freebsd-skq/sys/dev/raidframe/rf_pqdegdags.c
Scott Long f9d186edc8 After much delay and anticipation, welcome RAIDFrame into the FreeBSD
world.  This should be considered highly experimental.

Approved-by:	re
2002-10-20 08:17:39 +00:00

431 lines
16 KiB
C

/* $FreeBSD$ */
/* $NetBSD: rf_pqdegdags.c,v 1.5 1999/08/15 02:36:40 oster Exp $ */
/*
* Copyright (c) 1995 Carnegie-Mellon University.
* All rights reserved.
*
* Author: Daniel Stodolsky
*
* Permission to use, copy, modify and distribute this software and
* its documentation is hereby granted, provided that both the copyright
* notice and this permission notice appear in all copies of the
* software, derivative works or modified versions, and any portions
* thereof, and that both notices appear in supporting documentation.
*
* CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
* CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
* FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
*
* Carnegie Mellon requests users of this software to return to
*
* Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
* School of Computer Science
* Carnegie Mellon University
* Pittsburgh PA 15213-3890
*
* any improvements or extensions that they make and grant Carnegie the
* rights to redistribute these changes.
*/
/*
* rf_pqdegdags.c
* Degraded mode dags for double fault cases.
*/
#include <dev/raidframe/rf_archs.h>
#if (RF_INCLUDE_DECL_PQ > 0) || (RF_INCLUDE_RAID6 > 0)
#include <dev/raidframe/rf_types.h>
#include <dev/raidframe/rf_raid.h>
#include <dev/raidframe/rf_dag.h>
#include <dev/raidframe/rf_dagdegrd.h>
#include <dev/raidframe/rf_dagdegwr.h>
#include <dev/raidframe/rf_dagfuncs.h>
#include <dev/raidframe/rf_dagutils.h>
#include <dev/raidframe/rf_etimer.h>
#include <dev/raidframe/rf_acctrace.h>
#include <dev/raidframe/rf_general.h>
#include <dev/raidframe/rf_pqdegdags.h>
#include <dev/raidframe/rf_pq.h>
static void
applyPDA(RF_Raid_t * raidPtr, RF_PhysDiskAddr_t * pda, RF_PhysDiskAddr_t * ppda,
RF_PhysDiskAddr_t * qpda, void *bp);
/*
Two data drives have failed, and we are doing a read that covers one of them.
We may also be reading some of the surviving drives.
*****************************************************************************************
*
* creates a DAG to perform a degraded-mode read of data within one stripe.
* This DAG is as follows:
*
* Hdr
* |
* Block
* / / \ \ \ \
* Rud ... Rud Rrd ... Rrd Rp Rq
* | \ | \ | \ | \ | \ | \
*
* | |
* Unblock X
* \ /
* ------ T ------
*
* Each R node is a successor of the L node
* One successor arc from each R node goes to U, and the other to X
* There is one Rud for each chunk of surviving user data requested by the user,
* and one Rrd for each chunk of surviving user data _not_ being read by the user
* R = read, ud = user data, rd = recovery (surviving) data, p = P data, q = Qdata
* X = pq recovery node, T = terminate
*
* The block & unblock nodes are leftovers from a previous version. They
* do nothing, but I haven't deleted them because it would be a tremendous
* effort to put them back in.
*
* Note: The target buffer for the XOR node is set to the actual user buffer where the
* failed data is supposed to end up. This buffer is zero'd by the code here. Thus,
* if you create a degraded read dag, use it, and then re-use, you have to be sure to
* zero the target buffer prior to the re-use.
*
* Every buffer read is passed to the pq recovery node, whose job it is to sort out whats
* needs and what's not.
