freebsd-skq/sys/powerpc/powermac/smu.c
2020-09-01 21:20:08 +00:00

1583 lines
36 KiB
C

/*-
* SPDX-License-Identifier: BSD-2-Clause-FreeBSD
*
* Copyright (c) 2009 Nathan Whitehorn
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include <sys/param.h>
#include <sys/bus.h>
#include <sys/eventhandler.h>
#include <sys/systm.h>
#include <sys/module.h>
#include <sys/conf.h>
#include <sys/cpu.h>
#include <sys/clock.h>
#include <sys/ctype.h>
#include <sys/kernel.h>
#include <sys/kthread.h>
#include <sys/lock.h>
#include <sys/mutex.h>
#include <sys/reboot.h>
#include <sys/rman.h>
#include <sys/sysctl.h>
#include <sys/unistd.h>
#include <machine/bus.h>
#include <machine/intr_machdep.h>
#include <machine/md_var.h>
#include <dev/iicbus/iicbus.h>
#include <dev/iicbus/iiconf.h>
#include <dev/led/led.h>
#include <dev/ofw/openfirm.h>
#include <dev/ofw/ofw_bus.h>
#include <dev/ofw/ofw_bus_subr.h>
#include <powerpc/powermac/macgpiovar.h>
#include <powerpc/powermac/powermac_thermal.h>
#include "clock_if.h"
#include "iicbus_if.h"
struct smu_cmd {
volatile uint8_t cmd;
uint8_t len;
uint8_t data[254];
STAILQ_ENTRY(smu_cmd) cmd_q;
};
STAILQ_HEAD(smu_cmdq, smu_cmd);
struct smu_fan {
struct pmac_fan fan;
device_t dev;
cell_t reg;
enum {
SMU_FAN_RPM,
SMU_FAN_PWM
} type;
int setpoint;
int old_style;
int rpm;
};
/* We can read the PWM and the RPM from a PWM controlled fan.
* Offer both values via sysctl.
*/
enum {
SMU_PWM_SYSCTL_PWM = 1 << 8,
SMU_PWM_SYSCTL_RPM = 2 << 8
};
struct smu_sensor {
struct pmac_therm therm;
device_t dev;
cell_t reg;
enum {
SMU_CURRENT_SENSOR,
SMU_VOLTAGE_SENSOR,
SMU_POWER_SENSOR,
SMU_TEMP_SENSOR
} type;
};
struct smu_softc {
device_t sc_dev;
struct mtx sc_mtx;
struct resource *sc_memr;
int sc_memrid;
int sc_u3;
bus_dma_tag_t sc_dmatag;
bus_space_tag_t sc_bt;
bus_space_handle_t sc_mailbox;
struct smu_cmd *sc_cmd, *sc_cur_cmd;
bus_addr_t sc_cmd_phys;
bus_dmamap_t sc_cmd_dmamap;
struct smu_cmdq sc_cmdq;
struct smu_fan *sc_fans;
int sc_nfans;
int old_style_fans;
struct smu_sensor *sc_sensors;
int sc_nsensors;
int sc_doorbellirqid;
struct resource *sc_doorbellirq;
void *sc_doorbellirqcookie;
struct proc *sc_fanmgt_proc;
time_t sc_lastuserchange;
/* Calibration data */
uint16_t sc_cpu_diode_scale;
int16_t sc_cpu_diode_offset;
uint16_t sc_cpu_volt_scale;
int16_t sc_cpu_volt_offset;
uint16_t sc_cpu_curr_scale;
int16_t sc_cpu_curr_offset;
uint16_t sc_slots_pow_scale;
int16_t sc_slots_pow_offset;
struct cdev *sc_leddev;
};
/* regular bus attachment functions */
static int smu_probe(device_t);
static int smu_attach(device_t);
static const struct ofw_bus_devinfo *
smu_get_devinfo(device_t bus, device_t dev);
/* cpufreq notification hooks */
static void smu_cpufreq_pre_change(device_t, const struct cf_level *level);
static void smu_cpufreq_post_change(device_t, const struct cf_level *level);
/* clock interface */
static int smu_gettime(device_t dev, struct timespec *ts);
static int smu_settime(device_t dev, struct timespec *ts);
/* utility functions */
static int smu_run_cmd(device_t dev, struct smu_cmd *cmd, int wait);
static int smu_get_datablock(device_t dev, int8_t id, uint8_t *buf,
size_t len);
static void smu_attach_i2c(device_t dev, phandle_t i2croot);
static void smu_attach_fans(device_t dev, phandle_t fanroot);
static void smu_attach_sensors(device_t dev, phandle_t sensroot);
static void smu_set_sleepled(void *xdev, int onoff);
static int smu_server_mode(SYSCTL_HANDLER_ARGS);
static void smu_doorbell_intr(void *xdev);
static void smu_shutdown(void *xdev, int howto);
/* where to find the doorbell GPIO */
static device_t smu_doorbell = NULL;
static device_method_t smu_methods[] = {
/* Device interface */
DEVMETHOD(device_probe, smu_probe),
DEVMETHOD(device_attach, smu_attach),
/* Clock interface */
DEVMETHOD(clock_gettime, smu_gettime),
DEVMETHOD(clock_settime, smu_settime),
/* ofw_bus interface */
DEVMETHOD(bus_child_pnpinfo_str,ofw_bus_gen_child_pnpinfo_str),
DEVMETHOD(ofw_bus_get_devinfo, smu_get_devinfo),
DEVMETHOD(ofw_bus_get_compat, ofw_bus_gen_get_compat),
DEVMETHOD(ofw_bus_get_model, ofw_bus_gen_get_model),
DEVMETHOD(ofw_bus_get_name, ofw_bus_gen_get_name),
DEVMETHOD(ofw_bus_get_node, ofw_bus_gen_get_node),
DEVMETHOD(ofw_bus_get_type, ofw_bus_gen_get_type),
{ 0, 0 },
};
static driver_t smu_driver = {
"smu",
smu_methods,
sizeof(struct smu_softc)
};
static devclass_t smu_devclass;
DRIVER_MODULE(smu, ofwbus, smu_driver, smu_devclass, 0, 0);
