810 lines
21 KiB
C
810 lines
21 KiB
C
/*
|
|
* PIE - Proportional Integral controller Enhanced AQM algorithm.
|
|
*
|
|
* $FreeBSD$
|
|
*
|
|
* Copyright (C) 2016 Centre for Advanced Internet Architectures,
|
|
* Swinburne University of Technology, Melbourne, Australia.
|
|
* Portions of this code were made possible in part by a gift from
|
|
* The Comcast Innovation Fund.
|
|
* Implemented by Rasool Al-Saadi <ralsaadi@swin.edu.au>
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*/
|
|
|
|
#include <sys/cdefs.h>
|
|
#include "opt_inet6.h"
|
|
|
|
#include <sys/param.h>
|
|
#include <sys/systm.h>
|
|
#include <sys/malloc.h>
|
|
#include <sys/mbuf.h>
|
|
#include <sys/kernel.h>
|
|
#include <sys/lock.h>
|
|
#include <sys/module.h>
|
|
#include <sys/mutex.h>
|
|
#include <sys/priv.h>
|
|
#include <sys/proc.h>
|
|
#include <sys/rwlock.h>
|
|
#include <sys/socket.h>
|
|
#include <sys/time.h>
|
|
#include <sys/sysctl.h>
|
|
|
|
#include <net/if.h> /* IFNAMSIZ, struct ifaddr, ifq head, lock.h mutex.h */
|
|
#include <net/netisr.h>
|
|
#include <net/vnet.h>
|
|
|
|
#include <netinet/in.h>
|
|
#include <netinet/ip.h> /* ip_len, ip_off */
|
|
#include <netinet/ip_var.h> /* ip_output(), IP_FORWARDING */
|
|
#include <netinet/ip_fw.h>
|
|
#include <netinet/ip_dummynet.h>
|
|
#include <netinet/if_ether.h> /* various ether_* routines */
|
|
#include <netinet/ip6.h> /* for ip6_input, ip6_output prototypes */
|
|
#include <netinet6/ip6_var.h>
|
|
#include <netpfil/ipfw/dn_heap.h>
|
|
|
|
#ifdef NEW_AQM
|
|
#include <netpfil/ipfw/ip_fw_private.h>
|
|
#include <netpfil/ipfw/ip_dn_private.h>
|
|
#include <netpfil/ipfw/dn_aqm.h>
|
|
#include <netpfil/ipfw/dn_aqm_pie.h>
|
|
#include <netpfil/ipfw/dn_sched.h>
|
|
|
|
/* for debugging */
|
|
#include <sys/syslog.h>
|
|
|
|
static struct dn_aqm pie_desc;
|
|
|
|
/* PIE defaults
|
|
* target=15ms, tupdate=15ms, max_burst=150ms,
|
|
* max_ecnth=0.1, alpha=0.125, beta=1.25,
|
|
*/
|
|
struct dn_aqm_pie_parms pie_sysctl =
|
|
{ 15 * AQM_TIME_1MS, 15 * AQM_TIME_1MS, 150 * AQM_TIME_1MS,
|
|
PIE_SCALE/10 , PIE_SCALE * 0.125, PIE_SCALE * 1.25 ,
|
|
PIE_CAPDROP_ENABLED | PIE_DEPRATEEST_ENABLED | PIE_DERAND_ENABLED };
|
|
|
|
static int
|
|
pie_sysctl_alpha_beta_handler(SYSCTL_HANDLER_ARGS)
|
|
{
|
|
int error;
|
|
long value;
|
|
|
|
if (!strcmp(oidp->oid_name,"alpha"))
|
