freebsd-skq/sys/fs/nfs/nfs_commonkrpc.c
2020-09-01 21:18:40 +00:00

1432 lines
41 KiB
C

/*-
* SPDX-License-Identifier: BSD-3-Clause
*
* Copyright (c) 1989, 1991, 1993, 1995
* The Regents of the University of California. All rights reserved.
*
* This code is derived from software contributed to Berkeley by
* Rick Macklem at The University of Guelph.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. Neither the name of the University nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
/*
* Socket operations for use by nfs
*/
#include "opt_kgssapi.h"
#include "opt_nfs.h"
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/kernel.h>
#include <sys/limits.h>
#include <sys/lock.h>
#include <sys/malloc.h>
#include <sys/mbuf.h>
#include <sys/mount.h>
#include <sys/mutex.h>
#include <sys/proc.h>
#include <sys/signalvar.h>
#include <sys/syscallsubr.h>
#include <sys/sysctl.h>
#include <sys/syslog.h>
#include <sys/vnode.h>
#include <rpc/rpc.h>
#include <rpc/krpc.h>
#include <kgssapi/krb5/kcrypto.h>
#include <fs/nfs/nfsport.h>
#ifdef KDTRACE_HOOKS
#include <sys/dtrace_bsd.h>
dtrace_nfsclient_nfs23_start_probe_func_t
dtrace_nfscl_nfs234_start_probe;
dtrace_nfsclient_nfs23_done_probe_func_t
dtrace_nfscl_nfs234_done_probe;
/*
* Registered probes by RPC type.
*/
uint32_t nfscl_nfs2_start_probes[NFSV41_NPROCS + 1];
uint32_t nfscl_nfs2_done_probes[NFSV41_NPROCS + 1];
uint32_t nfscl_nfs3_start_probes[NFSV41_NPROCS + 1];
uint32_t nfscl_nfs3_done_probes[NFSV41_NPROCS + 1];
uint32_t nfscl_nfs4_start_probes[NFSV41_NPROCS + 1];
uint32_t nfscl_nfs4_done_probes[NFSV41_NPROCS + 1];
#endif
NFSSTATESPINLOCK;
NFSREQSPINLOCK;
NFSDLOCKMUTEX;
NFSCLSTATEMUTEX;
extern struct nfsstatsv1 nfsstatsv1;
extern struct nfsreqhead nfsd_reqq;
extern int nfscl_ticks;
extern void (*ncl_call_invalcaches)(struct vnode *);
extern int nfs_numnfscbd;
extern int nfscl_debuglevel;
extern int nfsrv_lease;
SVCPOOL *nfscbd_pool;
static int nfsrv_gsscallbackson = 0;
static int nfs_bufpackets = 4;
static int nfs_reconnects;
static int nfs3_jukebox_delay = 10;
static int nfs_skip_wcc_data_onerr = 1;
static int nfs_dsretries = 2;
SYSCTL_DECL(_vfs_nfs);
SYSCTL_INT(_vfs_nfs, OID_AUTO, bufpackets, CTLFLAG_RW, &nfs_bufpackets, 0,
"Buffer reservation size 2 < x < 64");
SYSCTL_INT(_vfs_nfs, OID_AUTO, reconnects, CTLFLAG_RD, &nfs_reconnects, 0,
"Number of times the nfs client has had to reconnect");
SYSCTL_INT(_vfs_nfs, OID_AUTO, nfs3_jukebox_delay, CTLFLAG_RW, &nfs3_jukebox_delay, 0,
"Number of seconds to delay a retry after receiving EJUKEBOX");
SYSCTL_INT(_vfs_nfs, OID_AUTO, skip_wcc_data_onerr, CTLFLAG_RW, &nfs_skip_wcc_data_onerr, 0,
"Disable weak cache consistency checking when server returns an error");
SYSCTL_INT(_vfs_nfs, OID_AUTO, dsretries, CTLFLAG_RW, &nfs_dsretries, 0,
"Number of retries for a DS RPC before failure");
static void nfs_down(struct nfsmount *, struct thread *, const char *,
int, int);
static void nfs_up(struct nfsmount *, struct thread *, const char *,
int, int);
static int nfs_msg(struct thread *, const char *, const char *, int);
struct nfs_cached_auth {
int ca_refs; /* refcount, including 1 from the cache */
uid_t ca_uid; /* uid that corresponds to this auth */
AUTH *ca_auth; /* RPC auth handle */
};
static int nfsv2_procid[NFS_V3NPROCS] = {
NFSV2PROC_NULL,
NFSV2PROC_GETATTR,
NFSV2PROC_SETATTR,
NFSV2PROC_LOOKUP,
NFSV2PROC_NOOP,
NFSV2PROC_READLINK,
NFSV2PROC_READ,
NFSV2PROC_WRITE,
NFSV2PROC_CREATE,
NFSV2PROC_MKDIR,
NFSV2PROC_SYMLINK,
NFSV2PROC_CREATE,
NFSV2PROC_REMOVE,
NFSV2PROC_RMDIR,
NFSV2PROC_RENAME,
NFSV2PROC_LINK,
NFSV2PROC_READDIR,
NFSV2PROC_NOOP,
NFSV2PROC_STATFS,
NFSV2PROC_NOOP,
NFSV2PROC_NOOP,
NFSV2PROC_NOOP,
};
/*
* Initialize sockets and congestion for a new NFS connection.
* We do not free the sockaddr if error.
* Which arguments are set to NULL indicate what kind of call it is.
* cred == NULL --> a call to connect to a pNFS DS
* nmp == NULL --> indicates an upcall to userland or a NFSv4.0 callback
*/
int
newnfs_connect(struct nfsmount *nmp, struct nfssockreq *nrp,
struct ucred *cred, NFSPROC_T *p, int callback_retry_mult, bool dotls)
{
int rcvreserve, sndreserve;
int pktscale, pktscalesav;
struct sockaddr *saddr;
struct ucred *origcred;
CLIENT *client;
struct netconfig *nconf;
struct socket *so;
int one = 1, retries, error = 0;
struct thread *td = curthread;
SVCXPRT *xprt;
struct timeval timo;
/*
* We need to establish the socket using the credentials of
* the mountpoint. Some parts of this process (such as
* sobind() and soconnect()) will use the curent thread's
* credential instead of the socket credential. To work
* around this, temporarily change the current thread's
* credential to that of the mountpoint.
*
* XXX: It would be better to explicitly pass the correct
* credential to sobind() and soconnect().
*/
origcred = td->td_ucred;
/*
* Use the credential in nr_cred, if not NULL.