static MALLOC_DEFINE(M_SMU, "smu", "SMU Sensor Information");
#define SMU_MAILBOX 0x8000860c
#define SMU_FANMGT_INTERVAL 1000 /* ms */
/* Command types */
#define SMU_ADC 0xd8
#define SMU_FAN 0x4a
#define SMU_RPM_STATUS 0x01
#define SMU_RPM_SETPOINT 0x02
#define SMU_PWM_STATUS 0x11
#define SMU_PWM_SETPOINT 0x12
#define SMU_I2C 0x9a
#define SMU_I2C_SIMPLE 0x00
#define SMU_I2C_NORMAL 0x01
#define SMU_I2C_COMBINED 0x02
#define SMU_MISC 0xee
#define SMU_MISC_GET_DATA 0x02
#define SMU_MISC_LED_CTRL 0x04
#define SMU_POWER 0xaa
#define SMU_POWER_EVENTS 0x8f
#define SMU_PWR_GET_POWERUP 0x00
#define SMU_PWR_SET_POWERUP 0x01
#define SMU_PWR_CLR_POWERUP 0x02
#define SMU_RTC 0x8e
#define SMU_RTC_GET 0x81
#define SMU_RTC_SET 0x80
/* Power event types */
#define SMU_WAKEUP_KEYPRESS 0x01
#define SMU_WAKEUP_AC_INSERT 0x02
#define SMU_WAKEUP_AC_CHANGE 0x04
#define SMU_WAKEUP_RING 0x10
/* Data blocks */
#define SMU_CPUTEMP_CAL 0x18
#define SMU_CPUVOLT_CAL 0x21
#define SMU_SLOTPW_CAL 0x78
/* Partitions */
#define SMU_PARTITION 0x3e
#define SMU_PARTITION_LATEST 0x01
#define SMU_PARTITION_BASE 0x02
#define SMU_PARTITION_UPDATE 0x03
static int
smu_probe(device_t dev)
{
const char *name = ofw_bus_get_name(dev);
if (strcmp(name, "smu") != 0)
return (ENXIO);
device_set_desc(dev, "Apple System Management Unit");
return (0);
}
static void
smu_phys_callback(void *xsc, bus_dma_segment_t *segs, int nsegs, int error)
{
struct smu_softc *sc = xsc;
sc->sc_cmd_phys = segs[0].ds_addr;
}
static int
smu_attach(device_t dev)
{
struct smu_softc *sc;
phandle_t node, child;
uint8_t data[12];
sc = device_get_softc(dev);
mtx_init(&sc->sc_mtx, "smu", NULL, MTX_DEF);
sc->sc_cur_cmd = NULL;
sc->sc_doorbellirqid = -1;
sc->sc_u3 = 0;
if (OF_finddevice("/u3") != -1)
sc->sc_u3 = 1;
/*
* Map the mailbox area. This should be determined from firmware,
* but I have not found a simple way to do that.
*/
bus_dma_tag_create(NULL, 16, 0, BUS_SPACE_MAXADDR_32BIT,
BUS_SPACE_MAXADDR, NULL, NULL, PAGE_SIZE, 1, PAGE_SIZE, 0, NULL,
NULL, &(sc->sc_dmatag));
sc->sc_bt = &bs_le_tag;
bus_space_map(sc->sc_bt, SMU_MAILBOX, 4, 0, &sc->sc_mailbox);
/*
* Allocate the command buffer. This can be anywhere in the low 4 GB
* of memory.
*/
bus_dmamem_alloc(sc->sc_dmatag, (void **)&sc->sc_cmd, BUS_DMA_WAITOK |
BUS_DMA_ZERO, &sc->sc_cmd_dmamap);
bus_dmamap_load(sc->sc_dmatag, sc->sc_cmd_dmamap,
sc->sc_cmd, PAGE_SIZE, smu_phys_callback, sc, 0);
STAILQ_INIT(&sc->sc_cmdq);
/*
* Set up handlers to change CPU voltage when CPU frequency is changed.
*/
EVENTHANDLER_REGISTER(cpufreq_pre_change, smu_cpufreq_pre_change, dev,
EVENTHANDLER_PRI_ANY);
EVENTHANDLER_REGISTER(cpufreq_post_change, smu_cpufreq_post_change, dev,
EVENTHANDLER_PRI_ANY);
node = ofw_bus_get_node(dev);
/* Some SMUs have RPM and PWM controlled fans which do not sit
* under the same node. So we have to attach them separately.
*/
smu_attach_fans(dev, node);
/*
* Now detect and attach the other child devices.
*/
for (child = OF_child(node); child != 0; child = OF_peer(child)) {
char name[32];
memset(name, 0, sizeof(name));
OF_getprop(child, "name", name, sizeof(name));
if (strncmp(name, "sensors", 8) == 0)
smu_attach_sensors(dev, child);
if (strncmp(name, "smu-i2c-control", 15) == 0)
smu_attach_i2c(dev, child);
}
/* Some SMUs have the I2C children directly under the bus. */
smu_attach_i2c(dev, node);
/*
* Collect calibration constants.
*/
smu_get_datablock(dev, SMU_CPUTEMP_CAL, data, sizeof(data));
sc->sc_cpu_diode_scale = (data[4] << 8) + data[5];
sc->sc_cpu_diode_offset = (data[6] << 8) + data[7];
smu_get_datablock(dev, SMU_CPUVOLT_CAL, data, sizeof(data));
sc->sc_cpu_volt_scale = (data[4] << 8) + data[5];
sc->sc_cpu_volt_offset = (data[6] << 8) + data[7];
sc->sc_cpu_curr_scale = (data[8] << 8) + data[9];
sc->sc_cpu_curr_offset = (data[10] << 8) + data[11];
smu_get_datablock(dev, SMU_SLOTPW_CAL, data, sizeof(data));
sc->sc_slots_pow_scale = (data[4] << 8) + data[5];
sc->sc_slots_pow_offset = (data[6] << 8) + data[7];
/*
* Set up LED interface
*/
sc->sc_leddev = led_create(smu_set_sleepled, dev, "sleepled");
/*
* Reset on power loss behavior
*/
SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev),
SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), OID_AUTO,
"server_mode", CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, dev,
0, smu_server_mode, "I", "Enable reboot after power failure");
/*
* Set up doorbell interrupt.