|
value = pie_sysctl.alpha;
|
|
else
|
|
value = pie_sysctl.beta;
|
|
|
|
value = value * 1000 / PIE_SCALE;
|
|
error = sysctl_handle_long(oidp, &value, 0, req);
|
|
if (error != 0 || req->newptr == NULL)
|
|
return (error);
|
|
if (value < 1 || value > 7 * PIE_SCALE)
|
|
return (EINVAL);
|
|
value = (value * PIE_SCALE) / 1000;
|
|
if (!strcmp(oidp->oid_name,"alpha"))
|
|
pie_sysctl.alpha = value;
|
|
else
|
|
pie_sysctl.beta = value;
|
|
return (0);
|
|
}
|
|
|
|
static int
|
|
pie_sysctl_target_tupdate_maxb_handler(SYSCTL_HANDLER_ARGS)
|
|
{
|
|
int error;
|
|
long value;
|
|
|
|
if (!strcmp(oidp->oid_name,"target"))
|
|
value = pie_sysctl.qdelay_ref;
|
|
else if (!strcmp(oidp->oid_name,"tupdate"))
|
|
value = pie_sysctl.tupdate;
|
|
else
|
|
value = pie_sysctl.max_burst;
|
|
|
|
value = value / AQM_TIME_1US;
|
|
error = sysctl_handle_long(oidp, &value, 0, req);
|
|
if (error != 0 || req->newptr == NULL)
|
|
return (error);
|
|
if (value < 1 || value > 10 * AQM_TIME_1S)
|
|
return (EINVAL);
|
|
value = value * AQM_TIME_1US;
|
|
|
|
if (!strcmp(oidp->oid_name,"target"))
|
|
pie_sysctl.qdelay_ref = value;
|
|
else if (!strcmp(oidp->oid_name,"tupdate"))
|
|
pie_sysctl.tupdate = value;
|
|
else
|
|
pie_sysctl.max_burst = value;
|
|
return (0);
|
|
}
|
|
|
|
static int
|
|
pie_sysctl_max_ecnth_handler(SYSCTL_HANDLER_ARGS)
|
|
{
|
|
int error;
|
|
long value;
|
|
|
|
value = pie_sysctl.max_ecnth;
|
|
value = value * 1000 / PIE_SCALE;
|
|
error = sysctl_handle_long(oidp, &value, 0, req);
|
|
if (error != 0 || req->newptr == NULL)
|
|
return (error);
|
|
if (value < 1 || value > PIE_SCALE)
|
|
return (EINVAL);
|
|
value = (value * PIE_SCALE) / 1000;
|
|
pie_sysctl.max_ecnth = value;
|
|
return (0);
|
|
}
|
|
|
|
/* define PIE sysctl variables */
|
|
SYSBEGIN(f4)
|
|
SYSCTL_DECL(_net_inet);
|
|
SYSCTL_DECL(_net_inet_ip);
|
|
SYSCTL_DECL(_net_inet_ip_dummynet);
|
|
static SYSCTL_NODE(_net_inet_ip_dummynet, OID_AUTO, pie,
|
|
CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
|
|
"PIE");
|
|
|
|
#ifdef SYSCTL_NODE
|
|
SYSCTL_PROC(_net_inet_ip_dummynet_pie, OID_AUTO, target,
|
|
CTLTYPE_LONG | CTLFLAG_RW | CTLFLAG_NEEDGIANT, NULL, 0,
|
|
pie_sysctl_target_tupdate_maxb_handler, "L",
|
|
"queue target in microsecond");
|
|
SYSCTL_PROC(_net_inet_ip_dummynet_pie, OID_AUTO, tupdate,
|
|
