
return;
}
STAILQ_REMOVE_HEAD(&sc->sc_cmd_pending, next_cmd);
STAILQ_INSERT_TAIL(&sc->sc_cmd_active, cmd, next_cmd);
usbd_xfer_set_frame_data(xfer, 0, cmd->buf, cmd->buflen);
OTUS_DPRINTF(sc, OTUS_DEBUG_CMD,
"%s: submitting transfer %p; buf=%p, buflen=%d\n", __func__, cmd, cmd->buf, cmd->buflen);
usbd_transfer_submit(xfer);
break;
default:
cmd = STAILQ_FIRST(&sc->sc_cmd_active);
if (cmd != NULL) {
STAILQ_REMOVE_HEAD(&sc->sc_cmd_active, next_cmd);
otus_txcmdeof(xfer, cmd);
}
if (error != USB_ERR_CANCELLED) {
usbd_xfer_set_stall(xfer);
goto tr_setup;
}
break;
}
}
/*
* This isn't used by carl9170; it however may be used by the
* initial bootloader.
*/
static void
otus_bulk_irq_callback(struct usb_xfer *xfer, usb_error_t error)
{
struct otus_softc *sc = usbd_xfer_softc(xfer);
int actlen;
int sumlen;
usbd_xfer_status(xfer, &actlen, &sumlen, NULL, NULL);
OTUS_DPRINTF(sc, OTUS_DEBUG_IRQ,
"%s: called; state=%d\n", __func__, USB_GET_STATE(xfer));
switch (USB_GET_STATE(xfer)) {
case USB_ST_TRANSFERRED:
/*
* Read usb frame data, if any.
* "actlen" has the total length for all frames
* transferred.
*/
OTUS_DPRINTF(sc, OTUS_DEBUG_IRQ,
"%s: comp; %d bytes\n",
__func__,
actlen);
#if 0
pc = usbd_xfer_get_frame(xfer, 0);
otus_dump_usb_rx_page(sc, pc, actlen);
#endif
/* XXX fallthrough */
case USB_ST_SETUP:
/*
* Setup xfer frame lengths/count and data
*/
OTUS_DPRINTF(sc, OTUS_DEBUG_IRQ, "%s: setup\n", __func__);
usbd_xfer_set_frame_len(xfer, 0, usbd_xfer_max_len(xfer));
usbd_transfer_submit(xfer);
break;
default: /* Error */
/*
* Print error message and clear stall
* for example.
*/
OTUS_DPRINTF(sc, OTUS_DEBUG_IRQ, "%s: ERROR?\n", __func__);
break;
}
}
/*
* Map net80211 rate to hw rate for otus MAC/PHY.
*/
static uint8_t
otus_rate_to_hw_rate(struct otus_softc *sc, uint8_t rate)
{
int is_2ghz;
is_2ghz = !! (IEEE80211_IS_CHAN_2GHZ(sc->sc_ic.ic_curchan));
/* MCS check */
if (rate & 0x80) {
return rate;
}
switch (rate) {
/* CCK */
case 2:
return (0x0);
case 4:
return (0x1);
case 11:
return (0x2);
case 22:
return (0x3);
/* OFDM */
case 12:
return (0xb);
case 18:
return (0xf);
case 24:
return (0xa);
case 36:
return (0xe);
case 48:
return (0x9);
case 72:
return (0xd);
case 96:
return (0x8);
case 108:
return (0xc);
default:
device_printf(sc->sc_dev, "%s: unknown rate '%d'\n",
__func__, (int) rate);
case 0:
if (is_2ghz)
return (0x0); /* 1MB CCK */
else
return (0xb); /* 6MB OFDM */
}
}
static int
otus_hw_rate_is_ht(struct otus_softc *sc, uint8_t hw_rate)
{
return !! (hw_rate & 0x80);
}
static int
otus_hw_rate_is_ofdm(struct otus_softc *sc, uint8_t hw_rate)
{
switch (hw_rate) {
case 0x0:
case 0x1:
case 0x2:
case 0x3:
return (0);
default:
return (1);
}
}
static void
otus_tx_update_ratectl(struct otus_softc *sc, struct ieee80211_node *ni)
{
struct ieee80211_ratectl_tx_stats *txs = &sc->sc_txs;
struct otus_node *on = OTUS_NODE(ni);
txs->flags = IEEE80211_RATECTL_TX_STATS_NODE |
IEEE80211_RATECTL_TX_STATS_RETRIES;
txs->ni = ni;
txs->nframes = on->tx_done;
txs->nsuccess = on->tx_done - on->tx_err;
txs->nretries = on->tx_retries;
ieee80211_ratectl_tx_update(ni->ni_vap, txs);
on->tx_done = on->tx_err = on->tx_retries = 0;
}
/*
* XXX TODO: support tx bpf parameters for configuration!
