7d20ebf458
If robust mutex' owner terminated, causing kernel-assisted state recovery, and then pthread_mutex_destroy() is executed as the next action, assert is triggered about mutex still being on the list. Ignore the mutex linkage in pthread_mutex_destroy() for shared robust mutexes with dead owner, same as for enqueue_mutex(). Reported by: avg Sponsored by: The FreeBSD Foundation MFC after: 1 week
1199 lines
30 KiB
C
1199 lines
30 KiB
C
/*-
|
|
* SPDX-License-Identifier: BSD-4-Clause
|
|
*
|
|
* Copyright (c) 1995 John Birrell <jb@cimlogic.com.au>.
|
|
* Copyright (c) 2006 David Xu <davidxu@freebsd.org>.
|
|
* Copyright (c) 2015, 2016 The FreeBSD Foundation
|
|
*
|
|
* All rights reserved.
|
|
*
|
|
* Portions of this software were developed by Konstantin Belousov
|
|
* under sponsorship from the FreeBSD Foundation.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 3. All advertising materials mentioning features or use of this software
|
|
* must display the following acknowledgement:
|
|
* This product includes software developed by John Birrell.
|
|
* 4. Neither the name of the author nor the names of any co-contributors
|
|
* may be used to endorse or promote products derived from this software
|
|
* without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY JOHN BIRRELL AND CONTRIBUTORS ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*/
|
|
|
|
#include <sys/cdefs.h>
|
|
__FBSDID("$FreeBSD$");
|
|
|
|
#include "namespace.h"
|
|
#include <stdlib.h>
|
|
#include <errno.h>
|
|
#include <string.h>
|
|
#include <sys/param.h>
|
|
#include <sys/queue.h>
|
|
#include <pthread.h>
|
|
#include <pthread_np.h>
|
|
#include "un-namespace.h"
|
|
|
|
#include "thr_private.h"
|
|
|
|
_Static_assert(sizeof(struct pthread_mutex) <= PAGE_SIZE,
|
|
"pthread_mutex is too large for off-page");
|
|
|
|
/*
|
|
* For adaptive mutexes, how many times to spin doing trylock2
|
|
* before entering the kernel to block
|
|
*/
|
|
#define MUTEX_ADAPTIVE_SPINS 2000
|
|
|
|
/*
|
|
* Prototypes
|
|
*/
|
|
int __pthread_mutex_timedlock(pthread_mutex_t * __restrict mutex,
|
|
const struct timespec * __restrict abstime);
|
|
int _pthread_mutex_getspinloops_np(pthread_mutex_t *mutex, int *count);
|
|
int _pthread_mutex_setspinloops_np(pthread_mutex_t *mutex, int count);
|
|
int __pthread_mutex_setspinloops_np(pthread_mutex_t *mutex, int count);
|
|
int _pthread_mutex_setyieldloops_np(pthread_mutex_t *mutex, int count);
|
|
int _pthread_mutex_getyieldloops_np(pthread_mutex_t *mutex, int *count);
|
|
int __pthread_mutex_setyieldloops_np(pthread_mutex_t *mutex, int count);
|
|
|
|
static int mutex_self_trylock(pthread_mutex_t);
|
|
static int mutex_self_lock(pthread_mutex_t,
|
|
const struct timespec *abstime);
|
|
static int mutex_unlock_common(struct pthread_mutex *, bool, int *);
|
|
static int mutex_lock_sleep(struct pthread *, pthread_mutex_t,
|
|
const struct timespec *);
|
|
static void mutex_init_robust(struct pthread *curthread);
|
|
static int mutex_qidx(struct pthread_mutex *m);
|
|
static bool is_robust_mutex(struct pthread_mutex *m);
|
|
static bool is_pshared_mutex(struct pthread_mutex *m);
|
|
|
|
__weak_reference(__Tthr_mutex_init, pthread_mutex_init);
|
|
__weak_reference(__Tthr_mutex_init, __pthread_mutex_init);
|
|
__strong_reference(__Tthr_mutex_init, _pthread_mutex_init);
|
|
__weak_reference(__Tthr_mutex_lock, pthread_mutex_lock);
|
|
__weak_reference(__Tthr_mutex_lock, __pthread_mutex_lock);
|
|
__strong_reference(__Tthr_mutex_lock, _pthread_mutex_lock);
|
|
__weak_reference(__pthread_mutex_timedlock, pthread_mutex_timedlock);
|
|
__strong_reference(__pthread_mutex_timedlock, _pthread_mutex_timedlock);
|
|
__weak_reference(__Tthr_mutex_trylock, pthread_mutex_trylock);
|
|
__weak_reference(__Tthr_mutex_trylock, __pthread_mutex_trylock);
|
|
__strong_reference(__Tthr_mutex_trylock, _pthread_mutex_trylock);
|
|
__weak_reference(_Tthr_mutex_consistent, pthread_mutex_consistent);
|
|
__weak_reference(_Tthr_mutex_consistent, _pthread_mutex_consistent);
|
|
__strong_reference(_Tthr_mutex_consistent, __pthread_mutex_consistent);
|
|
|
|
/* Single underscore versions provided for libc internal usage: */
|
|
/* No difference between libc and application usage of these: */
|
|
__weak_reference(_thr_mutex_destroy, pthread_mutex_destroy);
|
|
__weak_reference(_thr_mutex_destroy, _pthread_mutex_destroy);
|
|
__weak_reference(_thr_mutex_unlock, pthread_mutex_unlock);
|
|
__weak_reference(_thr_mutex_unlock, _pthread_mutex_unlock);
|
|
|
|
__weak_reference(_pthread_mutex_getprioceiling, pthread_mutex_getprioceiling);
|
|
