freebsd-skq/sys/dev/ie/if_ie.c
njl 05a1f56fc9 Convert callers to the new bus_alloc_resource_any(9) API.
Submitted by:	Mark Santcroos <marks@ripe.net>
Reviewed by:	imp, dfr, bde
2004-03-17 17:50:55 +00:00

1795 lines
46 KiB
C

/*-
* Copyright (c) 1992, 1993, University of Vermont and State
* Agricultural College.
* Copyright (c) 1992, 1993, Garrett A. Wollman.
*
* Portions:
* Copyright (c) 1990, 1991, William F. Jolitz
* Copyright (c) 1990, The Regents of the University of California
*
* 3Com 3C507 support:
* Copyright (c) 1993, 1994, Charles M. Hannum
*
* EtherExpress 16 support:
* Copyright (c) 1993, 1994, 1995, Rodney W. Grimes
* Copyright (c) 1997, Aaron C. Smith
*
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by the University of
* Vermont and State Agricultural College and Garrett A. Wollman, by
* William F. Jolitz, by the University of California, Berkeley,
* Lawrence Berkeley Laboratory, and their contributors, by
* Charles M. Hannum, by Rodney W. Grimes, and by Aaron C. Smith.
* 4. Neither the names of the Universities nor the names of the authors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE UNIVERSITY OR AUTHORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* MAINTAINER: Matthew N. Dodd <winter@jurai.net>
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
/*
* Intel 82586 Ethernet chip
* Register, bit, and structure definitions.
*
* Written by GAW with reference to the Clarkson Packet Driver code for this
* chip written by Russ Nelson and others.
*
* Intel EtherExpress 16 support from if_ix.c, written by Rodney W. Grimes.
*/
/*
* The i82586 is a very versatile chip, found in many implementations.
* Programming this chip is mostly the same, but certain details differ
* from card to card. This driver is written so that different cards
* can be automatically detected at run-time.
*/
/*
* Mode of operation:
*
* We run the 82586 in a standard Ethernet mode. We keep NFRAMES
* received frame descriptors around for the receiver to use, and
* NRXBUFS associated receive buffer descriptors, both in a circular
* list. Whenever a frame is received, we rotate both lists as
* necessary. (The 586 treats both lists as a simple queue.) We also
* keep a transmit command around so that packets can be sent off
* quickly.
*
* We configure the adapter in AL-LOC = 1 mode, which means that the
* Ethernet/802.3 MAC header is placed at the beginning of the receive
* buffer rather than being split off into various fields in the RFD.
* This also means that we must include this header in the transmit
* buffer as well.
*
* By convention, all transmit commands, and only transmit commands,
* shall have the I (IE_CMD_INTR) bit set in the command. This way,
* when an interrupt arrives at ieintr(), it is immediately possible
* to tell what precisely caused it. ANY OTHER command-sending routines
* should run at splimp(), and should post an acknowledgement to every
* interrupt they generate.
*
* The 82586 has a 24-bit address space internally, and the adaptor's
* memory is located at the top of this region. However, the value
* we are given in configuration is normally the *bottom* of the adaptor
* RAM. So, we must go through a few gyrations to come up with a
* kernel virtual address which represents the actual beginning of the
* 586 address space. First, we autosize the RAM by running through
* several possible sizes and trying to initialize the adapter under
* the assumption that the selected size is correct. Then, knowing
* the correct RAM size, we set up our pointers in the softc `iomem'
* represents the computed base of the 586 address space. `iomembot'
* represents the actual configured base of adapter RAM. Finally,
* `iosize' represents the calculated size of 586 RAM. Then, when
* laying out commands, we use the interval [iomembot, iomembot +
* iosize); to make 24-pointers, we subtract iomem, and to make
* 16-pointers, we subtract iomem and and with 0xffff.
*/
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/eventhandler.h>
#include <sys/kernel.h>
#include <sys/malloc.h>
#include <sys/mbuf.h>
#include <sys/socket.h>
#include <sys/sockio.h>
#include <sys/syslog.h>
#include <sys/module.h>
#include <sys/bus.h>
#include <machine/bus_pio.h>
#include <machine/bus.h>
#include <machine/resource.h>
#include <sys/rman.h>
#include <net/ethernet.h>
#include <net/if.h>
#include <net/if_types.h>
#include <net/if_dl.h>
#include <netinet/in.h>
#include <netinet/if_ether.h>
#include <dev/ic/i82586.h>
#include <dev/ie/if_ievar.h>
#include <dev/ie/if_iereg.h>
#include <dev/ie/if_ie507.h>
#include <dev/ie/if_iee16.h>
#include <i386/isa/elink.h>
#include <net/bpf.h>
#ifdef DEBUG
#define IED_RINT 0x01
#define IED_TINT 0x02
#define IED_RNR 0x04
#define IED_CNA 0x08
#define IED_READFRAME 0x10
static int ie_debug = IED_RNR;
#endif
#define IE_BUF_LEN ETHER_MAX_LEN /* length of transmit buffer */
/* Forward declaration */
struct ie_softc;
static void ieinit (void *);
static void ie_stop (struct ie_softc *);
static int ieioctl (struct ifnet *, u_long, caddr_t);
static void iestart (struct ifnet *);
static __inline void
ee16_interrupt_enable (struct ie_softc *);
static void ee16_eeprom_outbits (struct ie_softc *, int, int);
static void ee16_eeprom_clock (struct ie_softc *, int);
static u_short ee16_read_eeprom (struct ie_softc *, int);
static int ee16_eeprom_inbits (struct ie_softc *);
static void ee16_shutdown (void *, int);
static __inline void
ie_ack (struct ie_softc *, u_int);
static void iereset (struct ie_softc *);
static void ie_readframe (struct ie_softc *, int);
static void ie_drop_packet_buffer (struct ie_softc *);
static void find_ie_mem_size (struct ie_softc *);
static void chan_attn_timeout (void *);
static int command_and_wait (struct ie_softc *,
int, void volatile *, int);
static void run_tdr (struct ie_softc *,
volatile struct ie_tdr_cmd *);
static int ierint (struct ie_softc *);
static int ietint (struct ie_softc *);
static int iernr (struct ie_softc *);
static void start_receiver (struct ie_softc *);
static __inline int
ieget (struct ie_softc *, struct mbuf **);
static v_caddr_t setup_rfa (struct ie_softc *, v_caddr_t);
static int mc_setup (struct ie_softc *);
static void ie_mc_reset (struct ie_softc *);
#ifdef DEBUG
static void print_rbd (volatile struct ie_recv_buf_desc * rbd);
static int in_ierint = 0;
static int in_ietint = 0;
#endif
static const char *ie_hardware_names[] = {
"None",
"StarLAN 10",
"EN100",
"StarLAN Fiber",
"3C507",
"NI5210",
"EtherExpress 16",
"Unknown"
};
/*
* sizeof(iscp) == 1+1+2+4 == 8
* sizeof(scb) == 2+2+2+2+2+2+2+2 == 16
* NFRAMES * sizeof(rfd) == NFRAMES*(2+2+2+2+6+6+2+2) == NFRAMES*24 == 384
* sizeof(xmit_cmd) == 2+2+2+2+6+2 == 18
* sizeof(transmit buffer) == 1512
* sizeof(transmit buffer desc) == 8
* -----
* 1946
*
* NRXBUFS * sizeof(rbd) == NRXBUFS*(2+2+4+2+2) == NRXBUFS*12
* NRXBUFS * IE_RBUF_SIZE == NRXBUFS*256
*
* NRXBUFS should be (16384 - 1946) / (256 + 12) == 14438 / 268 == 53
*
* With NRXBUFS == 48, this leaves us 1574 bytes for another command or
* more buffers. Another transmit command would be 18+8+1512 == 1538
* ---just barely fits!