CTLTYPE_LONG | CTLFLAG_RW | CTLFLAG_NEEDGIANT, NULL, 0,
|
|
pie_sysctl_target_tupdate_maxb_handler, "L",
|
|
"the frequency of drop probability calculation in microsecond");
|
|
SYSCTL_PROC(_net_inet_ip_dummynet_pie, OID_AUTO, max_burst,
|
|
CTLTYPE_LONG | CTLFLAG_RW | CTLFLAG_NEEDGIANT, NULL, 0,
|
|
pie_sysctl_target_tupdate_maxb_handler, "L",
|
|
"Burst allowance interval in microsecond");
|
|
|
|
SYSCTL_PROC(_net_inet_ip_dummynet_pie, OID_AUTO, max_ecnth,
|
|
CTLTYPE_LONG | CTLFLAG_RW | CTLFLAG_NEEDGIANT, NULL, 0,
|
|
pie_sysctl_max_ecnth_handler, "L",
|
|
"ECN safeguard threshold scaled by 1000");
|
|
|
|
SYSCTL_PROC(_net_inet_ip_dummynet_pie, OID_AUTO, alpha,
|
|
CTLTYPE_LONG | CTLFLAG_RW | CTLFLAG_NEEDGIANT, NULL, 0,
|
|
pie_sysctl_alpha_beta_handler, "L",
|
|
"PIE alpha scaled by 1000");
|
|
SYSCTL_PROC(_net_inet_ip_dummynet_pie, OID_AUTO, beta,
|
|
CTLTYPE_LONG | CTLFLAG_RW | CTLFLAG_NEEDGIANT, NULL, 0,
|
|
pie_sysctl_alpha_beta_handler, "L",
|
|
"beta scaled by 1000");
|
|
#endif
|
|
|
|
/*
|
|
* Callout function for drop probability calculation
|
|
* This function is called over tupdate ms and takes pointer of PIE
|
|
* status variables as an argument
|
|
*/
|
|
static void
|
|
calculate_drop_prob(void *x)
|
|
{
|
|
int64_t p, prob, oldprob;
|
|
struct dn_aqm_pie_parms *pprms;
|
|
struct pie_status *pst = (struct pie_status *) x;
|
|
int p_isneg;
|
|
|
|
pprms = pst->parms;
|
|
prob = pst->drop_prob;
|
|
|
|
/* calculate current qdelay using DRE method.
|
|
* If TS is used and no data in the queue, reset current_qdelay
|
|
* as it stays at last value during dequeue process.
|
|
*/
|
|
if (pprms->flags & PIE_DEPRATEEST_ENABLED)
|
|
pst->current_qdelay = ((uint64_t)pst->pq->ni.len_bytes *
|
|
pst->avg_dq_time) >> PIE_DQ_THRESHOLD_BITS;
|
|
else
|
|
if (!pst->pq->ni.len_bytes)
|
|
pst->current_qdelay = 0;
|
|
|
|
/* calculate drop probability */
|
|
p = (int64_t)pprms->alpha *
|
|
((int64_t)pst->current_qdelay - (int64_t)pprms->qdelay_ref);
|
|
p +=(int64_t) pprms->beta *
|
|
((int64_t)pst->current_qdelay - (int64_t)pst->qdelay_old);
|
|
|
|
/* take absolute value so right shift result is well defined */
|
|
p_isneg = p < 0;
|
|
if (p_isneg) {
|
|
p = -p;
|
|
}
|
|
|
|
/* We PIE_MAX_PROB shift by 12-bits to increase the division precision */
|
|
p *= (PIE_MAX_PROB << 12) / AQM_TIME_1S;
|
|
|
|