__weak_reference(_pthread_mutex_setprioceiling, pthread_mutex_setprioceiling);
|
|
|
|
__weak_reference(__pthread_mutex_setspinloops_np, pthread_mutex_setspinloops_np);
|
|
__strong_reference(__pthread_mutex_setspinloops_np, _pthread_mutex_setspinloops_np);
|
|
__weak_reference(_pthread_mutex_getspinloops_np, pthread_mutex_getspinloops_np);
|
|
|
|
__weak_reference(__pthread_mutex_setyieldloops_np, pthread_mutex_setyieldloops_np);
|
|
__strong_reference(__pthread_mutex_setyieldloops_np, _pthread_mutex_setyieldloops_np);
|
|
__weak_reference(_pthread_mutex_getyieldloops_np, pthread_mutex_getyieldloops_np);
|
|
__weak_reference(_pthread_mutex_isowned_np, pthread_mutex_isowned_np);
|
|
|
|
static void
|
|
mutex_init_link(struct pthread_mutex *m)
|
|
{
|
|
|
|
#if defined(_PTHREADS_INVARIANTS)
|
|
m->m_qe.tqe_prev = NULL;
|
|
m->m_qe.tqe_next = NULL;
|
|
m->m_pqe.tqe_prev = NULL;
|
|
m->m_pqe.tqe_next = NULL;
|
|
#endif
|
|
}
|
|
|
|
static void
|
|
mutex_assert_is_owned(struct pthread_mutex *m __unused)
|
|
{
|
|
|
|
#if defined(_PTHREADS_INVARIANTS)
|
|
if (__predict_false(m->m_qe.tqe_prev == NULL))
|
|
PANIC("mutex %p own %#x is not on list %p %p",
|
|
m, m->m_lock.m_owner, m->m_qe.tqe_prev, m->m_qe.tqe_next);
|
|
#endif
|
|
}
|
|
|
|
static void
|
|
mutex_assert_not_owned(struct pthread *curthread __unused,
|
|
struct pthread_mutex *m __unused)
|
|
{
|
|
|
|
#if defined(_PTHREADS_INVARIANTS)
|
|
if (__predict_false(m->m_qe.tqe_prev != NULL ||
|
|
m->m_qe.tqe_next != NULL))
|
|
PANIC("mutex %p own %#x is on list %p %p",
|
|
m, m->m_lock.m_owner, m->m_qe.tqe_prev, m->m_qe.tqe_next);
|
|
if (__predict_false(is_robust_mutex(m) &&
|
|
(m->m_lock.m_rb_lnk != 0 || m->m_rb_prev != NULL ||
|
|
(is_pshared_mutex(m) && curthread->robust_list ==
|
|
(uintptr_t)&m->m_lock) ||
|
|
(!is_pshared_mutex(m) && curthread->priv_robust_list ==
|
|
(uintptr_t)&m->m_lock))))
|
|
PANIC(
|
|
"mutex %p own %#x is on robust linkage %p %p head %p phead %p",
|
|
m, m->m_lock.m_owner, (void *)m->m_lock.m_rb_lnk,
|
|
m->m_rb_prev, (void *)curthread->robust_list,
|
|
(void *)curthread->priv_robust_list);
|
|
#endif
|
|
}
|
|
|
|
static bool
|
|
is_pshared_mutex(struct pthread_mutex *m)
|
|
{
|
|
|
|
return ((m->m_lock.m_flags & USYNC_PROCESS_SHARED) != 0);
|
|
}
|
|
|
|
static bool
|
|
is_robust_mutex(struct pthread_mutex *m)
|
|
{
|
|
|
|
return ((m->m_lock.m_flags & UMUTEX_ROBUST) != 0);
|
|
}
|
|
|
|
int
|
|
_mutex_enter_robust(struct pthread *curthread, struct pthread_mutex *m)
|
|
{
|
|
|
|
#if defined(_PTHREADS_INVARIANTS)
|
|
if (__predict_false(curthread->inact_mtx != 0))
|
|
PANIC("inact_mtx enter");
|
|
#endif
|
|
if (!is_robust_mutex(m))
|
|
return (0);
|
|
|
|
mutex_init_robust(curthread);
|
|
curthread->inact_mtx = (uintptr_t)&m->m_lock;
|
|
return (1);
|
|
}
|
|
|
|
void
|
|
_mutex_leave_robust(struct pthread *curthread, struct pthread_mutex *m __unused)
|
|
{
|
|
|
|
#if defined(_PTHREADS_INVARIANTS)
|
|
if (__predict_false(curthread->inact_mtx != (uintptr_t)&m->m_lock))
|
|
PANIC("inact_mtx leave");
|
|
#endif
|
|
curthread->inact_mtx = 0;
|
|
}
|
|
|
|
static int
|
|
mutex_check_attr(const struct pthread_mutex_attr *attr)
|
|
{
|
|
|
|
if (attr->m_type < PTHREAD_MUTEX_ERRORCHECK ||
|
|
attr->m_type >= PTHREAD_MUTEX_TYPE_MAX)
|
|
return (EINVAL);
|
|
if (attr->m_protocol < PTHREAD_PRIO_NONE ||
|
|
attr->m_protocol > PTHREAD_PRIO_PROTECT)
|
|
return (EINVAL);
|
|
return (0);
|
|
}
|
|
|
|
static void
|
|
mutex_init_robust(struct pthread *curthread)
|
|
{
|
|
struct umtx_robust_lists_params rb;
|
|
|
|
if (curthread == NULL)
|
|
curthread = _get_curthread();
|
|
if (curthread->robust_inited)
|
|
return;
|
|
rb.robust_list_offset = (uintptr_t)&curthread->robust_list;
|
|
rb.robust_priv_list_offset = (uintptr_t)&curthread->priv_robust_list;
|
|
rb.robust_inact_offset = (uintptr_t)&curthread->inact_mtx;
|
|
_umtx_op(NULL, UMTX_OP_ROBUST_LISTS, sizeof(rb), &rb, NULL);
|
|
curthread->robust_inited = 1;
|
|
}
|
|
|
|
static void
|
|
mutex_init_body(struct pthread_mutex *pmutex,
|
|
const struct pthread_mutex_attr *attr)
|
|
{
|
|
|
|
pmutex->m_flags = attr->m_type;
|
|
pmutex->m_count = 0;
|
|
pmutex->m_spinloops = 0;
|
|
pmutex->m_yieldloops = 0;
|
|
mutex_init_link(pmutex);
|
|
switch (attr->m_protocol) {
|
|
case PTHREAD_PRIO_NONE:
|
|
pmutex->m_lock.m_owner = UMUTEX_UNOWNED;
|
|
pmutex->m_lock.m_flags = 0;
|
|
break;
|
|
case PTHREAD_PRIO_INHERIT:
|
|
pmutex->m_lock.m_owner = UMUTEX_UNOWNED;
|
|
pmutex->m_lock.m_flags = UMUTEX_PRIO_INHERIT;
|
|
break;
|
|
case PTHREAD_PRIO_PROTECT:
|
|
pmutex->m_lock.m_owner = UMUTEX_CONTESTED;
|
|