*
* Obviously all these would have to be reduced for smaller memory sizes.
* With a larger memory, it would be possible to roughly double the number
* of both transmit and receive buffers.
*/
#define NFRAMES 4 /* number of receive frames */
#define NRXBUFS 24 /* number of buffers to allocate */
#define IE_RBUF_SIZE 256 /* size of each buffer, MUST BE POWER OF TWO */
#define NTXBUFS 1 /* number of transmit commands */
#define IE_TBUF_SIZE ETHER_MAX_LEN /* size of transmit buffer */
#define MK_24(base, ptr) ((caddr_t)((uintptr_t)ptr - (uintptr_t)base))
#define MK_16(base, ptr) ((u_short)(uintptr_t)MK_24(base, ptr))
static void
ee16_shutdown(void *xsc, int howto)
{
struct ie_softc *sc = (struct ie_softc *)xsc;
ee16_reset_586(sc);
outb(PORT(sc) + IEE16_ECTRL, IEE16_RESET_ASIC);
outb(PORT(sc) + IEE16_ECTRL, 0);
}
/*
* Taken almost exactly from Bill's if_is.c, then modified beyond recognition.
*/
int
ie_attach(device_t dev)
{
struct ie_softc * sc;
struct ifnet * ifp;
size_t allocsize;
int factor;
sc = device_get_softc(dev);
ifp = &sc->arpcom.ac_if;
sc->dev = dev;
sc->unit = device_get_unit(dev);
/*
* based on the amount of memory we have, allocate our tx and rx
* resources.
*/
factor = rman_get_size(sc->mem_res) / 8192;
sc->nframes = factor * NFRAMES;
sc->nrxbufs = factor * NRXBUFS;
sc->ntxbufs = factor * NTXBUFS;
/*
* Since all of these guys are arrays of pointers, allocate as one
* big chunk and dole out accordingly.
*/
allocsize = sizeof(void *) * (sc->nframes
+ (sc->nrxbufs * 2)
+ (sc->ntxbufs * 3));
sc->rframes = (volatile struct ie_recv_frame_desc **) malloc(allocsize,
M_DEVBUF,
M_NOWAIT);
if (sc->rframes == NULL)
return (ENXIO);
sc->rbuffs =
(volatile struct ie_recv_buf_desc **)&sc->rframes[sc->nframes];
sc->cbuffs = (volatile u_char **)&sc->rbuffs[sc->nrxbufs];
sc->xmit_cmds =
(volatile struct ie_xmit_cmd **)&sc->cbuffs[sc->nrxbufs];
sc->xmit_buffs =
(volatile struct ie_xmit_buf **)&sc->xmit_cmds[sc->ntxbufs];
sc->xmit_cbuffs = (volatile u_char **)&sc->xmit_buffs[sc->ntxbufs];
if (bootverbose)
device_printf(sc->dev, "hardware type %s, revision %d\n",
ie_hardware_names[sc->hard_type], sc->hard_vers + 1);
ifp->if_softc = sc;
if_initname(ifp, device_get_name(dev), device_get_unit(dev));
ifp->if_mtu = ETHERMTU;
ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
ifp->if_start = iestart;
ifp->if_ioctl = ieioctl;
ifp->if_init = ieinit;
ifp->if_snd.ifq_maxlen = IFQ_MAXLEN;
if (sc->hard_type == IE_EE16)
EVENTHANDLER_REGISTER(shutdown_post_sync, ee16_shutdown,
sc, SHUTDOWN_PRI_DEFAULT);
ether_ifattach(ifp, sc->arpcom.ac_enaddr);
return (0);
}
static __inline void
ie_ack(struct ie_softc *sc, u_int mask)
{
sc->scb->ie_command = sc->scb->ie_status & mask;
(*sc->ie_chan_attn) (sc);
}
/*
* What to do upon receipt of an interrupt.
*/
void
ie_intr(void *xsc)
{
struct ie_softc *sc = (struct ie_softc *)xsc;
u_short status;
/* Clear the interrupt latch on the 3C507. */
if (sc->hard_type == IE_3C507
&& (inb(PORT(sc) + IE507_CTRL) & EL_CTRL_INTL))
outb(PORT(sc) + IE507_ICTRL, 1);
/* disable interrupts on the EE16. */
if (sc->hard_type == IE_EE16)
outb(PORT(sc) + IEE16_IRQ, sc->irq_encoded);
status = sc->scb->ie_status;
loop:
/* Don't ack interrupts which we didn't receive */
ie_ack(sc, IE_ST_WHENCE & status);
if (status & (IE_ST_RECV | IE_ST_RNR)) {
#ifdef DEBUG
in_ierint++;
if (ie_debug & IED_RINT)
printf("ie%d: rint\n", sc->unit);
#endif
ierint(sc);
#ifdef DEBUG
in_ierint--;
#endif
}
if (status & IE_ST_DONE) {
#ifdef DEBUG
in_ietint++;
if (ie_debug & IED_TINT)
printf("ie%d: tint\n", sc->unit);
#endif
ietint(sc);
#ifdef DEBUG
in_ietint--;
#endif
}
if (status & IE_ST_RNR) {
#ifdef DEBUG
if (ie_debug & IED_RNR)
printf("ie%d: rnr\n", sc->unit);
#endif
iernr(sc);
}
#ifdef DEBUG
if ((status & IE_ST_ALLDONE) && (ie_debug & IED_CNA))
printf("ie%d: cna\n", sc->unit);
#endif
if ((status = sc->scb->ie_status) & IE_ST_WHENCE)
goto loop;
/* Clear the interrupt latch on the 3C507. */
if (sc->hard_type == IE_3C507)
outb(PORT(sc) + IE507_ICTRL, 1);
/* enable interrupts on the EE16. */
if (sc->hard_type == IE_EE16)
outb(PORT(sc) + IEE16_IRQ, sc->irq_encoded | IEE16_IRQ_ENABLE);
}
/*
* Process a received-frame interrupt.
*/
static int
ierint(struct ie_softc *sc)
{
int i, status;
static int timesthru = 1024;
i = sc->rfhead;
while (1) {
status = sc->rframes[i]->ie_fd_status;
if ((status & IE_FD_COMPLETE) && (status & IE_FD_OK)) {
sc->arpcom.ac_if.if_ipackets++;
if (!--timesthru) {
sc->arpcom.ac_if.if_ierrors +=
sc->scb->ie_err_crc +
sc->scb->ie_err_align +
sc->scb->ie_err_resource +
sc->scb->ie_err_overrun;
sc->scb->ie_err_crc = 0;
sc->scb->ie_err_align = 0;
sc->scb->ie_err_resource = 0;
sc->scb->ie_err_overrun = 0;
timesthru = 1024;
}
ie_readframe(sc, i);
} else {
if (status & IE_FD_RNR) {
if (!(sc->scb->ie_status & IE_RU_READY)) {
sc->rframes[0]->ie_fd_next =
MK_16(MEM(sc), sc->rbuffs[0]);
sc->scb->ie_recv_list =
MK_16(MEM(sc), sc->rframes[0]);
command_and_wait(sc, IE_RU_START, 0, 0);
}
}
break;
}
i = (i + 1) % sc->nframes;
}
return (0);
}
/*
* Process a command-complete interrupt. These are only generated by
* the transmission of frames. This routine is deceptively simple, since
* most of the real work is done by iestart().