*/
sc->sc_doorbellirqid = 0;
sc->sc_doorbellirq = bus_alloc_resource_any(smu_doorbell, SYS_RES_IRQ,
&sc->sc_doorbellirqid, RF_ACTIVE);
bus_setup_intr(smu_doorbell, sc->sc_doorbellirq,
INTR_TYPE_MISC | INTR_MPSAFE, NULL, smu_doorbell_intr, dev,
&sc->sc_doorbellirqcookie);
powerpc_config_intr(rman_get_start(sc->sc_doorbellirq),
INTR_TRIGGER_EDGE, INTR_POLARITY_LOW);
/*
* Connect RTC interface.
*/
clock_register(dev, 1000);
/*
* Learn about shutdown events
*/
EVENTHANDLER_REGISTER(shutdown_final, smu_shutdown, dev,
SHUTDOWN_PRI_LAST);
return (bus_generic_attach(dev));
}
static const struct ofw_bus_devinfo *
smu_get_devinfo(device_t bus, device_t dev)
{
return (device_get_ivars(dev));
}
static void
smu_send_cmd(device_t dev, struct smu_cmd *cmd)
{
struct smu_softc *sc;
sc = device_get_softc(dev);
mtx_assert(&sc->sc_mtx, MA_OWNED);
if (sc->sc_u3)
powerpc_pow_enabled = 0; /* SMU cannot work if we go to NAP */
sc->sc_cur_cmd = cmd;
/* Copy the command to the mailbox */
sc->sc_cmd->cmd = cmd->cmd;
sc->sc_cmd->len = cmd->len;
memcpy(sc->sc_cmd->data, cmd->data, sizeof(cmd->data));
bus_dmamap_sync(sc->sc_dmatag, sc->sc_cmd_dmamap, BUS_DMASYNC_PREWRITE);
bus_space_write_4(sc->sc_bt, sc->sc_mailbox, 0, sc->sc_cmd_phys);
/* Flush the cacheline it is in -- SMU bypasses the cache */
__asm __volatile("sync; dcbf 0,%0; sync" :: "r"(sc->sc_cmd): "memory");
/* Ring SMU doorbell */
macgpio_write(smu_doorbell, GPIO_DDR_OUTPUT);
}
static void
smu_doorbell_intr(void *xdev)
{
device_t smu;
struct smu_softc *sc;
int doorbell_ack;
smu = xdev;
doorbell_ack = macgpio_read(smu_doorbell);
sc = device_get_softc(smu);
if (doorbell_ack != (GPIO_DDR_OUTPUT | GPIO_LEVEL_RO | GPIO_DATA))
return;
mtx_lock(&sc->sc_mtx);
if (sc->sc_cur_cmd == NULL) /* spurious */
goto done;
/* Check result. First invalidate the cache again... */
__asm __volatile("dcbf 0,%0; sync" :: "r"(sc->sc_cmd) : "memory");
bus_dmamap_sync(sc->sc_dmatag, sc->sc_cmd_dmamap, BUS_DMASYNC_POSTREAD);
sc->sc_cur_cmd->cmd = sc->sc_cmd->cmd;
sc->sc_cur_cmd->len = sc->sc_cmd->len;
memcpy(sc->sc_cur_cmd->data, sc->sc_cmd->data,
sizeof(sc->sc_cmd->data));
wakeup(sc->sc_cur_cmd);
sc->sc_cur_cmd = NULL;
if (sc->sc_u3)
powerpc_pow_enabled = 1;
done:
/* Queue next command if one is pending */
if (STAILQ_FIRST(&sc->sc_cmdq) != NULL) {
sc->sc_cur_cmd = STAILQ_FIRST(&sc->sc_cmdq);
STAILQ_REMOVE_HEAD(&sc->sc_cmdq, cmd_q);
smu_send_cmd(smu, sc->sc_cur_cmd);
}
mtx_unlock(&sc->sc_mtx);
}
static int
smu_run_cmd(device_t dev, struct smu_cmd *cmd, int wait)
{
struct smu_softc *sc;
uint8_t cmd_code;
int error;
sc = device_get_softc(dev);
cmd_code = cmd->cmd;
mtx_lock(&sc->sc_mtx);
if (sc->sc_cur_cmd != NULL) {
STAILQ_INSERT_TAIL(&sc->sc_cmdq, cmd, cmd_q);
} else
smu_send_cmd(dev, cmd);
mtx_unlock(&sc->sc_mtx);
if (!wait)
return (0);
if (sc->sc_doorbellirqid < 0) {
/* Poll if the IRQ has not been set up yet */
do {
DELAY(50);
smu_doorbell_intr(dev);
} while (sc->sc_cur_cmd != NULL);
} else {
/* smu_doorbell_intr will wake us when the command is ACK'ed */
error = tsleep(cmd, 0, "smu", 800 * hz / 1000);
if (error != 0)
smu_doorbell_intr(dev); /* One last chance */
if (error != 0) {
mtx_lock(&sc->sc_mtx);
if (cmd->cmd == cmd_code) { /* Never processed */
/* Abort this command if we timed out */
if (sc->sc_cur_cmd == cmd)
sc->sc_cur_cmd = NULL;
else
STAILQ_REMOVE(&sc->sc_cmdq, cmd, smu_cmd,
cmd_q);
mtx_unlock(&sc->sc_mtx);
return (error);
}
error = 0;
mtx_unlock(&sc->sc_mtx);
}
}
/* SMU acks the command by inverting the command bits */
if (cmd->cmd == ((~cmd_code) & 0xff))
error = 0;
else
error = EIO;
return (error);
}
static int
smu_get_datablock(device_t dev, int8_t id, uint8_t *buf, size_t len)
{
struct smu_cmd cmd;
uint8_t addr[4];
cmd.cmd = SMU_PARTITION;
cmd.len = 2;
cmd.data[0] = SMU_PARTITION_LATEST;
cmd.data[1] = id;
smu_run_cmd(dev, &cmd, 1);
addr[0] = addr[1] = 0;
addr[2] = cmd.data[0];
addr[3] = cmd.data[1];
cmd.cmd = SMU_MISC;
cmd.len = 7;
cmd.data[0] = SMU_MISC_GET_DATA;
cmd.data[1] = sizeof(addr);
memcpy(&cmd.data[2], addr, sizeof(addr));
cmd.data[6] = len;
smu_run_cmd(dev, &cmd, 1);
memcpy(buf, cmd.data, len);
return (0);
}
static void
smu_slew_cpu_voltage(device_t dev, int to)
{
struct smu_cmd cmd;
cmd.cmd = SMU_POWER;
cmd.len = 8;
cmd.data[0] = 'V';
cmd.data[1] = 'S';
cmd.data[2] = 'L';
cmd.data[3] = 'E';
cmd.data[4] = 'W';
cmd.data[5] = 0xff;
cmd.data[6] = 1;
cmd.data[7] = to;
smu_run_cmd(dev, &cmd, 1);
}
static void
smu_cpufreq_pre_change(device_t dev, const struct cf_level *level)
{
/*
* Make sure the CPU voltage is raised before we raise
* the clock.