pmutex->m_lock.m_flags = UMUTEX_PRIO_PROTECT;
|
|
pmutex->m_lock.m_ceilings[0] = attr->m_ceiling;
|
|
break;
|
|
}
|
|
if (attr->m_pshared == PTHREAD_PROCESS_SHARED)
|
|
pmutex->m_lock.m_flags |= USYNC_PROCESS_SHARED;
|
|
if (attr->m_robust == PTHREAD_MUTEX_ROBUST) {
|
|
mutex_init_robust(NULL);
|
|
pmutex->m_lock.m_flags |= UMUTEX_ROBUST;
|
|
}
|
|
if (PMUTEX_TYPE(pmutex->m_flags) == PTHREAD_MUTEX_ADAPTIVE_NP) {
|
|
pmutex->m_spinloops =
|
|
_thr_spinloops ? _thr_spinloops: MUTEX_ADAPTIVE_SPINS;
|
|
pmutex->m_yieldloops = _thr_yieldloops;
|
|
}
|
|
}
|
|
|
|
static int
|
|
mutex_init(pthread_mutex_t *mutex,
|
|
const struct pthread_mutex_attr *mutex_attr,
|
|
void *(calloc_cb)(size_t, size_t))
|
|
{
|
|
const struct pthread_mutex_attr *attr;
|
|
struct pthread_mutex *pmutex;
|
|
int error;
|
|
|
|
if (mutex_attr == NULL) {
|
|
attr = &_pthread_mutexattr_default;
|
|
} else {
|
|
attr = mutex_attr;
|
|
error = mutex_check_attr(attr);
|
|
if (error != 0)
|
|
return (error);
|
|
}
|
|
if ((pmutex = (pthread_mutex_t)
|
|
calloc_cb(1, sizeof(struct pthread_mutex))) == NULL)
|
|
return (ENOMEM);
|
|
mutex_init_body(pmutex, attr);
|
|
*mutex = pmutex;
|
|
return (0);
|
|
}
|
|
|
|
static int
|
|
init_static(struct pthread *thread, pthread_mutex_t *mutex)
|
|
{
|
|
int ret;
|
|
|
|
THR_LOCK_ACQUIRE(thread, &_mutex_static_lock);
|
|
|
|
if (*mutex == THR_MUTEX_INITIALIZER)
|
|
ret = mutex_init(mutex, &_pthread_mutexattr_default,
|
|
__thr_calloc);
|
|
else if (*mutex == THR_ADAPTIVE_MUTEX_INITIALIZER)
|
|
ret = mutex_init(mutex, &_pthread_mutexattr_adaptive_default,
|
|
__thr_calloc);
|
|
else
|
|
ret = 0;
|
|
THR_LOCK_RELEASE(thread, &_mutex_static_lock);
|
|
|
|
return (ret);
|
|
}
|
|
|
|
static void
|
|
set_inherited_priority(struct pthread *curthread, struct pthread_mutex *m)
|
|
{
|
|
struct pthread_mutex *m2;
|
|
|
|
m2 = TAILQ_LAST(&curthread->mq[mutex_qidx(m)], mutex_queue);
|
|
if (m2 != NULL)
|
|
m->m_lock.m_ceilings[1] = m2->m_lock.m_ceilings[0];
|
|
else
|
|
m->m_lock.m_ceilings[1] = -1;
|
|
}
|
|
|
|
static void
|
|
shared_mutex_init(struct pthread_mutex *pmtx, const struct
|
|
pthread_mutex_attr *mutex_attr)
|
|
{
|
|
static const struct pthread_mutex_attr foobar_mutex_attr = {
|
|
.m_type = PTHREAD_MUTEX_DEFAULT,
|
|
.m_protocol = PTHREAD_PRIO_NONE,
|
|
.m_ceiling = 0,
|
|
.m_pshared = PTHREAD_PROCESS_SHARED,
|
|
.m_robust = PTHREAD_MUTEX_STALLED,
|
|
};
|
|
bool done;
|
|
|
|
/*
|
|
* Hack to allow multiple pthread_mutex_init() calls on the
|
|
* same process-shared mutex. We rely on kernel allocating
|
|
* zeroed offpage for the mutex, i.e. the
|
|
* PMUTEX_INITSTAGE_ALLOC value must be zero.
|
|
*/
|
|
for (done = false; !done;) {
|
|
switch (pmtx->m_ps) {
|
|
case PMUTEX_INITSTAGE_DONE:
|
|
atomic_thread_fence_acq();
|
|
done = true;
|
|
break;
|
|
case PMUTEX_INITSTAGE_ALLOC:
|
|
if (atomic_cmpset_int(&pmtx->m_ps,
|
|
PMUTEX_INITSTAGE_ALLOC, PMUTEX_INITSTAGE_BUSY)) {
|
|
if (mutex_attr == NULL)
|
|
mutex_attr = &foobar_mutex_attr;
|
|
mutex_init_body(pmtx, mutex_attr);
|
|
atomic_store_rel_int(&pmtx->m_ps,
|
|
PMUTEX_INITSTAGE_DONE);
|
|
done = true;
|
|
}
|
|
break;
|
|
case PMUTEX_INITSTAGE_BUSY:
|
|
_pthread_yield();
|
|
break;
|
|
default:
|
|
PANIC("corrupted offpage");
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
int
|
|
__Tthr_mutex_init(pthread_mutex_t * __restrict mutex,
|
|
const pthread_mutexattr_t * __restrict mutex_attr)
|
|
{
|
|
struct pthread_mutex *pmtx;
|
|
int ret;
|
|
|
|
if (mutex_attr != NULL) {
|
|
ret = mutex_check_attr(*mutex_attr);
|
|
if (ret != 0)
|
|
return (ret);
|
|
}
|
|
if (mutex_attr == NULL ||
|
|
(*mutex_attr)->m_pshared == PTHREAD_PROCESS_PRIVATE) {
|
|
__thr_malloc_init();
|
|
return (mutex_init(mutex, mutex_attr ? *mutex_attr : NULL,
|
|
__thr_calloc));
|
|
}
|
|
pmtx = __thr_pshared_offpage(__DECONST(void *, mutex), 1);
|
|
if (pmtx == NULL)
|
|
return (EFAULT);
|
|
*mutex = THR_PSHARED_PTR;
|
|
shared_mutex_init(pmtx, *mutex_attr);
|
|
return (0);
|
|
}
|
|
|
|
/* This function is used internally by malloc. */
|
|
int
|
|
_pthread_mutex_init_calloc_cb(pthread_mutex_t *mutex,
|
|
void *(calloc_cb)(size_t, size_t))
|
|
{
|
|
static const struct pthread_mutex_attr attr = {
|
|
.m_type = PTHREAD_MUTEX_NORMAL,
|
|
.m_protocol = PTHREAD_PRIO_NONE,
|
|
.m_ceiling = 0,
|
|
.m_pshared = PTHREAD_PROCESS_PRIVATE,
|
|
.m_robust = PTHREAD_MUTEX_STALLED,
|
|
};
|
|
int ret;
|
|
|
|
ret = mutex_init(mutex, &attr, calloc_cb);
|
|
if (ret == 0)
|
|
(*mutex)->m_flags |= PMUTEX_FLAG_PRIVATE;
|
|
return (ret);
|
|
}
|
|
|
|
/*
|
|
* Fix mutex ownership for child process.
