freebsd-skq/sys/dev/kbd/kbd.c
pfg ced875130d Revert r327828, r327949, r327953, r328016-r328026, r328041:
Uses of mallocarray(9).

The use of mallocarray(9) has rocketed the required swap to build FreeBSD.
This is likely caused by the allocation size attributes which put extra pressure
on the compiler.

Given that most of these checks are superfluous we have to choose better
where to use mallocarray(9). We still have more uses of mallocarray(9) but
hopefully this is enough to bring swap usage to a reasonable level.

Reported by:	wosch
PR:		225197
2018-01-21 15:42:36 +00:00

1478 lines
33 KiB
C

/*-
* SPDX-License-Identifier: BSD-2-Clause-FreeBSD
*
* Copyright (c) 1999 Kazutaka YOKOTA <yokota@zodiac.mech.utsunomiya-u.ac.jp>
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer as
* the first lines of this file unmodified.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHORS ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include "opt_kbd.h"
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/kernel.h>
#include <sys/malloc.h>
#include <sys/conf.h>
#include <sys/fcntl.h>
#include <sys/poll.h>
#include <sys/priv.h>
#include <sys/proc.h>
#include <sys/selinfo.h>
#include <sys/sysctl.h>
#include <sys/uio.h>
#include <sys/kbio.h>
#include <dev/kbd/kbdreg.h>
#define KBD_INDEX(dev) dev2unit(dev)
#define KB_QSIZE 512
#define KB_BUFSIZE 64
typedef struct genkbd_softc {
int gkb_flags; /* flag/status bits */
#define KB_ASLEEP (1 << 0)
struct selinfo gkb_rsel;
char gkb_q[KB_QSIZE]; /* input queue */
unsigned int gkb_q_start;
unsigned int gkb_q_length;
} genkbd_softc_t;
static SLIST_HEAD(, keyboard_driver) keyboard_drivers =
SLIST_HEAD_INITIALIZER(keyboard_drivers);
SET_DECLARE(kbddriver_set, const keyboard_driver_t);
/* local arrays */
/*
* We need at least one entry each in order to initialize a keyboard
* for the kernel console. The arrays will be increased dynamically
* when necessary.
*/
static int keyboards = 1;
static keyboard_t *kbd_ini;
static keyboard_t **keyboard = &kbd_ini;
static keyboard_switch_t *kbdsw_ini;
keyboard_switch_t **kbdsw = &kbdsw_ini;
static int keymap_restrict_change;
static SYSCTL_NODE(_hw, OID_AUTO, kbd, CTLFLAG_RD, 0, "kbd");
SYSCTL_INT(_hw_kbd, OID_AUTO, keymap_restrict_change, CTLFLAG_RW,
&keymap_restrict_change, 0, "restrict ability to change keymap");
#define ARRAY_DELTA 4
static int
kbd_realloc_array(void)
{
keyboard_t **new_kbd;
keyboard_switch_t **new_kbdsw;
int newsize;
int s;
s = spltty();
newsize = rounddown(keyboards + ARRAY_DELTA, ARRAY_DELTA);
new_kbd = malloc(sizeof(*new_kbd)*newsize, M_DEVBUF, M_NOWAIT|M_ZERO);
if (new_kbd == NULL) {
splx(s);
return (ENOMEM);
}
new_kbdsw = malloc(sizeof(*new_kbdsw)*newsize, M_DEVBUF,
M_NOWAIT|M_ZERO);
if (new_kbdsw == NULL) {
free(new_kbd, M_DEVBUF);
splx(s);
return (ENOMEM);
}
bcopy(keyboard, new_kbd, sizeof(*keyboard)*keyboards);
bcopy(kbdsw, new_kbdsw, sizeof(*kbdsw)*keyboards);
if (keyboards > 1) {
free(keyboard, M_DEVBUF);
free(kbdsw, M_DEVBUF);
}
keyboard = new_kbd;
kbdsw = new_kbdsw;
keyboards = newsize;
splx(s);
if (bootverbose)
printf("kbd: new array size %d\n", keyboards);
return (0);
}
/*
* Low-level keyboard driver functions
* Keyboard subdrivers, such as the AT keyboard driver and the USB keyboard
* driver, call these functions to initialize the keyboard_t structure
* and register it to the virtual keyboard driver `kbd'.
