njl 1567a26ec0 AcpiAcquireGlobalLock() can sometimes sleep if the mutex is contested.
The global lock is a memory region shared with the BIOS and thus
has some strange behavior like the fact that the sleep is 1 ms max.
We use standard mutexes to synchronize with the SCI so acquiring
the global lock after locking the mutex resulted in a witness
warning.

To deal with this for now, acquire the global lock before all other
locks, similar to Giant.  This should fix the witness "sleeping
with mutex held" issue on boot that occurred after the last ACPI-CA
import.  In the future, we hope to move to the new mutex interface
in ACPI-CA instead of the pseudo-semaphore version we have now.

Reviewed by:    jkim
2007-06-02 19:21:40 +00:00

1133 lines
36 KiB
C

/*-
* Copyright (c) 2003 Nate Lawson
* Copyright (c) 2000 Michael Smith
* Copyright (c) 2000 BSDi
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
/*-
******************************************************************************
*
* 1. Copyright Notice
*
* Some or all of this work - Copyright (c) 1999, Intel Corp. All rights
* reserved.
*
* 2. License
*
* 2.1. This is your license from Intel Corp. under its intellectual property
* rights. You may have additional license terms from the party that provided
* you this software, covering your right to use that party's intellectual
* property rights.
*
* 2.2. Intel grants, free of charge, to any person ("Licensee") obtaining a
* copy of the source code appearing in this file ("Covered Code") an
* irrevocable, perpetual, worldwide license under Intel's copyrights in the
* base code distributed originally by Intel ("Original Intel Code") to copy,
* make derivatives, distribute, use and display any portion of the Covered
* Code in any form, with the right to sublicense such rights; and
*
* 2.3. Intel grants Licensee a non-exclusive and non-transferable patent
* license (with the right to sublicense), under only those claims of Intel
* patents that are infringed by the Original Intel Code, to make, use, sell,
* offer to sell, and import the Covered Code and derivative works thereof
* solely to the minimum extent necessary to exercise the above copyright
* license, and in no event shall the patent license extend to any additions
* to or modifications of the Original Intel Code. No other license or right
* is granted directly or by implication, estoppel or otherwise;
*
* The above copyright and patent license is granted only if the following
* conditions are met:
*
* 3. Conditions
*
* 3.1. Redistribution of Source with Rights to Further Distribute Source.
* Redistribution of source code of any substantial portion of the Covered
* Code or modification with rights to further distribute source must include
* the above Copyright Notice, the above License, this list of Conditions,
* and the following Disclaimer and Export Compliance provision. In addition,
* Licensee must cause all Covered Code to which Licensee contributes to
* contain a file documenting the changes Licensee made to create that Covered
* Code and the date of any change. Licensee must include in that file the
* documentation of any changes made by any predecessor Licensee. Licensee
* must include a prominent statement that the modification is derived,
* directly or indirectly, from Original Intel Code.
*
* 3.2. Redistribution of Source with no Rights to Further Distribute Source.
* Redistribution of source code of any substantial portion of the Covered
* Code or modification without rights to further distribute source must
* include the following Disclaimer and Export Compliance provision in the
* documentation and/or other materials provided with distribution. In
* addition, Licensee may not authorize further sublicense of source of any
* portion of the Covered Code, and must include terms to the effect that the
* license from Licensee to its licensee is limited to the intellectual
* property embodied in the software Licensee provides to its licensee, and
* not to intellectual property embodied in modifications its licensee may
* make.
*
* 3.3. Redistribution of Executable. Redistribution in executable form of any
* substantial portion of the Covered Code or modification must reproduce the
* above Copyright Notice, and the following Disclaimer and Export Compliance
* provision in the documentation and/or other materials provided with the
* distribution.
*
* 3.4. Intel retains all right, title, and interest in and to the Original
* Intel Code.
*
* 3.5. Neither the name Intel nor any other trademark owned or controlled by
* Intel shall be used in advertising or otherwise to promote the sale, use or
* other dealings in products derived from or relating to the Covered Code
* without prior written authorization from Intel.
*
* 4. Disclaimer and Export Compliance
*
* 4.1. INTEL MAKES NO WARRANTY OF ANY KIND REGARDING ANY SOFTWARE PROVIDED
* HERE. ANY SOFTWARE ORIGINATING FROM INTEL OR DERIVED FROM INTEL SOFTWARE
* IS PROVIDED "AS IS," AND INTEL WILL NOT PROVIDE ANY SUPPORT, ASSISTANCE,
* INSTALLATION, TRAINING OR OTHER SERVICES. INTEL WILL NOT PROVIDE ANY
* UPDATES, ENHANCEMENTS OR EXTENSIONS. INTEL SPECIFICALLY DISCLAIMS ANY
* IMPLIED WARRANTIES OF MERCHANTABILITY, NONINFRINGEMENT AND FITNESS FOR A
* PARTICULAR PURPOSE.
*
* 4.2. IN NO EVENT SHALL INTEL HAVE ANY LIABILITY TO LICENSEE, ITS LICENSEES
* OR ANY OTHER THIRD PARTY, FOR ANY LOST PROFITS, LOST DATA, LOSS OF USE OR
* COSTS OF PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES, OR FOR ANY INDIRECT,
* SPECIAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THIS AGREEMENT, UNDER ANY
* CAUSE OF ACTION OR THEORY OF LIABILITY, AND IRRESPECTIVE OF WHETHER INTEL
* HAS ADVANCE NOTICE OF THE POSSIBILITY OF SUCH DAMAGES. THESE LIMITATIONS
* SHALL APPLY NOTWITHSTANDING THE FAILURE OF THE ESSENTIAL PURPOSE OF ANY
* LIMITED REMEDY.