*
* Relevant pieces:
*
* ac = params->ibp_pri & 3;
* rate = params->ibp_rate0;
* params->ibp_flags & IEEE80211_BPF_NOACK
* params->ibp_flags & IEEE80211_BPF_RTS
* params->ibp_flags & IEEE80211_BPF_CTS
* tx->rts_ntries = params->ibp_try1;
* tx->data_ntries = params->ibp_try0;
*/
static int
otus_tx(struct otus_softc *sc, struct ieee80211_node *ni, struct mbuf *m,
struct otus_data *data, const struct ieee80211_bpf_params *params)
{
const struct ieee80211_txparam *tp = ni->ni_txparms;
struct ieee80211com *ic = &sc->sc_ic;
struct ieee80211vap *vap = ni->ni_vap;
struct ieee80211_frame *wh;
struct ieee80211_key *k;
struct ar_tx_head *head;
uint32_t phyctl;
uint16_t macctl, qos;
uint8_t qid, rate;
int hasqos, xferlen, type, ismcast;
wh = mtod(m, struct ieee80211_frame *);
if (wh->i_fc[1] & IEEE80211_FC1_PROTECTED) {
k = ieee80211_crypto_encap(ni, m);
if (k == NULL) {
device_printf(sc->sc_dev,
"%s: m=%p: ieee80211_crypto_encap returns NULL\n",
__func__,
m);
return (ENOBUFS);
}
wh = mtod(m, struct ieee80211_frame *);
}
/* Calculate transfer length; ensure data buffer is large enough */
xferlen = sizeof (*head) + m->m_pkthdr.len;
if (xferlen > OTUS_TXBUFSZ) {
device_printf(sc->sc_dev,
"%s: 802.11 TX frame is %d bytes, max %d bytes\n",
__func__,
xferlen,
OTUS_TXBUFSZ);
return (ENOBUFS);
}
hasqos = !! IEEE80211_QOS_HAS_SEQ(wh);
if (hasqos) {
uint8_t tid;
qos = ((const struct ieee80211_qosframe *)wh)->i_qos[0];
tid = qos & IEEE80211_QOS_TID;
qid = TID_TO_WME_AC(tid);
} else {
qos = 0;
qid = WME_AC_BE;
}
type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK;
ismcast = IEEE80211_IS_MULTICAST(wh->i_addr1);
/* Pickup a rate index. */
if (params != NULL)
rate = otus_rate_to_hw_rate(sc, params->ibp_rate0);
else if (!!(m->m_flags & M_EAPOL) || type != IEEE80211_FC0_TYPE_DATA)
rate = otus_rate_to_hw_rate(sc, tp->mgmtrate);
else if (ismcast)
rate = otus_rate_to_hw_rate(sc, tp->mcastrate);
else if (tp->ucastrate != IEEE80211_FIXED_RATE_NONE)
rate = otus_rate_to_hw_rate(sc, tp->ucastrate);
else {
(void) ieee80211_ratectl_rate(ni, NULL, 0);
rate = otus_rate_to_hw_rate(sc, ni->ni_txrate);
}
phyctl = 0;
macctl = AR_TX_MAC_BACKOFF | AR_TX_MAC_HW_DUR | AR_TX_MAC_QID(qid);
/*
* XXX TODO: params for NOACK, ACK, RTS, CTS, etc
*/
if (ismcast ||
(hasqos && ((qos & IEEE80211_QOS_ACKPOLICY) ==
IEEE80211_QOS_ACKPOLICY_NOACK)))
macctl |= AR_TX_MAC_NOACK;
if (!ismcast) {
if (m->m_pkthdr.len + IEEE80211_CRC_LEN >= vap->iv_rtsthreshold)
macctl |= AR_TX_MAC_RTS;
else if (otus_hw_rate_is_ht(sc, rate)) {
if (ic->ic_htprotmode == IEEE80211_PROT_RTSCTS)
macctl |= AR_TX_MAC_RTS;
} else if (ic->ic_flags & IEEE80211_F_USEPROT) {
if (ic->ic_protmode == IEEE80211_PROT_CTSONLY)
macctl |= AR_TX_MAC_CTS;
else if (ic->ic_protmode == IEEE80211_PROT_RTSCTS)
macctl |= AR_TX_MAC_RTS;
}
}
phyctl |= AR_TX_PHY_MCS(rate & 0x7f); /* Note: MCS rates are 0x80 and above */
if (otus_hw_rate_is_ht(sc, rate)) {
phyctl |= AR_TX_PHY_MT_HT;
/* Always use all tx antennas for now, just to be safe */
phyctl |= AR_TX_PHY_ANTMSK(sc->txmask);
/* Heavy clip */
phyctl |= (rate & 0x7) << AR_TX_PHY_TX_HEAVY_CLIP_SHIFT;
} else if (otus_hw_rate_is_ofdm(sc, rate)) {
phyctl |= AR_TX_PHY_MT_OFDM;
/* Always use all tx antennas for now, just to be safe */
phyctl |= AR_TX_PHY_ANTMSK(sc->txmask);
} else { /* CCK */
phyctl |= AR_TX_PHY_MT_CCK;
phyctl |= AR_TX_PHY_ANTMSK(sc->txmask);
}
/* Update net80211 with the current counters */
otus_tx_update_ratectl(sc, ni);
/* Update rate control stats for frames that are ACK'ed. */
if (!(macctl & AR_TX_MAC_NOACK))
OTUS_NODE(ni)->tx_done++;
/* Fill Tx descriptor. */
head = (struct ar_tx_head *)data->buf;
head->len = htole16(m->m_pkthdr.len + IEEE80211_CRC_LEN);
head->macctl = htole16(macctl);
head->phyctl = htole32(phyctl);
m_copydata(m, 0, m->m_pkthdr.len, (caddr_t)&head[1]);
data->buflen = xferlen;
data->ni = ni;
data->m = m;
OTUS_DPRINTF(sc, OTUS_DEBUG_XMIT,
"%s: tx: m=%p; data=%p; len=%d mac=0x%04x phy=0x%08x rate=0x%02x, ni_txrate=%d\n",
__func__, m, data, le16toh(head->len), macctl, phyctl,
(int) rate, (int) ni->ni_txrate);
/* Submit transfer */
STAILQ_INSERT_TAIL(&sc->sc_tx_pending[OTUS_BULK_TX], data, next);
usbd_transfer_start(sc->sc_xfer[OTUS_BULK_TX]);
return 0;
}
static u_int
otus_hash_maddr(void *arg, struct sockaddr_dl *sdl, u_int cnt)
{
uint32_t val, *hashes = arg;
val = le32dec(LLADDR(sdl) + 4);
/* Get address byte 5 */
val = val & 0x0000ff00;
val = val >> 8;
/* As per below, shift it >> 2 to get only 6 bits */
val = val >> 2;
if (val < 32)
hashes[0] |= 1 << val;
else
hashes[1] |= 1 << (val - 32);
return (1);
}
int
otus_set_multi(struct otus_softc *sc)
{
struct ieee80211com *ic = &sc->sc_ic;
uint32_t hashes[2];
int r;
if (ic->ic_allmulti > 0 || ic->ic_promisc > 0 ||
ic->ic_opmode == IEEE80211_M_MONITOR) {
hashes[0] = 0xffffffff;
hashes[1] = 0xffffffff;
} else {
struct ieee80211vap *vap;
hashes[0] = hashes[1] = 0;
TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next)
if_foreach_llmaddr(vap->iv_ifp, otus_hash_maddr,
hashes);
}
#if 0
/* XXX openbsd code */
while (enm != NULL) {
bit = enm->enm_addrlo[5] >> 2;
if (bit < 32)
hashes[0] |= 1 << bit;
else
hashes[1] |= 1 << (bit - 32);
ETHER_NEXT_MULTI(step, enm);
}
#endif
hashes[1] |= 1U << 31; /* Make sure the broadcast bit is set. */
OTUS_LOCK(sc);
otus_write(sc, AR_MAC_REG_GROUP_HASH_TBL_L, hashes[0]);
otus_write(sc, AR_MAC_REG_GROUP_HASH_TBL_H, hashes[1]);
r = otus_write_barrier(sc);
/* XXX operating mode? filter? */
OTUS_UNLOCK(sc);
return (r);
}
static int
otus_updateedca(struct ieee80211com *ic)
{
struct otus_softc *sc = ic->ic_softc;
OTUS_LOCK(sc);
/*
* XXX TODO: take temporary copy of EDCA information
* when scheduling this so we have a more time-correct view
* of things.