*/
if (nrp->nr_cred != NULL)
td->td_ucred = nrp->nr_cred;
else
td->td_ucred = cred;
saddr = nrp->nr_nam;
if (saddr->sa_family == AF_INET)
if (nrp->nr_sotype == SOCK_DGRAM)
nconf = getnetconfigent("udp");
else
nconf = getnetconfigent("tcp");
else
if (nrp->nr_sotype == SOCK_DGRAM)
nconf = getnetconfigent("udp6");
else
nconf = getnetconfigent("tcp6");
pktscale = nfs_bufpackets;
if (pktscale < 2)
pktscale = 2;
if (pktscale > 64)
pktscale = 64;
pktscalesav = pktscale;
/*
* soreserve() can fail if sb_max is too small, so shrink pktscale
* and try again if there is an error.
* Print a log message suggesting increasing sb_max.
* Creating a socket and doing this is necessary since, if the
* reservation sizes are too large and will make soreserve() fail,
* the connection will work until a large send is attempted and
* then it will loop in the krpc code.
*/
so = NULL;
saddr = NFSSOCKADDR(nrp->nr_nam, struct sockaddr *);
error = socreate(saddr->sa_family, &so, nrp->nr_sotype,
nrp->nr_soproto, td->td_ucred, td);
if (error != 0)
goto out;
do {
if (error != 0 && pktscale > 2) {
if (nmp != NULL && nrp->nr_sotype == SOCK_STREAM &&
pktscale == pktscalesav)
printf("Consider increasing kern.ipc.maxsockbuf\n");
pktscale--;
}
if (nrp->nr_sotype == SOCK_DGRAM) {
if (nmp != NULL) {
sndreserve = (NFS_MAXDGRAMDATA + NFS_MAXPKTHDR) *
pktscale;
rcvreserve = (NFS_MAXDGRAMDATA + NFS_MAXPKTHDR) *
pktscale;
} else {
sndreserve = rcvreserve = 1024 * pktscale;
}
} else {
if (nrp->nr_sotype != SOCK_STREAM)
panic("nfscon sotype");
if (nmp != NULL) {
sndreserve = (NFS_MAXBSIZE + NFS_MAXXDR +
sizeof (u_int32_t)) * pktscale;
rcvreserve = (NFS_MAXBSIZE + NFS_MAXXDR +
sizeof (u_int32_t)) * pktscale;
} else {
sndreserve = rcvreserve = 1024 * pktscale;
}
}
error = soreserve(so, sndreserve, rcvreserve);
if (error != 0 && nmp != NULL && nrp->nr_sotype == SOCK_STREAM &&
pktscale <= 2)
printf("Must increase kern.ipc.maxsockbuf or reduce"
" rsize, wsize\n");
} while (error != 0 && pktscale > 2);
soclose(so);
if (error != 0)
goto out;
client = clnt_reconnect_create(nconf, saddr, nrp->nr_prog,
nrp->nr_vers, sndreserve, rcvreserve);
CLNT_CONTROL(client, CLSET_WAITCHAN, "nfsreq");
if (nmp != NULL) {
if ((nmp->nm_flag & NFSMNT_INT))
CLNT_CONTROL(client, CLSET_INTERRUPTIBLE, &one);
if ((nmp->nm_flag & NFSMNT_RESVPORT))
CLNT_CONTROL(client, CLSET_PRIVPORT, &one);
if (NFSHASTLS(nmp))
CLNT_CONTROL(client, CLSET_TLS, &one);
if (NFSHASSOFT(nmp)) {
if (nmp->nm_sotype == SOCK_DGRAM)
/*
* For UDP, the large timeout for a reconnect
* will be set to "nm_retry * nm_timeo / 2", so
* we only want to do 2 reconnect timeout
* retries.
*/
retries = 2;
else
retries = nmp->nm_retry;
} else
retries = INT_MAX;
if (NFSHASNFSV4N(nmp)) {
if (cred != NULL) {
if (NFSHASSOFT(nmp)) {
/*
* This should be a DS mount.
* Use CLSET_TIMEOUT to set the timeout
* for connections to DSs instead of
* specifying a timeout on each RPC.
* This is done so that SO_SNDTIMEO
* is set on the TCP socket as well
* as specifying a time limit when
* waiting for an RPC reply. Useful
* if the send queue for the TCP
* connection has become constipated,
* due to a failed DS.
* The choice of lease_duration / 4 is
* fairly arbitrary, but seems to work
* ok, with a lower bound of 10sec.
*/
timo.tv_sec = nfsrv_lease / 4;
if (timo.tv_sec < 10)
timo.tv_sec = 10;
timo.tv_usec = 0;
CLNT_CONTROL(client, CLSET_TIMEOUT,
&timo);
}
/*
* Make sure the nfscbd_pool doesn't get
* destroyed while doing this.
*/
NFSD_LOCK();
if (nfs_numnfscbd > 0) {
nfs_numnfscbd++;
NFSD_UNLOCK();
xprt = svc_vc_create_backchannel(
nfscbd_pool);
CLNT_CONTROL(client, CLSET_BACKCHANNEL,
xprt);
NFSD_LOCK();
nfs_numnfscbd--;
if (nfs_numnfscbd == 0)
wakeup(&nfs_numnfscbd);
}
NFSD_UNLOCK();
} else {
/*
* cred == NULL for a DS connect.
* For connects to a DS, set a retry limit
* so that failed DSs will be detected.
* This is ok for NFSv4.1, since a DS does
* not maintain open/lock state and is the
* only case where using a "soft" mount is
* recommended for NFSv4.
* For mounts from the MDS to DS, this is done
* via mount options, but that is not the case
* here. The retry limit here can be adjusted
* via the sysctl vfs.nfs.dsretries.
* See the comment above w.r.t. timeout.
*/
timo.tv_sec = nfsrv_lease / 4;
if (timo.tv_sec < 10)
timo.tv_sec = 10;
timo.tv_usec = 0;
CLNT_CONTROL(client, CLSET_TIMEOUT, &timo);
retries = nfs_dsretries;
}
}
} else {
/*
* Three cases:
* - Null RPC callback to client
* - Non-Null RPC callback to client, wait a little longer
* - upcalls to nfsuserd and gssd (clp == NULL)
*/
if (callback_retry_mult == 0) {
retries = NFSV4_UPCALLRETRY;
CLNT_CONTROL(client, CLSET_PRIVPORT, &one);
} else {
retries = NFSV4_CALLBACKRETRY * callback_retry_mult;
}
if (dotls)
CLNT_CONTROL(client, CLSET_TLS, &one);
}
CLNT_CONTROL(client, CLSET_RETRIES, &retries);
if (nmp != NULL) {
/*
* For UDP, there are 2 timeouts:
* - CLSET_RETRY_TIMEOUT sets the initial timeout for the timer
* that does a retransmit of an RPC request using the same
* socket and xid. This is what you normally want to do,
* since NFS servers depend on "same xid" for their
* Duplicate Request Cache.