*/
/* initialize the keyboard_t structure */
void
kbd_init_struct(keyboard_t *kbd, char *name, int type, int unit, int config,
int port, int port_size)
{
kbd->kb_flags = KB_NO_DEVICE; /* device has not been found */
kbd->kb_name = name;
kbd->kb_type = type;
kbd->kb_unit = unit;
kbd->kb_config = config & ~KB_CONF_PROBE_ONLY;
kbd->kb_led = 0; /* unknown */
kbd->kb_io_base = port;
kbd->kb_io_size = port_size;
kbd->kb_data = NULL;
kbd->kb_keymap = NULL;
kbd->kb_accentmap = NULL;
kbd->kb_fkeytab = NULL;
kbd->kb_fkeytab_size = 0;
kbd->kb_delay1 = KB_DELAY1; /* these values are advisory only */
kbd->kb_delay2 = KB_DELAY2;
kbd->kb_count = 0L;
bzero(kbd->kb_lastact, sizeof(kbd->kb_lastact));
}
void
kbd_set_maps(keyboard_t *kbd, keymap_t *keymap, accentmap_t *accmap,
fkeytab_t *fkeymap, int fkeymap_size)
{
kbd->kb_keymap = keymap;
kbd->kb_accentmap = accmap;
kbd->kb_fkeytab = fkeymap;
kbd->kb_fkeytab_size = fkeymap_size;
}
/* declare a new keyboard driver */
int
kbd_add_driver(keyboard_driver_t *driver)
{
if (SLIST_NEXT(driver, link))
return (EINVAL);
SLIST_INSERT_HEAD(&keyboard_drivers, driver, link);
return (0);
}
int
kbd_delete_driver(keyboard_driver_t *driver)
{
SLIST_REMOVE(&keyboard_drivers, driver, keyboard_driver, link);
SLIST_NEXT(driver, link) = NULL;
return (0);
}
/* register a keyboard and associate it with a function table */
int
kbd_register(keyboard_t *kbd)
{
const keyboard_driver_t **list;
const keyboard_driver_t *p;
keyboard_t *mux;
keyboard_info_t ki;
int index;
mux = kbd_get_keyboard(kbd_find_keyboard("kbdmux", -1));
for (index = 0; index < keyboards; ++index) {
if (keyboard[index] == NULL)
break;
}
if (index >= keyboards) {
if (kbd_realloc_array())
return (-1);
}
kbd->kb_index = index;
KBD_UNBUSY(kbd);
KBD_VALID(kbd);
kbd->kb_active = 0; /* disabled until someone calls kbd_enable() */
kbd->kb_token = NULL;
kbd->kb_callback.kc_func = NULL;
kbd->kb_callback.kc_arg = NULL;
SLIST_FOREACH(p, &keyboard_drivers, link) {
if (strcmp(p->name, kbd->kb_name) == 0) {
keyboard[index] = kbd;
kbdsw[index] = p->kbdsw;
if (mux != NULL) {
bzero(&ki, sizeof(ki));
strcpy(ki.kb_name, kbd->kb_name);
ki.kb_unit = kbd->kb_unit;
(void)kbdd_ioctl(mux, KBADDKBD, (caddr_t) &ki);
}
return (index);
}
}
SET_FOREACH(list, kbddriver_set) {
p = *list;
if (strcmp(p->name, kbd->kb_name) == 0) {
keyboard[index] = kbd;
kbdsw[index] = p->kbdsw;
if (mux != NULL) {
bzero(&ki, sizeof(ki));
strcpy(ki.kb_name, kbd->kb_name);
ki.kb_unit = kbd->kb_unit;
(void)kbdd_ioctl(mux, KBADDKBD, (caddr_t) &ki);
}
return (index);
}
}
return (-1);
}
int
kbd_unregister(keyboard_t *kbd)
{
int error;
int s;
if ((kbd->kb_index < 0) || (kbd->kb_index >= keyboards))
return (ENOENT);
if (keyboard[kbd->kb_index] != kbd)
return (ENOENT);
s = spltty();
if (KBD_IS_BUSY(kbd)) {
error = (*kbd->kb_callback.kc_func)(kbd, KBDIO_UNLOADING,
kbd->kb_callback.kc_arg);
if (error) {
splx(s);
return (error);
}
if (KBD_IS_BUSY(kbd)) {
splx(s);
return (EBUSY);
}
}
KBD_INVALID(kbd);
keyboard[kbd->kb_index] = NULL;
kbdsw[kbd->kb_index] = NULL;
splx(s);
return (0);
}
/* find a function table by the driver name */
keyboard_switch_t *
kbd_get_switch(char *driver)
{
const keyboard_driver_t **list;
const keyboard_driver_t *p;
SLIST_FOREACH(p, &keyboard_drivers, link) {
if (strcmp(p->name, driver) == 0)
return (p->kbdsw);
}
SET_FOREACH(list, kbddriver_set) {
p = *list;
if (strcmp(p->name, driver) == 0)
return (p->kbdsw);
}
return (NULL);
}
/*
* Keyboard client functions
* Keyboard clients, such as the console driver `syscons' and the keyboard
* cdev driver, use these functions to claim and release a keyboard for
* exclusive use.