/* auto-tune drop probability */
|
|
if (prob < (PIE_MAX_PROB / 1000000)) /* 0.000001 */
|
|
p >>= 11 + PIE_FIX_POINT_BITS + 12;
|
|
else if (prob < (PIE_MAX_PROB / 100000)) /* 0.00001 */
|
|
p >>= 9 + PIE_FIX_POINT_BITS + 12;
|
|
else if (prob < (PIE_MAX_PROB / 10000)) /* 0.0001 */
|
|
p >>= 7 + PIE_FIX_POINT_BITS + 12;
|
|
else if (prob < (PIE_MAX_PROB / 1000)) /* 0.001 */
|
|
p >>= 5 + PIE_FIX_POINT_BITS + 12;
|
|
else if (prob < (PIE_MAX_PROB / 100)) /* 0.01 */
|
|
p >>= 3 + PIE_FIX_POINT_BITS + 12;
|
|
else if (prob < (PIE_MAX_PROB / 10)) /* 0.1 */
|
|
p >>= 1 + PIE_FIX_POINT_BITS + 12;
|
|
else
|
|
p >>= PIE_FIX_POINT_BITS + 12;
|
|
|
|
oldprob = prob;
|
|
|
|
if (p_isneg) {
|
|
prob = prob - p;
|
|
|
|
/* check for multiplication underflow */
|
|
if (prob > oldprob) {
|
|
prob= 0;
|
|
D("underflow");
|
|
}
|
|
} else {
|
|
/* Cap Drop adjustment */
|
|
if ((pprms->flags & PIE_CAPDROP_ENABLED) &&
|
|
prob >= PIE_MAX_PROB / 10 &&
|
|
p > PIE_MAX_PROB / 50 ) {
|
|
p = PIE_MAX_PROB / 50;
|
|
}
|
|
|
|
prob = prob + p;
|
|
|
|
/* check for multiplication overflow */
|
|
if (prob<oldprob) {
|
|
D("overflow");
|
|
prob= PIE_MAX_PROB;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* decay the drop probability exponentially
|
|
* and restrict it to range 0 to PIE_MAX_PROB
|
|
*/
|
|
if (prob < 0) {
|
|
prob = 0;
|
|
} else {
|
|
if (pst->current_qdelay == 0 && pst->qdelay_old == 0) {
|
|
/* 0.98 ~= 1- 1/64 */
|
|
prob = prob - (prob >> 6);
|
|
}
|
|
|
|
if (prob > PIE_MAX_PROB) {
|
|
prob = PIE_MAX_PROB;
|
|
}
|
|
}
|
|
|
|
pst->drop_prob = prob;
|
|
|
|
/* store current queue delay value in old queue delay*/
|
|
pst->qdelay_old = pst->current_qdelay;
|
|
|
|
/* update burst allowance */
|
|
if ((pst->sflags & PIE_ACTIVE) && pst->burst_allowance>0) {
|
|
|
|
if (pst->burst_allowance > pprms->tupdate )
|
|
pst->burst_allowance -= pprms->tupdate;
|
|
else
|
|
pst->burst_allowance = 0;
|
|
}
|
|
|
|
/* reschedule calculate_drop_prob function */
|
|
if (pst->sflags & PIE_ACTIVE)
|
|
callout_reset_sbt(&pst->aqm_pie_callout,
|
|
(uint64_t)pprms->tupdate * SBT_1US, 0, calculate_drop_prob, pst, 0);
|
|
|
|
mtx_unlock(&pst->lock_mtx);
|
|
}
|
|
|
|
/*
|
|
* Extract a packet from the head of queue 'q'
|
|
* Return a packet or NULL if the queue is empty.
|
|
* If getts is set, also extract packet's timestamp from mtag.