*/
static int
ietint(struct ie_softc *sc)
{
int status;
int i;
sc->arpcom.ac_if.if_timer = 0;
sc->arpcom.ac_if.if_flags &= ~IFF_OACTIVE;
for (i = 0; i < sc->xmit_count; i++) {
status = sc->xmit_cmds[i]->ie_xmit_status;
if (status & IE_XS_LATECOLL) {
printf("ie%d: late collision\n", sc->unit);
sc->arpcom.ac_if.if_collisions++;
sc->arpcom.ac_if.if_oerrors++;
} else if (status & IE_XS_NOCARRIER) {
printf("ie%d: no carrier\n", sc->unit);
sc->arpcom.ac_if.if_oerrors++;
} else if (status & IE_XS_LOSTCTS) {
printf("ie%d: lost CTS\n", sc->unit);
sc->arpcom.ac_if.if_oerrors++;
} else if (status & IE_XS_UNDERRUN) {
printf("ie%d: DMA underrun\n", sc->unit);
sc->arpcom.ac_if.if_oerrors++;
} else if (status & IE_XS_EXCMAX) {
printf("ie%d: too many collisions\n", sc->unit);
sc->arpcom.ac_if.if_collisions += 16;
sc->arpcom.ac_if.if_oerrors++;
} else {
sc->arpcom.ac_if.if_opackets++;
sc->arpcom.ac_if.if_collisions += status & IE_XS_MAXCOLL;
}
}
sc->xmit_count = 0;
/*
* If multicast addresses were added or deleted while we were
* transmitting, ie_mc_reset() set the want_mcsetup flag indicating
* that we should do it.
*/
if (sc->want_mcsetup) {
mc_setup(sc);
sc->want_mcsetup = 0;
}
/* Wish I knew why this seems to be necessary... */
sc->xmit_cmds[0]->ie_xmit_status |= IE_STAT_COMPL;
iestart(&sc->arpcom.ac_if);
return (0); /* shouldn't be necessary */
}
/*
* Process a receiver-not-ready interrupt. I believe that we get these
* when there aren't enough buffers to go around. For now (FIXME), we
* just restart the receiver, and hope everything's ok.
*/
static int
iernr(struct ie_softc *sc)
{
#ifdef doesnt_work
setup_rfa(sc, (v_caddr_t) sc->rframes[0]);
sc->scb->ie_recv_list = MK_16(MEM(sc), sc->rframes[0]);
command_and_wait(sc, IE_RU_START, 0, 0);
#else
/* This doesn't work either, but it doesn't hang either. */
command_and_wait(sc, IE_RU_DISABLE, 0, 0); /* just in case */
setup_rfa(sc, (v_caddr_t) sc->rframes[0]); /* ignore cast-qual */
sc->scb->ie_recv_list = MK_16(MEM(sc), sc->rframes[0]);
command_and_wait(sc, IE_RU_START, 0, 0); /* was ENABLE */
#endif
ie_ack(sc, IE_ST_WHENCE);
sc->arpcom.ac_if.if_ierrors++;
return (0);
}
/*
* Compare two Ether/802 addresses for equality, inlined and
* unrolled for speed. I'd love to have an inline assembler
* version of this...
*/
static __inline int
ether_equal(u_char * one, u_char * two)
{
if (one[0] != two[0])
return (0);
if (one[1] != two[1])
return (0);
if (one[2] != two[2])
return (0);
if (one[3] != two[3])
return (0);
if (one[4] != two[4])
return (0);
if (one[5] != two[5])
return (0);
return 1;
}
/*
* Determine quickly whether we should bother reading in this packet.
* This depends on whether BPF and/or bridging is enabled, whether we
* are receiving multicast address, and whether promiscuous mode is enabled.
* We assume that if IFF_PROMISC is set, then *somebody* wants to see
* all incoming packets.
*/
static __inline int
check_eh(struct ie_softc *sc, struct ether_header *eh)
{
/* Optimize the common case: normal operation. We've received
either a unicast with our dest or a multicast packet. */
if (sc->promisc == 0) {
int i;
/* If not multicast, it's definitely for us */
if ((eh->ether_dhost[0] & 1) == 0)
return (1);
/* Accept broadcasts (loose but fast check) */
if (eh->ether_dhost[0] == 0xff)
return (1);
/* Compare against our multicast addresses */
for (i = 0; i < sc->mcast_count; i++) {
if (ether_equal(eh->ether_dhost,
(u_char *)&sc->mcast_addrs[i]))
return (1);
}
return (0);
}
/* Always accept packets when in promiscuous mode */
if ((sc->promisc & IFF_PROMISC) != 0)
return (1);
/* Always accept packets directed at us */
if (ether_equal(eh->ether_dhost, sc->arpcom.ac_enaddr))
return (1);
/* Must have IFF_ALLMULTI but not IFF_PROMISC set. The chip is
actually in promiscuous mode, so discard unicast packets. */
return((eh->ether_dhost[0] & 1) != 0);
}
/*
* We want to isolate the bits that have meaning... This assumes that
* IE_RBUF_SIZE is an even power of two. If somehow the act_len exceeds
* the size of the buffer, then we are screwed anyway.
*/
static __inline int
ie_buflen(struct ie_softc *sc, int head)
{
return (sc->rbuffs[head]->ie_rbd_actual
& (IE_RBUF_SIZE | (IE_RBUF_SIZE - 1)));
}
static __inline int
ie_packet_len(struct ie_softc *sc)
{
int i;
int head = sc->rbhead;
int acc = 0;
do {
if (!(sc->rbuffs[sc->rbhead]->ie_rbd_actual & IE_RBD_USED)) {
#ifdef DEBUG
print_rbd(sc->rbuffs[sc->rbhead]);
#endif
log(LOG_ERR,
"ie%d: receive descriptors out of sync at %d\n",
sc->unit, sc->rbhead);
iereset(sc);
return (-1);
}
i = sc->rbuffs[head]->ie_rbd_actual & IE_RBD_LAST;
acc += ie_buflen(sc, head);
head = (head + 1) % sc->nrxbufs;
} while (!i);
return (acc);
}
/*
* Read data off the interface, and turn it into an mbuf chain.
*
* This code is DRAMATICALLY different from the previous version; this
* version tries to allocate the entire mbuf chain up front, given the
* length of the data available. This enables us to allocate mbuf
* clusters in many situations where before we would have had a long
* chain of partially-full mbufs. This should help to speed up the
* operation considerably. (Provided that it works, of course.)