* XXX TODO: this can be done on the net80211 level
*/
otus_updateedca_locked(sc);
OTUS_UNLOCK(sc);
return (0);
}
static void
otus_updateedca_locked(struct otus_softc *sc)
{
#define EXP2(val) ((1 << (val)) - 1)
#define AIFS(val) ((val) * 9 + 10)
struct chanAccParams chp;
struct ieee80211com *ic = &sc->sc_ic;
const struct wmeParams *edca;
ieee80211_wme_ic_getparams(ic, &chp);
OTUS_LOCK_ASSERT(sc);
edca = chp.cap_wmeParams;
/* Set CWmin/CWmax values. */
otus_write(sc, AR_MAC_REG_AC0_CW,
EXP2(edca[WME_AC_BE].wmep_logcwmax) << 16 |
EXP2(edca[WME_AC_BE].wmep_logcwmin));
otus_write(sc, AR_MAC_REG_AC1_CW,
EXP2(edca[WME_AC_BK].wmep_logcwmax) << 16 |
EXP2(edca[WME_AC_BK].wmep_logcwmin));
otus_write(sc, AR_MAC_REG_AC2_CW,
EXP2(edca[WME_AC_VI].wmep_logcwmax) << 16 |
EXP2(edca[WME_AC_VI].wmep_logcwmin));
otus_write(sc, AR_MAC_REG_AC3_CW,
EXP2(edca[WME_AC_VO].wmep_logcwmax) << 16 |
EXP2(edca[WME_AC_VO].wmep_logcwmin));
otus_write(sc, AR_MAC_REG_AC4_CW, /* Special TXQ. */
EXP2(edca[WME_AC_VO].wmep_logcwmax) << 16 |
EXP2(edca[WME_AC_VO].wmep_logcwmin));
/* Set AIFSN values. */
otus_write(sc, AR_MAC_REG_AC1_AC0_AIFS,
AIFS(edca[WME_AC_VI].wmep_aifsn) << 24 |
AIFS(edca[WME_AC_BK].wmep_aifsn) << 12 |
AIFS(edca[WME_AC_BE].wmep_aifsn));
otus_write(sc, AR_MAC_REG_AC3_AC2_AIFS,
AIFS(edca[WME_AC_VO].wmep_aifsn) << 16 | /* Special TXQ. */
AIFS(edca[WME_AC_VO].wmep_aifsn) << 4 |
AIFS(edca[WME_AC_VI].wmep_aifsn) >> 8);
/* Set TXOP limit. */
otus_write(sc, AR_MAC_REG_AC1_AC0_TXOP,
edca[WME_AC_BK].wmep_txopLimit << 16 |
edca[WME_AC_BE].wmep_txopLimit);
otus_write(sc, AR_MAC_REG_AC3_AC2_TXOP,
edca[WME_AC_VO].wmep_txopLimit << 16 |
edca[WME_AC_VI].wmep_txopLimit);
/* XXX ACK policy? */
(void)otus_write_barrier(sc);
#undef AIFS
#undef EXP2
}
static void
otus_updateslot(struct otus_softc *sc)
{
struct ieee80211com *ic = &sc->sc_ic;
uint32_t slottime;
OTUS_LOCK_ASSERT(sc);
slottime = IEEE80211_GET_SLOTTIME(ic);
otus_write(sc, AR_MAC_REG_SLOT_TIME, slottime << 10);
(void)otus_write_barrier(sc);
}
/*
* Things to do based on 2GHz or 5GHz:
*
* + slottime
* + dyn_sifs_ack
* + rts_cts_rate
* + slot time
* + mac_rates
* + mac_tpc
*
* And in the transmit path
* + tpc: carl9170_tx_rate_tpc_chains
* + carl9170_tx_physet()
* + disable short premable tx
*/
int
otus_init_mac(struct otus_softc *sc)
{
int error;
OTUS_LOCK_ASSERT(sc);
otus_write(sc, AR_MAC_REG_ACK_EXTENSION, 0x40);
otus_write(sc, AR_MAC_REG_RETRY_MAX, 0);
otus_write(sc, AR_MAC_REG_RX_THRESHOLD, 0xc1f80);
otus_write(sc, AR_MAC_REG_RX_PE_DELAY, 0x70);
otus_write(sc, AR_MAC_REG_EIFS_AND_SIFS, 0xa144000);
otus_write(sc, AR_MAC_REG_SLOT_TIME, 9 << 10);
otus_write(sc, AR_MAC_REG_TID_CFACK_CFEND_RATE, 0x19000000);
/* NAV protects ACK only (in TXOP). */
otus_write(sc, AR_MAC_REG_TXOP_DURATION, 0x201);
/* Set beacon Tx power to 0x7. */
otus_write(sc, AR_MAC_REG_BCN_HT1, 0x8000170);
otus_write(sc, AR_MAC_REG_BACKOFF_PROTECT, 0x105);
otus_write(sc, AR_MAC_REG_AMPDU_FACTOR, 0x10000a);
otus_set_rx_filter(sc);
otus_write(sc, AR_MAC_REG_BASIC_RATE, 0x150f);
otus_write(sc, AR_MAC_REG_MANDATORY_RATE, 0x150f);
otus_write(sc, AR_MAC_REG_RTS_CTS_RATE, 0x10b01bb);
otus_write(sc, AR_MAC_REG_ACK_TPC, 0x4003c1e);
/* Enable LED0 and LED1. */
otus_write(sc, AR_GPIO_REG_PORT_TYPE, 0x3);
otus_write(sc, AR_GPIO_REG_PORT_DATA, 0x3);
/* Switch MAC to OTUS interface. */
otus_write(sc, 0x1c3600, 0x3);
otus_write(sc, AR_MAC_REG_AMPDU_RX_THRESH, 0xffff);
otus_write(sc, AR_MAC_REG_MISC_680, 0xf00008);
/* Disable Rx timeout (workaround). */
otus_write(sc, AR_MAC_REG_RX_TIMEOUT, 0);
/* Set USB Rx stream mode maximum frame number to 2. */
otus_write(sc, 0x1e1110, 0x4);
/* Set USB Rx stream mode timeout to 10us. */
otus_write(sc, 0x1e1114, 0x80);
/* Set clock frequency to 88/80MHz. */
otus_write(sc, AR_PWR_REG_CLOCK_SEL, 0x73);