* - timeout specified in CLNT_CALL_MBUF(), which specifies when
* retransmits on the same socket should fail and a fresh
* socket created. Each of these timeouts counts as one
* CLSET_RETRIES as set above.
* Set the initial retransmit timeout for UDP. This timeout
* doesn't exist for TCP and the following call just fails,
* which is ok.
*/
timo.tv_sec = nmp->nm_timeo / NFS_HZ;
timo.tv_usec = (nmp->nm_timeo % NFS_HZ) * 1000000 / NFS_HZ;
CLNT_CONTROL(client, CLSET_RETRY_TIMEOUT, &timo);
}
mtx_lock(&nrp->nr_mtx);
if (nrp->nr_client != NULL) {
mtx_unlock(&nrp->nr_mtx);
/*
* Someone else already connected.
*/
CLNT_RELEASE(client);
} else {
nrp->nr_client = client;
/*
* Protocols that do not require connections may be optionally
* left unconnected for servers that reply from a port other
* than NFS_PORT.
*/
if (nmp == NULL || (nmp->nm_flag & NFSMNT_NOCONN) == 0) {
mtx_unlock(&nrp->nr_mtx);
CLNT_CONTROL(client, CLSET_CONNECT, &one);
} else
mtx_unlock(&nrp->nr_mtx);
}
out:
/* Restore current thread's credentials. */
td->td_ucred = origcred;
NFSEXITCODE(error);
return (error);
}
/*
* NFS disconnect. Clean up and unlink.
*/
void
newnfs_disconnect(struct nfssockreq *nrp)
{
CLIENT *client;
mtx_lock(&nrp->nr_mtx);
if (nrp->nr_client != NULL) {
client = nrp->nr_client;
nrp->nr_client = NULL;
mtx_unlock(&nrp->nr_mtx);
rpc_gss_secpurge_call(client);
CLNT_CLOSE(client);
CLNT_RELEASE(client);
} else {
mtx_unlock(&nrp->nr_mtx);
}
}
static AUTH *
nfs_getauth(struct nfssockreq *nrp, int secflavour, char *clnt_principal,
char *srv_principal, gss_OID mech_oid, struct ucred *cred)
{
rpc_gss_service_t svc;
AUTH *auth;
switch (secflavour) {
case RPCSEC_GSS_KRB5:
case RPCSEC_GSS_KRB5I:
case RPCSEC_GSS_KRB5P:
if (!mech_oid) {
if (!rpc_gss_mech_to_oid_call("kerberosv5", &mech_oid))
return (NULL);
}
if (secflavour == RPCSEC_GSS_KRB5)
svc = rpc_gss_svc_none;
else if (secflavour == RPCSEC_GSS_KRB5I)
svc = rpc_gss_svc_integrity;
else
svc = rpc_gss_svc_privacy;
if (clnt_principal == NULL)
auth = rpc_gss_secfind_call(nrp->nr_client, cred,
srv_principal, mech_oid, svc);
else {
auth = rpc_gss_seccreate_call(nrp->nr_client, cred,
clnt_principal, srv_principal, "kerberosv5",
svc, NULL, NULL, NULL);
return (auth);
}
if (auth != NULL)
return (auth);
/* fallthrough */
case AUTH_SYS:
default:
return (authunix_create(cred));
}
}
/*
* Callback from the RPC code to generate up/down notifications.
*/
struct nfs_feedback_arg {
struct nfsmount *nf_mount;
int nf_lastmsg; /* last tprintf */
int nf_tprintfmsg;
struct thread *nf_td;
};
static void
nfs_feedback(int type, int proc, void *arg)
{
struct nfs_feedback_arg *nf = (struct nfs_feedback_arg *) arg;
struct nfsmount *nmp = nf->nf_mount;
time_t now;
switch (type) {
case FEEDBACK_REXMIT2:
case FEEDBACK_RECONNECT:
now = NFSD_MONOSEC;
if (nf->nf_lastmsg + nmp->nm_tprintf_delay < now) {
nfs_down(nmp, nf->nf_td,
"not responding", 0, NFSSTA_TIMEO);
nf->nf_tprintfmsg = TRUE;
nf->nf_lastmsg = now;
}
break;
case FEEDBACK_OK:
nfs_up(nf->nf_mount, nf->nf_td,
"is alive again", NFSSTA_TIMEO, nf->nf_tprintfmsg);
break;
}
}
/*
* newnfs_request - goes something like this
* - does the rpc by calling the krpc layer
* - break down rpc header and return with nfs reply
* nb: always frees up nd_mreq mbuf list
*/
int
newnfs_request(struct nfsrv_descript *nd, struct nfsmount *nmp,
struct nfsclient *clp, struct nfssockreq *nrp, vnode_t vp,
struct thread *td, struct ucred *cred, u_int32_t prog, u_int32_t vers,
u_char *retsum, int toplevel, u_int64_t *xidp, struct nfsclsession *dssep)
{
uint32_t retseq, retval, slotseq, *tl;
time_t waituntil;
int i = 0, j = 0, opcnt, set_sigset = 0, slot;
int error = 0, usegssname = 0, secflavour = AUTH_SYS;
int freeslot, maxslot, reterr, slotpos, timeo;
u_int16_t procnum;
u_int trylater_delay = 1;
struct nfs_feedback_arg nf;
struct timeval timo;
AUTH *auth;
struct rpc_callextra ext;
enum clnt_stat stat;
struct nfsreq *rep = NULL;
char *srv_principal = NULL, *clnt_principal = NULL;
sigset_t oldset;
struct ucred *authcred;
struct nfsclsession *sep;
uint8_t sessionid[NFSX_V4SESSIONID];
sep = dssep;
if (xidp != NULL)
*xidp = 0;
/* Reject requests while attempting a forced unmount. */
if (nmp != NULL && NFSCL_FORCEDISM(nmp->nm_mountp)) {
m_freem(nd->nd_mreq);
return (ESTALE);
}
/*
* Set authcred, which is used to acquire RPC credentials to
* the cred argument, by default. The crhold() should not be
* necessary, but will ensure that some future code change
* doesn't result in the credential being free'd prematurely.