*/
/*
* find the keyboard specified by a driver name and a unit number
* starting at given index
*/
int
kbd_find_keyboard2(char *driver, int unit, int index)
{
int i;
if ((index < 0) || (index >= keyboards))
return (-1);
for (i = index; i < keyboards; ++i) {
if (keyboard[i] == NULL)
continue;
if (!KBD_IS_VALID(keyboard[i]))
continue;
if (strcmp("*", driver) && strcmp(keyboard[i]->kb_name, driver))
continue;
if ((unit != -1) && (keyboard[i]->kb_unit != unit))
continue;
return (i);
}
return (-1);
}
/* find the keyboard specified by a driver name and a unit number */
int
kbd_find_keyboard(char *driver, int unit)
{
return (kbd_find_keyboard2(driver, unit, 0));
}
/* allocate a keyboard */
int
kbd_allocate(char *driver, int unit, void *id, kbd_callback_func_t *func,
void *arg)
{
int index;
int s;
if (func == NULL)
return (-1);
s = spltty();
index = kbd_find_keyboard(driver, unit);
if (index >= 0) {
if (KBD_IS_BUSY(keyboard[index])) {
splx(s);
return (-1);
}
keyboard[index]->kb_token = id;
KBD_BUSY(keyboard[index]);
keyboard[index]->kb_callback.kc_func = func;
keyboard[index]->kb_callback.kc_arg = arg;
kbdd_clear_state(keyboard[index]);
}
splx(s);
return (index);
}
int
kbd_release(keyboard_t *kbd, void *id)
{
int error;
int s;
s = spltty();
if (!KBD_IS_VALID(kbd) || !KBD_IS_BUSY(kbd)) {
error = EINVAL;
} else if (kbd->kb_token != id) {
error = EPERM;
} else {
kbd->kb_token = NULL;
KBD_UNBUSY(kbd);
kbd->kb_callback.kc_func = NULL;
kbd->kb_callback.kc_arg = NULL;
kbdd_clear_state(kbd);
error = 0;
}
splx(s);
return (error);
}
int
kbd_change_callback(keyboard_t *kbd, void *id, kbd_callback_func_t *func,
void *arg)
{
int error;
int s;
s = spltty();
if (!KBD_IS_VALID(kbd) || !KBD_IS_BUSY(kbd)) {
error = EINVAL;
} else if (kbd->kb_token != id) {
error = EPERM;
} else if (func == NULL) {
error = EINVAL;
} else {
kbd->kb_callback.kc_func = func;
kbd->kb_callback.kc_arg = arg;
error = 0;
}
splx(s);
return (error);
}
/* get a keyboard structure */
keyboard_t *
kbd_get_keyboard(int index)
{
if ((index < 0) || (index >= keyboards))
return (NULL);
if (keyboard[index] == NULL)
return (NULL);
if (!KBD_IS_VALID(keyboard[index]))
return (NULL);
return (keyboard[index]);
}
/*
* The back door for the console driver; configure keyboards
* This function is for the kernel console to initialize keyboards
* at very early stage.
*/
int
kbd_configure(int flags)
{
const keyboard_driver_t **list;
const keyboard_driver_t *p;
SLIST_FOREACH(p, &keyboard_drivers, link) {
if (p->configure != NULL)
(*p->configure)(flags);
}
SET_FOREACH(list, kbddriver_set) {
p = *list;
if (p->configure != NULL)
(*p->configure)(flags);
}
return (0);
}
#ifdef KBD_INSTALL_CDEV
/*
* Virtual keyboard cdev driver functions
* The virtual keyboard driver dispatches driver functions to
* appropriate subdrivers.
*/
#define KBD_UNIT(dev) dev2unit(dev)
static d_open_t genkbdopen;
static d_close_t genkbdclose;
static d_read_t genkbdread;
static d_write_t genkbdwrite;
static d_ioctl_t genkbdioctl;
static d_poll_t genkbdpoll;
static struct cdevsw kbd_cdevsw = {
.d_version = D_VERSION,
.d_flags = D_NEEDGIANT,
.d_open = genkbdopen,
.d_close = genkbdclose,
.d_read = genkbdread,
.d_write = genkbdwrite,
.d_ioctl = genkbdioctl,
.d_poll = genkbdpoll,
.d_name = "kbd",
};
int
kbd_attach(keyboard_t *kbd)
{
if (kbd->kb_index >= keyboards)
return (EINVAL);
if (keyboard[kbd->kb_index] != kbd)
return (EINVAL);
kbd->kb_dev = make_dev(&kbd_cdevsw, kbd->kb_index, UID_ROOT, GID_WHEEL,
0600, "%s%r", kbd->kb_name, kbd->kb_unit);
make_dev_alias(kbd->kb_dev, "kbd%r", kbd->kb_index);
kbd->kb_dev->si_drv1 = malloc(sizeof(genkbd_softc_t), M_DEVBUF,
M_WAITOK | M_ZERO);
printf("kbd%d at %s%d\n", kbd->kb_index, kbd->kb_name, kbd->kb_unit);
return (0);
}
int
kbd_detach(keyboard_t *kbd)
{
if (kbd->kb_index >= keyboards)
return (EINVAL);
if (keyboard[kbd->kb_index] != kbd)
return (EINVAL);
free(kbd->kb_dev->si_drv1, M_DEVBUF);
destroy_dev(kbd->kb_dev);
return (0);
}
/*
* Generic keyboard cdev driver functions
* Keyboard subdrivers may call these functions to implement common
* driver functions.
*/
static void
genkbd_putc(genkbd_softc_t *sc, char c)
{
unsigned int p;
if (sc->gkb_q_length == KB_QSIZE)
return;
p = (sc->gkb_q_start + sc->gkb_q_length) % KB_QSIZE;
sc->gkb_q[p] = c;
sc->gkb_q_length++;
}
static size_t
genkbd_getc(genkbd_softc_t *sc, char *buf, size_t len)
{
/* Determine copy size. */
if (sc->gkb_q_length == 0)
return (0);
if (len >= sc->gkb_q_length)
len = sc->gkb_q_length;
if (len >= KB_QSIZE - sc->gkb_q_start)
len = KB_QSIZE - sc->gkb_q_start;
/* Copy out data and progress offset. */
memcpy(buf, sc->gkb_q + sc->gkb_q_start, len);
sc->gkb_q_start = (sc->gkb_q_start + len) % KB_QSIZE;
sc->gkb_q_length -= len;
return (len);
}
static kbd_callback_func_t genkbd_event;
static int
genkbdopen(struct cdev *dev, int mode, int flag, struct thread *td)
{
keyboard_t *kbd;
genkbd_softc_t *sc;
int s;
int i;
s = spltty();
sc = dev->si_drv1;
kbd = kbd_get_keyboard(KBD_INDEX(dev));
if ((sc == NULL) || (kbd == NULL) || !KBD_IS_VALID(kbd)) {
splx(s);
return (ENXIO);
}
i = kbd_allocate(kbd->kb_name, kbd->kb_unit, sc,
genkbd_event, (void *)sc);
if (i < 0) {
splx(s);
return (EBUSY);
}
/* assert(i == kbd->kb_index) */
/* assert(kbd == kbd_get_keyboard(i)) */
/*
* NOTE: even when we have successfully claimed a keyboard,
* the device may still be missing (!KBD_HAS_DEVICE(kbd)).
