2002-09-18 20:04:30 +00:00

530 lines
14 KiB
Groff

.\" Copyright (c) 2000 FreeBSD Inc.
.\" All rights reserved.
.\"
.\" Redistribution and use in source and binary forms, with or without
.\" modification, are permitted provided that the following conditions
.\" are met:
.\" 1. Redistributions of source code must retain the above copyright
.\" notice, this list of conditions and the following disclaimer.
.\" 2. Redistributions in binary form must reproduce the above copyright
.\" notice, this list of conditions and the following disclaimer in the
.\" documentation and/or other materials provided with the distribution.
.\"
.\" THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
.\" ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
.\" IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
.\" ARE DISCLAIMED. IN NO EVENT SHALL [your name] OR CONTRIBUTORS BE LIABLE
.\" FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
.\" DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
.\" OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
.\" HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
.\" LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
.\" OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
.\" SUCH DAMAGE.
.\"
.\" $FreeBSD$
.\"
.Dd October 17, 2000
.Dt MBUF 9
.Os
.\"
.Sh NAME
.Nm mbuf
.Nd "memory management in the kernel IPC subsystem"
.\"
.Sh SYNOPSIS
.In sys/param.h
.In sys/systm.h
.In sys/mbuf.h
.\"
.Ss Mbuf allocation macros
.Fn MGET "struct mbuf *mbuf" "int how" "short type"
.Fn MGETHDR "struct mbuf *mbuf" "int how" "short type"
.Fn MCLGET "struct mbuf *mbuf" "int how"
.Fo MEXTADD
.Fa "struct mbuf *mbuf"
.Fa "caddr_t buf"
.Fa "u_int size"
.Fa "void (*free)(void *opt_args)"
.Fa "void *opt_args"
.Fa "short flags"
.Fa "int type"
.Fc
.Fn MEXTFREE "struct mbuf *mbuf"
.Fn MEXT_ADD_REF "struct mbuf *mbuf"
.Fn MEXT_REM_REF "struct mbuf *mbuf"
.Fn MFREE "struct mbuf *mbuf" "struct mbuf *successor"
.\"
.Ss Mbuf utility macros
.Ft void *
.Fn mtod "struct mbuf *mbuf" "type"
.Ft int
.Fn MEXT_IS_REF "struct mbuf *mbuf"
.Fn M_COPY_PKTHDR "struct mbuf *to" "struct mbuf *from"
.Fn M_ALIGN "struct mbuf *mbuf" "u_int len"
.Fn MH_ALIGN "struct mbuf *mbuf" "u_int len"
.Ft int
.Fn M_LEADINGSPACE "struct mbuf *mbuf"
.Ft int
.Fn M_TRAILINGSPACE "struct mbuf *mbuf"
.Fn M_PREPEND "struct mbuf *mbuf" "int len" "int how"
.Fn MCHTYPE "struct mbuf *mbuf" "u_int type"
.Ft int
.Fn M_WRITABLE "struct mbuf *mbuf"
.\"
.Ss Mbuf allocation functions
.Ft struct mbuf *
.Fn m_get "int how" "int type"
.Ft struct mbuf *
.Fn m_getm "struct mbuf *orig" "int len" "int how" "int type"
.Ft struct mbuf *
.Fn m_getclr "int how" "int type"
.Ft struct mbuf *
.Fn m_gethdr "int how" "int type"
.Ft struct mbuf *
.Fn m_free "struct mbuf *mbuf"
.Ft void
.Fn m_freem "struct mbuf *mbuf"
.\"
.Ss Mbuf utility functions
.Ft void
.Fn m_adj "struct mbuf *mbuf" "int len"
.Ft struct mbuf *
.Fn m_prepend "struct mbuf *mbuf" "int len" "int how"
.Ft struct mbuf *
.Fn m_pullup "struct mbuf *mbuf" "int len"
.Ft struct mbuf *
.Fn m_copym "struct mbuf *mbuf" "int offset" "int len" "int how"
.Ft struct mbuf *
.Fn m_copypacket "struct mbuf *mbuf" "int how"
.Ft struct mbuf *
.Fn m_dup "struct mbuf *mbuf" "int how"
.Ft void
.Fn m_copydata "const struct mbuf *mbuf" "int offset" "int len" "caddr_t buf"
.Ft void
.Fn m_copyback "struct mbuf *mbuf" "int offset" "int len" "caddr_t buf"
.Ft struct mbuf *
.Fo m_devget
.Fa "char *buf"
.Fa "int len"
.Fa "int offset"
.Fa "struct ifnet *ifp"
.Fa "void (*copy)(char *from, caddr_t to, u_int len)"
.Fc
.Ft void
.Fn m_cat "struct mbuf *m" "struct mbuf *n"
.Ft unsigned
.Fn m_fixhdr "struct mbuf *mbuf"
.Ft unsigned
.Fn m_length "struct mbuf *mbuf" "struct mbuf **last"
.Ft struct mbuf *
.Fn m_split "struct mbuf *mbuf" "int len" "int how"
.\"
.Sh DESCRIPTION
An mbuf is a basic unit of memory management in the kernel IPC subsystem.