|
|
*
|
|
* Process private mutex ownership is transmitted from the forking
|
|
* thread to the child process.
|
|
*
|
|
* Process shared mutex should not be inherited because owner is
|
|
* forking thread which is in parent process, they are removed from
|
|
* the owned mutex list.
|
|
*/
|
|
static void
|
|
queue_fork(struct pthread *curthread, struct mutex_queue *q,
|
|
struct mutex_queue *qp, uint bit)
|
|
{
|
|
struct pthread_mutex *m;
|
|
|
|
TAILQ_INIT(q);
|
|
TAILQ_FOREACH(m, qp, m_pqe) {
|
|
TAILQ_INSERT_TAIL(q, m, m_qe);
|
|
m->m_lock.m_owner = TID(curthread) | bit;
|
|
}
|
|
}
|
|
|
|
void
|
|
_mutex_fork(struct pthread *curthread)
|
|
{
|
|
|
|
queue_fork(curthread, &curthread->mq[TMQ_NORM],
|
|
&curthread->mq[TMQ_NORM_PRIV], 0);
|
|
queue_fork(curthread, &curthread->mq[TMQ_NORM_PP],
|
|
&curthread->mq[TMQ_NORM_PP_PRIV], UMUTEX_CONTESTED);
|
|
queue_fork(curthread, &curthread->mq[TMQ_ROBUST_PP],
|
|
&curthread->mq[TMQ_ROBUST_PP_PRIV], UMUTEX_CONTESTED);
|
|
curthread->robust_list = 0;
|
|
}
|
|
|
|
int
|
|
_thr_mutex_destroy(pthread_mutex_t *mutex)
|
|
{
|
|
pthread_mutex_t m, m1;
|
|
int ret;
|
|
|
|
m = *mutex;
|
|
if (m < THR_MUTEX_DESTROYED) {
|
|
ret = 0;
|
|
} else if (m == THR_MUTEX_DESTROYED) {
|
|
ret = EINVAL;
|
|
} else {
|
|
if (m == THR_PSHARED_PTR) {
|
|
m1 = __thr_pshared_offpage(mutex, 0);
|
|
if (m1 != NULL) {
|
|
if ((uint32_t)m1->m_lock.m_owner !=
|
|
UMUTEX_RB_OWNERDEAD) {
|
|
mutex_assert_not_owned(
|
|
_get_curthread(), m1);
|
|
}
|
|
__thr_pshared_destroy(mutex);
|
|
}
|
|
*mutex = THR_MUTEX_DESTROYED;
|
|
return (0);
|
|
}
|
|
if (PMUTEX_OWNER_ID(m) != 0 &&
|
|
(uint32_t)m->m_lock.m_owner != UMUTEX_RB_NOTRECOV) {
|
|
ret = EBUSY;
|
|
} else {
|
|
*mutex = THR_MUTEX_DESTROYED;
|
|
mutex_assert_not_owned(_get_curthread(), m);
|
|
__thr_free(m);
|
|
ret = 0;
|
|
}
|
|
}
|
|
|
|
return (ret);
|
|
}
|
|
|
|
static int
|
|
mutex_qidx(struct pthread_mutex *m)
|
|
{
|
|
|
|
if ((m->m_lock.m_flags & UMUTEX_PRIO_PROTECT) == 0)
|
|
return (TMQ_NORM);
|
|
return (is_robust_mutex(m) ? TMQ_ROBUST_PP : TMQ_NORM_PP);
|
|
}
|
|
|
|
/*
|
|
* Both enqueue_mutex() and dequeue_mutex() operate on the
|
|
* thread-private linkage of the locked mutexes and on the robust
|
|
* linkage.
|
|
*
|
|
* Robust list, as seen by kernel, must be consistent even in the case
|
|
* of thread termination at arbitrary moment. Since either enqueue or
|
|
* dequeue for list walked by kernel consists of rewriting a single
|
|
* forward pointer, it is safe. On the other hand, rewrite of the
|
|
* back pointer is not atomic WRT the forward one, but kernel does not
|
|
* care.