*/
authcred = crhold(cred);
/* For client side interruptible mounts, mask off the signals. */
if (nmp != NULL && td != NULL && NFSHASINT(nmp)) {
newnfs_set_sigmask(td, &oldset);
set_sigset = 1;
}
/*
* XXX if not already connected call nfs_connect now. Longer
* term, change nfs_mount to call nfs_connect unconditionally
* and let clnt_reconnect_create handle reconnects.
*/
if (nrp->nr_client == NULL)
newnfs_connect(nmp, nrp, cred, td, 0, false);
/*
* For a client side mount, nmp is != NULL and clp == NULL. For
* server calls (callbacks or upcalls), nmp == NULL.
*/
if (clp != NULL) {
NFSLOCKSTATE();
if ((clp->lc_flags & LCL_GSS) && nfsrv_gsscallbackson) {
secflavour = RPCSEC_GSS_KRB5;
if (nd->nd_procnum != NFSPROC_NULL) {
if (clp->lc_flags & LCL_GSSINTEGRITY)
secflavour = RPCSEC_GSS_KRB5I;
else if (clp->lc_flags & LCL_GSSPRIVACY)
secflavour = RPCSEC_GSS_KRB5P;
}
}
NFSUNLOCKSTATE();
} else if (nmp != NULL && NFSHASKERB(nmp) &&
nd->nd_procnum != NFSPROC_NULL) {
if (NFSHASALLGSSNAME(nmp) && nmp->nm_krbnamelen > 0)
nd->nd_flag |= ND_USEGSSNAME;
if ((nd->nd_flag & ND_USEGSSNAME) != 0) {
/*
* If there is a client side host based credential,
* use that, otherwise use the system uid, if set.
* The system uid is in the nmp->nm_sockreq.nr_cred
* credentials.
*/
if (nmp->nm_krbnamelen > 0) {
usegssname = 1;
clnt_principal = nmp->nm_krbname;
} else if (nmp->nm_uid != (uid_t)-1) {
KASSERT(nmp->nm_sockreq.nr_cred != NULL,
("newnfs_request: NULL nr_cred"));
crfree(authcred);
authcred = crhold(nmp->nm_sockreq.nr_cred);
}
} else if (nmp->nm_krbnamelen == 0 &&
nmp->nm_uid != (uid_t)-1 && cred->cr_uid == (uid_t)0) {
/*
* If there is no host based principal name and
* the system uid is set and this is root, use the
* system uid, since root won't have user
* credentials in a credentials cache file.
* The system uid is in the nmp->nm_sockreq.nr_cred
* credentials.
*/
KASSERT(nmp->nm_sockreq.nr_cred != NULL,
("newnfs_request: NULL nr_cred"));
crfree(authcred);
authcred = crhold(nmp->nm_sockreq.nr_cred);
}
if (NFSHASINTEGRITY(nmp))
secflavour = RPCSEC_GSS_KRB5I;
else if (NFSHASPRIVACY(nmp))
secflavour = RPCSEC_GSS_KRB5P;
else
secflavour = RPCSEC_GSS_KRB5;
srv_principal = NFSMNT_SRVKRBNAME(nmp);
} else if (nmp != NULL && !NFSHASKERB(nmp) &&
nd->nd_procnum != NFSPROC_NULL &&
(nd->nd_flag & ND_USEGSSNAME) != 0) {
/*
* Use the uid that did the mount when the RPC is doing
* NFSv4 system operations, as indicated by the
* ND_USEGSSNAME flag, for the AUTH_SYS case.
* The credentials in nm_sockreq.nr_cred were used for the
* mount.
*/
KASSERT(nmp->nm_sockreq.nr_cred != NULL,
("newnfs_request: NULL nr_cred"));
crfree(authcred);
authcred = crhold(nmp->nm_sockreq.nr_cred);
}
if (nmp != NULL) {
bzero(&nf, sizeof(struct nfs_feedback_arg));
nf.nf_mount = nmp;
nf.nf_td = td;
nf.nf_lastmsg = NFSD_MONOSEC -
((nmp->nm_tprintf_delay)-(nmp->nm_tprintf_initial_delay));
}
if (nd->nd_procnum == NFSPROC_NULL)
auth = authnone_create();
else if (usegssname) {
/*
* For this case, the authenticator is held in the
* nfssockreq structure, so don't release the reference count
* held on it. --> Don't AUTH_DESTROY() it in this function.
*/
if (nrp->nr_auth == NULL)
nrp->nr_auth = nfs_getauth(nrp, secflavour,
clnt_principal, srv_principal, NULL, authcred);
else
rpc_gss_refresh_auth_call(nrp->nr_auth);
auth = nrp->nr_auth;
} else
auth = nfs_getauth(nrp, secflavour, NULL,
srv_principal, NULL, authcred);
crfree(authcred);
if (auth == NULL) {
m_freem(nd->nd_mreq);
if (set_sigset)
newnfs_restore_sigmask(td, &oldset);
return (EACCES);
}
bzero(&ext, sizeof(ext));
ext.rc_auth = auth;
if (nmp != NULL) {
ext.rc_feedback = nfs_feedback;
ext.rc_feedback_arg = &nf;
}
procnum = nd->nd_procnum;
if ((nd->nd_flag & ND_NFSV4) &&
nd->nd_procnum != NFSPROC_NULL &&
nd->nd_procnum != NFSV4PROC_CBCOMPOUND)
procnum = NFSV4PROC_COMPOUND;
if (nmp != NULL) {
NFSINCRGLOBAL(nfsstatsv1.rpcrequests);
/* Map the procnum to the old NFSv2 one, as required. */
if ((nd->nd_flag & ND_NFSV2) != 0) {
if (nd->nd_procnum < NFS_V3NPROCS)
procnum = nfsv2_procid[nd->nd_procnum];
else
procnum = NFSV2PROC_NOOP;
}
/*
* Now only used for the R_DONTRECOVER case, but until that is
* supported within the krpc code, I need to keep a queue of
* outstanding RPCs for nfsv4 client requests.