/* Set WLAN DMA interrupt mode: generate intr per packet. */
otus_write(sc, AR_MAC_REG_TXRX_MPI, 0x110011);
otus_write(sc, AR_MAC_REG_FCS_SELECT, 0x4);
otus_write(sc, AR_MAC_REG_TXOP_NOT_ENOUGH_INDICATION, 0x141e0f48);
/* Disable HW decryption for now. */
otus_write(sc, AR_MAC_REG_ENCRYPTION, 0x78);
if ((error = otus_write_barrier(sc)) != 0)
return error;
/* Set default EDCA parameters. */
otus_updateedca_locked(sc);
return 0;
}
/*
* Return default value for PHY register based on current operating mode.
*/
uint32_t
otus_phy_get_def(struct otus_softc *sc, uint32_t reg)
{
int i;
for (i = 0; i < nitems(ar5416_phy_regs); i++)
if (AR_PHY(ar5416_phy_regs[i]) == reg)
return sc->phy_vals[i];
return 0; /* Register not found. */
}
/*
* Update PHY's programming based on vendor-specific data stored in EEPROM.
* This is for FEM-type devices only.
*/
int
otus_set_board_values(struct otus_softc *sc, struct ieee80211_channel *c)
{
const struct ModalEepHeader *eep;
uint32_t tmp, offset;
if (IEEE80211_IS_CHAN_5GHZ(c))
eep = &sc->eeprom.modalHeader[0];
else
eep = &sc->eeprom.modalHeader[1];
/* Offset of chain 2. */
offset = 2 * 0x1000;
tmp = le32toh(eep->antCtrlCommon);
otus_write(sc, AR_PHY_SWITCH_COM, tmp);
tmp = le32toh(eep->antCtrlChain[0]);
otus_write(sc, AR_PHY_SWITCH_CHAIN_0, tmp);
tmp = le32toh(eep->antCtrlChain[1]);
otus_write(sc, AR_PHY_SWITCH_CHAIN_0 + offset, tmp);
if (1 /* sc->sc_sco == AR_SCO_SCN */) {
tmp = otus_phy_get_def(sc, AR_PHY_SETTLING);
tmp &= ~(0x7f << 7);
tmp |= (eep->switchSettling & 0x7f) << 7;
otus_write(sc, AR_PHY_SETTLING, tmp);
}
tmp = otus_phy_get_def(sc, AR_PHY_DESIRED_SZ);
tmp &= ~0xffff;
tmp |= eep->pgaDesiredSize << 8 | eep->adcDesiredSize;
otus_write(sc, AR_PHY_DESIRED_SZ, tmp);
tmp = eep->txEndToXpaOff << 24 | eep->txEndToXpaOff << 16 |
eep->txFrameToXpaOn << 8 | eep->txFrameToXpaOn;
otus_write(sc, AR_PHY_RF_CTL4, tmp);
tmp = otus_phy_get_def(sc, AR_PHY_RF_CTL3);
tmp &= ~(0xff << 16);
tmp |= eep->txEndToRxOn << 16;
otus_write(sc, AR_PHY_RF_CTL3, tmp);
tmp = otus_phy_get_def(sc, AR_PHY_CCA);
tmp &= ~(0x7f << 12);
tmp |= (eep->thresh62 & 0x7f) << 12;
otus_write(sc, AR_PHY_CCA, tmp);
tmp = otus_phy_get_def(sc, AR_PHY_RXGAIN);
tmp &= ~(0x3f << 12);
tmp |= (eep->txRxAttenCh[0] & 0x3f) << 12;
otus_write(sc, AR_PHY_RXGAIN, tmp);
tmp = otus_phy_get_def(sc, AR_PHY_RXGAIN + offset);
tmp &= ~(0x3f << 12);
tmp |= (eep->txRxAttenCh[1] & 0x3f) << 12;
otus_write(sc, AR_PHY_RXGAIN + offset, tmp);
tmp = otus_phy_get_def(sc, AR_PHY_GAIN_2GHZ);
tmp &= ~(0x3f << 18);
tmp |= (eep->rxTxMarginCh[0] & 0x3f) << 18;
if (IEEE80211_IS_CHAN_5GHZ(c)) {
tmp &= ~(0xf << 10);
tmp |= (eep->bswMargin[0] & 0xf) << 10;
}
otus_write(sc, AR_PHY_GAIN_2GHZ, tmp);
tmp = otus_phy_get_def(sc, AR_PHY_GAIN_2GHZ + offset);
tmp &= ~(0x3f << 18);
tmp |= (eep->rxTxMarginCh[1] & 0x3f) << 18;
otus_write(sc, AR_PHY_GAIN_2GHZ + offset, tmp);
tmp = otus_phy_get_def(sc, AR_PHY_TIMING_CTRL4);
tmp &= ~(0x3f << 5 | 0x1f);
tmp |= (eep->iqCalICh[0] & 0x3f) << 5 | (eep->iqCalQCh[0] & 0x1f);
otus_write(sc, AR_PHY_TIMING_CTRL4, tmp);
tmp = otus_phy_get_def(sc, AR_PHY_TIMING_CTRL4 + offset);
tmp &= ~(0x3f << 5 | 0x1f);
tmp |= (eep->iqCalICh[1] & 0x3f) << 5 | (eep->iqCalQCh[1] & 0x1f);
otus_write(sc, AR_PHY_TIMING_CTRL4 + offset, tmp);
tmp = otus_phy_get_def(sc, AR_PHY_TPCRG1);
tmp &= ~(0xf << 16);
tmp |= (eep->xpd & 0xf) << 16;
otus_write(sc, AR_PHY_TPCRG1, tmp);
return otus_write_barrier(sc);
}
int
otus_program_phy(struct otus_softc *sc, struct ieee80211_channel *c)
{
const uint32_t *vals;
int error, i;
/* Select PHY programming based on band and bandwidth. */
if (IEEE80211_IS_CHAN_2GHZ(c)) {
if (IEEE80211_IS_CHAN_HT40(c))
vals = ar5416_phy_vals_2ghz_40mhz;
else
vals = ar5416_phy_vals_2ghz_20mhz;
} else {