Network packets and socket buffers are stored in mbufs.
A network packet may span multiple mbufs arranged into a chain
(linked list),
which allows adding or trimming
network headers with little overhead.
.Pp
While a developer should not bother with mbuf internals without serious
reason in order to avoid incompatibilities with future changes, it
is useful to understand the mbuf's general structure.
.Pp
An mbuf consists of a variable-sized header and a small internal
buffer for data.
The mbuf's total size,
.Dv MSIZE ,
is a machine-dependent constant defined in
.Pa machine/param.h .
The mbuf header includes:
.Pp
.Bl -tag -width "m_nextpkt" -compact -offset indent
.It Fa m_next
a pointer to the next buffer in the chain
.It Fa m_nextpkt
a pointer to the next chain in the queue
.It Fa m_data
a pointer to the data
.It Fa m_len
the length of the data
.It Fa m_type
the type of data
.It Fa m_flags
the mbuf flags
.El
.Pp
The mbuf flag bits are defined as follows:
.Bd -literal
/* mbuf flags */
#define M_EXT 0x0001 /* has associated external storage */
#define M_PKTHDR 0x0002 /* start of record */
#define M_EOR 0x0004 /* end of record */
#define M_RDONLY 0x0008 /* associated data marked read-only */
#define M_PROTO1 0x0010 /* protocol-specific */
#define M_PROTO2 0x0020 /* protocol-specific */
#define M_PROTO3 0x0040 /* protocol-specific */
#define M_PROTO4 0x0080 /* protocol-specific */
#define M_PROTO5 0x0100 /* protocol-specific */
/* mbuf pkthdr flags, also in m_flags */
#define M_BCAST 0x0200 /* send/received as link-level broadcast */
#define M_MCAST 0x0400 /* send/received as link-level multicast */
#define M_FRAG 0x0800 /* packet is fragment of larger packet */
#define M_FIRSTFRAG 0x1000 /* packet is first fragment */
#define M_LASTFRAG 0x2000 /* packet is last fragment */
.Ed
.Pp
The available mbuf types are defined as follows:
.Bd -literal
/* mbuf types */
#define MT_FREE 0 /* should be on free list */
#define MT_DATA 1 /* dynamic (data) allocation */
#define MT_HEADER 2 /* packet header */
#define MT_SONAME 8 /* socket name */
#define MT_FTABLE 11 /* fragment reassembly header */
#define MT_CONTROL 14 /* extra-data protocol message */
#define MT_OOBDATA 15 /* expedited data */
.Ed
.Pp
If the
.Dv M_PKTHDR
flag is set, a
.Li struct pkthdr m_pkthdr
is added to the mbuf header.
It contains a pointer to the interface
the packet has been received from
.Pq Fa struct ifnet *rcvif ,
and the total packet length
.Pq Fa int len .
.Pp
If small enough, data is stored in the mbuf's internal data buffer.
If the data is sufficiently large, another mbuf may be added to the chain,
or external storage may be associated with the mbuf.
.Dv MHLEN
bytes of data can fit into an mbuf with the
.Dv M_PKTHDR
flag set,
.Dv MLEN
bytes can otherwise.
.Pp
If external storage is being associated with an mbuf, the
.Dv m_ext
header is added at the cost of losing the internal data buffer.
It includes a pointer to external storage, the size of the storage,
a pointer to a function used for freeing the storage,
a pointer to an optional argument that can be passed to the function,
and a pointer to a reference counter.