*/
if (level->rel_set[0].freq == 10000 /* max */)
smu_slew_cpu_voltage(dev, 0);
}
static void
smu_cpufreq_post_change(device_t dev, const struct cf_level *level)
{
/* We are safe to reduce CPU voltage after a downward transition */
if (level->rel_set[0].freq < 10000 /* max */)
smu_slew_cpu_voltage(dev, 1); /* XXX: 1/4 voltage for 970MP? */
}
/* Routines for probing the SMU doorbell GPIO */
static int doorbell_probe(device_t dev);
static int doorbell_attach(device_t dev);
static device_method_t doorbell_methods[] = {
/* Device interface */
DEVMETHOD(device_probe, doorbell_probe),
DEVMETHOD(device_attach, doorbell_attach),
{ 0, 0 },
};
static driver_t doorbell_driver = {
"smudoorbell",
doorbell_methods,
0
};
static devclass_t doorbell_devclass;
EARLY_DRIVER_MODULE(smudoorbell, macgpio, doorbell_driver, doorbell_devclass,
0, 0, BUS_PASS_SUPPORTDEV);
static int
doorbell_probe(device_t dev)
{
const char *name = ofw_bus_get_name(dev);
if (strcmp(name, "smu-doorbell") != 0)
return (ENXIO);
device_set_desc(dev, "SMU Doorbell GPIO");
device_quiet(dev);
return (0);
}
static int
doorbell_attach(device_t dev)
{
smu_doorbell = dev;
return (0);
}
/*
* Sensor and fan management
*/
static int
smu_fan_check_old_style(struct smu_fan *fan)
{
device_t smu = fan->dev;
struct smu_softc *sc = device_get_softc(smu);
struct smu_cmd cmd;
int error;
if (sc->old_style_fans != -1)
return (sc->old_style_fans);
/*
* Apple has two fan control mechanisms. We can't distinguish
* them except by seeing if the new one fails. If the new one
* fails, use the old one.
*/
cmd.cmd = SMU_FAN;
cmd.len = 2;
cmd.data[0] = 0x31;
cmd.data[1] = fan->reg;
do {
error = smu_run_cmd(smu, &cmd, 1);
} while (error == EWOULDBLOCK);
sc->old_style_fans = (error != 0);
return (sc->old_style_fans);
}
static int
smu_fan_set_rpm(struct smu_fan *fan, int rpm)
{
device_t smu = fan->dev;
struct smu_cmd cmd;
int error;
cmd.cmd = SMU_FAN;
error = EIO;
/* Clamp to allowed range */
rpm = max(fan->fan.min_rpm, rpm);
rpm = min(fan->fan.max_rpm, rpm);
smu_fan_check_old_style(fan);
if (!fan->old_style) {
cmd.len = 4;
cmd.data[0] = 0x30;
cmd.data[1] = fan->reg;
cmd.data[2] = (rpm >> 8) & 0xff;
cmd.data[3] = rpm & 0xff;
error = smu_run_cmd(smu, &cmd, 1);
if (error && error != EWOULDBLOCK)
fan->old_style = 1;
} else {
cmd.len = 14;
cmd.data[0] = 0x00; /* RPM fan. */
cmd.data[1] = 1 << fan->reg;
cmd.data[2 + 2*fan->reg] = (rpm >> 8) & 0xff;
cmd.data[3 + 2*fan->reg] = rpm & 0xff;
error = smu_run_cmd(smu, &cmd, 1);
}
if (error == 0)
fan->setpoint = rpm;
return (error);
}
static int
smu_fan_read_rpm(struct smu_fan *fan)
{
device_t smu = fan->dev;
struct smu_cmd cmd;
int rpm, error;
smu_fan_check_old_style(fan);
if (!fan->old_style) {
cmd.cmd = SMU_FAN;
cmd.len = 2;
cmd.data[0] = 0x31;
cmd.data[1] = fan->reg;
error = smu_run_cmd(smu, &cmd, 1);
if (error && error != EWOULDBLOCK)
fan->old_style = 1;
rpm = (cmd.data[0] << 8) | cmd.data[1];
}
if (fan->old_style) {
cmd.cmd = SMU_FAN;
cmd.len = 1;
cmd.data[0] = SMU_RPM_STATUS;
error = smu_run_cmd(smu, &cmd, 1);
if (error)
return (error);
rpm = (cmd.data[fan->reg*2+1] << 8) | cmd.data[fan->reg*2+2];
}
return (rpm);
}
static int
smu_fan_set_pwm(struct smu_fan *fan, int pwm)
{
device_t smu = fan->dev;
struct smu_cmd cmd;
int error;
cmd.cmd = SMU_FAN;
error = EIO;
/* Clamp to allowed range */
pwm = max(fan->fan.min_rpm, pwm);
pwm = min(fan->fan.max_rpm, pwm);
/*
* Apple has two fan control mechanisms. We can't distinguish
* them except by seeing if the new one fails. If the new one
* fails, use the old one.