*/
static __inline int
ieget(struct ie_softc *sc, struct mbuf **mp)
{
struct ether_header eh;
struct mbuf *m, *top, **mymp;
int offset;
int totlen, resid;
int thismboff;
int head;
totlen = ie_packet_len(sc);
if (totlen <= 0)
return (-1);
/*
* Snarf the Ethernet header.
*/
bcopy((caddr_t)sc->cbuffs[sc->rbhead], &eh, sizeof(struct ether_header));
/* ignore cast-qual warning here */
/*
* As quickly as possible, check if this packet is for us. If not,
* don't waste a single cycle copying the rest of the packet in.
* This is only a consideration when FILTER is defined; i.e., when
* we are either running BPF or doing multicasting.
*/
if (!check_eh(sc, &eh)) {
ie_drop_packet_buffer(sc);
sc->arpcom.ac_if.if_ierrors--; /* just this case, it's not an
* error
*/
return (-1);
}
MGETHDR(m, M_DONTWAIT, MT_DATA);
if (!m) {
ie_drop_packet_buffer(sc);
/* XXXX if_ierrors++; */
return (-1);
}
*mp = m;
m->m_pkthdr.rcvif = &sc->arpcom.ac_if;
m->m_len = MHLEN;
resid = m->m_pkthdr.len = totlen;
top = 0;
mymp = &top;
/*
* This loop goes through and allocates mbufs for all the data we
* will be copying in. It does not actually do the copying yet.
*/
do { /* while(resid > 0) */
/*
* Try to allocate an mbuf to hold the data that we have.
* If we already allocated one, just get another one and
* stick it on the end (eventually). If we don't already
* have one, try to allocate an mbuf cluster big enough to
* hold the whole packet, if we think it's reasonable, or a
* single mbuf which may or may not be big enough. Got that?
*/
if (top) {
MGET(m, M_DONTWAIT, MT_DATA);
if (!m) {
m_freem(top);
ie_drop_packet_buffer(sc);
return (-1);
}
m->m_len = MLEN;
}
if (resid >= MINCLSIZE) {
MCLGET(m, M_DONTWAIT);
if (m->m_flags & M_EXT)
m->m_len = min(resid, MCLBYTES);
} else {
if (resid < m->m_len) {
if (!top && resid + max_linkhdr <= m->m_len)
m->m_data += max_linkhdr;
m->m_len = resid;
}
}
resid -= m->m_len;
*mymp = m;
mymp = &m->m_next;
} while (resid > 0);
resid = totlen; /* remaining data */
offset = 0; /* packet offset */
thismboff = 0; /* offset in m */
m = top; /* current mbuf */
head = sc->rbhead; /* current rx buffer */
/*
* Now we take the mbuf chain (hopefully only one mbuf most of the
* time) and stuff the data into it. There are no possible failures
* at or after this point.
*/
while (resid > 0) { /* while there's stuff left */
int thislen = ie_buflen(sc, head) - offset;
/*
* If too much data for the current mbuf, then fill the
* current one up, go to the next one, and try again.
*/
if (thislen > m->m_len - thismboff) {
int newlen = m->m_len - thismboff;
bcopy((v_caddr_t) (sc->cbuffs[head] + offset),
mtod(m, caddr_t) +thismboff, (unsigned) newlen);
/* ignore cast-qual warning */
m = m->m_next;
thismboff = 0; /* new mbuf, so no offset */
offset += newlen; /* we are now this far into
* the packet */
resid -= newlen; /* so there is this much left
* to get */
continue;
}
/*
* If there is more than enough space in the mbuf to hold
* the contents of this buffer, copy everything in, advance
* pointers, and so on.
*/
if (thislen < m->m_len - thismboff) {
bcopy((v_caddr_t) (sc->cbuffs[head] + offset),
mtod(m, caddr_t) +thismboff, (unsigned) thislen);
thismboff += thislen; /* we are this far into the
* mbuf */
resid -= thislen; /* and this much is left */
goto nextbuf;
}
/*
* Otherwise, there is exactly enough space to put this
* buffer's contents into the current mbuf. Do the
* combination of the above actions.
*/
bcopy((v_caddr_t) (sc->cbuffs[head] + offset),
mtod(m, caddr_t) + thismboff, (unsigned) thislen);
m = m->m_next;
thismboff = 0; /* new mbuf, start at the beginning */
resid -= thislen; /* and we are this far through */
/*
* Advance all the pointers. We can get here from either of
* the last two cases, but never the first.
*/
nextbuf:
offset = 0;
sc->rbuffs[head]->ie_rbd_actual = 0;
sc->rbuffs[head]->ie_rbd_length |= IE_RBD_LAST;
sc->rbhead = head = (head + 1) % sc->nrxbufs;
sc->rbuffs[sc->rbtail]->ie_rbd_length &= ~IE_RBD_LAST;
sc->rbtail = (sc->rbtail + 1) % sc->nrxbufs;
}
/*
* Unless something changed strangely while we were doing the copy,
* we have now copied everything in from the shared memory. This
* means that we are done.
*/
return (0);
}
/*
* Read frame NUM from unit UNIT (pre-cached as IE).
*
* This routine reads the RFD at NUM, and copies in the buffers from
* the list of RBD, then rotates the RBD and RFD lists so that the receiver
* doesn't start complaining. Trailers are DROPPED---there's no point
* in wasting time on confusing code to deal with them. Hopefully,
* this machine will never ARP for trailers anyway.
*/
static void
ie_readframe(struct ie_softc *sc, int num/* frame number to read */)
{
struct ifnet *ifp = &sc->arpcom.ac_if;
struct ie_recv_frame_desc rfd;
struct mbuf *m = 0;
#ifdef DEBUG
struct ether_header *eh;
#endif
bcopy((v_caddr_t) (sc->rframes[num]), &rfd,
sizeof(struct ie_recv_frame_desc));
/*
* Immediately advance the RFD list, since we we have copied ours
* now.
*/
sc->rframes[num]->ie_fd_status = 0;
sc->rframes[num]->ie_fd_last |= IE_FD_LAST;
sc->rframes[sc->rftail]->ie_fd_last &= ~IE_FD_LAST;
sc->rftail = (sc->rftail + 1) % sc->nframes;
sc->rfhead = (sc->rfhead + 1) % sc->nframes;
if (rfd.ie_fd_status & IE_FD_OK) {
if (ieget(sc, &m)) {
sc->arpcom.ac_if.if_ierrors++; /* this counts as an
* error */
return;
}
}
#ifdef DEBUG
eh = mtod(m, struct ether_header *);
if (ie_debug & IED_READFRAME) {
printf("ie%d: frame from ether %6D type %x\n", sc->unit,
eh->ether_shost, ":", (unsigned) eh->ether_type);
}
if (ntohs(eh->ether_type) > ETHERTYPE_TRAIL
&& ntohs(eh->ether_type) < (ETHERTYPE_TRAIL + ETHERTYPE_NTRAILER))
printf("received trailer!\n");
#endif
if (!m)
return;
/*
* Finally pass this packet up to higher layers.
*/
(*ifp->if_input)(ifp, m);
}
static void
ie_drop_packet_buffer(struct ie_softc *sc)
{
int i;
do {
/*
* This means we are somehow out of sync. So, we reset the
* adapter.