*
* 4.3. Licensee shall not export, either directly or indirectly, any of this
* software or system incorporating such software without first obtaining any
* required license or other approval from the U. S. Department of Commerce or
* any other agency or department of the United States Government. In the
* event Licensee exports any such software from the United States or
* re-exports any such software from a foreign destination, Licensee shall
* ensure that the distribution and export/re-export of the software is in
* compliance with all laws, regulations, orders, or other restrictions of the
* U.S. Export Administration Regulations. Licensee agrees that neither it nor
* any of its subsidiaries will export/re-export any technical data, process,
* software, or service, directly or indirectly, to any country for which the
* United States government or any agency thereof requires an export license,
* other governmental approval, or letter of assurance, without first obtaining
* such license, approval or letter.
*
*****************************************************************************/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include "opt_acpi.h"
#include <sys/param.h>
#include <sys/kernel.h>
#include <sys/bus.h>
#include <sys/lock.h>
#include <sys/malloc.h>
#include <sys/module.h>
#include <sys/sx.h>
#include <machine/bus.h>
#include <machine/resource.h>
#include <sys/rman.h>
#include <contrib/dev/acpica/acpi.h>
#include <dev/acpica/acpivar.h>
/* Hooks for the ACPI CA debugging infrastructure */
#define _COMPONENT ACPI_EC
ACPI_MODULE_NAME("EC")
/*
* EC_COMMAND:
* -----------
*/
typedef UINT8 EC_COMMAND;
#define EC_COMMAND_UNKNOWN ((EC_COMMAND) 0x00)
#define EC_COMMAND_READ ((EC_COMMAND) 0x80)
#define EC_COMMAND_WRITE ((EC_COMMAND) 0x81)
#define EC_COMMAND_BURST_ENABLE ((EC_COMMAND) 0x82)
#define EC_COMMAND_BURST_DISABLE ((EC_COMMAND) 0x83)
#define EC_COMMAND_QUERY ((EC_COMMAND) 0x84)
/*
* EC_STATUS:
* ----------
* The encoding of the EC status register is illustrated below.
* Note that a set bit (1) indicates the property is TRUE
* (e.g. if bit 0 is set then the output buffer is full).
* +-+-+-+-+-+-+-+-+
* |7|6|5|4|3|2|1|0|
* +-+-+-+-+-+-+-+-+
* | | | | | | | |
* | | | | | | | +- Output Buffer Full?
* | | | | | | +--- Input Buffer Full?
* | | | | | +----- <reserved>
* | | | | +------- Data Register is Command Byte?
* | | | +--------- Burst Mode Enabled?
* | | +----------- SCI Event?
* | +------------- SMI Event?
* +--------------- <reserved>
*
*/
typedef UINT8 EC_STATUS;
#define EC_FLAG_OUTPUT_BUFFER ((EC_STATUS) 0x01)
#define EC_FLAG_INPUT_BUFFER ((EC_STATUS) 0x02)
#define EC_FLAG_DATA_IS_CMD ((EC_STATUS) 0x08)
#define EC_FLAG_BURST_MODE ((EC_STATUS) 0x10)
/*
* EC_EVENT:
* ---------
*/
typedef UINT8 EC_EVENT;
#define EC_EVENT_UNKNOWN ((EC_EVENT) 0x00)
#define EC_EVENT_OUTPUT_BUFFER_FULL ((EC_EVENT) 0x01)
#define EC_EVENT_INPUT_BUFFER_EMPTY ((EC_EVENT) 0x02)
#define EC_EVENT_SCI ((EC_EVENT) 0x20)
#define EC_EVENT_SMI ((EC_EVENT) 0x40)
/* Data byte returned after burst enable indicating it was successful. */
#define EC_BURST_ACK 0x90
/*
* Register access primitives
*/
#define EC_GET_DATA(sc) \
bus_space_read_1((sc)->ec_data_tag, (sc)->ec_data_handle, 0)
#define EC_SET_DATA(sc, v) \
bus_space_write_1((sc)->ec_data_tag, (sc)->ec_data_handle, 0, (v))
#define EC_GET_CSR(sc) \
bus_space_read_1((sc)->ec_csr_tag, (sc)->ec_csr_handle, 0)
#define EC_SET_CSR(sc, v) \
bus_space_write_1((sc)->ec_csr_tag, (sc)->ec_csr_handle, 0, (v))
/* Additional params to pass from the probe routine */
struct acpi_ec_params {
int glk;
int gpe_bit;
ACPI_HANDLE gpe_handle;
int uid;
};
/* Indicate that this device has already been probed via ECDT. */
#define DEV_ECDT(x) (acpi_get_magic(x) == (int)&acpi_ec_devclass)
/*
* Driver softc.
*/
struct acpi_ec_softc {
device_t ec_dev;
ACPI_HANDLE ec_handle;
int ec_uid;
ACPI_HANDLE ec_gpehandle;
UINT8 ec_gpebit;
UINT8 ec_csrvalue;
int ec_data_rid;
struct resource *ec_data_res;
bus_space_tag_t ec_data_tag;
bus_space_handle_t ec_data_handle;
int ec_csr_rid;
struct resource *ec_csr_res;
bus_space_tag_t ec_csr_tag;
bus_space_handle_t ec_csr_handle;
struct mtx ec_mtx;
int ec_glk;
int ec_glkhandle;
int ec_burstactive;
int ec_sci_pend;
};
/*
* XXX njl
* I couldn't find it in the spec but other implementations also use a
* value of 1 ms for the time to acquire global lock.