*/
if (!fan->old_style) {
cmd.len = 4;
cmd.data[0] = 0x30;
cmd.data[1] = fan->reg;
cmd.data[2] = (pwm >> 8) & 0xff;
cmd.data[3] = pwm & 0xff;
error = smu_run_cmd(smu, &cmd, 1);
if (error && error != EWOULDBLOCK)
fan->old_style = 1;
}
if (fan->old_style) {
cmd.len = 14;
cmd.data[0] = 0x10; /* PWM fan. */
cmd.data[1] = 1 << fan->reg;
cmd.data[2 + 2*fan->reg] = (pwm >> 8) & 0xff;
cmd.data[3 + 2*fan->reg] = pwm & 0xff;
error = smu_run_cmd(smu, &cmd, 1);
}
if (error == 0)
fan->setpoint = pwm;
return (error);
}
static int
smu_fan_read_pwm(struct smu_fan *fan, int *pwm, int *rpm)
{
device_t smu = fan->dev;
struct smu_cmd cmd;
int error;
if (!fan->old_style) {
cmd.cmd = SMU_FAN;
cmd.len = 2;
cmd.data[0] = 0x31;
cmd.data[1] = fan->reg;
error = smu_run_cmd(smu, &cmd, 1);
if (error && error != EWOULDBLOCK)
fan->old_style = 1;
*rpm = (cmd.data[0] << 8) | cmd.data[1];
}
if (fan->old_style) {
cmd.cmd = SMU_FAN;
cmd.len = 1;
cmd.data[0] = SMU_PWM_STATUS;
error = smu_run_cmd(smu, &cmd, 1);
if (error)
return (error);
*rpm = (cmd.data[fan->reg*2+1] << 8) | cmd.data[fan->reg*2+2];
}
if (fan->old_style) {
cmd.cmd = SMU_FAN;
cmd.len = 14;
cmd.data[0] = SMU_PWM_SETPOINT;
cmd.data[1] = 1 << fan->reg;
error = smu_run_cmd(smu, &cmd, 1);
if (error)
return (error);
*pwm = cmd.data[fan->reg*2+2];
}
return (0);
}
static int
smu_fanrpm_sysctl(SYSCTL_HANDLER_ARGS)
{
device_t smu;
struct smu_softc *sc;
struct smu_fan *fan;
int pwm = 0, rpm, error = 0;
smu = arg1;
sc = device_get_softc(smu);
fan = &sc->sc_fans[arg2 & 0xff];
if (fan->type == SMU_FAN_RPM) {
rpm = smu_fan_read_rpm(fan);
if (rpm < 0)
return (rpm);
error = sysctl_handle_int(oidp, &rpm, 0, req);
} else {
error = smu_fan_read_pwm(fan, &pwm, &rpm);
if (error < 0)
return (EIO);
switch (arg2 & 0xff00) {
case SMU_PWM_SYSCTL_PWM:
error = sysctl_handle_int(oidp, &pwm, 0, req);
break;
case SMU_PWM_SYSCTL_RPM:
error = sysctl_handle_int(oidp, &rpm, 0, req);
break;
default:
/* This should never happen */
return (EINVAL);
}
}
/* We can only read the RPM from a PWM controlled fan, so return. */
if ((arg2 & 0xff00) == SMU_PWM_SYSCTL_RPM)
return (0);
if (error || !req->newptr)
return (error);
sc->sc_lastuserchange = time_uptime;
if (fan->type == SMU_FAN_RPM)
return (smu_fan_set_rpm(fan, rpm));
else
return (smu_fan_set_pwm(fan, pwm));
}
static void
smu_fill_fan_prop(device_t dev, phandle_t child, int id)
{
struct smu_fan *fan;
struct smu_softc *sc;
char type[32];
sc = device_get_softc(dev);
fan = &sc->sc_fans[id];
OF_getprop(child, "device_type", type, sizeof(type));
/* We have either RPM or PWM controlled fans. */
if (strcmp(type, "fan-rpm-control") == 0)
fan->type = SMU_FAN_RPM;
else
fan->type = SMU_FAN_PWM;
fan->dev = dev;
fan->old_style = 0;
OF_getprop(child, "reg", &fan->reg,
sizeof(cell_t));
OF_getprop(child, "min-value", &fan->fan.min_rpm,
sizeof(int));
OF_getprop(child, "max-value", &fan->fan.max_rpm,
sizeof(int));
OF_getprop(child, "zone", &fan->fan.zone,
sizeof(int));
if (OF_getprop(child, "unmanaged-value",
&fan->fan.default_rpm,
sizeof(int)) != sizeof(int))
fan->fan.default_rpm = fan->fan.max_rpm;
OF_getprop(child, "location", fan->fan.name,
sizeof(fan->fan.name));
if (fan->type == SMU_FAN_RPM)
fan->setpoint = smu_fan_read_rpm(fan);
else
smu_fan_read_pwm(fan, &fan->setpoint, &fan->rpm);
}
/* On the first call count the number of fans. In the second call,
* after allocating the fan struct, fill the properties of the fans.