*/
sc->gkb_q_length = 0;
splx(s);
return (0);
}
static int
genkbdclose(struct cdev *dev, int mode, int flag, struct thread *td)
{
keyboard_t *kbd;
genkbd_softc_t *sc;
int s;
/*
* NOTE: the device may have already become invalid.
* kbd == NULL || !KBD_IS_VALID(kbd)
*/
s = spltty();
sc = dev->si_drv1;
kbd = kbd_get_keyboard(KBD_INDEX(dev));
if ((sc == NULL) || (kbd == NULL) || !KBD_IS_VALID(kbd)) {
/* XXX: we shall be forgiving and don't report error... */
} else {
kbd_release(kbd, (void *)sc);
}
splx(s);
return (0);
}
static int
genkbdread(struct cdev *dev, struct uio *uio, int flag)
{
keyboard_t *kbd;
genkbd_softc_t *sc;
u_char buffer[KB_BUFSIZE];
int len;
int error;
int s;
/* wait for input */
s = spltty();
sc = dev->si_drv1;
kbd = kbd_get_keyboard(KBD_INDEX(dev));
if ((sc == NULL) || (kbd == NULL) || !KBD_IS_VALID(kbd)) {
splx(s);
return (ENXIO);
}
while (sc->gkb_q_length == 0) {
if (flag & O_NONBLOCK) {
splx(s);
return (EWOULDBLOCK);
}
sc->gkb_flags |= KB_ASLEEP;
error = tsleep(sc, PZERO | PCATCH, "kbdrea", 0);
kbd = kbd_get_keyboard(KBD_INDEX(dev));
if ((kbd == NULL) || !KBD_IS_VALID(kbd)) {
splx(s);
return (ENXIO); /* our keyboard has gone... */
}
if (error) {
sc->gkb_flags &= ~KB_ASLEEP;
splx(s);
return (error);
}
}
splx(s);
/* copy as much input as possible */
error = 0;
while (uio->uio_resid > 0) {
len = imin(uio->uio_resid, sizeof(buffer));
len = genkbd_getc(sc, buffer, len);
if (len <= 0)
break;
error = uiomove(buffer, len, uio);
if (error)
break;
}
return (error);
}
static int
genkbdwrite(struct cdev *dev, struct uio *uio, int flag)
{
keyboard_t *kbd;
kbd = kbd_get_keyboard(KBD_INDEX(dev));
if ((kbd == NULL) || !KBD_IS_VALID(kbd))
return (ENXIO);
return (ENODEV);
}
static int
genkbdioctl(struct cdev *dev, u_long cmd, caddr_t arg, int flag, struct thread *td)
{
keyboard_t *kbd;
int error;
kbd = kbd_get_keyboard(KBD_INDEX(dev));
if ((kbd == NULL) || !KBD_IS_VALID(kbd))
return (ENXIO);
error = kbdd_ioctl(kbd, cmd, arg);
if (error == ENOIOCTL)
error = ENODEV;
return (error);
}
static int
genkbdpoll(struct cdev *dev, int events, struct thread *td)
{
keyboard_t *kbd;
genkbd_softc_t *sc;
int revents;
int s;
revents = 0;
s = spltty();
sc = dev->si_drv1;
kbd = kbd_get_keyboard(KBD_INDEX(dev));
if ((sc == NULL) || (kbd == NULL) || !KBD_IS_VALID(kbd)) {
revents = POLLHUP; /* the keyboard has gone */
} else if (events & (POLLIN | POLLRDNORM)) {
if (sc->gkb_q_length > 0)
revents = events & (POLLIN | POLLRDNORM);
else
selrecord(td, &sc->gkb_rsel);
}
splx(s);
return (revents);
}
static int
genkbd_event(keyboard_t *kbd, int event, void *arg)
{
genkbd_softc_t *sc;
size_t len;
u_char *cp;
int mode;
u_int c;
/* assert(KBD_IS_VALID(kbd)) */
sc = (genkbd_softc_t *)arg;
switch (event) {
case KBDIO_KEYINPUT:
break;
case KBDIO_UNLOADING:
/* the keyboard is going... */
kbd_release(kbd, (void *)sc);
if (sc->gkb_flags & KB_ASLEEP) {
sc->gkb_flags &= ~KB_ASLEEP;
wakeup(sc);
}
selwakeuppri(&sc->gkb_rsel, PZERO);
return (0);
default:
return (EINVAL);
}
/* obtain the current key input mode */
if (kbdd_ioctl(kbd, KDGKBMODE, (caddr_t)&mode))
mode = K_XLATE;
/* read all pending input */
while (kbdd_check_char(kbd)) {
c = kbdd_read_char(kbd, FALSE);
if (c == NOKEY)
continue;
if (c == ERRKEY) /* XXX: ring bell? */
continue;
if (!KBD_IS_BUSY(kbd))
/* the device is not open, discard the input */
continue;
/* store the byte as is for K_RAW and K_CODE modes */
if (mode != K_XLATE) {