*/
#define EC_LOCK_TIMEOUT 1000
/* Default delay in microseconds between each run of the status polling loop. */
#define EC_POLL_DELAY 10
/* Default time in microseconds spent polling before sleep waiting. */
#define EC_POLL_TIME 500
/* Total time in ms spent waiting for a response from EC. */
#define EC_TIMEOUT 500
#define EVENT_READY(event, status) \
(((event) == EC_EVENT_OUTPUT_BUFFER_FULL && \
((status) & EC_FLAG_OUTPUT_BUFFER) != 0) || \
((event) == EC_EVENT_INPUT_BUFFER_EMPTY && \
((status) & EC_FLAG_INPUT_BUFFER) == 0))
ACPI_SERIAL_DECL(ec, "ACPI embedded controller");
SYSCTL_DECL(_debug_acpi);
SYSCTL_NODE(_debug_acpi, OID_AUTO, ec, CTLFLAG_RD, NULL, "EC debugging");
static int ec_burst_mode;
TUNABLE_INT("debug.acpi.ec.burst", &ec_burst_mode);
SYSCTL_INT(_debug_acpi_ec, OID_AUTO, burst, CTLFLAG_RW, &ec_burst_mode, 0,
"Enable use of burst mode (faster for nearly all systems)");
static int ec_poll_time = EC_POLL_TIME;
TUNABLE_INT("debug.acpi.ec.poll_time", &ec_poll_time);
SYSCTL_INT(_debug_acpi_ec, OID_AUTO, poll_time, CTLFLAG_RW, &ec_poll_time,
EC_POLL_TIME, "Time spent polling vs. sleeping (CPU intensive)");
static int ec_timeout = EC_TIMEOUT;
TUNABLE_INT("debug.acpi.ec.timeout", &ec_timeout);
SYSCTL_INT(_debug_acpi_ec, OID_AUTO, timeout, CTLFLAG_RW, &ec_timeout,
EC_TIMEOUT, "Total time spent waiting for a response (poll+sleep)");
static __inline ACPI_STATUS
EcLock(struct acpi_ec_softc *sc, int serialize)
{
ACPI_STATUS status;
/* If _GLK is non-zero, acquire the global lock. */
status = AE_OK;
if (sc->ec_glk) {
status = AcpiAcquireGlobalLock(EC_LOCK_TIMEOUT, &sc->ec_glkhandle);
if (ACPI_FAILURE(status))
return (status);
}
/*
* If caller is executing a series of commands, acquire the exclusive lock
* to serialize with other users.
* To sync with bottom-half interrupt handler, always acquire the mutex.
*/
if (serialize)
ACPI_SERIAL_BEGIN(ec);
mtx_lock(&sc->ec_mtx);
return (status);
}
static __inline void
EcUnlock(struct acpi_ec_softc *sc)
{
mtx_unlock(&sc->ec_mtx);
if (sx_xlocked(&ec_sxlock))
ACPI_SERIAL_END(ec);
if (sc->ec_glk)
AcpiReleaseGlobalLock(sc->ec_glkhandle);
}
static uint32_t EcGpeHandler(void *Context);
static ACPI_STATUS EcSpaceSetup(ACPI_HANDLE Region, UINT32 Function,
void *Context, void **return_Context);
static ACPI_STATUS EcSpaceHandler(UINT32 Function,
ACPI_PHYSICAL_ADDRESS Address,
UINT32 width, ACPI_INTEGER *Value,
void *Context, void *RegionContext);
static ACPI_STATUS EcWaitEvent(struct acpi_ec_softc *sc, EC_EVENT Event);
static ACPI_STATUS EcCommand(struct acpi_ec_softc *sc, EC_COMMAND cmd);
static ACPI_STATUS EcRead(struct acpi_ec_softc *sc, UINT8 Address,
UINT8 *Data);
static ACPI_STATUS EcWrite(struct acpi_ec_softc *sc, UINT8 Address,
UINT8 *Data);
static int acpi_ec_probe(device_t dev);
static int acpi_ec_attach(device_t dev);
static int acpi_ec_shutdown(device_t dev);
static int acpi_ec_read_method(device_t dev, u_int addr,
ACPI_INTEGER *val, int width);
static int acpi_ec_write_method(device_t dev, u_int addr,
ACPI_INTEGER val, int width);
static device_method_t acpi_ec_methods[] = {
/* Device interface */
DEVMETHOD(device_probe, acpi_ec_probe),
DEVMETHOD(device_attach, acpi_ec_attach),
DEVMETHOD(device_shutdown, acpi_ec_shutdown),
/* Embedded controller interface */
DEVMETHOD(acpi_ec_read, acpi_ec_read_method),
DEVMETHOD(acpi_ec_write, acpi_ec_write_method),
{0, 0}
};
static driver_t acpi_ec_driver = {
"acpi_ec",
acpi_ec_methods,
sizeof(struct acpi_ec_softc),
};
static devclass_t acpi_ec_devclass;
DRIVER_MODULE(acpi_ec, acpi, acpi_ec_driver, acpi_ec_devclass, 0, 0);
MODULE_DEPEND(acpi_ec, acpi, 1, 1, 1);
/*
* Look for an ECDT and if we find one, set up default GPE and
* space handlers to catch attempts to access EC space before
* we have a real driver instance in place.