An mbuf using external storage has the
.Dv M_EXT
flag set.
.Pp
The system supplies a macro for allocating the desired external storage
buffer,
.Dv MEXTADD .
.Pp
The allocation and management of the reference counter is handled by the
subsystem.
The developer can check whether the reference count for the
given mbuf's external storage is greater than 1 with the
.Dv MEXT_IS_REF
macro.
Similarly, the developer can directly add and remove references,
if absolutely necessary, with the use of the
.Dv MEXT_ADD_REF
and
.Dv MEXT_REM_REF
macros.
.Pp
The system also supplies a default type of external storage buffer called an
.Dq mbuf cluster .
Mbuf clusters can be allocated and configured with the use of the
.Dv MCLGET
macro.
Each cluster is
.Dv MCLBYTES
in size, where MCLBYTES is a machine-dependent constant.
The system defines an advisory macro
.Dv MINCLSIZE ,
which is the smallest amount of data to put into a cluster.
It's equal to the sum of
.Dv MLEN
and
.Dv MHLEN .
It is typically preferable to store data into an mbuf's data region, if size
permits, as opposed to allocating a separate mbuf cluster to hold the same
data.
.\"
.Ss Macros and Functions
There are numerous predefined macros and functions that provide the
developer with common utilities.
.\"
.Bl -ohang -offset indent
.It Fn mtod mbuf type
Convert an mbuf pointer to a data pointer.
The macro expands to the data pointer cast to the pointer of the specified type.
.Sy Note :
It is advisable to ensure that there is enough contiguous data in the mbuf.
See
.Fn m_pullup
for details.
.It Fn MGET mbuf how type
Allocate an mbuf and initialize it to contain internal data.
.Fa mbuf
will point to the allocated mbuf on success, or be set to
.Dv NULL
on failure.
The
.Fa how
argument is to be set to
.Dv M_TRYWAIT
or
.Dv M_DONTWAIT .
It specifies whether the caller is willing to block if necessary.
If
.Fa how
is set to
.Dv M_TRYWAIT ,
a failed allocation will result in the caller being put
to sleep for a designated
kern.ipc.mbuf_wait
.Xr ( sysctl 8
tunable)
number of ticks.
A number of other mbuf-related
functions and macros have the same argument because they may
at some point need to allocate new mbufs.
.It Fn MGETHDR mbuf how type
Allocate an mbuf and initialize it to contain a packet header
and internal data.
See
.Fn MGET
for details.
.It Fn MCLGET mbuf how
Allocate and attach an mbuf cluster to an mbuf.
If the macro fails, the
.Dv M_EXT
flag won't be set in the mbuf.
.It Fn M_PREPEND mbuf len how
This macro operates on an mbuf chain.
It is an optimized wrapper for
.Fn m_prepend
that can make use of possible empty space before data
(e.g. left after trimming of a link-layer header).
The new chain pointer or
.Dv NULL
is in
.Fa mbuf
after the call.
.It Fn M_WRITABLE mbuf
This macro will evaluate true if the mbuf is not marked
.Dv M_RDONLY
and if either the mbuf does not contain external storage or,
if it does,
then if the reference count of the storage is not greater than 1.
The
.Dv M_RDONLY
flag can be set in the mbuf's
.Dv m_flags .
This can be achieved during setup of the external storage,
by passing the
.Dv M_RDONLY
bit as a
.Fa flags
argument to the
.Fn MEXTADD
macro, or can be directly set in individual mbufs.
.El
.Pp
The functions are:
.Bl -ohang -offset indent
.It Fn m_get how type
A function version of
.Fn MGET
for non-critical paths.
.It Fn m_getm orig len how type
Allocate
.Fa len
bytes worth of mbufs and mbuf clusters if necessary and append the resulting
allocated chain to the
.Fa orig
mbuf chain, if it is
.No non- Ns Dv NULL .
If the allocation fails at any point,
free whatever was allocated and return
.Dv NULL .
If
.Fa orig
is
.No non- Ns Dv NULL ,
it will not be freed.
It is possible to use
.Fn m_getm
to either append
.Fa len
bytes to an existing mbuf or mbuf chain
(for example, one which may be sitting in a pre-allocated ring)
or to simply perform an all-or-nothing mbuf and mbuf cluster allocation.