if (IEEE80211_IS_CHAN_HT40(c))
vals = ar5416_phy_vals_5ghz_40mhz;
else
vals = ar5416_phy_vals_5ghz_20mhz;
}
for (i = 0; i < nitems(ar5416_phy_regs); i++)
otus_write(sc, AR_PHY(ar5416_phy_regs[i]), vals[i]);
sc->phy_vals = vals;
if (sc->eeprom.baseEepHeader.deviceType == 0x80) /* FEM */
if ((error = otus_set_board_values(sc, c)) != 0)
return error;
/* Initial Tx power settings. */
otus_write(sc, AR_PHY_POWER_TX_RATE_MAX, 0x7f);
otus_write(sc, AR_PHY_POWER_TX_RATE1, 0x3f3f3f3f);
otus_write(sc, AR_PHY_POWER_TX_RATE2, 0x3f3f3f3f);
otus_write(sc, AR_PHY_POWER_TX_RATE3, 0x3f3f3f3f);
otus_write(sc, AR_PHY_POWER_TX_RATE4, 0x3f3f3f3f);
otus_write(sc, AR_PHY_POWER_TX_RATE5, 0x3f3f3f3f);
otus_write(sc, AR_PHY_POWER_TX_RATE6, 0x3f3f3f3f);
otus_write(sc, AR_PHY_POWER_TX_RATE7, 0x3f3f3f3f);
otus_write(sc, AR_PHY_POWER_TX_RATE8, 0x3f3f3f3f);
otus_write(sc, AR_PHY_POWER_TX_RATE9, 0x3f3f3f3f);
if (IEEE80211_IS_CHAN_2GHZ(c))
otus_write(sc, AR_PWR_REG_PLL_ADDAC, 0x5163);
else
otus_write(sc, AR_PWR_REG_PLL_ADDAC, 0x5143);
return otus_write_barrier(sc);
}
static __inline uint8_t
otus_reverse_bits(uint8_t v)
{
v = ((v >> 1) & 0x55) | ((v & 0x55) << 1);
v = ((v >> 2) & 0x33) | ((v & 0x33) << 2);
v = ((v >> 4) & 0x0f) | ((v & 0x0f) << 4);
return v;
}
int
otus_set_rf_bank4(struct otus_softc *sc, struct ieee80211_channel *c)
{
uint8_t chansel, d0, d1;
uint16_t data;
int error;
OTUS_LOCK_ASSERT(sc);
d0 = 0;
if (IEEE80211_IS_CHAN_5GHZ(c)) {
chansel = (c->ic_freq - 4800) / 5;
if (chansel & 1)
d0 |= AR_BANK4_AMODE_REFSEL(2);
else
d0 |= AR_BANK4_AMODE_REFSEL(1);
} else {
d0 |= AR_BANK4_AMODE_REFSEL(2);
if (c->ic_freq == 2484) { /* CH 14 */
d0 |= AR_BANK4_BMODE_LF_SYNTH_FREQ;
chansel = 10 + (c->ic_freq - 2274) / 5;
} else
chansel = 16 + (c->ic_freq - 2272) / 5;
chansel <<= 2;
}
d0 |= AR_BANK4_ADDR(1) | AR_BANK4_CHUP;
d1 = otus_reverse_bits(chansel);
/* Write bits 0-4 of d0 and d1. */
data = (d1 & 0x1f) << 5 | (d0 & 0x1f);
otus_write(sc, AR_PHY(44), data);
/* Write bits 5-7 of d0 and d1. */
data = (d1 >> 5) << 5 | (d0 >> 5);
otus_write(sc, AR_PHY(58), data);
if ((error = otus_write_barrier(sc)) == 0)
otus_delay_ms(sc, 10);
return error;
}
void
otus_get_delta_slope(uint32_t coeff, uint32_t *exponent, uint32_t *mantissa)
{
#define COEFF_SCALE_SHIFT 24
uint32_t exp, man;
/* exponent = 14 - floor(log2(coeff)) */
for (exp = 31; exp > 0; exp--)
if (coeff & (1 << exp))
break;
KASSERT(exp != 0, ("exp"));
exp = 14 - (exp - COEFF_SCALE_SHIFT);
/* mantissa = floor(coeff * 2^exponent + 0.5) */
man = coeff + (1 << (COEFF_SCALE_SHIFT - exp - 1));
*mantissa = man >> (COEFF_SCALE_SHIFT - exp);
*exponent = exp - 16;
#undef COEFF_SCALE_SHIFT
}
static int
otus_set_chan(struct otus_softc *sc, struct ieee80211_channel *c, int assoc)
{
struct ieee80211com *ic = &sc->sc_ic;
struct ar_cmd_frequency cmd;
struct ar_rsp_frequency rsp;
const uint32_t *vals;
uint32_t coeff, exp, man, tmp;
uint8_t code;
int error, chan, i;
error = 0;
chan = ieee80211_chan2ieee(ic, c);
OTUS_DPRINTF(sc, OTUS_DEBUG_RESET,
"setting channel %d (%dMHz)\n", chan, c->ic_freq);
tmp = IEEE80211_IS_CHAN_2GHZ(c) ? 0x105 : 0x104;
otus_write(sc, AR_MAC_REG_DYNAMIC_SIFS_ACK, tmp);
if ((error = otus_write_barrier(sc)) != 0)
goto finish;
/* Disable BB Heavy Clip. */
otus_write(sc, AR_PHY_HEAVY_CLIP_ENABLE, 0x200);
if ((error = otus_write_barrier(sc)) != 0)
goto finish;
/* XXX Is that FREQ_START ? */
error = otus_cmd(sc, AR_CMD_FREQ_STRAT, NULL, 0, NULL, 0);
if (error != 0)
goto finish;
/* Reprogram PHY and RF on channel band or bandwidth changes. */
if (sc->bb_reset || c->ic_flags != sc->sc_curchan->ic_flags) {
OTUS_DPRINTF(sc, OTUS_DEBUG_RESET, "band switch\n");
/* Cold/Warm reset BB/ADDA. */
otus_write(sc, AR_PWR_REG_RESET, sc->bb_reset ? 0x800 : 0x400);
if ((error = otus_write_barrier(sc)) != 0)