|
|
*/
|
|
static struct mbuf *
|
|
pie_extract_head(struct dn_queue *q, aqm_time_t *pkt_ts, int getts)
|
|
{
|
|
struct m_tag *mtag;
|
|
struct mbuf *m = q->mq.head;
|
|
|
|
if (m == NULL)
|
|
return m;
|
|
q->mq.head = m->m_nextpkt;
|
|
|
|
/* Update stats */
|
|
update_stats(q, -m->m_pkthdr.len, 0);
|
|
|
|
if (q->ni.length == 0) /* queue is now idle */
|
|
q->q_time = dn_cfg.curr_time;
|
|
|
|
if (getts) {
|
|
/* extract packet TS*/
|
|
mtag = m_tag_locate(m, MTAG_ABI_COMPAT, DN_AQM_MTAG_TS, NULL);
|
|
if (mtag == NULL) {
|
|
D("PIE timestamp mtag not found!");
|
|
*pkt_ts = 0;
|
|
} else {
|
|
*pkt_ts = *(aqm_time_t *)(mtag + 1);
|
|
m_tag_delete(m,mtag);
|
|
}
|
|
}
|
|
return m;
|
|
}
|
|
|
|
/*
|
|
* Initiate PIE variable and optionally activate it
|
|
*/
|
|
__inline static void
|
|
init_activate_pie(struct pie_status *pst, int resettimer)
|
|
{
|
|
struct dn_aqm_pie_parms *pprms;
|
|
|
|
mtx_lock(&pst->lock_mtx);
|
|
pprms = pst->parms;
|
|
pst->drop_prob = 0;
|
|
pst->qdelay_old = 0;
|
|
pst->burst_allowance = pprms->max_burst;
|
|
pst->accu_prob = 0;
|
|
pst->dq_count = 0;
|
|
pst->avg_dq_time = 0;
|
|
pst->sflags = PIE_INMEASUREMENT;
|
|
pst->measurement_start = AQM_UNOW;
|
|
|
|
if (resettimer) {
|
|
pst->sflags |= PIE_ACTIVE;
|
|
callout_reset_sbt(&pst->aqm_pie_callout,
|
|
(uint64_t)pprms->tupdate * SBT_1US,
|
|
0, calculate_drop_prob, pst, 0);
|
|
}
|
|
//DX(2, "PIE Activated");
|
|
mtx_unlock(&pst->lock_mtx);
|
|
}
|
|
|
|
/*
|
|
* Deactivate PIE and stop probe update callout
|
|
*/
|
|
__inline static void
|
|
deactivate_pie(struct pie_status *pst)
|
|
{
|
|
mtx_lock(&pst->lock_mtx);
|
|
pst->sflags &= ~(PIE_ACTIVE | PIE_INMEASUREMENT);
|
|
callout_stop(&pst->aqm_pie_callout);
|
|
//D("PIE Deactivated");
|
|
mtx_unlock(&pst->lock_mtx);
|
|
}
|
|
|
|
/*
|
|
* Dequeue and return a pcaket from queue 'q' or NULL if 'q' is empty.
|
|
* Also, caculate depature time or queue delay using timestamp
|
|
*/
|
|
static struct mbuf *
|
|
aqm_pie_dequeue(struct dn_queue *q)
|
|
{
|
|
struct mbuf *m;
|
|
struct dn_flow *ni; /* stats for scheduler instance */
|
|
struct dn_aqm_pie_parms *pprms;
|
|
struct pie_status *pst;
|
|
aqm_time_t now;
|
|
aqm_time_t pkt_ts, dq_time;
|
|
int32_t w;
|
|
|
|
pst = q->aqm_status;
|
|
pprms = pst->parms;
|
|
ni = &q->_si->ni;
|
|
|
|
/*we extarct packet ts only when Departure Rate Estimation dis not used*/
|
|
m = pie_extract_head(q, &pkt_ts, !(pprms->flags & PIE_DEPRATEEST_ENABLED));
|
|
|
|
if (!m || !(pst->sflags & PIE_ACTIVE))
|
|
return m;
|
|
|
|
now = AQM_UNOW;
|
|
if (pprms->flags & PIE_DEPRATEEST_ENABLED) {
|
|
/* calculate average depature time */
|
|
if(pst->sflags & PIE_INMEASUREMENT) {
|
|
pst->dq_count += m->m_pkthdr.len;
|
|
|
|
if (pst->dq_count >= PIE_DQ_THRESHOLD) {
|
|
dq_time = now - pst->measurement_start;
|
|
|
|
/*
|
|
* if we don't have old avg dq_time i.e PIE is (re)initialized,
|
|
* don't use weight to calculate new avg_dq_time
|
|
*/
|
|
if(pst->avg_dq_time == 0)
|
|
pst->avg_dq_time = dq_time;
|
|
else {
|
|
/*
|
|
* weight = PIE_DQ_THRESHOLD/2^6, but we scaled
|
|
* weight by 2^8. Thus, scaled
|
|
* weight = PIE_DQ_THRESHOLD /2^8
|
|
* */
|
|
w = PIE_DQ_THRESHOLD >> 8;
|
|
pst->avg_dq_time = (dq_time* w
|
|
+ (pst->avg_dq_time * ((1L << 8) - w))) >> 8;
|
|
pst->sflags &= ~PIE_INMEASUREMENT;
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Start new measurment cycle when the queue has
|
|
* PIE_DQ_THRESHOLD worth of bytes.