*/
static int
smu_count_fans(device_t dev)
{
struct smu_softc *sc;
phandle_t child, node, root;
int nfans = 0;
node = ofw_bus_get_node(dev);
sc = device_get_softc(dev);
/* First find the fanroots and count the number of fans. */
for (root = OF_child(node); root != 0; root = OF_peer(root)) {
char name[32];
memset(name, 0, sizeof(name));
OF_getprop(root, "name", name, sizeof(name));
if (strncmp(name, "rpm-fans", 9) == 0 ||
strncmp(name, "pwm-fans", 9) == 0 ||
strncmp(name, "fans", 5) == 0)
for (child = OF_child(root); child != 0;
child = OF_peer(child)) {
nfans++;
/* When allocated, fill the fan properties. */
if (sc->sc_fans != NULL) {
smu_fill_fan_prop(dev, child,
nfans - 1);
}
}
}
if (nfans == 0) {
device_printf(dev, "WARNING: No fans detected!\n");
return (0);
}
return (nfans);
}
static void
smu_attach_fans(device_t dev, phandle_t fanroot)
{
struct smu_fan *fan;
struct smu_softc *sc;
struct sysctl_oid *oid, *fanroot_oid;
struct sysctl_ctx_list *ctx;
char sysctl_name[32];
int i, j;
sc = device_get_softc(dev);
/* Get the number of fans. */
sc->sc_nfans = smu_count_fans(dev);
if (sc->sc_nfans == 0)
return;
/* Now we're able to allocate memory for the fans struct. */
sc->sc_fans = malloc(sc->sc_nfans * sizeof(struct smu_fan), M_SMU,
M_WAITOK | M_ZERO);
/* Now fill in the properties. */
smu_count_fans(dev);
/* Register fans with pmac_thermal */
for (i = 0; i < sc->sc_nfans; i++)
pmac_thermal_fan_register(&sc->sc_fans[i].fan);
ctx = device_get_sysctl_ctx(dev);
fanroot_oid = SYSCTL_ADD_NODE(ctx,
SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), OID_AUTO, "fans",
CTLFLAG_RD | CTLFLAG_MPSAFE, 0, "SMU Fan Information");
/* Add sysctls */
for (i = 0; i < sc->sc_nfans; i++) {
fan = &sc->sc_fans[i];
for (j = 0; j < strlen(fan->fan.name); j++) {
sysctl_name[j] = tolower(fan->fan.name[j]);
if (isspace(sysctl_name[j]))
sysctl_name[j] = '_';
}
sysctl_name[j] = 0;
if (fan->type == SMU_FAN_RPM) {
oid = SYSCTL_ADD_NODE(ctx,
SYSCTL_CHILDREN(fanroot_oid), OID_AUTO,
sysctl_name, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
"Fan Information");
SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(oid), OID_AUTO,
"minrpm", CTLFLAG_RD,
&fan->fan.min_rpm, 0,
"Minimum allowed RPM");
SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(oid), OID_AUTO,
"maxrpm", CTLFLAG_RD,
&fan->fan.max_rpm, 0,
"Maximum allowed RPM");
SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(oid), OID_AUTO,
"rpm",CTLTYPE_INT | CTLFLAG_RW |
CTLFLAG_MPSAFE, dev, i,
smu_fanrpm_sysctl, "I", "Fan RPM");
fan->fan.read = (int (*)(struct pmac_fan *))smu_fan_read_rpm;
fan->fan.set = (int (*)(struct pmac_fan *, int))smu_fan_set_rpm;
} else {
oid = SYSCTL_ADD_NODE(ctx,
SYSCTL_CHILDREN(fanroot_oid), OID_AUTO,
sysctl_name, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
"Fan Information");
SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(oid), OID_AUTO,
"minpwm", CTLFLAG_RD,
&fan->fan.min_rpm, 0,
"Minimum allowed PWM in %");
SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(oid), OID_AUTO,
"maxpwm", CTLFLAG_RD,
&fan->fan.max_rpm, 0,
"Maximum allowed PWM in %");
SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(oid), OID_AUTO,
"pwm",CTLTYPE_INT | CTLFLAG_RW |
CTLFLAG_MPSAFE, dev,
SMU_PWM_SYSCTL_PWM | i,
smu_fanrpm_sysctl, "I", "Fan PWM in %");
SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(oid), OID_AUTO,
"rpm",CTLTYPE_INT | CTLFLAG_RD |
CTLFLAG_MPSAFE, dev,
SMU_PWM_SYSCTL_RPM | i,
smu_fanrpm_sysctl, "I", "Fan RPM");
fan->fan.read = NULL;
fan->fan.set = (int (*)(struct pmac_fan *, int))smu_fan_set_pwm;
}
if (bootverbose)
device_printf(dev, "Fan: %s type: %d\n",
fan->fan.name, fan->type);
}
}
static int
smu_sensor_read(struct smu_sensor *sens)
{
device_t smu = sens->dev;
struct smu_cmd cmd;
struct smu_softc *sc;
int64_t value;
int error;
cmd.cmd = SMU_ADC;
cmd.len = 1;
cmd.data[0] = sens->reg;
error = 0;
error = smu_run_cmd(smu, &cmd, 1);
if (error != 0)
return (-1);
sc = device_get_softc(smu);
value = (cmd.data[0] << 8) | cmd.data[1];
switch (sens->type) {
case SMU_TEMP_SENSOR:
value *= sc->sc_cpu_diode_scale;
value >>= 3;
value += ((int64_t)sc->sc_cpu_diode_offset) << 9;
value <<= 1;
/* Convert from 16.16 fixed point degC into integer 0.1 K. */
value = 10*(value >> 16) + ((10*(value & 0xffff)) >> 16) + 2731;
break;
case SMU_VOLTAGE_SENSOR:
value *= sc->sc_cpu_volt_scale;
value += sc->sc_cpu_volt_offset;
value <<= 4;
/* Convert from 16.16 fixed point V into mV. */
value *= 15625;
value /= 1024;
value /= 1000;
break;
case SMU_CURRENT_SENSOR:
value *= sc->sc_cpu_curr_scale;
value += sc->sc_cpu_curr_offset;