genkbd_putc(sc, KEYCHAR(c));
continue;
}
/* K_XLATE */
if (c & RELKEY) /* key release is ignored */
continue;
/* process special keys; most of them are just ignored... */
if (c & SPCLKEY) {
switch (KEYCHAR(c)) {
default:
/* ignore them... */
continue;
case BTAB: /* a backtab: ESC [ Z */
genkbd_putc(sc, 0x1b);
genkbd_putc(sc, '[');
genkbd_putc(sc, 'Z');
continue;
}
}
/* normal chars, normal chars with the META, function keys */
switch (KEYFLAGS(c)) {
case 0: /* a normal char */
genkbd_putc(sc, KEYCHAR(c));
break;
case MKEY: /* the META flag: prepend ESC */
genkbd_putc(sc, 0x1b);
genkbd_putc(sc, KEYCHAR(c));
break;
case FKEY | SPCLKEY: /* a function key, return string */
cp = kbdd_get_fkeystr(kbd, KEYCHAR(c), &len);
if (cp != NULL) {
while (len-- > 0)
genkbd_putc(sc, *cp++);
}
break;
}
}
/* wake up sleeping/polling processes */
if (sc->gkb_q_length > 0) {
if (sc->gkb_flags & KB_ASLEEP) {
sc->gkb_flags &= ~KB_ASLEEP;
wakeup(sc);
}
selwakeuppri(&sc->gkb_rsel, PZERO);
}
return (0);
}
#endif /* KBD_INSTALL_CDEV */
/*
* Generic low-level keyboard functions
* The low-level functions in the keyboard subdriver may use these
* functions.
*/
#ifndef KBD_DISABLE_KEYMAP_LOAD
static int key_change_ok(struct keyent_t *, struct keyent_t *, struct thread *);
static int keymap_change_ok(keymap_t *, keymap_t *, struct thread *);
static int accent_change_ok(accentmap_t *, accentmap_t *, struct thread *);
static int fkey_change_ok(fkeytab_t *, fkeyarg_t *, struct thread *);
#endif
int
genkbd_commonioctl(keyboard_t *kbd, u_long cmd, caddr_t arg)
{
keymap_t *mapp;
okeymap_t *omapp;
keyarg_t *keyp;
fkeyarg_t *fkeyp;
int s;
int i, j;
int error;
s = spltty();
switch (cmd) {
case KDGKBINFO: /* get keyboard information */
((keyboard_info_t *)arg)->kb_index = kbd->kb_index;
i = imin(strlen(kbd->kb_name) + 1,
sizeof(((keyboard_info_t *)arg)->kb_name));
bcopy(kbd->kb_name, ((keyboard_info_t *)arg)->kb_name, i);
((keyboard_info_t *)arg)->kb_unit = kbd->kb_unit;
((keyboard_info_t *)arg)->kb_type = kbd->kb_type;
((keyboard_info_t *)arg)->kb_config = kbd->kb_config;
((keyboard_info_t *)arg)->kb_flags = kbd->kb_flags;
break;
case KDGKBTYPE: /* get keyboard type */
*(int *)arg = kbd->kb_type;
break;
case KDGETREPEAT: /* get keyboard repeat rate */
((int *)arg)[0] = kbd->kb_delay1;
((int *)arg)[1] = kbd->kb_delay2;
break;
case GIO_KEYMAP: /* get keyboard translation table */
error = copyout(kbd->kb_keymap, *(void **)arg,
sizeof(keymap_t));
splx(s);
return (error);
case OGIO_KEYMAP: /* get keyboard translation table (compat) */
mapp = kbd->kb_keymap;
omapp = (okeymap_t *)arg;
omapp->n_keys = mapp->n_keys;
for (i = 0; i < NUM_KEYS; i++) {
for (j = 0; j < NUM_STATES; j++)
omapp->key[i].map[j] =
mapp->key[i].map[j];
omapp->key[i].spcl = mapp->key[i].spcl;
omapp->key[i].flgs = mapp->key[i].flgs;
}
break;
case PIO_KEYMAP: /* set keyboard translation table */
case OPIO_KEYMAP: /* set keyboard translation table (compat) */
#ifndef KBD_DISABLE_KEYMAP_LOAD
mapp = malloc(sizeof *mapp, M_TEMP, M_WAITOK);
if (cmd == OPIO_KEYMAP) {
omapp = (okeymap_t *)arg;
mapp->n_keys = omapp->n_keys;
for (i = 0; i < NUM_KEYS; i++) {
for (j = 0; j < NUM_STATES; j++)
mapp->key[i].map[j] =
omapp->key[i].map[j];
mapp->key[i].spcl = omapp->key[i].spcl;
mapp->key[i].flgs = omapp->key[i].flgs;
}
} else {
error = copyin(*(void **)arg, mapp, sizeof *mapp);
if (error != 0) {
splx(s);
free(mapp, M_TEMP);
return (error);
}
}