* TODO: if people report invalid ECDTs, add a tunable to disable them.
*/
void
acpi_ec_ecdt_probe(device_t parent)
{
ACPI_TABLE_ECDT *ecdt;
ACPI_STATUS status;
device_t child;
ACPI_HANDLE h;
struct acpi_ec_params *params;
ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__);
/* Find and validate the ECDT. */
status = AcpiGetTable(ACPI_SIG_ECDT, 1, (ACPI_TABLE_HEADER **)&ecdt);
if (ACPI_FAILURE(status) ||
ecdt->Control.BitWidth != 8 ||
ecdt->Data.BitWidth != 8) {
return;
}
/* Create the child device with the given unit number. */
child = BUS_ADD_CHILD(parent, 0, "acpi_ec", ecdt->Uid);
if (child == NULL) {
printf("%s: can't add child\n", __func__);
return;
}
/* Find and save the ACPI handle for this device. */
status = AcpiGetHandle(NULL, ecdt->Id, &h);
if (ACPI_FAILURE(status)) {
device_delete_child(parent, child);
printf("%s: can't get handle\n", __func__);
return;
}
acpi_set_handle(child, h);
/* Set the data and CSR register addresses. */
bus_set_resource(child, SYS_RES_IOPORT, 0, ecdt->Data.Address,
/*count*/1);
bus_set_resource(child, SYS_RES_IOPORT, 1, ecdt->Control.Address,
/*count*/1);
/*
* Store values for the probe/attach routines to use. Store the
* ECDT GPE bit and set the global lock flag according to _GLK.
* Note that it is not perfectly correct to be evaluating a method
* before initializing devices, but in practice this function
* should be safe to call at this point.
*/
params = malloc(sizeof(struct acpi_ec_params), M_TEMP, M_WAITOK | M_ZERO);
params->gpe_handle = NULL;
params->gpe_bit = ecdt->Gpe;
params->uid = ecdt->Uid;
acpi_GetInteger(h, "_GLK", &params->glk);
acpi_set_private(child, params);
acpi_set_magic(child, (int)&acpi_ec_devclass);
/* Finish the attach process. */
if (device_probe_and_attach(child) != 0)
device_delete_child(parent, child);
}
static int
acpi_ec_probe(device_t dev)
{
ACPI_BUFFER buf;
ACPI_HANDLE h;
ACPI_OBJECT *obj;
ACPI_STATUS status;
device_t peer;
char desc[64];
int ret;
struct acpi_ec_params *params;
static char *ec_ids[] = { "PNP0C09", NULL };
/* Check that this is a device and that EC is not disabled. */
if (acpi_get_type(dev) != ACPI_TYPE_DEVICE || acpi_disabled("ec"))
return (ENXIO);
/*
* If probed via ECDT, set description and continue. Otherwise,
* we can access the namespace and make sure this is not a
* duplicate probe.
*/
ret = ENXIO;
params = NULL;
buf.Pointer = NULL;
buf.Length = ACPI_ALLOCATE_BUFFER;
if (DEV_ECDT(dev)) {
params = acpi_get_private(dev);
ret = 0;
} else if (!acpi_disabled("ec") &&
ACPI_ID_PROBE(device_get_parent(dev), dev, ec_ids)) {
params = malloc(sizeof(struct acpi_ec_params), M_TEMP,
M_WAITOK | M_ZERO);
h = acpi_get_handle(dev);
/*
* Read the unit ID to check for duplicate attach and the
* global lock value to see if we should acquire it when
* accessing the EC.
*/
status = acpi_GetInteger(h, "_UID", &params->uid);
if (ACPI_FAILURE(status))
params->uid = 0;
status = acpi_GetInteger(h, "_GLK", &params->glk);
if (ACPI_FAILURE(status))
params->glk = 0;
/*
* Evaluate the _GPE method to find the GPE bit used by the EC to
* signal status (SCI). If it's a package, it contains a reference
* and GPE bit, similar to _PRW.
*/
status = AcpiEvaluateObject(h, "_GPE", NULL, &buf);
if (ACPI_FAILURE(status)) {
device_printf(dev, "can't evaluate _GPE - %s\n",
AcpiFormatException(status));
goto out;
}
obj = (ACPI_OBJECT *)buf.Pointer;
if (obj == NULL)
goto out;
switch (obj->Type) {
case ACPI_TYPE_INTEGER:
params->gpe_handle = NULL;
params->gpe_bit = obj->Integer.Value;
break;
case ACPI_TYPE_PACKAGE:
if (!ACPI_PKG_VALID(obj, 2))
goto out;
params->gpe_handle =
acpi_GetReference(NULL, &obj->Package.Elements[0]);
if (params->gpe_handle == NULL ||
acpi_PkgInt32(obj, 1, &params->gpe_bit) != 0)
goto out;
break;
default:
device_printf(dev, "_GPE has invalid type %d\n", obj->Type);
goto out;
}
/* Store the values we got from the namespace for attach. */
acpi_set_private(dev, params);
/*
* Check for a duplicate probe. This can happen when a probe
* via ECDT succeeded already. If this is a duplicate, disable
* this device.