value <<= 4;
/* Convert from 16.16 fixed point A into mA. */
value *= 15625;
value /= 1024;
value /= 1000;
break;
case SMU_POWER_SENSOR:
value *= sc->sc_slots_pow_scale;
value += sc->sc_slots_pow_offset;
value <<= 4;
/* Convert from 16.16 fixed point W into mW. */
value *= 15625;
value /= 1024;
value /= 1000;
break;
}
return (value);
}
static int
smu_sensor_sysctl(SYSCTL_HANDLER_ARGS)
{
device_t smu;
struct smu_softc *sc;
struct smu_sensor *sens;
int value, error;
smu = arg1;
sc = device_get_softc(smu);
sens = &sc->sc_sensors[arg2];
value = smu_sensor_read(sens);
if (value < 0)
return (EBUSY);
error = sysctl_handle_int(oidp, &value, 0, req);
return (error);
}
static void
smu_attach_sensors(device_t dev, phandle_t sensroot)
{
struct smu_sensor *sens;
struct smu_softc *sc;
struct sysctl_oid *sensroot_oid;
struct sysctl_ctx_list *ctx;
phandle_t child;
char type[32];
int i;
sc = device_get_softc(dev);
sc->sc_nsensors = 0;
for (child = OF_child(sensroot); child != 0; child = OF_peer(child))
sc->sc_nsensors++;
if (sc->sc_nsensors == 0) {
device_printf(dev, "WARNING: No sensors detected!\n");
return;
}
sc->sc_sensors = malloc(sc->sc_nsensors * sizeof(struct smu_sensor),
M_SMU, M_WAITOK | M_ZERO);
sens = sc->sc_sensors;
sc->sc_nsensors = 0;
ctx = device_get_sysctl_ctx(dev);
sensroot_oid = SYSCTL_ADD_NODE(ctx,
SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), OID_AUTO, "sensors",
CTLFLAG_RD | CTLFLAG_MPSAFE, 0, "SMU Sensor Information");
for (child = OF_child(sensroot); child != 0; child = OF_peer(child)) {
char sysctl_name[40], sysctl_desc[40];
const char *units;
sens->dev = dev;
OF_getprop(child, "device_type", type, sizeof(type));
if (strcmp(type, "current-sensor") == 0) {
sens->type = SMU_CURRENT_SENSOR;
units = "mA";
} else if (strcmp(type, "temp-sensor") == 0) {
sens->type = SMU_TEMP_SENSOR;
units = "C";
} else if (strcmp(type, "voltage-sensor") == 0) {
sens->type = SMU_VOLTAGE_SENSOR;
units = "mV";
} else if (strcmp(type, "power-sensor") == 0) {
sens->type = SMU_POWER_SENSOR;
units = "mW";
} else {
continue;
}
OF_getprop(child, "reg", &sens->reg, sizeof(cell_t));
OF_getprop(child, "zone", &sens->therm.zone, sizeof(int));
OF_getprop(child, "location", sens->therm.name,
sizeof(sens->therm.name));
for (i = 0; i < strlen(sens->therm.name); i++) {
sysctl_name[i] = tolower(sens->therm.name[i]);
if (isspace(sysctl_name[i]))
sysctl_name[i] = '_';
}
sysctl_name[i] = 0;
sprintf(sysctl_desc,"%s (%s)", sens->therm.name, units);
SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(sensroot_oid), OID_AUTO,
sysctl_name, CTLTYPE_INT | CTLFLAG_RD | CTLFLAG_MPSAFE,
dev, sc->sc_nsensors, smu_sensor_sysctl,
(sens->type == SMU_TEMP_SENSOR) ? "IK" : "I", sysctl_desc);
if (sens->type == SMU_TEMP_SENSOR) {
/* Make up some numbers */
sens->therm.target_temp = 500 + 2731; /* 50 C */
sens->therm.max_temp = 900 + 2731; /* 90 C */
sens->therm.read =
(int (*)(struct pmac_therm *))smu_sensor_read;
pmac_thermal_sensor_register(&sens->therm);
}
sens++;
sc->sc_nsensors++;
}
}
static void
smu_set_sleepled(void *xdev, int onoff)
{
static struct smu_cmd cmd;
device_t smu = xdev;
cmd.cmd = SMU_MISC;
cmd.len = 3;
cmd.data[0] = SMU_MISC_LED_CTRL;
cmd.data[1] = 0;
cmd.data[2] = onoff;
smu_run_cmd(smu, &cmd, 0);
}
static int
smu_server_mode(SYSCTL_HANDLER_ARGS)
{
struct smu_cmd cmd;
u_int server_mode;
device_t smu = arg1;
int error;
cmd.cmd = SMU_POWER_EVENTS;
cmd.len = 1;
cmd.data[0] = SMU_PWR_GET_POWERUP;
error = smu_run_cmd(smu, &cmd, 1);
if (error)
return (error);
server_mode = (cmd.data[1] & SMU_WAKEUP_AC_INSERT) ? 1 : 0;
error = sysctl_handle_int(oidp, &server_mode, 0, req);
if (error || !req->newptr)
return (error);
if (server_mode == 1)
cmd.data[0] = SMU_PWR_SET_POWERUP;
else if (server_mode == 0)
cmd.data[0] = SMU_PWR_CLR_POWERUP;
else
return (EINVAL);
cmd.len = 3;
cmd.data[1] = 0;
cmd.data[2] = SMU_WAKEUP_AC_INSERT;
return (smu_run_cmd(smu, &cmd, 1));
}
static void
smu_shutdown(void *xdev, int howto)
{
device_t smu = xdev;
struct smu_cmd cmd;
cmd.cmd = SMU_POWER;
if (howto & RB_HALT)
strcpy(cmd.data, "SHUTDOWN");
else
strcpy(cmd.data, "RESTART");
cmd.len = strlen(cmd.data);
smu_run_cmd(smu, &cmd, 1);
for (;;);
}
static int
smu_gettime(device_t dev, struct timespec *ts)
{
struct smu_cmd cmd;
struct clocktime ct;
cmd.cmd = SMU_RTC;
cmd.len = 1;
cmd.data[0] = SMU_RTC_GET;
if (smu_run_cmd(dev, &cmd, 1) != 0)
return (ENXIO);
ct.nsec = 0;
ct.sec = bcd2bin(cmd.data[0]);
ct.min = bcd2bin(cmd.data[1]);
ct.hour = bcd2bin(cmd.data[2]);
ct.dow = bcd2bin(cmd.data[3]);
ct.day = bcd2bin(cmd.data[4]);
ct.mon = bcd2bin(cmd.data[5]);