error = keymap_change_ok(kbd->kb_keymap, mapp, curthread);
if (error != 0) {
splx(s);
free(mapp, M_TEMP);
return (error);
}
bzero(kbd->kb_accentmap, sizeof(*kbd->kb_accentmap));
bcopy(mapp, kbd->kb_keymap, sizeof(*kbd->kb_keymap));
free(mapp, M_TEMP);
break;
#else
splx(s);
return (ENODEV);
#endif
case GIO_KEYMAPENT: /* get keyboard translation table entry */
keyp = (keyarg_t *)arg;
if (keyp->keynum >= sizeof(kbd->kb_keymap->key) /
sizeof(kbd->kb_keymap->key[0])) {
splx(s);
return (EINVAL);
}
bcopy(&kbd->kb_keymap->key[keyp->keynum], &keyp->key,
sizeof(keyp->key));
break;
case PIO_KEYMAPENT: /* set keyboard translation table entry */
#ifndef KBD_DISABLE_KEYMAP_LOAD
keyp = (keyarg_t *)arg;
if (keyp->keynum >= sizeof(kbd->kb_keymap->key) /
sizeof(kbd->kb_keymap->key[0])) {
splx(s);
return (EINVAL);
}
error = key_change_ok(&kbd->kb_keymap->key[keyp->keynum],
&keyp->key, curthread);
if (error != 0) {
splx(s);
return (error);
}
bcopy(&keyp->key, &kbd->kb_keymap->key[keyp->keynum],
sizeof(keyp->key));
break;
#else
splx(s);
return (ENODEV);
#endif
case GIO_DEADKEYMAP: /* get accent key translation table */
bcopy(kbd->kb_accentmap, arg, sizeof(*kbd->kb_accentmap));
break;
case PIO_DEADKEYMAP: /* set accent key translation table */
#ifndef KBD_DISABLE_KEYMAP_LOAD
error = accent_change_ok(kbd->kb_accentmap,
(accentmap_t *)arg, curthread);
if (error != 0) {
splx(s);
return (error);
}
bcopy(arg, kbd->kb_accentmap, sizeof(*kbd->kb_accentmap));
break;
#else
splx(s);
return (ENODEV);
#endif
case GETFKEY: /* get functionkey string */
fkeyp = (fkeyarg_t *)arg;
if (fkeyp->keynum >= kbd->kb_fkeytab_size) {
splx(s);
return (EINVAL);
}
bcopy(kbd->kb_fkeytab[fkeyp->keynum].str, fkeyp->keydef,
kbd->kb_fkeytab[fkeyp->keynum].len);
fkeyp->flen = kbd->kb_fkeytab[fkeyp->keynum].len;
break;
case SETFKEY: /* set functionkey string */
#ifndef KBD_DISABLE_KEYMAP_LOAD
fkeyp = (fkeyarg_t *)arg;
if (fkeyp->keynum >= kbd->kb_fkeytab_size) {
splx(s);
return (EINVAL);
}
error = fkey_change_ok(&kbd->kb_fkeytab[fkeyp->keynum],
fkeyp, curthread);
if (error != 0) {
splx(s);
return (error);
}
kbd->kb_fkeytab[fkeyp->keynum].len = min(fkeyp->flen, MAXFK);
bcopy(fkeyp->keydef, kbd->kb_fkeytab[fkeyp->keynum].str,
kbd->kb_fkeytab[fkeyp->keynum].len);
break;
#else
splx(s);
return (ENODEV);
#endif
default:
splx(s);
return (ENOIOCTL);
}
splx(s);
return (0);
}
#ifndef KBD_DISABLE_KEYMAP_LOAD
#define RESTRICTED_KEY(key, i) \
((key->spcl & (0x80 >> i)) && \
(key->map[i] == RBT || key->map[i] == SUSP || \
key->map[i] == STBY || key->map[i] == DBG || \
key->map[i] == PNC || key->map[i] == HALT || \
key->map[i] == PDWN))
static int
key_change_ok(struct keyent_t *oldkey, struct keyent_t *newkey, struct thread *td)
{
int i;
/* Low keymap_restrict_change means any changes are OK. */
if (keymap_restrict_change <= 0)
return (0);
/* High keymap_restrict_change means only root can change the keymap. */
if (keymap_restrict_change >= 2) {
for (i = 0; i < NUM_STATES; i++)
if (oldkey->map[i] != newkey->map[i])
return priv_check(td, PRIV_KEYBOARD);
if (oldkey->spcl != newkey->spcl)
return priv_check(td, PRIV_KEYBOARD);
if (oldkey->flgs != newkey->flgs)
return priv_check(td, PRIV_KEYBOARD);
return (0);
}
/* Otherwise we have to see if any special keys are being changed. */
for (i = 0; i < NUM_STATES; i++) {
/*
* If either the oldkey or the newkey action is restricted
* then we must make sure that the action doesn't change.