*/
peer = devclass_get_device(acpi_ec_devclass, params->uid);
if (peer == NULL || !device_is_alive(peer))
ret = 0;
else
device_disable(dev);
}
out:
if (ret == 0) {
snprintf(desc, sizeof(desc), "Embedded Controller: GPE %#x%s%s",
params->gpe_bit, (params->glk) ? ", GLK" : "",
DEV_ECDT(dev) ? ", ECDT" : "");
device_set_desc_copy(dev, desc);
}
if (ret > 0 && params)
free(params, M_TEMP);
if (buf.Pointer)
AcpiOsFree(buf.Pointer);
return (ret);
}
static int
acpi_ec_attach(device_t dev)
{
struct acpi_ec_softc *sc;
struct acpi_ec_params *params;
ACPI_STATUS Status;
ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__);
/* Fetch/initialize softc (assumes softc is pre-zeroed). */
sc = device_get_softc(dev);
params = acpi_get_private(dev);
sc->ec_dev = dev;
sc->ec_handle = acpi_get_handle(dev);
mtx_init(&sc->ec_mtx, "ACPI EC lock", NULL, MTX_DEF);
/* Retrieve previously probed values via device ivars. */
sc->ec_glk = params->glk;
sc->ec_gpebit = params->gpe_bit;
sc->ec_gpehandle = params->gpe_handle;
sc->ec_uid = params->uid;
free(params, M_TEMP);
/* Attach bus resources for data and command/status ports. */
sc->ec_data_rid = 0;
sc->ec_data_res = bus_alloc_resource_any(sc->ec_dev, SYS_RES_IOPORT,
&sc->ec_data_rid, RF_ACTIVE);
if (sc->ec_data_res == NULL) {
device_printf(dev, "can't allocate data port\n");
goto error;
}
sc->ec_data_tag = rman_get_bustag(sc->ec_data_res);
sc->ec_data_handle = rman_get_bushandle(sc->ec_data_res);
sc->ec_csr_rid = 1;
sc->ec_csr_res = bus_alloc_resource_any(sc->ec_dev, SYS_RES_IOPORT,
&sc->ec_csr_rid, RF_ACTIVE);
if (sc->ec_csr_res == NULL) {
device_printf(dev, "can't allocate command/status port\n");
goto error;
}
sc->ec_csr_tag = rman_get_bustag(sc->ec_csr_res);
sc->ec_csr_handle = rman_get_bushandle(sc->ec_csr_res);
/*
* Install a handler for this EC's GPE bit. We want edge-triggered
* behavior.
*/
ACPI_DEBUG_PRINT((ACPI_DB_RESOURCES, "attaching GPE handler\n"));
Status = AcpiInstallGpeHandler(sc->ec_gpehandle, sc->ec_gpebit,
ACPI_GPE_EDGE_TRIGGERED, &EcGpeHandler, sc);
if (ACPI_FAILURE(Status)) {
device_printf(dev, "can't install GPE handler for %s - %s\n",
acpi_name(sc->ec_handle), AcpiFormatException(Status));
goto error;
}
/*
* Install address space handler
*/
ACPI_DEBUG_PRINT((ACPI_DB_RESOURCES, "attaching address space handler\n"));
Status = AcpiInstallAddressSpaceHandler(sc->ec_handle, ACPI_ADR_SPACE_EC,
&EcSpaceHandler, &EcSpaceSetup, sc);
if (ACPI_FAILURE(Status)) {
device_printf(dev, "can't install address space handler for %s - %s\n",
acpi_name(sc->ec_handle), AcpiFormatException(Status));
goto error;
}
/* Enable runtime GPEs for the handler. */
Status = AcpiSetGpeType(sc->ec_gpehandle, sc->ec_gpebit,
ACPI_GPE_TYPE_RUNTIME);
if (ACPI_FAILURE(Status)) {
device_printf(dev, "AcpiSetGpeType failed: %s\n",
AcpiFormatException(Status));
goto error;
}
Status = AcpiEnableGpe(sc->ec_gpehandle, sc->ec_gpebit, ACPI_NOT_ISR);
if (ACPI_FAILURE(Status)) {
device_printf(dev, "AcpiEnableGpe failed: %s\n",
AcpiFormatException(Status));
goto error;
}
ACPI_DEBUG_PRINT((ACPI_DB_RESOURCES, "acpi_ec_attach complete\n"));
return (0);
error:
AcpiRemoveGpeHandler(sc->ec_gpehandle, sc->ec_gpebit, &EcGpeHandler);
AcpiRemoveAddressSpaceHandler(sc->ec_handle, ACPI_ADR_SPACE_EC,
EcSpaceHandler);
if (sc->ec_csr_res)
bus_release_resource(sc->ec_dev, SYS_RES_IOPORT, sc->ec_csr_rid,
sc->ec_csr_res);
if (sc->ec_data_res)
bus_release_resource(sc->ec_dev, SYS_RES_IOPORT, sc->ec_data_rid,
sc->ec_data_res);
mtx_destroy(&sc->ec_mtx);
return (ENXIO);
}
static int
acpi_ec_shutdown(device_t dev)
{
struct acpi_ec_softc *sc;
/* Disable the GPE so we don't get EC events during shutdown. */
sc = device_get_softc(dev);
AcpiDisableGpe(sc->ec_gpehandle, sc->ec_gpebit, ACPI_NOT_ISR);
return (0);
}
/* Methods to allow other devices (e.g., smbat) to read/write EC space. */
static int