*/
if ((nd->nd_flag & ND_NFSV4) && procnum == NFSV4PROC_COMPOUND)
rep = malloc(sizeof(struct nfsreq),
M_NFSDREQ, M_WAITOK);
#ifdef KDTRACE_HOOKS
if (dtrace_nfscl_nfs234_start_probe != NULL) {
uint32_t probe_id;
int probe_procnum;
if (nd->nd_flag & ND_NFSV4) {
probe_id =
nfscl_nfs4_start_probes[nd->nd_procnum];
probe_procnum = nd->nd_procnum;
} else if (nd->nd_flag & ND_NFSV3) {
probe_id = nfscl_nfs3_start_probes[procnum];
probe_procnum = procnum;
} else {
probe_id =
nfscl_nfs2_start_probes[nd->nd_procnum];
probe_procnum = procnum;
}
if (probe_id != 0)
(dtrace_nfscl_nfs234_start_probe)
(probe_id, vp, nd->nd_mreq, cred,
probe_procnum);
}
#endif
}
freeslot = -1; /* Set to slot that needs to be free'd */
tryagain:
slot = -1; /* Slot that needs a sequence# increment. */
/*
* This timeout specifies when a new socket should be created,
* along with new xid values. For UDP, this should be done
* infrequently, since retransmits of RPC requests should normally
* use the same xid.
*/
if (nmp == NULL) {
timo.tv_usec = 0;
if (clp == NULL)
timo.tv_sec = NFSV4_UPCALLTIMEO;
else
timo.tv_sec = NFSV4_CALLBACKTIMEO;
} else {
if (nrp->nr_sotype != SOCK_DGRAM) {
timo.tv_usec = 0;
if ((nmp->nm_flag & NFSMNT_NFSV4))
timo.tv_sec = INT_MAX;
else
timo.tv_sec = NFS_TCPTIMEO;
} else {
if (NFSHASSOFT(nmp)) {
/*
* CLSET_RETRIES is set to 2, so this should be
* half of the total timeout required.
*/
timeo = nmp->nm_retry * nmp->nm_timeo / 2;
if (timeo < 1)
timeo = 1;
timo.tv_sec = timeo / NFS_HZ;
timo.tv_usec = (timeo % NFS_HZ) * 1000000 /
NFS_HZ;
} else {
/* For UDP hard mounts, use a large value. */
timo.tv_sec = NFS_MAXTIMEO / NFS_HZ;
timo.tv_usec = 0;
}
}
if (rep != NULL) {
rep->r_flags = 0;
rep->r_nmp = nmp;
/*
* Chain request into list of outstanding requests.
*/
NFSLOCKREQ();
TAILQ_INSERT_TAIL(&nfsd_reqq, rep, r_chain);
NFSUNLOCKREQ();
}
}
nd->nd_mrep = NULL;
if (clp != NULL && sep != NULL)
stat = clnt_bck_call(nrp->nr_client, &ext, procnum,
nd->nd_mreq, &nd->nd_mrep, timo, sep->nfsess_xprt);
else
stat = CLNT_CALL_MBUF(nrp->nr_client, &ext, procnum,
nd->nd_mreq, &nd->nd_mrep, timo);
NFSCL_DEBUG(2, "clnt call=%d\n", stat);
if (rep != NULL) {
/*
* RPC done, unlink the request.
*/
NFSLOCKREQ();
TAILQ_REMOVE(&nfsd_reqq, rep, r_chain);
NFSUNLOCKREQ();
}
/*
* If there was a successful reply and a tprintf msg.
* tprintf a response.
*/
if (stat == RPC_SUCCESS) {
error = 0;
} else if (stat == RPC_TIMEDOUT) {
NFSINCRGLOBAL(nfsstatsv1.rpctimeouts);
error = ETIMEDOUT;
} else if (stat == RPC_VERSMISMATCH) {
NFSINCRGLOBAL(nfsstatsv1.rpcinvalid);
error = EOPNOTSUPP;
} else if (stat == RPC_PROGVERSMISMATCH) {
NFSINCRGLOBAL(nfsstatsv1.rpcinvalid);
error = EPROTONOSUPPORT;
} else if (stat == RPC_INTR) {
error = EINTR;
} else if (stat == RPC_CANTSEND || stat == RPC_CANTRECV ||
stat == RPC_SYSTEMERROR) {
/* Check for a session slot that needs to be free'd. */
if ((nd->nd_flag & (ND_NFSV41 | ND_HASSLOTID)) ==
(ND_NFSV41 | ND_HASSLOTID) && nmp != NULL &&
nd->nd_procnum != NFSPROC_NULL) {
/*
* This should only occur when either the MDS or
* a client has an RPC against a DS fail.
* This happens because these cases use "soft"
* connections that can time out and fail.
* The slot used for this RPC is now in a
* non-deterministic state, but if the slot isn't
* free'd, threads can get stuck waiting for a slot.
*/
if (sep == NULL)
sep = nfsmnt_mdssession(nmp);
/*
* Bump the sequence# out of range, so that reuse of
* this slot will result in an NFSERR_SEQMISORDERED
* error and not a bogus cached RPC reply.
*/
mtx_lock(&sep->nfsess_mtx);
sep->nfsess_slotseq[nd->nd_slotid] += 10;
mtx_unlock(&sep->nfsess_mtx);
/* And free the slot. */
nfsv4_freeslot(sep, nd->nd_slotid);
}
NFSINCRGLOBAL(nfsstatsv1.rpcinvalid);
error = ENXIO;
} else {
NFSINCRGLOBAL(nfsstatsv1.rpcinvalid);
error = EACCES;
}
if (error) {
m_freem(nd->nd_mreq);
if (usegssname == 0)
AUTH_DESTROY(auth);
if (rep != NULL)
free(rep, M_NFSDREQ);
if (set_sigset)
newnfs_restore_sigmask(td, &oldset);
return (error);
}
KASSERT(nd->nd_mrep != NULL, ("mrep shouldn't be NULL if no error\n"));
/*
* Search for any mbufs that are not a multiple of 4 bytes long
* or with m_data not longword aligned.
* These could cause pointer alignment problems, so copy them to
* well aligned mbufs.
*/
newnfs_realign(&nd->nd_mrep, M_WAITOK);
nd->nd_md = nd->nd_mrep;
nd->nd_dpos = mtod(nd->nd_md, caddr_t);
nd->nd_repstat = 0;
if (nd->nd_procnum != NFSPROC_NULL &&
nd->nd_procnum != NFSV4PROC_CBNULL) {
/* If sep == NULL, set it to the default in nmp. */
if (sep == NULL && nmp != NULL)
sep = nfsmnt_mdssession(nmp);
/*
* and now the actual NFS xdr.
*/
NFSM_DISSECT(tl, u_int32_t *, NFSX_UNSIGNED);
nd->nd_repstat = fxdr_unsigned(u_int32_t, *tl);
if (nd->nd_repstat >= 10000)
NFSCL_DEBUG(1, "proc=%d reps=%d\n", (int)nd->nd_procnum,
(int)nd->nd_repstat);
/*
* Get rid of the tag, return count and SEQUENCE result for
* NFSv4.