|
|
*/
|
|
static void
|
|
enqueue_mutex(struct pthread *curthread, struct pthread_mutex *m,
|
|
int error)
|
|
{
|
|
struct pthread_mutex *m1;
|
|
uintptr_t *rl;
|
|
int qidx;
|
|
|
|
/* Add to the list of owned mutexes: */
|
|
if (error != EOWNERDEAD)
|
|
mutex_assert_not_owned(curthread, m);
|
|
qidx = mutex_qidx(m);
|
|
TAILQ_INSERT_TAIL(&curthread->mq[qidx], m, m_qe);
|
|
if (!is_pshared_mutex(m))
|
|
TAILQ_INSERT_TAIL(&curthread->mq[qidx + 1], m, m_pqe);
|
|
if (is_robust_mutex(m)) {
|
|
rl = is_pshared_mutex(m) ? &curthread->robust_list :
|
|
&curthread->priv_robust_list;
|
|
m->m_rb_prev = NULL;
|
|
if (*rl != 0) {
|
|
m1 = __containerof((void *)*rl,
|
|
struct pthread_mutex, m_lock);
|
|
m->m_lock.m_rb_lnk = (uintptr_t)&m1->m_lock;
|
|
m1->m_rb_prev = m;
|
|
} else {
|
|
m1 = NULL;
|
|
m->m_lock.m_rb_lnk = 0;
|
|
}
|
|
*rl = (uintptr_t)&m->m_lock;
|
|
}
|
|
}
|
|
|
|
static void
|
|
dequeue_mutex(struct pthread *curthread, struct pthread_mutex *m)
|
|
{
|
|
struct pthread_mutex *mp, *mn;
|
|
int qidx;
|
|
|
|
mutex_assert_is_owned(m);
|
|
qidx = mutex_qidx(m);
|
|
if (is_robust_mutex(m)) {
|
|
mp = m->m_rb_prev;
|
|
if (mp == NULL) {
|
|
if (is_pshared_mutex(m)) {
|
|
curthread->robust_list = m->m_lock.m_rb_lnk;
|
|
} else {
|
|
curthread->priv_robust_list =
|
|
m->m_lock.m_rb_lnk;
|
|
}
|
|
} else {
|
|
mp->m_lock.m_rb_lnk = m->m_lock.m_rb_lnk;
|
|
}
|
|
if (m->m_lock.m_rb_lnk != 0) {
|
|
mn = __containerof((void *)m->m_lock.m_rb_lnk,
|
|
struct pthread_mutex, m_lock);
|
|
mn->m_rb_prev = m->m_rb_prev;
|
|
}
|
|
m->m_lock.m_rb_lnk = 0;
|
|
m->m_rb_prev = NULL;
|
|
}
|
|
TAILQ_REMOVE(&curthread->mq[qidx], m, m_qe);
|
|
if (!is_pshared_mutex(m))
|
|
TAILQ_REMOVE(&curthread->mq[qidx + 1], m, m_pqe);
|
|
if ((m->m_lock.m_flags & UMUTEX_PRIO_PROTECT) != 0)
|
|
set_inherited_priority(curthread, m);
|
|
mutex_init_link(m);
|
|
}
|
|
|
|
static int
|
|
check_and_init_mutex(pthread_mutex_t *mutex, struct pthread_mutex **m)
|
|
{
|
|
int ret;
|
|
|
|
*m = *mutex;
|
|
ret = 0;
|
|
if (*m == THR_PSHARED_PTR) {
|
|
*m = __thr_pshared_offpage(mutex, 0);
|
|
if (*m == NULL)
|
|
ret = EINVAL;
|
|
else
|
|
shared_mutex_init(*m, NULL);
|
|
} else if (__predict_false(*m <= THR_MUTEX_DESTROYED)) {
|
|
if (*m == THR_MUTEX_DESTROYED) {
|
|
ret = EINVAL;
|
|
} else {
|
|
ret = init_static(_get_curthread(), mutex);
|
|
if (ret == 0)
|
|
*m = *mutex;
|
|
}
|
|
}
|
|
return (ret);
|
|
}
|
|
|
|
int
|
|
__Tthr_mutex_trylock(pthread_mutex_t *mutex)
|
|
{
|
|
struct pthread *curthread;
|
|
struct pthread_mutex *m;
|
|
uint32_t id;
|
|
int ret, robust;
|
|
|
|
ret = check_and_init_mutex(mutex, &m);
|
|
if (ret != 0)
|
|
return (ret);
|
|
curthread = _get_curthread();
|
|
id = TID(curthread);
|
|
if (m->m_flags & PMUTEX_FLAG_PRIVATE)
|
|
THR_CRITICAL_ENTER(curthread);
|
|
robust = _mutex_enter_robust(curthread, m);
|
|
ret = _thr_umutex_trylock(&m->m_lock, id);
|
|
if (__predict_true(ret == 0) || ret == EOWNERDEAD) {
|
|
enqueue_mutex(curthread, m, ret);
|
|
if (ret == EOWNERDEAD)
|
|
m->m_lock.m_flags |= UMUTEX_NONCONSISTENT;
|
|
} else if (PMUTEX_OWNER_ID(m) == id) {
|
|
ret = mutex_self_trylock(m);
|
|
} /* else {} */
|
|
if (robust)
|
|
_mutex_leave_robust(curthread, m);
|
|
if (ret != 0 && ret != EOWNERDEAD &&
|
|
(m->m_flags & PMUTEX_FLAG_PRIVATE) != 0)
|
|
THR_CRITICAL_LEAVE(curthread);
|
|
return (ret);
|
|
}
|
|
|
|
static int
|
|
mutex_lock_sleep(struct pthread *curthread, struct pthread_mutex *m,
|
|
const struct timespec *abstime)
|
|
{
|
|
uint32_t id, owner;
|
|
int count, ret;
|
|
|
|
id = TID(curthread);
|
|
if (PMUTEX_OWNER_ID(m) == id)
|
|
return (mutex_self_lock(m, abstime));
|
|
|
|
/*
|
|
* For adaptive mutexes, spin for a bit in the expectation
|
|
* that if the application requests this mutex type then
|
|
* the lock is likely to be released quickly and it is
|
|
* faster than entering the kernel
|
|
*/
|
|
if (__predict_false((m->m_lock.m_flags & (UMUTEX_PRIO_PROTECT |
|
|
UMUTEX_PRIO_INHERIT | UMUTEX_ROBUST | UMUTEX_NONCONSISTENT)) != 0))
|
|
goto sleep_in_kernel;
|
|
|
|
if (!_thr_is_smp)
|
|
goto yield_loop;
|
|
|
|
count = m->m_spinloops;
|
|
while (count--) {
|
|
owner = m->m_lock.m_owner;
|
|
if ((owner & ~UMUTEX_CONTESTED) == 0) {
|
|
if (atomic_cmpset_acq_32(&m->m_lock.m_owner, owner,
|
|
id | owner)) {
|
|
ret = 0;
|
|
goto done;
|
|
}
|
|
}
|
|
CPU_SPINWAIT;
|
|
}
|
|
|
|
yield_loop:
|
|
count = m->m_yieldloops;
|
|
while (count--) {
|
|
_sched_yield();
|
|
owner = m->m_lock.m_owner;
|
|
if ((owner & ~UMUTEX_CONTESTED) == 0) {
|
|
if (atomic_cmpset_acq_32(&m->m_lock.m_owner, owner,
|
|
id | owner)) {
|
|
ret = 0;
|
|
goto done;
|
|
}
|
|
}
|
|
}
|
|
|
|
sleep_in_kernel:
|
|
if (abstime == NULL)
|
|
ret = __thr_umutex_lock(&m->m_lock, id);
|
|
else if (__predict_false(abstime->tv_nsec < 0 ||
|
|
abstime->tv_nsec >= 1000000000))
|
|
ret = EINVAL;
|
|
else