****************************************************************************************/
/* init a disk node with 2 successors and one predecessor */
#define INIT_DISK_NODE(node,name) \
rf_InitNode(node, rf_wait, RF_FALSE, rf_DiskReadFunc, rf_DiskReadUndoFunc, rf_GenericWakeupFunc, 2,1,4,0, dag_h, name, allocList); \
(node)->succedents[0] = unblockNode; \
(node)->succedents[1] = recoveryNode; \
(node)->antecedents[0] = blockNode; \
(node)->antType[0] = rf_control
#define DISK_NODE_PARAMS(_node_,_p_) \
(_node_).params[0].p = _p_ ; \
(_node_).params[1].p = (_p_)->bufPtr; \
(_node_).params[2].v = parityStripeID; \
(_node_).params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru)
#define DISK_NODE_PDA(node) ((node)->params[0].p)
RF_CREATE_DAG_FUNC_DECL(rf_PQ_DoubleDegRead)
{
rf_DoubleDegRead(raidPtr, asmap, dag_h, bp, flags, allocList,
"Rq", "PQ Recovery", rf_PQDoubleRecoveryFunc);
}
static void
applyPDA(raidPtr, pda, ppda, qpda, bp)
RF_Raid_t *raidPtr;
RF_PhysDiskAddr_t *pda;
RF_PhysDiskAddr_t *ppda;
RF_PhysDiskAddr_t *qpda;
void *bp;
{
RF_RaidLayout_t *layoutPtr = &(raidPtr->Layout);
RF_RaidAddr_t s0off = rf_StripeUnitOffset(layoutPtr, ppda->startSector);
RF_SectorCount_t s0len = ppda->numSector, len;
RF_SectorNum_t suoffset;
unsigned coeff;
char *pbuf = ppda->bufPtr;
char *qbuf = qpda->bufPtr;
char *buf;
int delta;
suoffset = rf_StripeUnitOffset(layoutPtr, pda->startSector);
len = pda->numSector;
/* see if pda intersects a recovery pda */
if ((suoffset < s0off + s0len) && (suoffset + len > s0off)) {
buf = pda->bufPtr;
coeff = rf_RaidAddressToStripeUnitID(&(raidPtr->Layout), pda->raidAddress);
coeff = (coeff % raidPtr->Layout.numDataCol);
if (suoffset < s0off) {
delta = s0off - suoffset;
buf += rf_RaidAddressToStripeUnitID(&(raidPtr->Layout), delta);
suoffset = s0off;
len -= delta;
}
if (suoffset > s0off) {
delta = suoffset - s0off;
pbuf += rf_RaidAddressToStripeUnitID(&(raidPtr->Layout), delta);
qbuf += rf_RaidAddressToStripeUnitID(&(raidPtr->Layout), delta);
}
if ((suoffset + len) > (s0len + s0off))
len = s0len + s0off - suoffset;
/* src, dest, len */
rf_bxor(buf, pbuf, rf_RaidAddressToByte(raidPtr, len), bp);
/* dest, src, len, coeff */
rf_IncQ((unsigned long *) qbuf, (unsigned long *) buf, rf_RaidAddressToByte(raidPtr, len), coeff);
}
}
/*
Recover data in the case of a double failure. There can be two
result buffers, one for each chunk of data trying to be recovered.
The params are pda's that have not been range restricted or otherwise
politely massaged - this should be done here. The last params are the
pdas of P and Q, followed by the raidPtr. The list can look like
pda, pda, ... , p pda, q pda, raidptr, asm
or
pda, pda, ... , p_1 pda, p_2 pda, q_1 pda, q_2 pda, raidptr, asm
depending on wether two chunks of recovery data were required.
The second condition only arises if there are two failed buffers
whose lengths do not add up a stripe unit.
*/
int
rf_PQDoubleRecoveryFunc(node)
RF_DagNode_t *node;
{
int np = node->numParams;
RF_AccessStripeMap_t *asmap = (RF_AccessStripeMap_t *) node->params[np - 1].p;
RF_Raid_t *raidPtr = (RF_Raid_t *) node->params[np - 2].p;
RF_RaidLayout_t *layoutPtr = (RF_RaidLayout_t *) & (raidPtr->Layout);
int d, i;
unsigned coeff;
RF_RaidAddr_t sosAddr, suoffset;
RF_SectorCount_t len, secPerSU = layoutPtr->sectorsPerStripeUnit;
int two = 0;
RF_PhysDiskAddr_t *ppda, *ppda2, *qpda, *qpda2, *pda, npda;
char *buf;
int numDataCol = layoutPtr->numDataCol;
RF_Etimer_t timer;
RF_AccTraceEntry_t *tracerec = node->dagHdr->tracerec;
RF_ETIMER_START(timer);
if (asmap->failedPDAs[1] &&
(asmap->failedPDAs[1]->numSector + asmap->failedPDAs[0]->numSector < secPerSU)) {
RF_ASSERT(0);
ppda = node->params[np - 6].p;
ppda2 = node->params[np - 5].p;
qpda = node->params[np - 4].p;
qpda2 = node->params[np - 3].p;
d = (np - 6);
two = 1;
} else {
ppda = node->params[np - 4].p;
qpda = node->params[np - 3].p;
d = (np - 4);
}
for (i = 0; i < d; i++) {
pda = node->params[i].p;