*/
if ((nd->nd_flag & ND_NFSV4) != 0 && nd->nd_repstat !=
NFSERR_MINORVERMISMATCH) {
NFSM_DISSECT(tl, u_int32_t *, NFSX_UNSIGNED);
i = fxdr_unsigned(int, *tl);
error = nfsm_advance(nd, NFSM_RNDUP(i), -1);
if (error)
goto nfsmout;
NFSM_DISSECT(tl, u_int32_t *, 3 * NFSX_UNSIGNED);
opcnt = fxdr_unsigned(int, *tl++);
i = fxdr_unsigned(int, *tl++);
j = fxdr_unsigned(int, *tl);
if (j >= 10000)
NFSCL_DEBUG(1, "fop=%d fst=%d\n", i, j);
/*
* If the first op is Sequence, free up the slot.
*/
if ((nmp != NULL && i == NFSV4OP_SEQUENCE && j != 0) ||
(clp != NULL && i == NFSV4OP_CBSEQUENCE && j != 0))
NFSCL_DEBUG(1, "failed seq=%d\n", j);
if (((nmp != NULL && i == NFSV4OP_SEQUENCE && j == 0) ||
(clp != NULL && i == NFSV4OP_CBSEQUENCE &&
j == 0)) && sep != NULL) {
if (i == NFSV4OP_SEQUENCE)
NFSM_DISSECT(tl, uint32_t *,
NFSX_V4SESSIONID +
5 * NFSX_UNSIGNED);
else
NFSM_DISSECT(tl, uint32_t *,
NFSX_V4SESSIONID +
4 * NFSX_UNSIGNED);
mtx_lock(&sep->nfsess_mtx);
if (bcmp(tl, sep->nfsess_sessionid,
NFSX_V4SESSIONID) == 0) {
tl += NFSX_V4SESSIONID / NFSX_UNSIGNED;
retseq = fxdr_unsigned(uint32_t, *tl++);
slot = fxdr_unsigned(int, *tl++);
freeslot = slot;
if (retseq != sep->nfsess_slotseq[slot])
printf("retseq diff 0x%x\n",
retseq);
retval = fxdr_unsigned(uint32_t, *++tl);
if ((retval + 1) < sep->nfsess_foreslots
)
sep->nfsess_foreslots = (retval
+ 1);
else if ((retval + 1) >
sep->nfsess_foreslots)
sep->nfsess_foreslots = (retval
< 64) ? (retval + 1) : 64;
}
mtx_unlock(&sep->nfsess_mtx);
/* Grab the op and status for the next one. */
if (opcnt > 1) {
NFSM_DISSECT(tl, uint32_t *,
2 * NFSX_UNSIGNED);
i = fxdr_unsigned(int, *tl++);
j = fxdr_unsigned(int, *tl);
}
}
}
if (nd->nd_repstat != 0) {
if (nd->nd_repstat == NFSERR_BADSESSION &&
nmp != NULL && dssep == NULL &&
(nd->nd_flag & ND_NFSV41) != 0) {
/*
* If this is a client side MDS RPC, mark
* the MDS session defunct and initiate
* recovery, as required.
* The nfsess_defunct field is protected by
* the NFSLOCKMNT()/nm_mtx lock and not the
* nfsess_mtx lock to simplify its handling,
* for the MDS session. This lock is also
* sufficient for nfsess_sessionid, since it
* never changes in the structure.
*/
NFSCL_DEBUG(1, "Got badsession\n");
NFSLOCKCLSTATE();
NFSLOCKMNT(nmp);
sep = NFSMNT_MDSSESSION(nmp);
if (bcmp(sep->nfsess_sessionid, nd->nd_sequence,
NFSX_V4SESSIONID) == 0) {
/* Initiate recovery. */
sep->nfsess_defunct = 1;
NFSCL_DEBUG(1, "Marked defunct\n");
if (nmp->nm_clp != NULL) {
nmp->nm_clp->nfsc_flags |=
NFSCLFLAGS_RECOVER;
wakeup(nmp->nm_clp);
}
}
NFSUNLOCKCLSTATE();
/*
* Sleep for up to 1sec waiting for a new
* session.
*/
mtx_sleep(&nmp->nm_sess, &nmp->nm_mtx, PZERO,
"nfsbadsess", hz);
/*
* Get the session again, in case a new one
* has been created during the sleep.
*/
sep = NFSMNT_MDSSESSION(nmp);
NFSUNLOCKMNT(nmp);
if ((nd->nd_flag & ND_LOOPBADSESS) != 0) {
reterr = nfsv4_sequencelookup(nmp, sep,
&slotpos, &maxslot, &slotseq,
sessionid);
if (reterr == 0) {
/* Fill in new session info. */
NFSCL_DEBUG(1,
"Filling in new sequence\n");
tl = nd->nd_sequence;
bcopy(sessionid, tl,
NFSX_V4SESSIONID);
tl += NFSX_V4SESSIONID /
NFSX_UNSIGNED;
*tl++ = txdr_unsigned(slotseq);
*tl++ = txdr_unsigned(slotpos);
*tl = txdr_unsigned(maxslot);
}
if (reterr == NFSERR_BADSESSION ||
reterr == 0) {
NFSCL_DEBUG(1,
"Badsession looping\n");
m_freem(nd->nd_mrep);
nd->nd_mrep = NULL;
goto tryagain;
}
nd->nd_repstat = reterr;
NFSCL_DEBUG(1, "Got err=%d\n", reterr);
}
}
/*
* When clp != NULL, it is a callback and all
* callback operations can be retried for NFSERR_DELAY.
*/
if (((nd->nd_repstat == NFSERR_DELAY ||
nd->nd_repstat == NFSERR_GRACE) &&
(nd->nd_flag & ND_NFSV4) && (clp != NULL ||
(nd->nd_procnum != NFSPROC_DELEGRETURN &&
nd->nd_procnum != NFSPROC_SETATTR &&
nd->nd_procnum != NFSPROC_READ &&
nd->nd_procnum != NFSPROC_READDS &&
nd->nd_procnum != NFSPROC_WRITE &&
nd->nd_procnum != NFSPROC_WRITEDS &&
nd->nd_procnum != NFSPROC_OPEN &&
nd->nd_procnum != NFSPROC_CREATE &&
nd->nd_procnum != NFSPROC_OPENCONFIRM &&
nd->nd_procnum != NFSPROC_OPENDOWNGRADE &&
nd->nd_procnum != NFSPROC_CLOSE &&
nd->nd_procnum != NFSPROC_LOCK &&
nd->nd_procnum != NFSPROC_LOCKU))) ||
(nd->nd_repstat == NFSERR_DELAY &&
(nd->nd_flag & ND_NFSV4) == 0) ||
nd->nd_repstat == NFSERR_RESOURCE) {
if (trylater_delay > NFS_TRYLATERDEL)
trylater_delay = NFS_TRYLATERDEL;
waituntil = NFSD_MONOSEC + trylater_delay;
while (NFSD_MONOSEC < waituntil)
(void) nfs_catnap(PZERO, 0, "nfstry");
trylater_delay *= 2;
if (slot != -1) {
mtx_lock(&sep->nfsess_mtx);
sep->nfsess_slotseq[slot]++;
*nd->nd_slotseq = txdr_unsigned(
sep->nfsess_slotseq[slot]);
mtx_unlock(&sep->nfsess_mtx);
}
m_freem(nd->nd_mrep);
nd->nd_mrep = NULL;
goto tryagain;
}
/*
* If the File Handle was stale, invalidate the
* lookup cache, just in case.