|
|
ret = __thr_umutex_timedlock(&m->m_lock, id, abstime);
|
|
done:
|
|
if (ret == 0 || ret == EOWNERDEAD) {
|
|
enqueue_mutex(curthread, m, ret);
|
|
if (ret == EOWNERDEAD)
|
|
m->m_lock.m_flags |= UMUTEX_NONCONSISTENT;
|
|
}
|
|
return (ret);
|
|
}
|
|
|
|
static inline int
|
|
mutex_lock_common(struct pthread_mutex *m, const struct timespec *abstime,
|
|
bool cvattach, bool rb_onlist)
|
|
{
|
|
struct pthread *curthread;
|
|
int ret, robust;
|
|
|
|
robust = 0; /* pacify gcc */
|
|
curthread = _get_curthread();
|
|
if (!cvattach && m->m_flags & PMUTEX_FLAG_PRIVATE)
|
|
THR_CRITICAL_ENTER(curthread);
|
|
if (!rb_onlist)
|
|
robust = _mutex_enter_robust(curthread, m);
|
|
ret = _thr_umutex_trylock2(&m->m_lock, TID(curthread));
|
|
if (ret == 0 || ret == EOWNERDEAD) {
|
|
enqueue_mutex(curthread, m, ret);
|
|
if (ret == EOWNERDEAD)
|
|
m->m_lock.m_flags |= UMUTEX_NONCONSISTENT;
|
|
} else {
|
|
ret = mutex_lock_sleep(curthread, m, abstime);
|
|
}
|
|
if (!rb_onlist && robust)
|
|
_mutex_leave_robust(curthread, m);
|
|
if (ret != 0 && ret != EOWNERDEAD &&
|
|
(m->m_flags & PMUTEX_FLAG_PRIVATE) != 0 && !cvattach)
|
|
THR_CRITICAL_LEAVE(curthread);
|
|
return (ret);
|
|
}
|
|
|
|
int
|
|
__Tthr_mutex_lock(pthread_mutex_t *mutex)
|
|
{
|
|
struct pthread_mutex *m;
|
|
int ret;
|
|
|
|
_thr_check_init();
|
|
ret = check_and_init_mutex(mutex, &m);
|
|
if (ret == 0)
|
|
ret = mutex_lock_common(m, NULL, false, false);
|
|
return (ret);
|
|
}
|
|
|
|
int
|
|
__pthread_mutex_timedlock(pthread_mutex_t * __restrict mutex,
|
|
const struct timespec * __restrict abstime)
|
|
{
|
|
struct pthread_mutex *m;
|
|
int ret;
|
|
|
|
_thr_check_init();
|
|
ret = check_and_init_mutex(mutex, &m);
|
|
if (ret == 0)
|
|
ret = mutex_lock_common(m, abstime, false, false);
|
|
return (ret);
|
|
}
|
|
|
|
int
|
|
_thr_mutex_unlock(pthread_mutex_t *mutex)
|
|
{
|
|
struct pthread_mutex *mp;
|
|
|
|
if (*mutex == THR_PSHARED_PTR) {
|
|
mp = __thr_pshared_offpage(mutex, 0);
|
|
if (mp == NULL)
|
|
return (EINVAL);
|
|
shared_mutex_init(mp, NULL);
|
|
} else {
|
|
mp = *mutex;
|
|
}
|
|
return (mutex_unlock_common(mp, false, NULL));
|
|
}
|
|
|
|
int
|
|
_mutex_cv_lock(struct pthread_mutex *m, int count, bool rb_onlist)
|
|
{
|
|
int error;
|
|
|
|
error = mutex_lock_common(m, NULL, true, rb_onlist);
|
|
if (error == 0 || error == EOWNERDEAD)
|
|
m->m_count = count;
|
|
return (error);
|
|
}
|
|
|
|
int
|
|
_mutex_cv_unlock(struct pthread_mutex *m, int *count, int *defer)
|
|
{
|
|
|
|
/*
|
|
* Clear the count in case this is a recursive mutex.
|
|
*/
|
|
*count = m->m_count;
|
|
m->m_count = 0;
|
|
(void)mutex_unlock_common(m, true, defer);
|
|
return (0);
|
|
}
|
|
|
|
int
|
|
_mutex_cv_attach(struct pthread_mutex *m, int count)
|
|
{
|
|
struct pthread *curthread;
|
|
|
|
curthread = _get_curthread();
|
|
enqueue_mutex(curthread, m, 0);
|
|
m->m_count = count;
|
|
return (0);
|
|
}
|
|
|
|
int
|
|
_mutex_cv_detach(struct pthread_mutex *mp, int *recurse)
|
|
{
|
|
struct pthread *curthread;
|
|
int deferred, error;
|
|
|
|
curthread = _get_curthread();
|
|
if ((error = _mutex_owned(curthread, mp)) != 0)
|
|
return (error);
|
|
|
|
/*
|
|
* Clear the count in case this is a recursive mutex.
|
|
*/
|
|
*recurse = mp->m_count;
|
|
mp->m_count = 0;
|
|
dequeue_mutex(curthread, mp);
|
|
|
|
/* Will this happen in real-world ? */
|
|
if ((mp->m_flags & PMUTEX_FLAG_DEFERRED) != 0) {
|
|
deferred = 1;
|
|
mp->m_flags &= ~PMUTEX_FLAG_DEFERRED;
|
|
} else
|
|
deferred = 0;
|
|
|
|
if (deferred) {
|
|
_thr_wake_all(curthread->defer_waiters,
|
|
curthread->nwaiter_defer);
|
|
curthread->nwaiter_defer = 0;
|
|
}
|
|
return (0);
|
|
}
|
|
|
|
static int
|
|
mutex_self_trylock(struct pthread_mutex *m)
|
|
{
|
|
int ret;
|
|
|
|
switch (PMUTEX_TYPE(m->m_flags)) {
|
|
case PTHREAD_MUTEX_ERRORCHECK:
|
|
case PTHREAD_MUTEX_NORMAL:
|
|
case PTHREAD_MUTEX_ADAPTIVE_NP:
|
|
ret = EBUSY;
|
|
break;
|
|
|
|
case PTHREAD_MUTEX_RECURSIVE:
|
|
/* Increment the lock count: */
|
|
if (m->m_count + 1 > 0) {
|
|
m->m_count++;
|
|
ret = 0;
|
|
} else
|
|
ret = EAGAIN;
|
|
break;
|
|
|
|
default:
|
|
/* Trap invalid mutex types; */
|
|
ret = EINVAL;
|
|
}
|
|
|
|
return (ret);
|
|
}
|
|
|
|
static int
|
|
mutex_self_lock(struct pthread_mutex *m, const struct timespec *abstime)
|
|
{
|
|
struct timespec ts1, ts2;
|
|
int ret;
|
|
|
|
switch (PMUTEX_TYPE(m->m_flags)) {
|
|
case PTHREAD_MUTEX_ERRORCHECK:
|
|
case PTHREAD_MUTEX_ADAPTIVE_NP:
|
|
if (abstime) {
|
|
if (abstime->tv_sec < 0 || abstime->tv_nsec < 0 ||
|
|
abstime->tv_nsec >= 1000000000) {
|
|
ret = EINVAL;
|
|
} else {
|
|
clock_gettime(CLOCK_REALTIME, &ts1);
|
|
TIMESPEC_SUB(&ts2, abstime, &ts1);
|
|
__sys_nanosleep(&ts2, NULL);
|
|
ret = ETIMEDOUT;
|
|
}
|
|
} else {
|
|
/*
|
|
* POSIX specifies that mutexes should return
|
|
* EDEADLK if a recursive lock is detected.