goto finish;
otus_write(sc, AR_PWR_REG_RESET, 0);
if ((error = otus_write_barrier(sc)) != 0)
goto finish;
sc->bb_reset = 0;
if ((error = otus_program_phy(sc, c)) != 0) {
device_printf(sc->sc_dev,
"%s: could not program PHY\n",
__func__);
goto finish;
}
/* Select RF programming based on band. */
if (IEEE80211_IS_CHAN_5GHZ(c))
vals = ar5416_banks_vals_5ghz;
else
vals = ar5416_banks_vals_2ghz;
for (i = 0; i < nitems(ar5416_banks_regs); i++)
otus_write(sc, AR_PHY(ar5416_banks_regs[i]), vals[i]);
if ((error = otus_write_barrier(sc)) != 0) {
device_printf(sc->sc_dev,
"%s: could not program RF\n",
__func__);
goto finish;
}
code = AR_CMD_RF_INIT;
} else {
code = AR_CMD_FREQUENCY;
}
if ((error = otus_set_rf_bank4(sc, c)) != 0)
goto finish;
tmp = (sc->txmask == 0x5) ? 0x340 : 0x240;
otus_write(sc, AR_PHY_TURBO, tmp);
if ((error = otus_write_barrier(sc)) != 0)
goto finish;
/* Send firmware command to set channel. */
cmd.freq = htole32((uint32_t)c->ic_freq * 1000);
cmd.dynht2040 = htole32(0);
cmd.htena = htole32(1);
/* Set Delta Slope (exponent and mantissa). */
coeff = (100 << 24) / c->ic_freq;
otus_get_delta_slope(coeff, &exp, &man);
cmd.dsc_exp = htole32(exp);
cmd.dsc_man = htole32(man);
OTUS_DPRINTF(sc, OTUS_DEBUG_RESET,
"ds coeff=%u exp=%u man=%u\n", coeff, exp, man);
/* For Short GI, coeff is 9/10 that of normal coeff. */
coeff = (9 * coeff) / 10;
otus_get_delta_slope(coeff, &exp, &man);
cmd.dsc_shgi_exp = htole32(exp);
cmd.dsc_shgi_man = htole32(man);
OTUS_DPRINTF(sc, OTUS_DEBUG_RESET,
"ds shgi coeff=%u exp=%u man=%u\n", coeff, exp, man);
/* Set wait time for AGC and noise calibration (100 or 200ms). */
cmd.check_loop_count = assoc ? htole32(2000) : htole32(1000);
OTUS_DPRINTF(sc, OTUS_DEBUG_RESET,
"%s\n", (code == AR_CMD_RF_INIT) ? "RF_INIT" : "FREQUENCY");
error = otus_cmd(sc, code, &cmd, sizeof cmd, &rsp, sizeof(rsp));
if (error != 0)
goto finish;
if ((rsp.status & htole32(AR_CAL_ERR_AGC | AR_CAL_ERR_NF_VAL)) != 0) {
OTUS_DPRINTF(sc, OTUS_DEBUG_RESET,
"status=0x%x\n", le32toh(rsp.status));
/* Force cold reset on next channel. */
sc->bb_reset = 1;
}
#ifdef USB_DEBUG
if (otus_debug & OTUS_DEBUG_RESET) {
device_printf(sc->sc_dev, "calibration status=0x%x\n",
le32toh(rsp.status));
for (i = 0; i < 2; i++) { /* 2 Rx chains */
/* Sign-extend 9-bit NF values. */
device_printf(sc->sc_dev,
"noisefloor chain %d=%d\n", i,
(((int32_t)le32toh(rsp.nf[i])) << 4) >> 23);
device_printf(sc->sc_dev,
"noisefloor ext chain %d=%d\n", i,
((int32_t)le32toh(rsp.nf_ext[i])) >> 23);
}
}
#endif
for (i = 0; i < OTUS_NUM_CHAINS; i++) {
sc->sc_nf[i] = ((((int32_t)le32toh(rsp.nf[i])) << 4) >> 23);
}
sc->sc_curchan = c;
finish:
return (error);
}
#ifdef notyet
int
otus_set_key(struct ieee80211com *ic, struct ieee80211_node *ni,
struct ieee80211_key *k)
{
struct otus_softc *sc = ic->ic_softc;
struct otus_cmd_key cmd;
/* Defer setting of WEP keys until interface is brought up. */
if ((ic->ic_if.if_flags & (IFF_UP | IFF_RUNNING)) !=
(IFF_UP | IFF_RUNNING))
return 0;
/* Do it in a process context. */
cmd.key = *k;
cmd.associd = (ni != NULL) ? ni->ni_associd : 0;
otus_do_async(sc, otus_set_key_cb, &cmd, sizeof cmd);
return 0;
}
void
otus_set_key_cb(struct otus_softc *sc, void *arg)
{
struct otus_cmd_key *cmd = arg;
struct ieee80211_key *k = &cmd->key;
struct ar_cmd_ekey key;
uint16_t cipher;
int error;
memset(&key, 0, sizeof key);
if (k->k_flags & IEEE80211_KEY_GROUP) {
key.uid = htole16(k->k_id);
IEEE80211_ADDR_COPY(key.macaddr, sc->sc_ic.ic_myaddr);
key.macaddr[0] |= 0x80;
} else {
key.uid = htole16(OTUS_UID(cmd->associd));
IEEE80211_ADDR_COPY(key.macaddr, ni->ni_macaddr);
}
key.kix = htole16(0);
/* Map net80211 cipher to hardware. */
switch (k->k_cipher) {
case IEEE80211_CIPHER_WEP40:
cipher = AR_CIPHER_WEP64;
break;