acpi_ec_read_method(device_t dev, u_int addr, ACPI_INTEGER *val, int width)
{
struct acpi_ec_softc *sc;
ACPI_STATUS status;
sc = device_get_softc(dev);
status = EcSpaceHandler(ACPI_READ, addr, width * 8, val, sc, NULL);
if (ACPI_FAILURE(status))
return (ENXIO);
return (0);
}
static int
acpi_ec_write_method(device_t dev, u_int addr, ACPI_INTEGER val, int width)
{
struct acpi_ec_softc *sc;
ACPI_STATUS status;
sc = device_get_softc(dev);
status = EcSpaceHandler(ACPI_WRITE, addr, width * 8, &val, sc, NULL);
if (ACPI_FAILURE(status))
return (ENXIO);
return (0);
}
static void
EcGpeQueryHandler(void *Context)
{
struct acpi_ec_softc *sc = (struct acpi_ec_softc *)Context;
UINT8 Data;
ACPI_STATUS Status;
char qxx[5];
ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__);
KASSERT(Context != NULL, ("EcGpeQueryHandler called with NULL"));
/* Serialize user access with EcSpaceHandler(). */
Status = EcLock(sc, TRUE);
if (ACPI_FAILURE(Status)) {
ACPI_VPRINT(sc->ec_dev, acpi_device_get_parent_softc(sc->ec_dev),
"GpeQuery lock error: %s\n", AcpiFormatException(Status));
return;
}
/*
* Send a query command to the EC to find out which _Qxx call it
* wants to make. This command clears the SCI bit and also the
* interrupt source since we are edge-triggered.
*/
Status = EcCommand(sc, EC_COMMAND_QUERY);
if (ACPI_FAILURE(Status)) {
EcUnlock(sc);
ACPI_VPRINT(sc->ec_dev, acpi_device_get_parent_softc(sc->ec_dev),
"GPE query failed - %s\n", AcpiFormatException(Status));
goto re_enable;
}
Data = EC_GET_DATA(sc);
sc->ec_sci_pend = FALSE;
/* Drop locks before evaluating _Qxx method since it may trigger GPEs. */
EcUnlock(sc);
/* Ignore the value for "no outstanding event". (13.3.5) */
CTR2(KTR_ACPI, "ec query ok,%s running _Q%02x", Data ? "" : " not", Data);
if (Data == 0)
goto re_enable;
/* Evaluate _Qxx to respond to the controller. */
snprintf(qxx, sizeof(qxx), "_Q%02x", Data);
AcpiUtStrupr(qxx);
Status = AcpiEvaluateObject(sc->ec_handle, qxx, NULL, NULL);
if (ACPI_FAILURE(Status) && Status != AE_NOT_FOUND) {
ACPI_VPRINT(sc->ec_dev, acpi_device_get_parent_softc(sc->ec_dev),
"evaluation of GPE query method %s failed - %s\n",
qxx, AcpiFormatException(Status));
}
re_enable:
/* Re-enable the GPE event so we'll get future requests. */
Status = AcpiEnableGpe(sc->ec_gpehandle, sc->ec_gpebit, ACPI_ISR);
if (ACPI_FAILURE(Status))
printf("EcGpeQueryHandler: AcpiEnableEvent failed\n");
}
/*
* Handle a GPE. Currently we only handle SCI events as others must
* be handled by polling in EcWaitEvent(). This is because some ECs
* treat events as level when they should be edge-triggered.
*/
static uint32_t
EcGpeHandler(void *Context)
{
struct acpi_ec_softc *sc = Context;
ACPI_STATUS Status;
EC_STATUS EcStatus;
int query_pend;
KASSERT(Context != NULL, ("EcGpeHandler called with NULL"));
/*
* Disable further GPEs while we handle this one. Since we are directly
* called by ACPI-CA and it may have unknown locks held, we specify the
* ACPI_ISR flag to keep it from acquiring any more mutexes (although
* sleeping would be ok since we're in an ithread.)
*/
AcpiDisableGpe(sc->ec_gpehandle, sc->ec_gpebit, ACPI_ISR);
/* For interrupt (GPE) handler, don't acquire serialization lock. */
Status = EcLock(sc, FALSE);
if (ACPI_FAILURE(Status)) {
ACPI_VPRINT(sc->ec_dev, acpi_device_get_parent_softc(sc->ec_dev),
"GpeQuery lock error: %s\n", AcpiFormatException(Status));
return (-1);
}
/*
* If burst was active, but the status bit was cleared, the EC had to
* exit burst mode for some reason. Record this for later.
*/
EcStatus = EC_GET_CSR(sc);
if (sc->ec_burstactive && (EcStatus & EC_FLAG_BURST_MODE) == 0) {
CTR0(KTR_ACPI, "ec burst disabled in query handler");
sc->ec_burstactive = FALSE;
}
/*
* If the EC_SCI bit of the status register is not set, then pass
* it along to any potential waiters as it may be an IBE/OBF event.
* If it is set, queue a query handler.