|
|
*/
|
|
ret = EDEADLK;
|
|
}
|
|
break;
|
|
|
|
case PTHREAD_MUTEX_NORMAL:
|
|
/*
|
|
* What SS2 define as a 'normal' mutex. Intentionally
|
|
* deadlock on attempts to get a lock you already own.
|
|
*/
|
|
ret = 0;
|
|
if (abstime) {
|
|
if (abstime->tv_sec < 0 || abstime->tv_nsec < 0 ||
|
|
abstime->tv_nsec >= 1000000000) {
|
|
ret = EINVAL;
|
|
} else {
|
|
clock_gettime(CLOCK_REALTIME, &ts1);
|
|
TIMESPEC_SUB(&ts2, abstime, &ts1);
|
|
__sys_nanosleep(&ts2, NULL);
|
|
ret = ETIMEDOUT;
|
|
}
|
|
} else {
|
|
ts1.tv_sec = 30;
|
|
ts1.tv_nsec = 0;
|
|
for (;;)
|
|
__sys_nanosleep(&ts1, NULL);
|
|
}
|
|
break;
|
|
|
|
case PTHREAD_MUTEX_RECURSIVE:
|
|
/* Increment the lock count: */
|
|
if (m->m_count + 1 > 0) {
|
|
m->m_count++;
|
|
ret = 0;
|
|
} else
|
|
ret = EAGAIN;
|
|
break;
|
|
|
|
default:
|
|
/* Trap invalid mutex types; */
|
|
ret = EINVAL;
|
|
}
|
|
|
|
return (ret);
|
|
}
|
|
|
|
static int
|
|
mutex_unlock_common(struct pthread_mutex *m, bool cv, int *mtx_defer)
|
|
{
|
|
struct pthread *curthread;
|
|
uint32_t id;
|
|
int deferred, error, private, robust;
|
|
|
|
if (__predict_false(m <= THR_MUTEX_DESTROYED)) {
|
|
if (m == THR_MUTEX_DESTROYED)
|
|
return (EINVAL);
|
|
return (EPERM);
|
|
}
|
|
|
|
curthread = _get_curthread();
|
|
id = TID(curthread);
|
|
|
|
/*
|
|
* Check if the running thread is not the owner of the mutex.
|
|
*/
|
|
if (__predict_false(PMUTEX_OWNER_ID(m) != id))
|
|
return (EPERM);
|
|
|
|
error = 0;
|
|
private = (m->m_flags & PMUTEX_FLAG_PRIVATE) != 0;
|
|
if (__predict_false(PMUTEX_TYPE(m->m_flags) ==
|
|
PTHREAD_MUTEX_RECURSIVE && m->m_count > 0)) {
|
|
m->m_count--;
|
|
} else {
|
|
if ((m->m_flags & PMUTEX_FLAG_DEFERRED) != 0) {
|
|
deferred = 1;
|
|
m->m_flags &= ~PMUTEX_FLAG_DEFERRED;
|
|
} else
|
|
deferred = 0;
|
|
|
|
robust = _mutex_enter_robust(curthread, m);
|
|
dequeue_mutex(curthread, m);
|
|
error = _thr_umutex_unlock2(&m->m_lock, id, mtx_defer);
|
|
if (deferred) {
|
|
if (mtx_defer == NULL) {
|
|
_thr_wake_all(curthread->defer_waiters,
|
|
curthread->nwaiter_defer);
|
|
curthread->nwaiter_defer = 0;
|
|
} else
|
|
*mtx_defer = 1;
|
|
}
|
|
if (robust)
|
|
_mutex_leave_robust(curthread, m);
|
|
}
|
|
if (!cv && private)
|
|
THR_CRITICAL_LEAVE(curthread);
|
|
return (error);
|
|
}
|
|
|
|
int
|
|
_pthread_mutex_getprioceiling(const pthread_mutex_t * __restrict mutex,
|
|
int * __restrict prioceiling)
|
|
{
|
|
struct pthread_mutex *m;
|
|
|
|
if (*mutex == THR_PSHARED_PTR) {
|
|
m = __thr_pshared_offpage(__DECONST(void *, mutex), 0);
|
|
if (m == NULL)
|
|
return (EINVAL);
|
|
shared_mutex_init(m, NULL);
|
|
} else {
|
|
m = *mutex;
|
|
if (m <= THR_MUTEX_DESTROYED)
|
|
return (EINVAL);
|
|
}
|
|
if ((m->m_lock.m_flags & UMUTEX_PRIO_PROTECT) == 0)
|
|
return (EINVAL);
|
|
*prioceiling = m->m_lock.m_ceilings[0];
|
|
return (0);
|
|
}
|
|
|
|
int
|
|
_pthread_mutex_setprioceiling(pthread_mutex_t * __restrict mutex,
|
|
int ceiling, int * __restrict old_ceiling)
|
|
{
|
|
struct pthread *curthread;
|
|
struct pthread_mutex *m, *m1, *m2;
|
|
struct mutex_queue *q, *qp;
|
|
int qidx, ret;
|
|
|
|
if (*mutex == THR_PSHARED_PTR) {
|
|
m = __thr_pshared_offpage(mutex, 0);
|
|
if (m == NULL)
|
|
return (EINVAL);
|
|
shared_mutex_init(m, NULL);
|
|
} else {
|
|
m = *mutex;
|
|
if (m <= THR_MUTEX_DESTROYED)
|
|
return (EINVAL);
|
|
}
|
|
if ((m->m_lock.m_flags & UMUTEX_PRIO_PROTECT) == 0)
|
|
return (EINVAL);
|
|
|
|
ret = __thr_umutex_set_ceiling(&m->m_lock, ceiling, old_ceiling);
|
|