* (vp != NULL implies a client side call)
*/
if (nd->nd_repstat == ESTALE && vp != NULL) {
cache_purge(vp);
if (ncl_call_invalcaches != NULL)
(*ncl_call_invalcaches)(vp);
}
}
if ((nd->nd_flag & ND_NFSV4) != 0) {
/* Free the slot, as required. */
if (freeslot != -1)
nfsv4_freeslot(sep, freeslot);
/*
* If this op is Putfh, throw its results away.
*/
if (j >= 10000)
NFSCL_DEBUG(1, "nop=%d nst=%d\n", i, j);
if (nmp != NULL && i == NFSV4OP_PUTFH && j == 0) {
NFSM_DISSECT(tl,u_int32_t *,2 * NFSX_UNSIGNED);
i = fxdr_unsigned(int, *tl++);
j = fxdr_unsigned(int, *tl);
if (j >= 10000)
NFSCL_DEBUG(1, "n2op=%d n2st=%d\n", i,
j);
/*
* All Compounds that do an Op that must
* be in sequence consist of NFSV4OP_PUTFH
* followed by one of these. As such, we
* can determine if the seqid# should be
* incremented, here.
*/
if ((i == NFSV4OP_OPEN ||
i == NFSV4OP_OPENCONFIRM ||
i == NFSV4OP_OPENDOWNGRADE ||
i == NFSV4OP_CLOSE ||
i == NFSV4OP_LOCK ||
i == NFSV4OP_LOCKU) &&
(j == 0 ||
(j != NFSERR_STALECLIENTID &&
j != NFSERR_STALESTATEID &&
j != NFSERR_BADSTATEID &&
j != NFSERR_BADSEQID &&
j != NFSERR_BADXDR &&
j != NFSERR_RESOURCE &&
j != NFSERR_NOFILEHANDLE)))
nd->nd_flag |= ND_INCRSEQID;
}
/*
* If this op's status is non-zero, mark
* that there is no more data to process.
* The exception is Setattr, which always has xdr
* when it has failed.
*/
if (j != 0 && i != NFSV4OP_SETATTR)
nd->nd_flag |= ND_NOMOREDATA;
/*
* If R_DONTRECOVER is set, replace the stale error
* reply, so that recovery isn't initiated.
*/
if ((nd->nd_repstat == NFSERR_STALECLIENTID ||
nd->nd_repstat == NFSERR_BADSESSION ||
nd->nd_repstat == NFSERR_STALESTATEID) &&
rep != NULL && (rep->r_flags & R_DONTRECOVER))
nd->nd_repstat = NFSERR_STALEDONTRECOVER;
}
}
#ifdef KDTRACE_HOOKS
if (nmp != NULL && dtrace_nfscl_nfs234_done_probe != NULL) {
uint32_t probe_id;
int probe_procnum;
if (nd->nd_flag & ND_NFSV4) {
probe_id = nfscl_nfs4_done_probes[nd->nd_procnum];
probe_procnum = nd->nd_procnum;
} else if (nd->nd_flag & ND_NFSV3) {
probe_id = nfscl_nfs3_done_probes[procnum];
probe_procnum = procnum;
} else {
probe_id = nfscl_nfs2_done_probes[nd->nd_procnum];
probe_procnum = procnum;
}
if (probe_id != 0)
(dtrace_nfscl_nfs234_done_probe)(probe_id, vp,
nd->nd_mreq, cred, probe_procnum, 0);
}
#endif
m_freem(nd->nd_mreq);
if (usegssname == 0)
AUTH_DESTROY(auth);
if (rep != NULL)
free(rep, M_NFSDREQ);
if (set_sigset)
newnfs_restore_sigmask(td, &oldset);
return (0);
nfsmout:
m_freem(nd->nd_mrep);
m_freem(nd->nd_mreq);
if (usegssname == 0)
AUTH_DESTROY(auth);
if (rep != NULL)
free(rep, M_NFSDREQ);
if (set_sigset)
newnfs_restore_sigmask(td, &oldset);
return (error);
}
/*
* Mark all of an nfs mount's outstanding requests with R_SOFTTERM and
* wait for all requests to complete. This is used by forced unmounts
* to terminate any outstanding RPCs.
*/
int
newnfs_nmcancelreqs(struct nfsmount *nmp)
{
struct nfsclds *dsp;
struct __rpc_client *cl;
if (nmp->nm_sockreq.nr_client != NULL)
CLNT_CLOSE(nmp->nm_sockreq.nr_client);
lookformore:
NFSLOCKMNT(nmp);
TAILQ_FOREACH(dsp, &nmp->nm_sess, nfsclds_list) {
NFSLOCKDS(dsp);
if (dsp != TAILQ_FIRST(&nmp->nm_sess) &&
(dsp->nfsclds_flags & NFSCLDS_CLOSED) == 0 &&
dsp->nfsclds_sockp != NULL &&
dsp->nfsclds_sockp->nr_client != NULL) {
dsp->nfsclds_flags |= NFSCLDS_CLOSED;
cl = dsp->nfsclds_sockp->nr_client;
NFSUNLOCKDS(dsp);
NFSUNLOCKMNT(nmp);
CLNT_CLOSE(cl);
goto lookformore;
}
NFSUNLOCKDS(dsp);
}
NFSUNLOCKMNT(nmp);
return (0);
}
/*
* Any signal that can interrupt an NFS operation in an intr mount
* should be added to this set. SIGSTOP and SIGKILL cannot be masked.
*/
int newnfs_sig_set[] = {
SIGINT,
SIGTERM,
SIGHUP,
SIGKILL,
SIGQUIT
};
/*
* Check to see if one of the signals in our subset is pending on
* the process (in an intr mount).