|
|
*/
|
|
if(!(pst->sflags & PIE_INMEASUREMENT) &&
|
|
q->ni.len_bytes >= PIE_DQ_THRESHOLD) {
|
|
pst->sflags |= PIE_INMEASUREMENT;
|
|
pst->measurement_start = now;
|
|
pst->dq_count = 0;
|
|
}
|
|
}
|
|
/* Optionally, use packet timestamp to estimate queue delay */
|
|
else
|
|
pst->current_qdelay = now - pkt_ts;
|
|
|
|
return m;
|
|
}
|
|
|
|
/*
|
|
* Enqueue a packet in q, subject to space and PIE queue management policy
|
|
* (whose parameters are in q->fs).
|
|
* Update stats for the queue and the scheduler.
|
|
* Return 0 on success, 1 on drop. The packet is consumed anyways.
|
|
*/
|
|
static int
|
|
aqm_pie_enqueue(struct dn_queue *q, struct mbuf* m)
|
|
{
|
|
struct dn_fs *f;
|
|
uint64_t len;
|
|
uint32_t qlen;
|
|
struct pie_status *pst;
|
|
struct dn_aqm_pie_parms *pprms;
|
|
int t;
|
|
|
|
len = m->m_pkthdr.len;
|
|
pst = q->aqm_status;
|
|
if(!pst) {
|
|
DX(2, "PIE queue is not initialized\n");
|
|
update_stats(q, 0, 1);
|
|
FREE_PKT(m);
|
|
return 1;
|
|
}
|
|
|
|
f = &(q->fs->fs);
|
|
pprms = pst->parms;
|
|
t = ENQUE;
|
|
|
|
/* get current queue length in bytes or packets*/
|
|
qlen = (f->flags & DN_QSIZE_BYTES) ?
|
|
q->ni.len_bytes : q->ni.length;
|
|
|
|
/* check for queue size and drop the tail if exceed queue limit*/
|
|
if (qlen >= f->qsize)
|
|
t = DROP;
|
|
/* drop/mark the packet when PIE is active and burst time elapsed */
|
|
else if ((pst->sflags & PIE_ACTIVE) && pst->burst_allowance==0
|
|
&& drop_early(pst, q->ni.len_bytes) == DROP) {
|
|
/*
|
|
* if drop_prob over ECN threshold, drop the packet
|
|
* otherwise mark and enqueue it.