*/
if (!(sc->rbuffs[sc->rbhead]->ie_rbd_actual & IE_RBD_USED)) {
#ifdef DEBUG
print_rbd(sc->rbuffs[sc->rbhead]);
#endif
log(LOG_ERR, "ie%d: receive descriptors out of sync at %d\n",
sc->unit, sc->rbhead);
iereset(sc);
return;
}
i = sc->rbuffs[sc->rbhead]->ie_rbd_actual & IE_RBD_LAST;
sc->rbuffs[sc->rbhead]->ie_rbd_length |= IE_RBD_LAST;
sc->rbuffs[sc->rbhead]->ie_rbd_actual = 0;
sc->rbhead = (sc->rbhead + 1) % sc->nrxbufs;
sc->rbuffs[sc->rbtail]->ie_rbd_length &= ~IE_RBD_LAST;
sc->rbtail = (sc->rbtail + 1) % sc->nrxbufs;
} while (!i);
}
/*
* Start transmission on an interface.
*/
static void
iestart(struct ifnet *ifp)
{
struct ie_softc *sc = ifp->if_softc;
struct mbuf *m0, *m;
volatile unsigned char *buffer;
u_short len;
/*
* This is not really volatile, in this routine, but it makes gcc
* happy.
*/
volatile u_short *bptr = &sc->scb->ie_command_list;
if (!(ifp->if_flags & IFF_RUNNING))
return;
if (ifp->if_flags & IFF_OACTIVE)
return;
do {
IF_DEQUEUE(&sc->arpcom.ac_if.if_snd, m);
if (!m)
break;
buffer = sc->xmit_cbuffs[sc->xmit_count];
len = 0;
for (m0 = m; m && len < IE_BUF_LEN; m = m->m_next) {
bcopy(mtod(m, caddr_t), buffer, m->m_len);
buffer += m->m_len;
len += m->m_len;
}
m_freem(m0);
len = max(len, ETHER_MIN_LEN);
/*
* See if bpf is listening on this interface, let it see the
* packet before we commit it to the wire.
*/
BPF_TAP(&sc->arpcom.ac_if,
(void *)sc->xmit_cbuffs[sc->xmit_count], len);
sc->xmit_buffs[sc->xmit_count]->ie_xmit_flags =
IE_XMIT_LAST|len;
sc->xmit_buffs[sc->xmit_count]->ie_xmit_next = 0xffff;
sc->xmit_buffs[sc->xmit_count]->ie_xmit_buf =
MK_24(sc->iomem, sc->xmit_cbuffs[sc->xmit_count]);
sc->xmit_cmds[sc->xmit_count]->com.ie_cmd_cmd = IE_CMD_XMIT;
sc->xmit_cmds[sc->xmit_count]->ie_xmit_status = 0;
sc->xmit_cmds[sc->xmit_count]->ie_xmit_desc =
MK_16(sc->iomem, sc->xmit_buffs[sc->xmit_count]);
*bptr = MK_16(sc->iomem, sc->xmit_cmds[sc->xmit_count]);
bptr = &sc->xmit_cmds[sc->xmit_count]->com.ie_cmd_link;
sc->xmit_count++;
} while (sc->xmit_count < sc->ntxbufs);
/*
* If we queued up anything for transmission, send it.
*/
if (sc->xmit_count) {
sc->xmit_cmds[sc->xmit_count - 1]->com.ie_cmd_cmd |=
IE_CMD_LAST | IE_CMD_INTR;
/*
* By passing the command pointer as a null, we tell
* command_and_wait() to pretend that this isn't an action
* command. I wish I understood what was happening here.
*/
command_and_wait(sc, IE_CU_START, 0, 0);
ifp->if_flags |= IFF_OACTIVE;
}
return;
}
/*
* Check to see if there's an 82586 out there.
*/
int
check_ie_present(struct ie_softc *sc)
{
volatile struct ie_sys_conf_ptr *scp;
volatile struct ie_int_sys_conf_ptr *iscp;
volatile struct ie_sys_ctl_block *scb;
u_long realbase;
int s;
s = splimp();
realbase = (uintptr_t) sc->iomembot + sc->iosize - (1 << 24);
scp = (volatile struct ie_sys_conf_ptr *) (uintptr_t)
(realbase + IE_SCP_ADDR);
bzero((volatile char *) scp, sizeof *scp);
/*
* First we put the ISCP at the bottom of memory; this tests to make
* sure that our idea of the size of memory is the same as the
* controller's. This is NOT where the ISCP will be in normal
* operation.
*/
iscp = (volatile struct ie_int_sys_conf_ptr *) sc->iomembot;
bzero((volatile char *)iscp, sizeof *iscp);
scb = (volatile struct ie_sys_ctl_block *) sc->iomembot;
bzero((volatile char *)scb, sizeof *scb);
scp->ie_bus_use = sc->bus_use; /* 8-bit or 16-bit */
scp->ie_iscp_ptr = (caddr_t) (uintptr_t)
((volatile char *) iscp - (volatile char *) (uintptr_t) realbase);
iscp->ie_busy = 1;
iscp->ie_scb_offset = MK_16(realbase, scb) + 256;
(*sc->ie_reset_586) (sc);
(*sc->ie_chan_attn) (sc);
DELAY(100); /* wait a while... */
if (iscp->ie_busy) {
splx(s);
return (0);
}
/*
* Now relocate the ISCP to its real home, and reset the controller
* again.
*/
iscp = (void *) Align((caddr_t) (uintptr_t)
(realbase + IE_SCP_ADDR -
sizeof(struct ie_int_sys_conf_ptr)));
bzero((volatile char *) iscp, sizeof *iscp); /* ignore cast-qual */
scp->ie_iscp_ptr = (caddr_t) (uintptr_t)
((volatile char *) iscp - (volatile char *) (uintptr_t) realbase);
iscp->ie_busy = 1;
iscp->ie_scb_offset = MK_16(realbase, scb);
(*sc->ie_reset_586) (sc);
(*sc->ie_chan_attn) (sc);
DELAY(100);
if (iscp->ie_busy) {
splx(s);
return (0);
}
sc->iomem = (caddr_t) (uintptr_t) realbase;
sc->iscp = iscp;
sc->scb = scb;
/*
* Acknowledge any interrupts we may have caused...
*/
ie_ack(sc, IE_ST_WHENCE);
splx(s);
return (1);
}
/*
* Divine the memory size of ie board UNIT.
* Better hope there's nothing important hiding just below the ie card...