if (ret != 0)
|
|
return (ret);
|
|
|
|
curthread = _get_curthread();
|
|
if (PMUTEX_OWNER_ID(m) == TID(curthread)) {
|
|
mutex_assert_is_owned(m);
|
|
m1 = TAILQ_PREV(m, mutex_queue, m_qe);
|
|
m2 = TAILQ_NEXT(m, m_qe);
|
|
if ((m1 != NULL && m1->m_lock.m_ceilings[0] > (u_int)ceiling) ||
|
|
(m2 != NULL && m2->m_lock.m_ceilings[0] < (u_int)ceiling)) {
|
|
qidx = mutex_qidx(m);
|
|
q = &curthread->mq[qidx];
|
|
qp = &curthread->mq[qidx + 1];
|
|
TAILQ_REMOVE(q, m, m_qe);
|
|
if (!is_pshared_mutex(m))
|
|
TAILQ_REMOVE(qp, m, m_pqe);
|
|
TAILQ_FOREACH(m2, q, m_qe) {
|
|
if (m2->m_lock.m_ceilings[0] > (u_int)ceiling) {
|
|
TAILQ_INSERT_BEFORE(m2, m, m_qe);
|
|
if (!is_pshared_mutex(m)) {
|
|
while (m2 != NULL &&
|
|
is_pshared_mutex(m2)) {
|
|
m2 = TAILQ_PREV(m2,
|
|
mutex_queue, m_qe);
|
|
}
|
|
if (m2 == NULL) {
|
|
TAILQ_INSERT_HEAD(qp,
|
|
m, m_pqe);
|
|
} else {
|
|
TAILQ_INSERT_BEFORE(m2,
|
|
m, m_pqe);
|
|
}
|
|
}
|
|
return (0);
|
|
}
|
|
}
|
|
TAILQ_INSERT_TAIL(q, m, m_qe);
|
|
if (!is_pshared_mutex(m))
|
|
TAILQ_INSERT_TAIL(qp, m, m_pqe);
|
|
}
|
|
}
|
|
return (0);
|
|
}
|
|
|
|
int
|
|
_pthread_mutex_getspinloops_np(pthread_mutex_t *mutex, int *count)
|
|
{
|
|
struct pthread_mutex *m;
|
|
int ret;
|
|
|
|
ret = check_and_init_mutex(mutex, &m);
|
|
if (ret == 0)
|
|
*count = m->m_spinloops;
|
|
return (ret);
|
|
}
|
|
|
|
int
|
|
__pthread_mutex_setspinloops_np(pthread_mutex_t *mutex, int count)
|
|
{
|
|
struct pthread_mutex *m;
|
|
int ret;
|
|
|
|
ret = check_and_init_mutex(mutex, &m);
|
|
if (ret == 0)
|
|
m->m_spinloops = count;
|
|
return (ret);
|
|
}
|
|
|
|
int
|
|
_pthread_mutex_getyieldloops_np(pthread_mutex_t *mutex, int *count)
|
|
{
|
|
struct pthread_mutex *m;
|
|
int ret;
|
|
|
|
ret = check_and_init_mutex(mutex, &m);
|
|
if (ret == 0)
|
|
*count = m->m_yieldloops;
|
|
return (ret);
|
|
}
|
|
|
|
int
|
|
__pthread_mutex_setyieldloops_np(pthread_mutex_t *mutex, int count)
|
|
{
|
|
struct pthread_mutex *m;
|
|
int ret;
|
|
|
|
ret = check_and_init_mutex(mutex, &m);
|
|
if (ret == 0)
|
|
m->m_yieldloops = count;
|
|
return (0);
|
|
}
|
|
|
|
int
|
|
_pthread_mutex_isowned_np(pthread_mutex_t *mutex)
|
|
{
|
|
struct pthread_mutex *m;
|
|
|
|
if (*mutex == THR_PSHARED_PTR) {
|
|
m = __thr_pshared_offpage(mutex, 0);
|
|
if (m == NULL)
|
|
return (0);
|
|
shared_mutex_init(m, NULL);
|
|
} else {
|
|
m = *mutex;
|
|
if (m <= THR_MUTEX_DESTROYED)
|
|
return (0);
|
|
}
|
|
return (PMUTEX_OWNER_ID(m) == TID(_get_curthread()));
|
|
}
|
|
|
|
int
|
|
_mutex_owned(struct pthread *curthread, const struct pthread_mutex *mp)
|
|
{
|
|
|
|
if (__predict_false(mp <= THR_MUTEX_DESTROYED)) {
|
|
if (mp == THR_MUTEX_DESTROYED)
|
|
return (EINVAL);
|
|
return (EPERM);
|
|
}
|
|
if (PMUTEX_OWNER_ID(mp) != TID(curthread))
|
|
return (EPERM);
|
|
return (0);
|
|
}
|
|
|
|
int
|
|
_Tthr_mutex_consistent(pthread_mutex_t *mutex)
|
|
{
|
|
struct pthread_mutex *m;
|
|
struct pthread *curthread;
|
|
|
|
if (*mutex == THR_PSHARED_PTR) {
|
|
m = __thr_pshared_offpage(mutex, 0);
|
|
if (m == NULL)
|
|
return (EINVAL);
|
|
shared_mutex_init(m, NULL);
|
|
} else {
|
|
m = *mutex;
|
|
if (m <= THR_MUTEX_DESTROYED)
|
|
return (EINVAL);
|
|
}
|
|
curthread = _get_curthread();
|
|
if ((m->m_lock.m_flags & (UMUTEX_ROBUST | UMUTEX_NONCONSISTENT)) !=
|
|
(UMUTEX_ROBUST | UMUTEX_NONCONSISTENT))
|
|
return (EINVAL);
|
|
if (PMUTEX_OWNER_ID(m) != TID(curthread))
|
|
return (EPERM);
|
|
m->m_lock.m_flags &= ~UMUTEX_NONCONSISTENT;
|
|
return (0);
|
|
}
|