|
|
*/
|
|
if ((pprms->flags & PIE_ECN_ENABLED) && pst->drop_prob <
|
|
(pprms->max_ecnth << (PIE_PROB_BITS - PIE_FIX_POINT_BITS))
|
|
&& ecn_mark(m))
|
|
t = ENQUE;
|
|
else
|
|
t = DROP;
|
|
}
|
|
|
|
/* Turn PIE on when 1/3 of the queue is full */
|
|
if (!(pst->sflags & PIE_ACTIVE) && qlen >= pst->one_third_q_size) {
|
|
init_activate_pie(pst, 1);
|
|
}
|
|
|
|
/* Reset burst tolerance and optinally turn PIE off*/
|
|
if ((pst->sflags & PIE_ACTIVE) && pst->drop_prob == 0 &&
|
|
pst->current_qdelay < (pprms->qdelay_ref >> 1) &&
|
|
pst->qdelay_old < (pprms->qdelay_ref >> 1)) {
|
|
pst->burst_allowance = pprms->max_burst;
|
|
if ((pprms->flags & PIE_ON_OFF_MODE_ENABLED) && qlen<=0)
|
|
deactivate_pie(pst);
|
|
}
|
|
|
|
/* Timestamp the packet if Departure Rate Estimation is disabled */
|
|
if (t != DROP && !(pprms->flags & PIE_DEPRATEEST_ENABLED)) {
|
|
/* Add TS to mbuf as a TAG */
|
|
struct m_tag *mtag;
|
|
mtag = m_tag_locate(m, MTAG_ABI_COMPAT, DN_AQM_MTAG_TS, NULL);
|
|
if (mtag == NULL)
|
|
mtag = m_tag_alloc(MTAG_ABI_COMPAT, DN_AQM_MTAG_TS,
|
|
sizeof(aqm_time_t), M_NOWAIT);
|
|
if (mtag == NULL) {
|
|
m_freem(m);
|
|
t = DROP;
|
|
}
|
|
*(aqm_time_t *)(mtag + 1) = AQM_UNOW;
|
|
m_tag_prepend(m, mtag);
|
|
}
|
|
|
|
if (t != DROP) {
|
|
mq_append(&q->mq, m);
|
|
update_stats(q, len, 0);
|
|
return (0);
|
|
} else {
|
|
update_stats(q, 0, 1);
|
|
|
|
/* reset accu_prob after packet drop */
|
|
pst->accu_prob = 0;
|
|
FREE_PKT(m);
|
|
return 1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* initialize PIE for queue 'q'
|
|
* First allocate memory for PIE status.
|
|
*/
|
|
static int
|
|
aqm_pie_init(struct dn_queue *q)
|
|
{
|
|
struct pie_status *pst;
|
|
struct dn_aqm_pie_parms *pprms;
|
|
int err = 0;
|
|
|
|
pprms = q->fs->aqmcfg;
|
|
|
|
do { /* exit with break when error occurs*/
|
|
if (!pprms){
|
|
DX(2, "AQM_PIE is not configured");
|
|
err = EINVAL;
|
|
break;
|
|
}
|
|
|
|
q->aqm_status = malloc(sizeof(struct pie_status),
|
|
M_DUMMYNET, M_NOWAIT | M_ZERO);
|
|
if (q->aqm_status == NULL) {
|
|
D("cannot allocate PIE private data");
|
|
err = ENOMEM ;
|
|
break;
|
|
}
|
|
|
|
pst = q->aqm_status;
|
|
/* increase reference count for PIE module */
|
|
pie_desc.ref_count++;
|
|
|
|
pst->pq = q;
|
|
pst->parms = pprms;
|
|
|
|
/* For speed optimization, we caculate 1/3 queue size once here */
|
|
// we can use x/3 = (x >>2) + (x >>4) + (x >>7)
|
|
pst->one_third_q_size = q->fs->fs.qsize/3;
|
|
|
|
mtx_init(&pst->lock_mtx, "mtx_pie", NULL, MTX_DEF);
|
|
callout_init_mtx(&pst->aqm_pie_callout, &pst->lock_mtx,
|
|
CALLOUT_RETURNUNLOCKED);
|
|
|
|
pst->current_qdelay = 0;
|
|
init_activate_pie(pst, !(pprms->flags & PIE_ON_OFF_MODE_ENABLED));
|
|
|
|
//DX(2, "aqm_PIE_init");
|
|
|
|
} while(0);
|
|
|
|
return err;
|
|
}
|
|
|
|
/*
|
|
* Callout function to destroy pie mtx and free PIE status memory
|
|
*/
|
|
static void
|
|
pie_callout_cleanup(void *x)
|
|
{
|
|
struct pie_status *pst = (struct pie_status *) x;
|
|
|
|
mtx_unlock(&pst->lock_mtx);
|
|
mtx_destroy(&pst->lock_mtx);
|
|
free(x, M_DUMMYNET);
|
|
DN_BH_WLOCK();
|
|
pie_desc.ref_count--;
|
|
DN_BH_WUNLOCK();
|
|
}
|
|
|
|
/*
|
|
* Clean up PIE status for queue 'q'
|
|
* Destroy memory allocated for PIE status.