*/
static void
find_ie_mem_size(struct ie_softc *sc)
{
unsigned size;
sc->iosize = 0;
for (size = 65536; size >= 8192; size -= 8192) {
if (check_ie_present(sc)) {
return;
}
}
return;
}
void
el_reset_586(struct ie_softc *sc)
{
outb(PORT(sc) + IE507_CTRL, EL_CTRL_RESET);
DELAY(100);
outb(PORT(sc) + IE507_CTRL, EL_CTRL_NORMAL);
DELAY(100);
}
void
sl_reset_586(struct ie_softc *sc)
{
outb(PORT(sc) + IEATT_RESET, 0);
}
void
ee16_reset_586(struct ie_softc *sc)
{
outb(PORT(sc) + IEE16_ECTRL, IEE16_RESET_586);
DELAY(100);
outb(PORT(sc) + IEE16_ECTRL, 0);
DELAY(100);
}
void
el_chan_attn(struct ie_softc *sc)
{
outb(PORT(sc) + IE507_ATTN, 1);
}
void
sl_chan_attn(struct ie_softc *sc)
{
outb(PORT(sc) + IEATT_ATTN, 0);
}
void
ee16_chan_attn(struct ie_softc *sc)
{
outb(PORT(sc) + IEE16_ATTN, 0);
}
u_short
ee16_read_eeprom(struct ie_softc *sc, int location)
{
int ectrl, edata;
ectrl = inb(sc->port + IEE16_ECTRL);
ectrl &= IEE16_ECTRL_MASK;
ectrl |= IEE16_ECTRL_EECS;
outb(sc->port + IEE16_ECTRL, ectrl);
ee16_eeprom_outbits(sc, IEE16_EEPROM_READ, IEE16_EEPROM_OPSIZE1);
ee16_eeprom_outbits(sc, location, IEE16_EEPROM_ADDR_SIZE);
edata = ee16_eeprom_inbits(sc);
ectrl = inb(sc->port + IEE16_ECTRL);
ectrl &= ~(IEE16_RESET_ASIC | IEE16_ECTRL_EEDI | IEE16_ECTRL_EECS);
outb(sc->port + IEE16_ECTRL, ectrl);
ee16_eeprom_clock(sc, 1);
ee16_eeprom_clock(sc, 0);
return edata;
}
static void
ee16_eeprom_outbits(struct ie_softc *sc, int edata, int count)
{
int ectrl, i;
ectrl = inb(sc->port + IEE16_ECTRL);
ectrl &= ~IEE16_RESET_ASIC;
for (i = count - 1; i >= 0; i--) {
ectrl &= ~IEE16_ECTRL_EEDI;
if (edata & (1 << i)) {
ectrl |= IEE16_ECTRL_EEDI;
}
outb(sc->port + IEE16_ECTRL, ectrl);
DELAY(1); /* eeprom data must be setup for 0.4 uSec */
ee16_eeprom_clock(sc, 1);
ee16_eeprom_clock(sc, 0);
}
ectrl &= ~IEE16_ECTRL_EEDI;
outb(sc->port + IEE16_ECTRL, ectrl);
DELAY(1); /* eeprom data must be held for 0.4 uSec */
}
static int
ee16_eeprom_inbits(struct ie_softc *sc)
{
int ectrl, edata, i;
ectrl = inb(sc->port + IEE16_ECTRL);
ectrl &= ~IEE16_RESET_ASIC;
for (edata = 0, i = 0; i < 16; i++) {
edata = edata << 1;
ee16_eeprom_clock(sc, 1);
ectrl = inb(sc->port + IEE16_ECTRL);
if (ectrl & IEE16_ECTRL_EEDO) {
edata |= 1;
}
ee16_eeprom_clock(sc, 0);
}
return (edata);
}
static void
ee16_eeprom_clock(struct ie_softc *sc, int state)
{
int ectrl;
ectrl = inb(sc->port + IEE16_ECTRL);
ectrl &= ~(IEE16_RESET_ASIC | IEE16_ECTRL_EESK);
if (state) {
ectrl |= IEE16_ECTRL_EESK;
}
outb(sc->port + IEE16_ECTRL, ectrl);
DELAY(9); /* EESK must be stable for 8.38 uSec */
}
static __inline void
ee16_interrupt_enable(struct ie_softc *sc)
{
DELAY(100);
outb(sc->port + IEE16_IRQ, sc->irq_encoded | IEE16_IRQ_ENABLE);
DELAY(100);
}
void
sl_read_ether(struct ie_softc *sc, unsigned char *addr)
{
int i;
for (i = 0; i < 6; i++)
addr[i] = inb(PORT(sc) + i);
}
static void
iereset(struct ie_softc *sc)
{
int s = splimp();
printf("ie%d: reset\n", sc->unit);
sc->arpcom.ac_if.if_flags &= ~IFF_UP;
ieioctl(&sc->arpcom.ac_if, SIOCSIFFLAGS, 0);
/*
* Stop i82586 dead in its tracks.
*/
if (command_and_wait(sc, IE_RU_ABORT | IE_CU_ABORT, 0, 0))
printf("ie%d: abort commands timed out\n", sc->unit);
if (command_and_wait(sc, IE_RU_DISABLE | IE_CU_STOP, 0, 0))
printf("ie%d: disable commands timed out\n", sc->unit);
#ifdef notdef
if (!check_ie_present(sc))
panic("ie disappeared!");
#endif
sc->arpcom.ac_if.if_flags |= IFF_UP;
ieioctl(&sc->arpcom.ac_if, SIOCSIFFLAGS, 0);
splx(s);
return;
}
/*
* This is called if we time out.
*/
static void
chan_attn_timeout(void *rock)
{
*(int *) rock = 1;
}
/*
* Send a command to the controller and wait for it to either
* complete or be accepted, depending on the command. If the
* command pointer is null, then pretend that the command is
* not an action command. If the command pointer is not null,
* and the command is an action command, wait for
* ((volatile struct ie_cmd_common *)pcmd)->ie_cmd_status & MASK
* to become true.
*/
static int
command_and_wait(struct ie_softc *sc, int cmd, volatile void *pcmd, int mask)
{
volatile struct ie_cmd_common *cc = pcmd;
volatile int timedout = 0;
struct callout_handle ch;
sc->scb->ie_command = (u_short) cmd;
if (IE_ACTION_COMMAND(cmd) && pcmd) {
(*sc->ie_chan_attn) (sc);
/*
* According to the packet driver, the minimum timeout
* should be .369 seconds, which we round up to .37.
*/
ch = timeout(chan_attn_timeout, (caddr_t)&timedout,
37 * hz / 100);
/* ignore cast-qual */
/*
* Now spin-lock waiting for status. This is not a very
* nice thing to do, but I haven't figured out how, or
* indeed if, we can put the process waiting for action to
* sleep. (We may be getting called through some other
* timeout running in the kernel.)
*/
while (1) {
if ((cc->ie_cmd_status & mask) || timedout)
break;
}
untimeout(chan_attn_timeout, (caddr_t)&timedout, ch);
/* ignore cast-qual */
return (timedout);
} else {
/*
* Otherwise, just wait for the command to be accepted.
*/
(*sc->ie_chan_attn) (sc);
while (sc->scb->ie_command); /* spin lock */
return (0);
}
}
/*
* Run the time-domain reflectometer...