ct.year = bcd2bin(cmd.data[6]) + 2000;
return (clock_ct_to_ts(&ct, ts));
}
static int
smu_settime(device_t dev, struct timespec *ts)
{
static struct smu_cmd cmd;
struct clocktime ct;
cmd.cmd = SMU_RTC;
cmd.len = 8;
cmd.data[0] = SMU_RTC_SET;
clock_ts_to_ct(ts, &ct);
cmd.data[1] = bin2bcd(ct.sec);
cmd.data[2] = bin2bcd(ct.min);
cmd.data[3] = bin2bcd(ct.hour);
cmd.data[4] = bin2bcd(ct.dow);
cmd.data[5] = bin2bcd(ct.day);
cmd.data[6] = bin2bcd(ct.mon);
cmd.data[7] = bin2bcd(ct.year - 2000);
return (smu_run_cmd(dev, &cmd, 0));
}
/* SMU I2C Interface */
static int smuiic_probe(device_t dev);
static int smuiic_attach(device_t dev);
static int smuiic_transfer(device_t dev, struct iic_msg *msgs, uint32_t nmsgs);
static phandle_t smuiic_get_node(device_t bus, device_t dev);
static device_method_t smuiic_methods[] = {
/* device interface */
DEVMETHOD(device_probe, smuiic_probe),
DEVMETHOD(device_attach, smuiic_attach),
/* iicbus interface */
DEVMETHOD(iicbus_callback, iicbus_null_callback),
DEVMETHOD(iicbus_transfer, smuiic_transfer),
/* ofw_bus interface */
DEVMETHOD(ofw_bus_get_node, smuiic_get_node),
{ 0, 0 }
};
struct smuiic_softc {
struct mtx sc_mtx;
volatile int sc_iic_inuse;
int sc_busno;
};
static driver_t smuiic_driver = {
"iichb",
smuiic_methods,
sizeof(struct smuiic_softc)
};
static devclass_t smuiic_devclass;
DRIVER_MODULE(smuiic, smu, smuiic_driver, smuiic_devclass, 0, 0);
static void
smu_attach_i2c(device_t smu, phandle_t i2croot)
{
phandle_t child;
device_t cdev;
struct ofw_bus_devinfo *dinfo;
char name[32];
for (child = OF_child(i2croot); child != 0; child = OF_peer(child)) {
if (OF_getprop(child, "name", name, sizeof(name)) <= 0)
continue;
if (strcmp(name, "i2c-bus") != 0 && strcmp(name, "i2c") != 0)
continue;
dinfo = malloc(sizeof(struct ofw_bus_devinfo), M_SMU,
M_WAITOK | M_ZERO);
if (ofw_bus_gen_setup_devinfo(dinfo, child) != 0) {
free(dinfo, M_SMU);
continue;
}
cdev = device_add_child(smu, NULL, -1);
if (cdev == NULL) {
device_printf(smu, "<%s>: device_add_child failed\n",
dinfo->obd_name);
ofw_bus_gen_destroy_devinfo(dinfo);
free(dinfo, M_SMU);
continue;
}
device_set_ivars(cdev, dinfo);
}
}
static int
smuiic_probe(device_t dev)
{
const char *name;
name = ofw_bus_get_name(dev);
if (name == NULL)
return (ENXIO);
if (strcmp(name, "i2c-bus") == 0 || strcmp(name, "i2c") == 0) {
device_set_desc(dev, "SMU I2C controller");
return (0);
}
return (ENXIO);
}
static int
smuiic_attach(device_t dev)
{
struct smuiic_softc *sc = device_get_softc(dev);
mtx_init(&sc->sc_mtx, "smuiic", NULL, MTX_DEF);
sc->sc_iic_inuse = 0;
/* Get our bus number */
OF_getprop(ofw_bus_get_node(dev), "reg", &sc->sc_busno,
sizeof(sc->sc_busno));
/* Add the IIC bus layer */
device_add_child(dev, "iicbus", -1);
return (bus_generic_attach(dev));
}
static int
smuiic_transfer(device_t dev, struct iic_msg *msgs, uint32_t nmsgs)
{
struct smuiic_softc *sc = device_get_softc(dev);
struct smu_cmd cmd;
int i, j, error;
mtx_lock(&sc->sc_mtx);
while (sc->sc_iic_inuse)
mtx_sleep(sc, &sc->sc_mtx, 0, "smuiic", 100);
sc->sc_iic_inuse = 1;
error = 0;
for (i = 0; i < nmsgs; i++) {
cmd.cmd = SMU_I2C;
cmd.data[0] = sc->sc_busno;
if (msgs[i].flags & IIC_M_NOSTOP)
cmd.data[1] = SMU_I2C_COMBINED;
else
cmd.data[1] = SMU_I2C_SIMPLE;
cmd.data[2] = msgs[i].slave;
if (msgs[i].flags & IIC_M_RD)
cmd.data[2] |= 1;
if (msgs[i].flags & IIC_M_NOSTOP) {
KASSERT(msgs[i].len < 4,
("oversize I2C combined message"));
cmd.data[3] = min(msgs[i].len, 3);
memcpy(&cmd.data[4], msgs[i].buf, min(msgs[i].len, 3));
i++; /* Advance to next part of message */
} else {
cmd.data[3] = 0;
memset(&cmd.data[4], 0, 3);
}
cmd.data[7] = msgs[i].slave;
if (msgs[i].flags & IIC_M_RD)
cmd.data[7] |= 1;
cmd.data[8] = msgs[i].len;
if (msgs[i].flags & IIC_M_RD) {
memset(&cmd.data[9], 0xff, msgs[i].len);
cmd.len = 9;
} else {
memcpy(&cmd.data[9], msgs[i].buf, msgs[i].len);
cmd.len = 9 + msgs[i].len;
}
mtx_unlock(&sc->sc_mtx);
smu_run_cmd(device_get_parent(dev), &cmd, 1);
mtx_lock(&sc->sc_mtx);
for (j = 0; j < 10; j++) {
cmd.cmd = SMU_I2C;
cmd.len = 1;
cmd.data[0] = 0;
memset(&cmd.data[1], 0xff, msgs[i].len);
mtx_unlock(&sc->sc_mtx);
smu_run_cmd(device_get_parent(dev), &cmd, 1);
mtx_lock(&sc->sc_mtx);
if (!(cmd.data[0] & 0x80))
break;
mtx_sleep(sc, &sc->sc_mtx, 0, "smuiic", 10);
}
if (cmd.data[0] & 0x80) {
error = EIO;
msgs[i].len = 0;
goto exit;
}
memcpy(msgs[i].buf, &cmd.data[1], msgs[i].len);
msgs[i].len = cmd.len - 1;
}
exit:
sc->sc_iic_inuse = 0;
mtx_unlock(&sc->sc_mtx);
wakeup(sc);
return (error);
}
static phandle_t
smuiic_get_node(device_t bus, device_t dev)
{
return (ofw_bus_get_node(bus));
}