case IEEE80211_CIPHER_WEP104:
cipher = AR_CIPHER_WEP128;
break;
case IEEE80211_CIPHER_TKIP:
cipher = AR_CIPHER_TKIP;
break;
case IEEE80211_CIPHER_CCMP:
cipher = AR_CIPHER_AES;
break;
default:
return;
}
key.cipher = htole16(cipher);
memcpy(key.key, k->k_key, MIN(k->k_len, 16));
error = otus_cmd(sc, AR_CMD_EKEY, &key, sizeof key, NULL, 0);
if (error != 0 || k->k_cipher != IEEE80211_CIPHER_TKIP)
return;
/* TKIP: set Tx/Rx MIC Key. */
key.kix = htole16(1);
memcpy(key.key, k->k_key + 16, 16);
(void)otus_cmd(sc, AR_CMD_EKEY, &key, sizeof key, NULL, 0);
}
void
otus_delete_key(struct ieee80211com *ic, struct ieee80211_node *ni,
struct ieee80211_key *k)
{
struct otus_softc *sc = ic->ic_softc;
struct otus_cmd_key cmd;
if (!(ic->ic_if.if_flags & IFF_RUNNING) ||
ic->ic_state != IEEE80211_S_RUN)
return; /* Nothing to do. */
/* Do it in a process context. */
cmd.key = *k;
cmd.associd = (ni != NULL) ? ni->ni_associd : 0;
otus_do_async(sc, otus_delete_key_cb, &cmd, sizeof cmd);
}
void
otus_delete_key_cb(struct otus_softc *sc, void *arg)
{
struct otus_cmd_key *cmd = arg;
struct ieee80211_key *k = &cmd->key;
uint32_t uid;
if (k->k_flags & IEEE80211_KEY_GROUP)
uid = htole32(k->k_id);
else
uid = htole32(OTUS_UID(cmd->associd));
(void)otus_cmd(sc, AR_CMD_DKEY, &uid, sizeof uid, NULL, 0);
}
#endif
/*
* XXX TODO: check if we have to be doing any calibration in the host
* or whether it's purely a firmware thing.
*/
void
otus_calibrate_to(void *arg, int pending)
{
#if 0
struct otus_softc *sc = arg;
device_printf(sc->sc_dev, "%s: called\n", __func__);
struct ieee80211com *ic = &sc->sc_ic;
struct ieee80211_node *ni;
int s;
if (usbd_is_dying(sc->sc_udev))
return;
usbd_ref_incr(sc->sc_udev);
s = splnet();
ni = ic->ic_bss;
ieee80211_amrr_choose(&sc->amrr, ni, &((struct otus_node *)ni)->amn);
splx(s);
if (!usbd_is_dying(sc->sc_udev))
timeout_add_sec(&sc->calib_to, 1);
usbd_ref_decr(sc->sc_udev);
#endif
}
int
otus_set_bssid(struct otus_softc *sc, const uint8_t *bssid)
{
OTUS_LOCK_ASSERT(sc);
otus_write(sc, AR_MAC_REG_BSSID_L,
bssid[0] | bssid[1] << 8 | bssid[2] << 16 | bssid[3] << 24);
otus_write(sc, AR_MAC_REG_BSSID_H,
bssid[4] | bssid[5] << 8);
return otus_write_barrier(sc);
}
int
otus_set_macaddr(struct otus_softc *sc, const uint8_t *addr)
{
OTUS_LOCK_ASSERT(sc);
otus_write(sc, AR_MAC_REG_MAC_ADDR_L,
addr[0] | addr[1] << 8 | addr[2] << 16 | addr[3] << 24);
otus_write(sc, AR_MAC_REG_MAC_ADDR_H,
addr[4] | addr[5] << 8);
return otus_write_barrier(sc);
}
/* Default single-LED. */
void
otus_led_newstate_type1(struct otus_softc *sc)
{
/* TBD */
device_printf(sc->sc_dev, "%s: TODO\n", __func__);
}
/* NETGEAR, dual-LED. */
void
otus_led_newstate_type2(struct otus_softc *sc)
{
/* TBD */
device_printf(sc->sc_dev, "%s: TODO\n", __func__);
}
/* NETGEAR, single-LED/3 colors (blue, red, purple.) */
void
otus_led_newstate_type3(struct otus_softc *sc)
{
#if 0
struct ieee80211com *ic = &sc->sc_ic;
struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
uint32_t state = sc->led_state;
OTUS_LOCK_ASSERT(sc);
if (!vap) {
state = 0; /* led off */
} else if (vap->iv_state == IEEE80211_S_INIT) {
state = 0; /* LED off. */
} else if (vap->iv_state == IEEE80211_S_RUN) {
/* Associated, LED always on. */
if (IEEE80211_IS_CHAN_2GHZ(sc->sc_curchan))
state = AR_LED0_ON; /* 2GHz=>Red. */
else
state = AR_LED1_ON; /* 5GHz=>Blue. */
} else {
/* Scanning, blink LED. */
state ^= AR_LED0_ON | AR_LED1_ON;
if (IEEE80211_IS_CHAN_2GHZ(sc->sc_curchan))
state &= ~AR_LED1_ON;
else
state &= ~AR_LED0_ON;
}
if (state != sc->led_state) {
otus_write(sc, AR_GPIO_REG_PORT_DATA, state);
if (otus_write_barrier(sc) == 0)
sc->led_state = state;
}
#endif
}
static uint8_t zero_macaddr[IEEE80211_ADDR_LEN] = { 0,0,0,0,0,0 };
/*
* Set up operating mode, MAC/BSS address and RX filter.