*/
query_pend = FALSE;
if ((EcStatus & EC_EVENT_SCI) == 0) {
CTR1(KTR_ACPI, "ec event was IBE/OBF, status %#x", EcStatus);
sc->ec_csrvalue = EcStatus;
wakeup(&sc->ec_csrvalue);
} else if (!sc->ec_sci_pend) {
/* SCI bit set and no pending query handler, so schedule one. */
CTR0(KTR_ACPI, "ec queueing gpe handler");
Status = AcpiOsExecute(OSL_GPE_HANDLER, EcGpeQueryHandler, Context);
if (ACPI_SUCCESS(Status)) {
sc->ec_sci_pend = TRUE;
query_pend = TRUE;
} else
printf("Queuing GPE query handler failed.\n");
}
/*
* If we didn't queue a query handler, which will eventually re-enable
* the GPE, re-enable it right now so we can get more events.
*/
if (!query_pend) {
Status = AcpiEnableGpe(sc->ec_gpehandle, sc->ec_gpebit, ACPI_ISR);
if (ACPI_FAILURE(Status))
printf("EcGpeHandler: AcpiEnableGpe failed\n");
}
EcUnlock(sc);
return (0);
}
static ACPI_STATUS
EcSpaceSetup(ACPI_HANDLE Region, UINT32 Function, void *Context,
void **RegionContext)
{
ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__);
/*
* If deactivating a region, always set the output to NULL. Otherwise,
* just pass the context through.
*/
if (Function == ACPI_REGION_DEACTIVATE)
*RegionContext = NULL;
else
*RegionContext = Context;
return_ACPI_STATUS (AE_OK);
}
static ACPI_STATUS
EcSpaceHandler(UINT32 Function, ACPI_PHYSICAL_ADDRESS Address, UINT32 width,
ACPI_INTEGER *Value, void *Context, void *RegionContext)
{
struct acpi_ec_softc *sc = (struct acpi_ec_softc *)Context;
ACPI_STATUS Status;
UINT8 EcAddr, EcData;
int i;
ACPI_FUNCTION_TRACE_U32((char *)(uintptr_t)__func__, (UINT32)Address);
if (width % 8 != 0 || Value == NULL || Context == NULL)
return_ACPI_STATUS (AE_BAD_PARAMETER);
if (Address + (width / 8) - 1 > 0xFF)
return_ACPI_STATUS (AE_BAD_ADDRESS);
if (Function == ACPI_READ)
*Value = 0;
EcAddr = Address;
Status = AE_ERROR;
/* Grab serialization lock to hold across command sequence. */
Status = EcLock(sc, TRUE);
if (ACPI_FAILURE(Status))
return_ACPI_STATUS (Status);
/* Perform the transaction(s), based on width. */
for (i = 0; i < width; i += 8, EcAddr++) {
switch (Function) {
case ACPI_READ:
Status = EcRead(sc, EcAddr, &EcData);
if (ACPI_SUCCESS(Status))
*Value |= ((ACPI_INTEGER)EcData) << i;
break;
case ACPI_WRITE:
EcData = (UINT8)((*Value) >> i);
Status = EcWrite(sc, EcAddr, &EcData);
break;
default:
device_printf(sc->ec_dev, "invalid EcSpaceHandler function %d\n",
Function);
Status = AE_BAD_PARAMETER;
break;
}
if (ACPI_FAILURE(Status))
break;
}
EcUnlock(sc);
return_ACPI_STATUS (Status);
}
static ACPI_STATUS
EcWaitEvent(struct acpi_ec_softc *sc, EC_EVENT Event)
{
EC_STATUS EcStatus;
ACPI_STATUS Status;
int count, i, retval, slp_ival;
ACPI_SERIAL_ASSERT(ec);
Status = AE_NO_HARDWARE_RESPONSE;
EcStatus = 0;
/*
* Poll for up to ec_poll_time microseconds since many ECs complete
* the command quickly, especially if in burst mode.
*/
#if 0 /* Enable this as a possible workaround if EC times out. */
AcpiOsStall(EC_POLL_DELAY);
#endif
count = ec_poll_time / EC_POLL_DELAY;
if (count <= 0)
count = 1;
for (i = 0; i < count; i++) {
EcStatus = EC_GET_CSR(sc);
if (sc->ec_burstactive && (EcStatus & EC_FLAG_BURST_MODE) == 0) {
CTR0(KTR_ACPI, "ec burst disabled in waitevent (poll)");
sc->ec_burstactive = FALSE;
}
if (EVENT_READY(Event, EcStatus)) {
CTR1(KTR_ACPI, "ec poll wait ready, status %#x", EcStatus);
Status = AE_OK;
break;
}
AcpiOsStall(EC_POLL_DELAY);
}
/*
* If we still don't have a response and we're up and running, wait up
* to ec_timeout ms for completion, sleeping for chunks of 1 ms or the
* smallest resolution hz supports.