buf = pda->bufPtr;
suoffset = rf_StripeUnitOffset(layoutPtr, pda->startSector);
len = pda->numSector;
coeff = rf_RaidAddressToStripeUnitID(layoutPtr, pda->raidAddress);
/* compute the data unit offset within the column */
coeff = (coeff % raidPtr->Layout.numDataCol);
/* see if pda intersects a recovery pda */
applyPDA(raidPtr, pda, ppda, qpda, node->dagHdr->bp);
if (two)
applyPDA(raidPtr, pda, ppda, qpda, node->dagHdr->bp);
}
/* ok, we got the parity back to the point where we can recover. We
* now need to determine the coeff of the columns that need to be
* recovered. We can also only need to recover a single stripe unit. */
if (asmap->failedPDAs[1] == NULL) { /* only a single stripe unit
* to recover. */
pda = asmap->failedPDAs[0];
sosAddr = rf_RaidAddressOfPrevStripeBoundary(layoutPtr, asmap->raidAddress);
/* need to determine the column of the other failed disk */
coeff = rf_RaidAddressToStripeUnitID(layoutPtr, pda->raidAddress);
/* compute the data unit offset within the column */
coeff = (coeff % raidPtr->Layout.numDataCol);
for (i = 0; i < numDataCol; i++) {
npda.raidAddress = sosAddr + (i * secPerSU);
(raidPtr->Layout.map->MapSector) (raidPtr, npda.raidAddress, &(npda.row), &(npda.col), &(npda.startSector), 0);
/* skip over dead disks */
if (RF_DEAD_DISK(raidPtr->Disks[npda.row][npda.col].status))
if (i != coeff)
break;
}
RF_ASSERT(i < numDataCol);
RF_ASSERT(two == 0);
/* recover the data. Since we need only want to recover one
* column, we overwrite the parity with the other one. */
if (coeff < i) /* recovering 'a' */
rf_PQ_recover((unsigned long *) ppda->bufPtr, (unsigned long *) qpda->bufPtr, (unsigned long *) pda->bufPtr, (unsigned long *) ppda->bufPtr, rf_RaidAddressToByte(raidPtr, pda->numSector), coeff, i);
else /* recovering 'b' */
rf_PQ_recover((unsigned long *) ppda->bufPtr, (unsigned long *) qpda->bufPtr, (unsigned long *) ppda->bufPtr, (unsigned long *) pda->bufPtr, rf_RaidAddressToByte(raidPtr, pda->numSector), i, coeff);
} else
RF_PANIC();
RF_ETIMER_STOP(timer);
RF_ETIMER_EVAL(timer);
if (tracerec)
tracerec->q_us += RF_ETIMER_VAL_US(timer);
rf_GenericWakeupFunc(node, 0);
return (0);
}
int
rf_PQWriteDoubleRecoveryFunc(node)
RF_DagNode_t *node;
{
/* The situation:
*
* We are doing a write that hits only one failed data unit. The other
* failed data unit is not being overwritten, so we need to generate
* it.
*
* For the moment, we assume all the nonfailed data being written is in
* the shadow of the failed data unit. (i.e,, either a single data
* unit write or the entire failed stripe unit is being overwritten. )
*
* Recovery strategy: apply the recovery data to the parity and q. Use P
* & Q to recover the second failed data unit in P. Zero fill Q, then
* apply the recovered data to p. Then apply the data being written to
* the failed drive. Then walk through the surviving drives, applying
* new data when it exists, othewise the recovery data. Quite a mess.
*
*
* The params
*
* read pda0, read pda1, ... read pda (numDataCol-3), write pda0, ... ,
* write pda (numStripeUnitAccess - numDataFailed), failed pda,
* raidPtr, asmap */
int np = node->numParams;
RF_AccessStripeMap_t *asmap = (RF_AccessStripeMap_t *) node->params[np - 1].p;
RF_Raid_t *raidPtr = (RF_Raid_t *) node->params[np - 2].p;
RF_RaidLayout_t *layoutPtr = (RF_RaidLayout_t *) & (raidPtr->Layout);
int i;
RF_RaidAddr_t sosAddr;
unsigned coeff;
RF_StripeCount_t secPerSU = layoutPtr->sectorsPerStripeUnit;
RF_PhysDiskAddr_t *ppda, *qpda, *pda, npda;
int numDataCol = layoutPtr->numDataCol;
RF_Etimer_t timer;
RF_AccTraceEntry_t *tracerec = node->dagHdr->tracerec;
RF_ASSERT(node->numResults == 2);
RF_ASSERT(asmap->failedPDAs[1] == NULL);
RF_ETIMER_START(timer);
ppda = node->results[0];
qpda = node->results[1];
/* apply the recovery data */
for (i = 0; i < numDataCol - 2; i++)
applyPDA(raidPtr, node->params[i].p, ppda, qpda, node->dagHdr->bp);
/* determine the other failed data unit */
pda = asmap->failedPDAs[0];