*/
static void
otus_set_operating_mode(struct otus_softc *sc)
{
struct ieee80211com *ic = &sc->sc_ic;
struct ieee80211vap *vap;
uint32_t cam_mode = AR_MAC_CAM_DEFAULTS;
uint32_t rx_ctrl = AR_MAC_RX_CTRL_DEAGG | AR_MAC_RX_CTRL_SHORT_FILTER;
uint32_t sniffer = AR_MAC_SNIFFER_DEFAULTS;
uint32_t enc_mode = 0x78; /* XXX */
const uint8_t *macaddr;
uint8_t bssid[IEEE80211_ADDR_LEN];
struct ieee80211_node *ni;
OTUS_LOCK_ASSERT(sc);
/*
* If we're in sniffer mode or we don't have a MAC
* address assigned, ensure it gets reset to all-zero.
*/
IEEE80211_ADDR_COPY(bssid, zero_macaddr);
vap = TAILQ_FIRST(&ic->ic_vaps);
macaddr = vap ? vap->iv_myaddr : ic->ic_macaddr;
switch (ic->ic_opmode) {
case IEEE80211_M_STA:
if (vap) {
ni = ieee80211_ref_node(vap->iv_bss);
IEEE80211_ADDR_COPY(bssid, ni->ni_bssid);
ieee80211_free_node(ni);
}
cam_mode |= AR_MAC_CAM_STA;
rx_ctrl |= AR_MAC_RX_CTRL_PASS_TO_HOST;
break;
case IEEE80211_M_MONITOR:
/*
* Note: monitor mode ends up causing the MAC to
* generate ACK frames for everything it sees.
* So don't do that; instead just put it in STA mode
* and disable RX filters.
*/
default:
cam_mode |= AR_MAC_CAM_STA;
rx_ctrl |= AR_MAC_RX_CTRL_PASS_TO_HOST;
break;
}
/*
* TODO: if/when we do hardware encryption, ensure it's
* disabled if the NIC is in monitor mode.
*/
otus_write(sc, AR_MAC_REG_SNIFFER, sniffer);
otus_write(sc, AR_MAC_REG_CAM_MODE, cam_mode);
otus_write(sc, AR_MAC_REG_ENCRYPTION, enc_mode);
otus_write(sc, AR_MAC_REG_RX_CONTROL, rx_ctrl);
otus_set_macaddr(sc, macaddr);
otus_set_bssid(sc, bssid);
/* XXX barrier? */
}
static void
otus_set_rx_filter(struct otus_softc *sc)
{
// struct ieee80211com *ic = &sc->sc_ic;
OTUS_LOCK_ASSERT(sc);
#if 0
if (ic->ic_allmulti > 0 || ic->ic_promisc > 0 ||
ic->ic_opmode == IEEE80211_M_MONITOR) {
otus_write(sc, AR_MAC_REG_FRAMETYPE_FILTER, 0xff00ffff);
} else {
#endif
/* Filter any control frames, BAR is bit 24. */
otus_write(sc, AR_MAC_REG_FRAMETYPE_FILTER, 0x0500ffff);
#if 0
}
#endif
}
int
otus_init(struct otus_softc *sc)
{
struct ieee80211com *ic = &sc->sc_ic;
int error;
OTUS_UNLOCK_ASSERT(sc);
OTUS_LOCK(sc);
/* Drain any pending TX frames */
otus_drain_mbufq(sc);
/* Init MAC */
if ((error = otus_init_mac(sc)) != 0) {
OTUS_UNLOCK(sc);
device_printf(sc->sc_dev,
"%s: could not initialize MAC\n", __func__);
return error;
}
otus_set_operating_mode(sc);
otus_set_rx_filter(sc);
(void) otus_set_operating_mode(sc);
sc->bb_reset = 1; /* Force cold reset. */
if ((error = otus_set_chan(sc, ic->ic_curchan, 0)) != 0) {
OTUS_UNLOCK(sc);
device_printf(sc->sc_dev,
"%s: could not set channel\n", __func__);
return error;
}
/* Start Rx. */
otus_write(sc, AR_MAC_REG_DMA_TRIGGER, 0x100);
(void)otus_write_barrier(sc);
sc->sc_running = 1;
OTUS_UNLOCK(sc);
return 0;
}
void
otus_stop(struct otus_softc *sc)
{
#if 0
int s;
#endif
OTUS_UNLOCK_ASSERT(sc);
OTUS_LOCK(sc);
sc->sc_running = 0;
sc->sc_tx_timer = 0;
OTUS_UNLOCK(sc);
taskqueue_drain_timeout(taskqueue_thread, &sc->scan_to);
taskqueue_drain_timeout(taskqueue_thread, &sc->calib_to);
taskqueue_drain(taskqueue_thread, &sc->tx_task);
OTUS_LOCK(sc);
sc->sc_running = 0;
/* Stop Rx. */
otus_write(sc, AR_MAC_REG_DMA_TRIGGER, 0);
(void)otus_write_barrier(sc);
/* Drain any pending TX frames */
otus_drain_mbufq(sc);
OTUS_UNLOCK(sc);
}