.It Fn m_gethdr how type
A function version of
.Fn MGETHDR
for non-critical paths.
.It Fn m_getclr how type
Allocate an mbuf and zero out the data region.
.El
.Pp
The functions below operate on mbuf chains.
.Bl -ohang -offset indent
.It Fn m_freem mbuf
Free an entire mbuf chain, including any external
storage.
.\"
.It Fn m_adj mbuf len
Trim
.Fa len
bytes from the head of an mbuf chain if
.Fa len
is positive, from the tail otherwise.
.\"
.It Fn m_prepend mbuf len how
Allocate a new mbuf and prepend it to the chain, handle
.Dv M_PKTHDR
properly.
.Sy Note :
It doesn't allocate any clusters, so
.Fa len
must be less than
.Dv MLEN
or
.Dv MHLEN ,
depending on the
.Dv M_PKTHDR
flag setting.
.\"
.It Fn m_pullup mbuf len
Arrange that the first
.Fa len
bytes of an mbuf chain are contiguous and lay in the data area of
.Fa mbuf ,
so they are accessible with
.Fn mtod mbuf type .
Return the new chain on success,
.Dv NULL
on failure
(the chain is freed in this case).
.Sy Note :
It doesn't allocate any clusters, so
.Fa len
must be less than
.Dv MHLEN .
.\"
.It Fn m_copym mbuf offset len how
Make a copy of an mbuf chain starting
.Fa offset
bytes from the beginning, continuing for
.Fa len
bytes.
If
.Fa len
is
.Dv M_COPYALL ,
copy to the end of the mbuf chain.
.Sy Note :
The copy is read-only, because clusters are not
copied, only their reference counts are incremented.
.\"
.It Fn m_copypacket mbuf how
Copy an entire packet including header, which must be present.
This is an optimized version of the common case
.Fn m_copym mbuf 0 M_COPYALL how .
.Sy Note :
the copy is read-only, because clusters are not
copied, only their reference counts are incremented.
.\"
.It Fn m_dup mbuf how
Copy a packet header mbuf chain into a completely new chain, including
copying any mbuf clusters.
Use this instead of
.Fn m_copypacket
when you need a writable copy of an mbuf chain.
.\"
.It Fn m_copydata mbuf offset len buf
Copy data from an mbuf chain starting
.Fa off
bytes from the beginning, continuing for
.Fa len
bytes, into the indicated buffer
.Fa buf .
.\"
.It Fn m_copyback mbuf offset len buf
Copy
.Fa len
bytes from the buffer
.Fa buf
back into the indicated mbuf chain,
starting at
.Fa offset
bytes from the beginning of the chain, extending the mbuf chain if necessary.
.Sy Note :
It doesn't allocate any clusters, just adds mbufs to the chain.
It's safe to set
.Fa offset
beyond the current chain end: zeroed mbufs will be allocated to fill the
space.
.\"
.It Fn m_length buf last
Return the length of the mbuf chain, and optionally a pointer to the last mbuf.
.\"
.It Fn m_fixhdr buf
Set the packet-header length to the length of the mbuf chain.
.\"
.It Fn m_devget buf len offset ifp copy
Copy data from a device local memory pointed to by
.Fa buf
to an mbuf chain.
The copy is done using a specified copy routine
.Fa copy ,
or
.Fn bcopy
if
.Fa copy
is
.Dv NULL .
.\"
.It Fn m_cat m n
Concatenate
.Fa n
to
.Fa m .
Both chains must be of the same type.
.Fa N
is still valid after the function returned.
.Sy Note :
It does not handle
.Dv M_PKTHDR
and friends.
.\"
.It Fn m_split mbuf len how
Partition an mbuf chain in two pieces, returning the tail:
all but the first
.Fa len
bytes.
In case of failure, it returns
.Dv NULL
and attempts to restore the chain to its original state.
.El
.Sh RETURN VALUES
See above.
.Sh HISTORY
.\" Please correct me if I'm wrong
Mbufs appeared in an early version of
.Bx .
Besides for being used for network packets, they were used
to store various dynamic structures, such as routing table
entries, interface addresses, protocol control blocks, etc.
.Sh AUTHORS
The original
.Nm
man page was written by Yar Tikhiy.