sosAddr = rf_RaidAddressOfPrevStripeBoundary(layoutPtr, asmap->raidAddress);
/* need to determine the column of the other failed disk */
coeff = rf_RaidAddressToStripeUnitID(layoutPtr, pda->raidAddress);
/* compute the data unit offset within the column */
coeff = (coeff % raidPtr->Layout.numDataCol);
for (i = 0; i < numDataCol; i++) {
npda.raidAddress = sosAddr + (i * secPerSU);
(raidPtr->Layout.map->MapSector) (raidPtr, npda.raidAddress, &(npda.row), &(npda.col), &(npda.startSector), 0);
/* skip over dead disks */
if (RF_DEAD_DISK(raidPtr->Disks[npda.row][npda.col].status))
if (i != coeff)
break;
}
RF_ASSERT(i < numDataCol);
/* recover the data. The column we want to recover we write over the
* parity. The column we don't care about we dump in q. */
if (coeff < i) /* recovering 'a' */
rf_PQ_recover((unsigned long *) ppda->bufPtr, (unsigned long *) qpda->bufPtr, (unsigned long *) ppda->bufPtr, (unsigned long *) qpda->bufPtr, rf_RaidAddressToByte(raidPtr, pda->numSector), coeff, i);
else /* recovering 'b' */
rf_PQ_recover((unsigned long *) ppda->bufPtr, (unsigned long *) qpda->bufPtr, (unsigned long *) qpda->bufPtr, (unsigned long *) ppda->bufPtr, rf_RaidAddressToByte(raidPtr, pda->numSector), i, coeff);
/* OK. The valid data is in P. Zero fill Q, then inc it into it. */
bzero(qpda->bufPtr, rf_RaidAddressToByte(raidPtr, qpda->numSector));
rf_IncQ((unsigned long *) qpda->bufPtr, (unsigned long *) ppda->bufPtr, rf_RaidAddressToByte(raidPtr, qpda->numSector), i);
/* now apply all the write data to the buffer */
/* single stripe unit write case: the failed data is only thing we are
* writing. */
RF_ASSERT(asmap->numStripeUnitsAccessed == 1);
/* dest, src, len, coeff */
rf_IncQ((unsigned long *) qpda->bufPtr, (unsigned long *) asmap->failedPDAs[0]->bufPtr, rf_RaidAddressToByte(raidPtr, qpda->numSector), coeff);
rf_bxor(asmap->failedPDAs[0]->bufPtr, ppda->bufPtr, rf_RaidAddressToByte(raidPtr, ppda->numSector), node->dagHdr->bp);
/* now apply all the recovery data */
for (i = 0; i < numDataCol - 2; i++)
applyPDA(raidPtr, node->params[i].p, ppda, qpda, node->dagHdr->bp);
RF_ETIMER_STOP(timer);
RF_ETIMER_EVAL(timer);
if (tracerec)
tracerec->q_us += RF_ETIMER_VAL_US(timer);
rf_GenericWakeupFunc(node, 0);
return (0);
}
RF_CREATE_DAG_FUNC_DECL(rf_PQ_DDLargeWrite)
{
RF_PANIC();
}
/*
Two lost data unit write case.
There are really two cases here:
(1) The write completely covers the two lost data units.
In that case, a reconstruct write that doesn't write the
failed data units will do the correct thing. So in this case,
the dag looks like
full stripe read of surviving data units (not being overwriten)
write new data (ignoring failed units) compute P&Q
write P&Q
(2) The write does not completely cover both failed data units
(but touches at least one of them). Then we need to do the
equivalent of a reconstruct read to recover the missing data
unit from the other stripe.
For any data we are writing that is not in the "shadow"
of the failed units, we need to do a four cycle update.
PANIC on this case. for now
*/
RF_CREATE_DAG_FUNC_DECL(rf_PQ_200_CreateWriteDAG)
{
RF_RaidLayout_t *layoutPtr = &(raidPtr->Layout);
RF_SectorCount_t sectorsPerSU = layoutPtr->sectorsPerStripeUnit;
int sum;
int nf = asmap->numDataFailed;
sum = asmap->failedPDAs[0]->numSector;
if (nf == 2)
sum += asmap->failedPDAs[1]->numSector;
if ((nf == 2) && (sum == (2 * sectorsPerSU))) {
/* large write case */
rf_PQ_DDLargeWrite(raidPtr, asmap, dag_h, bp, flags, allocList);
return;
}
if ((nf == asmap->numStripeUnitsAccessed) || (sum >= sectorsPerSU)) {
/* small write case, no user data not in shadow */
rf_PQ_DDSimpleSmallWrite(raidPtr, asmap, dag_h, bp, flags, allocList);
return;
}
RF_PANIC();
}
RF_CREATE_DAG_FUNC_DECL(rf_PQ_DDSimpleSmallWrite)
{
rf_DoubleDegSmallWrite(raidPtr, asmap, dag_h, bp, flags, allocList, "Rq", "Wq", "PQ Recovery", rf_PQWriteDoubleRecoveryFunc);
}
#endif /* (RF_INCLUDE_DECL_PQ > 0) ||
* (RF_INCLUDE_RAID6 > 0) */