*/
static void
run_tdr(struct ie_softc *sc, volatile struct ie_tdr_cmd *cmd)
{
int result;
cmd->com.ie_cmd_status = 0;
cmd->com.ie_cmd_cmd = IE_CMD_TDR | IE_CMD_LAST;
cmd->com.ie_cmd_link = 0xffff;
cmd->ie_tdr_time = 0;
sc->scb->ie_command_list = MK_16(MEM(sc), cmd);
cmd->ie_tdr_time = 0;
if (command_and_wait(sc, IE_CU_START, cmd, IE_STAT_COMPL))
result = 0x2000;
else
result = cmd->ie_tdr_time;
ie_ack(sc, IE_ST_WHENCE);
if (result & IE_TDR_SUCCESS)
return;
if (result & IE_TDR_XCVR) {
printf("ie%d: transceiver problem\n", sc->unit);
} else if (result & IE_TDR_OPEN) {
printf("ie%d: TDR detected an open %d clocks away\n", sc->unit,
result & IE_TDR_TIME);
} else if (result & IE_TDR_SHORT) {
printf("ie%d: TDR detected a short %d clocks away\n", sc->unit,
result & IE_TDR_TIME);
} else {
printf("ie%d: TDR returned unknown status %x\n", sc->unit, result);
}
}
static void
start_receiver(struct ie_softc *sc)
{
int s = splimp();
sc->scb->ie_recv_list = MK_16(MEM(sc), sc->rframes[0]);
command_and_wait(sc, IE_RU_START, 0, 0);
ie_ack(sc, IE_ST_WHENCE);
splx(s);
}
/*
* Here is a helper routine for iernr() and ieinit(). This sets up
* the RFA.
*/
static v_caddr_t
setup_rfa(struct ie_softc *sc, v_caddr_t ptr)
{
volatile struct ie_recv_frame_desc *rfd = (volatile void *)ptr;
volatile struct ie_recv_buf_desc *rbd;
int i;
/* First lay them out */
for (i = 0; i < sc->nframes; i++) {
sc->rframes[i] = rfd;
bzero((volatile char *) rfd, sizeof *rfd); /* ignore cast-qual */
rfd++;
}
ptr = Alignvol(rfd); /* ignore cast-qual */
/* Now link them together */
for (i = 0; i < sc->nframes; i++) {
sc->rframes[i]->ie_fd_next =
MK_16(MEM(sc), sc->rframes[(i + 1) % sc->nframes]);
}
/* Finally, set the EOL bit on the last one. */
sc->rframes[sc->nframes - 1]->ie_fd_last |= IE_FD_LAST;
/*
* Now lay out some buffers for the incoming frames. Note that we
* set aside a bit of slop in each buffer, to make sure that we have
* enough space to hold a single frame in every buffer.
*/
rbd = (volatile void *) ptr;
for (i = 0; i < sc->nrxbufs; i++) {
sc->rbuffs[i] = rbd;
bzero((volatile char *)rbd, sizeof *rbd);
ptr = Alignvol(ptr + sizeof *rbd);
rbd->ie_rbd_length = IE_RBUF_SIZE;
rbd->ie_rbd_buffer = MK_24(MEM(sc), ptr);
sc->cbuffs[i] = (volatile void *) ptr;
ptr += IE_RBUF_SIZE;
rbd = (volatile void *) ptr;
}
/* Now link them together */
for (i = 0; i < sc->nrxbufs; i++) {
sc->rbuffs[i]->ie_rbd_next =
MK_16(MEM(sc), sc->rbuffs[(i + 1) % sc->nrxbufs]);
}
/* Tag EOF on the last one */
sc->rbuffs[sc->nrxbufs - 1]->ie_rbd_length |= IE_RBD_LAST;
/*
* We use the head and tail pointers on receive to keep track of the
* order in which RFDs and RBDs are used.
*/
sc->rfhead = 0;
sc->rftail = sc->nframes - 1;
sc->rbhead = 0;
sc->rbtail = sc->nrxbufs - 1;
sc->scb->ie_recv_list = MK_16(MEM(sc), sc->rframes[0]);
sc->rframes[0]->ie_fd_buf_desc = MK_16(MEM(sc), sc->rbuffs[0]);
ptr = Alignvol(ptr);
return (ptr);
}
/*
* Run the multicast setup command.
* Call at splimp().
*/
static int
mc_setup(struct ie_softc *sc)
{
volatile struct ie_mcast_cmd *cmd = (volatile void *)sc->xmit_cbuffs[0];
cmd->com.ie_cmd_status = 0;
cmd->com.ie_cmd_cmd = IE_CMD_MCAST | IE_CMD_LAST;
cmd->com.ie_cmd_link = 0xffff;
/* ignore cast-qual */
bcopy((v_caddr_t) sc->mcast_addrs, (v_caddr_t) cmd->ie_mcast_addrs,
sc->mcast_count * sizeof *sc->mcast_addrs);
cmd->ie_mcast_bytes = sc->mcast_count * 6; /* grrr... */
sc->scb->ie_command_list = MK_16(MEM(sc), cmd);
if (command_and_wait(sc, IE_CU_START, cmd, IE_STAT_COMPL)
|| !(cmd->com.ie_cmd_status & IE_STAT_OK)) {
printf("ie%d: multicast address setup command failed\n", sc->unit);
return (0);
}
return (1);
}
/*
* This routine takes the environment generated by check_ie_present()
* and adds to it all the other structures we need to operate the adapter.
* This includes executing the CONFIGURE, IA-SETUP, and MC-SETUP commands,
* starting the receiver unit, and clearing interrupts.
*
* THIS ROUTINE MUST BE CALLED AT splimp() OR HIGHER.
*/
static void
ieinit(xsc)
void *xsc;
{
struct ie_softc *sc = xsc;
volatile struct ie_sys_ctl_block *scb = sc->scb;
caddr_t ptr;
int i;
int unit = sc->unit;
ptr = Alignvol((volatile char *) scb + sizeof *scb);
/*
* Send the configure command first.
*/
{
volatile struct ie_config_cmd *cmd = (volatile void *) ptr;
ie_setup_config(cmd, sc->promisc,
sc->hard_type == IE_STARLAN10);
cmd->com.ie_cmd_status = 0;
cmd->com.ie_cmd_cmd = IE_CMD_CONFIG | IE_CMD_LAST;
cmd->com.ie_cmd_link = 0xffff;
scb->ie_command_list = MK_16(MEM(sc), cmd);
if (command_and_wait(sc, IE_CU_START, cmd, IE_STAT_COMPL)
|| !(cmd->com.ie_cmd_status & IE_STAT_OK)) {
printf("ie%d: configure command failed\n", unit);
return;
}
}
/*
* Now send the Individual Address Setup command.
*/
{
volatile struct ie_iasetup_cmd *cmd = (volatile void *) ptr;
cmd->com.ie_cmd_status = 0;
cmd->com.ie_cmd_cmd = IE_CMD_IASETUP | IE_CMD_LAST;
cmd->com.ie_cmd_link = 0xffff;
bcopy((volatile char *)sc->arpcom.ac_enaddr,
(volatile char *)&cmd->ie_address, sizeof cmd->ie_address);
scb->ie_command_list = MK_16(MEM(sc), cmd);
if (command_and_wait(sc, IE_CU_START, cmd, IE_STAT_COMPL)
|| !(cmd->com.ie_cmd_status & IE_STAT_OK)) {
printf("ie%d: individual address "
"setup command failed\n", sc->unit);
return;
}
}
/*
* Now run the time-domain reflectometer.
*/
run_tdr(sc, (volatile void *) ptr);
/*
* Acknowledge any interrupts we have generated thus far.
*/
ie_ack(sc, IE_ST_WHENCE);
/*
* Set up the RFA.
*/
ptr = setup_rfa(sc, ptr);
/*
* Finally, the transmit command and buffer are the last little bit
* of work.