*/
if (!RESTRICTED_KEY(oldkey, i) && !RESTRICTED_KEY(newkey, i))
continue;
if ((oldkey->spcl & (0x80 >> i)) == (newkey->spcl & (0x80 >> i))
&& oldkey->map[i] == newkey->map[i])
continue;
return priv_check(td, PRIV_KEYBOARD);
}
return (0);
}
static int
keymap_change_ok(keymap_t *oldmap, keymap_t *newmap, struct thread *td)
{
int keycode, error;
for (keycode = 0; keycode < NUM_KEYS; keycode++) {
if ((error = key_change_ok(&oldmap->key[keycode],
&newmap->key[keycode], td)) != 0)
return (error);
}
return (0);
}
static int
accent_change_ok(accentmap_t *oldmap, accentmap_t *newmap, struct thread *td)
{
struct acc_t *oldacc, *newacc;
int accent, i;
if (keymap_restrict_change <= 2)
return (0);
if (oldmap->n_accs != newmap->n_accs)
return priv_check(td, PRIV_KEYBOARD);
for (accent = 0; accent < oldmap->n_accs; accent++) {
oldacc = &oldmap->acc[accent];
newacc = &newmap->acc[accent];
if (oldacc->accchar != newacc->accchar)
return priv_check(td, PRIV_KEYBOARD);
for (i = 0; i < NUM_ACCENTCHARS; ++i) {
if (oldacc->map[i][0] != newacc->map[i][0])
return priv_check(td, PRIV_KEYBOARD);
if (oldacc->map[i][0] == 0) /* end of table */
break;
if (oldacc->map[i][1] != newacc->map[i][1])
return priv_check(td, PRIV_KEYBOARD);
}
}
return (0);
}
static int
fkey_change_ok(fkeytab_t *oldkey, fkeyarg_t *newkey, struct thread *td)
{
if (keymap_restrict_change <= 3)
return (0);
if (oldkey->len != newkey->flen ||
bcmp(oldkey->str, newkey->keydef, oldkey->len) != 0)
return priv_check(td, PRIV_KEYBOARD);
return (0);
}
#endif
/* get a pointer to the string associated with the given function key */
u_char *
genkbd_get_fkeystr(keyboard_t *kbd, int fkey, size_t *len)
{
if (kbd == NULL)
return (NULL);
fkey -= F_FN;
if (fkey > kbd->kb_fkeytab_size)
return (NULL);
*len = kbd->kb_fkeytab[fkey].len;
return (kbd->kb_fkeytab[fkey].str);
}
/* diagnostic dump */
static char *
get_kbd_type_name(int type)
{
static struct {
int type;
char *name;
} name_table[] = {
{ KB_84, "AT 84" },
{ KB_101, "AT 101/102" },
{ KB_OTHER, "generic" },
};
int i;
for (i = 0; i < nitems(name_table); ++i) {
if (type == name_table[i].type)
return (name_table[i].name);
}
return ("unknown");
}
void
genkbd_diag(keyboard_t *kbd, int level)
{
if (level > 0) {
printf("kbd%d: %s%d, %s (%d), config:0x%x, flags:0x%x",
kbd->kb_index, kbd->kb_name, kbd->kb_unit,
get_kbd_type_name(kbd->kb_type), kbd->kb_type,
kbd->kb_config, kbd->kb_flags);
if (kbd->kb_io_base > 0)
printf(", port:0x%x-0x%x", kbd->kb_io_base,
kbd->kb_io_base + kbd->kb_io_size - 1);
printf("\n");
}
}
#define set_lockkey_state(k, s, l) \
if (!((s) & l ## DOWN)) { \
int i; \
(s) |= l ## DOWN; \
(s) ^= l ## ED; \
i = (s) & LOCK_MASK; \
(void)kbdd_ioctl((k), KDSETLED, (caddr_t)&i); \
}
static u_int
save_accent_key(keyboard_t *kbd, u_int key, int *accents)
{
int i;
/* make an index into the accent map */
i = key - F_ACC + 1;
if ((i > kbd->kb_accentmap->n_accs)
|| (kbd->kb_accentmap->acc[i - 1].accchar == 0)) {
/* the index is out of range or pointing to an empty entry */
*accents = 0;
return (ERRKEY);
}
/*
* If the same accent key has been hit twice, produce the accent
* char itself.
*/
if (i == *accents) {
key = kbd->kb_accentmap->acc[i - 1].accchar;
*accents = 0;
return (key);
}
/* remember the index and wait for the next key */
*accents = i;
return (NOKEY);
}
static u_int
make_accent_char(keyboard_t *kbd, u_int ch, int *accents)
{
struct acc_t *acc;
int i;
acc = &kbd->kb_accentmap->acc[*accents - 1];
*accents = 0;
/*
* If the accent key is followed by the space key,
* produce the accent char itself.