*/
static int
nfs_sig_pending(sigset_t set)
{
int i;
for (i = 0 ; i < nitems(newnfs_sig_set); i++)
if (SIGISMEMBER(set, newnfs_sig_set[i]))
return (1);
return (0);
}
/*
* The set/restore sigmask functions are used to (temporarily) overwrite
* the thread td_sigmask during an RPC call (for example). These are also
* used in other places in the NFS client that might tsleep().
*/
void
newnfs_set_sigmask(struct thread *td, sigset_t *oldset)
{
sigset_t newset;
int i;
struct proc *p;
SIGFILLSET(newset);
if (td == NULL)
td = curthread; /* XXX */
p = td->td_proc;
/* Remove the NFS set of signals from newset */
PROC_LOCK(p);
mtx_lock(&p->p_sigacts->ps_mtx);
for (i = 0 ; i < nitems(newnfs_sig_set); i++) {
/*
* But make sure we leave the ones already masked
* by the process, ie. remove the signal from the
* temporary signalmask only if it wasn't already
* in p_sigmask.
*/
if (!SIGISMEMBER(td->td_sigmask, newnfs_sig_set[i]) &&
!SIGISMEMBER(p->p_sigacts->ps_sigignore, newnfs_sig_set[i]))
SIGDELSET(newset, newnfs_sig_set[i]);
}
mtx_unlock(&p->p_sigacts->ps_mtx);
kern_sigprocmask(td, SIG_SETMASK, &newset, oldset,
SIGPROCMASK_PROC_LOCKED);
PROC_UNLOCK(p);
}
void
newnfs_restore_sigmask(struct thread *td, sigset_t *set)
{
if (td == NULL)
td = curthread; /* XXX */
kern_sigprocmask(td, SIG_SETMASK, set, NULL, 0);
}
/*
* NFS wrapper to msleep(), that shoves a new p_sigmask and restores the
* old one after msleep() returns.
*/
int
newnfs_msleep(struct thread *td, void *ident, struct mtx *mtx, int priority, char *wmesg, int timo)
{
sigset_t oldset;
int error;
if ((priority & PCATCH) == 0)
return msleep(ident, mtx, priority, wmesg, timo);
if (td == NULL)
td = curthread; /* XXX */
newnfs_set_sigmask(td, &oldset);
error = msleep(ident, mtx, priority, wmesg, timo);
newnfs_restore_sigmask(td, &oldset);
return (error);
}
/*
* Test for a termination condition pending on the process.
* This is used for NFSMNT_INT mounts.
*/
int
newnfs_sigintr(struct nfsmount *nmp, struct thread *td)
{
struct proc *p;
sigset_t tmpset;
/* Terminate all requests while attempting a forced unmount. */
if (NFSCL_FORCEDISM(nmp->nm_mountp))
return (EIO);
if (!(nmp->nm_flag & NFSMNT_INT))
return (0);
if (td == NULL)
return (0);
p = td->td_proc;
PROC_LOCK(p);
tmpset = p->p_siglist;
SIGSETOR(tmpset, td->td_siglist);
SIGSETNAND(tmpset, td->td_sigmask);
mtx_lock(&p->p_sigacts->ps_mtx);
SIGSETNAND(tmpset, p->p_sigacts->ps_sigignore);
mtx_unlock(&p->p_sigacts->ps_mtx);
if ((SIGNOTEMPTY(p->p_siglist) || SIGNOTEMPTY(td->td_siglist))
&& nfs_sig_pending(tmpset)) {
PROC_UNLOCK(p);
return (EINTR);
}
PROC_UNLOCK(p);
return (0);
}
static int
nfs_msg(struct thread *td, const char *server, const char *msg, int error)
{
struct proc *p;
p = td ? td->td_proc : NULL;
if (error) {
tprintf(p, LOG_INFO, "nfs server %s: %s, error %d\n",
server, msg, error);
} else {
tprintf(p, LOG_INFO, "nfs server %s: %s\n", server, msg);
}
return (0);
}
static void
nfs_down(struct nfsmount *nmp, struct thread *td, const char *msg,
int error, int flags)
{
if (nmp == NULL)
return;
mtx_lock(&nmp->nm_mtx);
if ((flags & NFSSTA_TIMEO) && !(nmp->nm_state & NFSSTA_TIMEO)) {
nmp->nm_state |= NFSSTA_TIMEO;
mtx_unlock(&nmp->nm_mtx);
vfs_event_signal(&nmp->nm_mountp->mnt_stat.f_fsid,
VQ_NOTRESP, 0);
} else
mtx_unlock(&nmp->nm_mtx);
mtx_lock(&nmp->nm_mtx);
if ((flags & NFSSTA_LOCKTIMEO) && !(nmp->nm_state & NFSSTA_LOCKTIMEO)) {
nmp->nm_state |= NFSSTA_LOCKTIMEO;
mtx_unlock(&nmp->nm_mtx);
vfs_event_signal(&nmp->nm_mountp->mnt_stat.f_fsid,
VQ_NOTRESPLOCK, 0);
} else
mtx_unlock(&nmp->nm_mtx);
nfs_msg(td, nmp->nm_mountp->mnt_stat.f_mntfromname, msg, error);
}
static void
nfs_up(struct nfsmount *nmp, struct thread *td, const char *msg,
int flags, int tprintfmsg)
{
if (nmp == NULL)
return;
if (tprintfmsg) {
nfs_msg(td, nmp->nm_mountp->mnt_stat.f_mntfromname, msg, 0);
}
mtx_lock(&nmp->nm_mtx);
if ((flags & NFSSTA_TIMEO) && (nmp->nm_state & NFSSTA_TIMEO)) {
nmp->nm_state &= ~NFSSTA_TIMEO;
mtx_unlock(&nmp->nm_mtx);
vfs_event_signal(&nmp->nm_mountp->mnt_stat.f_fsid,
VQ_NOTRESP, 1);
} else
mtx_unlock(&nmp->nm_mtx);
mtx_lock(&nmp->nm_mtx);
if ((flags & NFSSTA_LOCKTIMEO) && (nmp->nm_state & NFSSTA_LOCKTIMEO)) {
nmp->nm_state &= ~NFSSTA_LOCKTIMEO;
mtx_unlock(&nmp->nm_mtx);
vfs_event_signal(&nmp->nm_mountp->mnt_stat.f_fsid,
VQ_NOTRESPLOCK, 1);
} else
mtx_unlock(&nmp->nm_mtx);
}