*/
/* transmit command buffers */
for (i = 0; i < sc->ntxbufs; i++) {
sc->xmit_cmds[i] = (volatile void *) ptr;
ptr += sizeof *sc->xmit_cmds[i];
ptr = Alignvol(ptr);
sc->xmit_buffs[i] = (volatile void *)ptr;
ptr += sizeof *sc->xmit_buffs[i];
ptr = Alignvol(ptr);
}
/* transmit buffers */
for (i = 0; i < sc->ntxbufs - 1; i++) {
sc->xmit_cbuffs[i] = (volatile void *)ptr;
ptr += IE_BUF_LEN;
ptr = Alignvol(ptr);
}
sc->xmit_cbuffs[sc->ntxbufs - 1] = (volatile void *) ptr;
for (i = 1; i < sc->ntxbufs; i++) {
bzero((v_caddr_t) sc->xmit_cmds[i], sizeof *sc->xmit_cmds[i]);
bzero((v_caddr_t) sc->xmit_buffs[i], sizeof *sc->xmit_buffs[i]);
}
/*
* This must be coordinated with iestart() and ietint().
*/
sc->xmit_cmds[0]->ie_xmit_status = IE_STAT_COMPL;
/* take the ee16 out of loopback */
if (sc->hard_type == IE_EE16) {
u_int8_t bart_config;
bart_config = inb(PORT(sc) + IEE16_CONFIG);
bart_config &= ~IEE16_BART_LOOPBACK;
/* inb doesn't get bit! */
bart_config |= IEE16_BART_MCS16_TEST;
outb(PORT(sc) + IEE16_CONFIG, bart_config);
ee16_interrupt_enable(sc);
ee16_chan_attn(sc);
}
sc->arpcom.ac_if.if_flags |= IFF_RUNNING; /* tell higher levels
* we're here */
sc->arpcom.ac_if.if_flags &= ~IFF_OACTIVE;
start_receiver(sc);
return;
}
static void
ie_stop(struct ie_softc *sc)
{
command_and_wait(sc, IE_RU_DISABLE, 0, 0);
}
static int
ieioctl(struct ifnet *ifp, u_long command, caddr_t data)
{
int s, error = 0;
struct ie_softc *sc = ifp->if_softc;
s = splimp();
switch (command) {
case SIOCSIFFLAGS:
/*
* Note that this device doesn't have an "all multicast"
* mode, so we must turn on promiscuous mode and do the
* filtering manually.
*/
if ((ifp->if_flags & IFF_UP) == 0 &&
(ifp->if_flags & IFF_RUNNING)) {
ifp->if_flags &= ~IFF_RUNNING;
ie_stop(sc);
} else if ((ifp->if_flags & IFF_UP) &&
(ifp->if_flags & IFF_RUNNING) == 0) {
sc->promisc =
ifp->if_flags & (IFF_PROMISC | IFF_ALLMULTI);
ieinit(sc);
} else if (sc->promisc ^
(ifp->if_flags & (IFF_PROMISC | IFF_ALLMULTI))) {
sc->promisc =
ifp->if_flags & (IFF_PROMISC | IFF_ALLMULTI);
ieinit(sc);
}
break;
case SIOCADDMULTI:
case SIOCDELMULTI:
/*
* Update multicast listeners
*/
/* reset multicast filtering */
ie_mc_reset(sc);
error = 0;
break;
default:
error = ether_ioctl(ifp, command, data);
break;
}
splx(s);
return (error);
}
static void
ie_mc_reset(struct ie_softc *sc)
{
struct ifmultiaddr *ifma;
/*
* Step through the list of addresses.
*/
sc->mcast_count = 0;
TAILQ_FOREACH(ifma, &sc->arpcom.ac_if.if_multiaddrs, ifma_link) {
if (ifma->ifma_addr->sa_family != AF_LINK)
continue;
/* XXX - this is broken... */
if (sc->mcast_count >= MAXMCAST) {
sc->arpcom.ac_if.if_flags |= IFF_ALLMULTI;
ieioctl(&sc->arpcom.ac_if, SIOCSIFFLAGS, (void *) 0);
goto setflag;
}
bcopy(LLADDR((struct sockaddr_dl *) ifma->ifma_addr),
&(sc->mcast_addrs[sc->mcast_count]), 6);
sc->mcast_count++;
}
setflag:
sc->want_mcsetup = 1;
}
#ifdef DEBUG
static void
print_rbd(volatile struct ie_recv_buf_desc * rbd)
{
printf("RBD at %p:\n"
"actual %04x, next %04x, buffer %p\n"
"length %04x, mbz %04x\n",
(volatile void *) rbd,
rbd->ie_rbd_actual, rbd->ie_rbd_next,
(void *) rbd->ie_rbd_buffer,
rbd->ie_rbd_length, rbd->mbz);
}
#endif /* DEBUG */
int
ie_alloc_resources (device_t dev)
{
struct ie_softc * sc;
int error;
error = 0;
sc = device_get_softc(dev);
sc->io_res = bus_alloc_resource_any(dev, SYS_RES_IOPORT, &sc->io_rid,
RF_ACTIVE);
if (!sc->io_res) {
device_printf(dev, "No I/O space?!\n");
error = ENOMEM;
goto bad;
}
sc->io_bt = rman_get_bustag(sc->io_res);
sc->io_bh = rman_get_bushandle(sc->io_res);
sc->mem_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &sc->mem_rid,
RF_ACTIVE);
if (!sc->mem_res) {
device_printf(dev, "No Memory!\n");
error = ENOMEM;
goto bad;
}
sc->mem_bt = rman_get_bustag(sc->mem_res);
sc->mem_bh = rman_get_bushandle(sc->mem_res);
sc->irq_res = bus_alloc_resource_any(dev, SYS_RES_IRQ, &sc->irq_rid,
RF_ACTIVE);
if (!sc->irq_res) {
device_printf(dev, "No IRQ!\n");
error = ENOMEM;
goto bad;
}
sc->port = rman_get_start(sc->io_res); /* XXX hack */
sc->iomembot = rman_get_virtual(sc->mem_res);
sc->iosize = rman_get_size(sc->mem_res);
return (0);
bad:
return (error);
}
void
ie_release_resources (device_t dev)
{
struct ie_softc * sc;
sc = device_get_softc(dev);
if (sc->irq_ih)
bus_teardown_intr(dev, sc->irq_res, sc->irq_ih);
if (sc->io_res)
bus_release_resource(dev, SYS_RES_IOPORT,
sc->io_rid, sc->io_res);
if (sc->irq_res)
bus_release_resource(dev, SYS_RES_IRQ,
sc->irq_rid, sc->irq_res);
if (sc->mem_res)
bus_release_resource(dev, SYS_RES_MEMORY,
sc->mem_rid, sc->mem_res);
return;
}
int
ie_detach (device_t dev)
{
struct ie_softc * sc;
struct ifnet * ifp;
sc = device_get_softc(dev);
ifp = &sc->arpcom.ac_if;
if (sc->hard_type == IE_EE16)
ee16_shutdown(sc, 0);
ie_stop(sc);
ifp->if_flags &= ~IFF_RUNNING;
ether_ifdetach(ifp);
ie_release_resources(dev);
return (0);
}