*/
slp_ival = 0;
if (Status != AE_OK) {
retval = ENXIO;
if (!cold) {
slp_ival = hz / 1000;
if (slp_ival != 0) {
count = ec_timeout / slp_ival;
} else {
/* hz has less than 1000 Hz resolution so scale timeout. */
slp_ival = 1;
count = ec_timeout / (1000 / hz);
}
} else
count = ec_timeout;
for (i = 0; i < count; i++) {
if (retval != 0)
EcStatus = EC_GET_CSR(sc);
else
EcStatus = sc->ec_csrvalue;
if (sc->ec_burstactive && (EcStatus & EC_FLAG_BURST_MODE) == 0) {
CTR0(KTR_ACPI, "ec burst disabled in waitevent (slp)");
sc->ec_burstactive = FALSE;
}
if (EVENT_READY(Event, EcStatus)) {
CTR1(KTR_ACPI, "ec sleep wait ready, status %#x", EcStatus);
Status = AE_OK;
break;
}
if (!cold) {
retval = msleep(&sc->ec_csrvalue, &sc->ec_mtx, PZERO, "ecpoll",
slp_ival);
} else
AcpiOsStall(1000);
}
}
return (Status);
}
static ACPI_STATUS
EcCommand(struct acpi_ec_softc *sc, EC_COMMAND cmd)
{
ACPI_STATUS status;
EC_EVENT event;
EC_STATUS ec_status;
ACPI_SERIAL_ASSERT(ec);
/* Don't use burst mode if user disabled it. */
if (!ec_burst_mode && cmd == EC_COMMAND_BURST_ENABLE)
return (AE_ERROR);
/* Decide what to wait for based on command type. */
switch (cmd) {
case EC_COMMAND_READ:
case EC_COMMAND_WRITE:
case EC_COMMAND_BURST_DISABLE:
event = EC_EVENT_INPUT_BUFFER_EMPTY;
break;
case EC_COMMAND_QUERY:
case EC_COMMAND_BURST_ENABLE:
event = EC_EVENT_OUTPUT_BUFFER_FULL;
break;
default:
ACPI_VPRINT(sc->ec_dev, acpi_device_get_parent_softc(sc->ec_dev),
"EcCommand: Invalid command %#x\n", cmd);
return (AE_BAD_PARAMETER);
}
/* Run the command and wait for the chosen event. */
CTR1(KTR_ACPI, "ec running command %#x", cmd);
EC_SET_CSR(sc, cmd);
status = EcWaitEvent(sc, event);
if (ACPI_SUCCESS(status)) {
/* If we succeeded, burst flag should now be present. */
if (cmd == EC_COMMAND_BURST_ENABLE) {
ec_status = EC_GET_CSR(sc);
if ((ec_status & EC_FLAG_BURST_MODE) == 0)
status = AE_ERROR;
}
} else {
ACPI_VPRINT(sc->ec_dev, acpi_device_get_parent_softc(sc->ec_dev),
"EcCommand: no response to %#x\n", cmd);
}
return (status);
}
static ACPI_STATUS
EcRead(struct acpi_ec_softc *sc, UINT8 Address, UINT8 *Data)
{
ACPI_STATUS status;
UINT8 data;
ACPI_SERIAL_ASSERT(ec);
CTR1(KTR_ACPI, "ec read from %#x", Address);
/* If we can't start burst mode, continue anyway. */
status = EcCommand(sc, EC_COMMAND_BURST_ENABLE);
if (status == AE_OK) {
data = EC_GET_DATA(sc);
if (data == EC_BURST_ACK) {
CTR0(KTR_ACPI, "ec burst enabled");
sc->ec_burstactive = TRUE;
}
}
status = EcCommand(sc, EC_COMMAND_READ);
if (ACPI_FAILURE(status))
return (status);
EC_SET_DATA(sc, Address);
status = EcWaitEvent(sc, EC_EVENT_OUTPUT_BUFFER_FULL);
if (ACPI_FAILURE(status)) {
ACPI_VPRINT(sc->ec_dev, acpi_device_get_parent_softc(sc->ec_dev),
"EcRead: Failed waiting for EC to send data.\n");
return (status);
}
*Data = EC_GET_DATA(sc);
if (sc->ec_burstactive) {
status = EcCommand(sc, EC_COMMAND_BURST_DISABLE);
if (ACPI_FAILURE(status))
return (status);
sc->ec_burstactive = FALSE;
CTR0(KTR_ACPI, "ec disabled burst ok");
}
return (AE_OK);
}
static ACPI_STATUS
EcWrite(struct acpi_ec_softc *sc, UINT8 Address, UINT8 *Data)
{
ACPI_STATUS status;
UINT8 data;
ACPI_SERIAL_ASSERT(ec);
CTR2(KTR_ACPI, "ec write to %#x, data %#x", Address, *Data);
/* If we can't start burst mode, continue anyway. */
status = EcCommand(sc, EC_COMMAND_BURST_ENABLE);
if (status == AE_OK) {
data = EC_GET_DATA(sc);
if (data == EC_BURST_ACK) {
CTR0(KTR_ACPI, "ec burst enabled");
sc->ec_burstactive = TRUE;
}
}
status = EcCommand(sc, EC_COMMAND_WRITE);
if (ACPI_FAILURE(status))
return (status);
EC_SET_DATA(sc, Address);
status = EcWaitEvent(sc, EC_EVENT_INPUT_BUFFER_EMPTY);
if (ACPI_FAILURE(status)) {
ACPI_VPRINT(sc->ec_dev, acpi_device_get_parent_softc(sc->ec_dev),
"EcRead: Failed waiting for EC to process address\n");
return (status);
}
EC_SET_DATA(sc, *Data);
status = EcWaitEvent(sc, EC_EVENT_INPUT_BUFFER_EMPTY);
if (ACPI_FAILURE(status)) {
ACPI_VPRINT(sc->ec_dev, acpi_device_get_parent_softc(sc->ec_dev),
"EcWrite: Failed waiting for EC to process data\n");
return (status);
}
if (sc->ec_burstactive) {
status = EcCommand(sc, EC_COMMAND_BURST_DISABLE);
if (ACPI_FAILURE(status))
return (status);
sc->ec_burstactive = FALSE;
CTR0(KTR_ACPI, "ec disabled burst ok");
}
return (AE_OK);
}