*/
if (ch == ' ')
return (acc->accchar);
/* scan the accent map */
for (i = 0; i < NUM_ACCENTCHARS; ++i) {
if (acc->map[i][0] == 0) /* end of table */
break;
if (acc->map[i][0] == ch)
return (acc->map[i][1]);
}
/* this char cannot be accented... */
return (ERRKEY);
}
int
genkbd_keyaction(keyboard_t *kbd, int keycode, int up, int *shiftstate,
int *accents)
{
struct keyent_t *key;
int state = *shiftstate;
int action;
int f;
int i;
i = keycode;
f = state & (AGRS | ALKED);
if ((f == AGRS1) || (f == AGRS2) || (f == ALKED))
i += ALTGR_OFFSET;
key = &kbd->kb_keymap->key[i];
i = ((state & SHIFTS) ? 1 : 0)
| ((state & CTLS) ? 2 : 0)
| ((state & ALTS) ? 4 : 0);
if (((key->flgs & FLAG_LOCK_C) && (state & CLKED))
|| ((key->flgs & FLAG_LOCK_N) && (state & NLKED)) )
i ^= 1;
if (up) { /* break: key released */
action = kbd->kb_lastact[keycode];
kbd->kb_lastact[keycode] = NOP;
switch (action) {
case LSHA:
if (state & SHIFTAON) {
set_lockkey_state(kbd, state, ALK);
state &= ~ALKDOWN;
}
action = LSH;
/* FALL THROUGH */
case LSH:
state &= ~SHIFTS1;
break;
case RSHA:
if (state & SHIFTAON) {
set_lockkey_state(kbd, state, ALK);
state &= ~ALKDOWN;
}
action = RSH;
/* FALL THROUGH */
case RSH:
state &= ~SHIFTS2;
break;
case LCTRA:
if (state & SHIFTAON) {
set_lockkey_state(kbd, state, ALK);
state &= ~ALKDOWN;
}
action = LCTR;
/* FALL THROUGH */
case LCTR:
state &= ~CTLS1;
break;
case RCTRA:
if (state & SHIFTAON) {
set_lockkey_state(kbd, state, ALK);
state &= ~ALKDOWN;
}
action = RCTR;
/* FALL THROUGH */
case RCTR:
state &= ~CTLS2;
break;
case LALTA:
if (state & SHIFTAON) {
set_lockkey_state(kbd, state, ALK);
state &= ~ALKDOWN;
}
action = LALT;
/* FALL THROUGH */
case LALT:
state &= ~ALTS1;
break;
case RALTA:
if (state & SHIFTAON) {
set_lockkey_state(kbd, state, ALK);
state &= ~ALKDOWN;
}
action = RALT;
/* FALL THROUGH */
case RALT:
state &= ~ALTS2;
break;
case ASH:
state &= ~AGRS1;
break;
case META:
state &= ~METAS1;
break;
case NLK:
state &= ~NLKDOWN;
break;
case CLK:
state &= ~CLKDOWN;
break;
case SLK:
state &= ~SLKDOWN;
break;
case ALK:
state &= ~ALKDOWN;
break;
case NOP:
/* release events of regular keys are not reported */
*shiftstate &= ~SHIFTAON;
return (NOKEY);
}
*shiftstate = state & ~SHIFTAON;
return (SPCLKEY | RELKEY | action);
} else { /* make: key pressed */
action = key->map[i];
state &= ~SHIFTAON;
if (key->spcl & (0x80 >> i)) {
/* special keys */
if (kbd->kb_lastact[keycode] == NOP)
kbd->kb_lastact[keycode] = action;
if (kbd->kb_lastact[keycode] != action)
action = NOP;
switch (action) {
/* LOCKING KEYS */
case NLK:
set_lockkey_state(kbd, state, NLK);
break;
case CLK:
set_lockkey_state(kbd, state, CLK);
break;
case SLK:
set_lockkey_state(kbd, state, SLK);
break;
case ALK:
set_lockkey_state(kbd, state, ALK);
break;
/* NON-LOCKING KEYS */
case SPSC: case RBT: case SUSP: case STBY:
case DBG: case NEXT: case PREV: case PNC:
case HALT: case PDWN:
*accents = 0;
break;
case BTAB:
*accents = 0;
action |= BKEY;
break;
case LSHA:
state |= SHIFTAON;
action = LSH;
/* FALL THROUGH */
case LSH:
state |= SHIFTS1;
break;
case RSHA:
state |= SHIFTAON;
action = RSH;
/* FALL THROUGH */
case RSH:
state |= SHIFTS2;
break;
case LCTRA:
state |= SHIFTAON;
action = LCTR;
/* FALL THROUGH */
case LCTR:
state |= CTLS1;
break;
case RCTRA:
state |= SHIFTAON;
action = RCTR;
/* FALL THROUGH */
case RCTR:
state |= CTLS2;
break;
case LALTA:
state |= SHIFTAON;
action = LALT;
/* FALL THROUGH */
case LALT:
state |= ALTS1;
break;
case RALTA:
state |= SHIFTAON;
action = RALT;
/* FALL THROUGH */
case RALT:
state |= ALTS2;
break;
case ASH:
state |= AGRS1;
break;
case META:
state |= METAS1;
break;
case NOP:
*shiftstate = state;
return (NOKEY);
default:
/* is this an accent (dead) key? */
*shiftstate = state;
if (action >= F_ACC && action <= L_ACC) {
action = save_accent_key(kbd, action,
accents);
switch (action) {
case NOKEY:
case ERRKEY:
return (action);
default:
if (state & METAS)
return (action | MKEY);
else
return (action);
}
/* NOT REACHED */
}
/* other special keys */
if (*accents > 0) {
*accents = 0;
return (ERRKEY);
}
if (action >= F_FN && action <= L_FN)
action |= FKEY;
/* XXX: return fkey string for the FKEY? */
return (SPCLKEY | action);
}
*shiftstate = state;
return (SPCLKEY | action);
} else {
/* regular keys */
kbd->kb_lastact[keycode] = NOP;
*shiftstate = state;
if (*accents > 0) {
/* make an accented char */
action = make_accent_char(kbd, action, accents);
if (action == ERRKEY)
return (action);
}
if (state & METAS)
action |= MKEY;
return (action);
}
}
/* NOT REACHED */
}