|
|
*/
|
|
static int
|
|
aqm_pie_cleanup(struct dn_queue *q)
|
|
{
|
|
|
|
if(!q) {
|
|
D("q is null");
|
|
return 0;
|
|
}
|
|
struct pie_status *pst = q->aqm_status;
|
|
if(!pst) {
|
|
//D("queue is already cleaned up");
|
|
return 0;
|
|
}
|
|
if(!q->fs || !q->fs->aqmcfg) {
|
|
D("fs is null or no cfg");
|
|
return 1;
|
|
}
|
|
if (q->fs->aqmfp && q->fs->aqmfp->type !=DN_AQM_PIE) {
|
|
D("Not PIE fs (%d)", q->fs->fs.fs_nr);
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
* Free PIE status allocated memory using pie_callout_cleanup() callout
|
|
* function to avoid any potential race.
|
|
* We reset aqm_pie_callout to call pie_callout_cleanup() in next 1um. This
|
|
* stops the scheduled calculate_drop_prob() callout and call pie_callout_cleanup()
|
|
* which does memory freeing.
|
|
*/
|
|
mtx_lock(&pst->lock_mtx);
|
|
callout_reset_sbt(&pst->aqm_pie_callout,
|
|
SBT_1US, 0, pie_callout_cleanup, pst, 0);
|
|
q->aqm_status = NULL;
|
|
mtx_unlock(&pst->lock_mtx);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Config PIE parameters
|
|
* also allocate memory for PIE configurations
|
|
*/
|
|
static int
|
|
aqm_pie_config(struct dn_fsk* fs, struct dn_extra_parms *ep, int len)
|
|
{
|
|
struct dn_aqm_pie_parms *pcfg;
|
|
|
|
int l = sizeof(struct dn_extra_parms);
|
|
if (len < l) {
|
|
D("invalid sched parms length got %d need %d", len, l);
|
|
return EINVAL;
|
|
}
|
|
/* we free the old cfg because maybe the orignal allocation
|
|
* was used for diffirent AQM type.
|
|
*/
|
|
if (fs->aqmcfg) {
|
|
free(fs->aqmcfg, M_DUMMYNET);
|
|
fs->aqmcfg = NULL;
|
|
}
|
|
|
|
fs->aqmcfg = malloc(sizeof(struct dn_aqm_pie_parms),
|
|
M_DUMMYNET, M_NOWAIT | M_ZERO);
|
|
if (fs->aqmcfg== NULL) {
|
|
D("cannot allocate PIE configuration parameters");
|
|
return ENOMEM;
|
|
}
|
|
|
|
/* par array contains pie configuration as follow
|
|
* 0- qdelay_ref,1- tupdate, 2- max_burst
|
|
* 3- max_ecnth, 4- alpha, 5- beta, 6- flags
|
|
*/
|
|
|
|
/* configure PIE parameters */
|
|
pcfg = fs->aqmcfg;
|
|
|
|
if (ep->par[0] < 0)
|
|
pcfg->qdelay_ref = pie_sysctl.qdelay_ref * AQM_TIME_1US;
|
|
else
|
|
pcfg->qdelay_ref = ep->par[0];
|
|
if (ep->par[1] < 0)
|
|
pcfg->tupdate = pie_sysctl.tupdate * AQM_TIME_1US;
|
|
else
|
|
pcfg->tupdate = ep->par[1];
|
|
if (ep->par[2] < 0)
|
|
pcfg->max_burst = pie_sysctl.max_burst * AQM_TIME_1US;
|
|
else
|
|
pcfg->max_burst = ep->par[2];
|
|
if (ep->par[3] < 0)
|
|
pcfg->max_ecnth = pie_sysctl.max_ecnth;
|
|
else
|
|
pcfg->max_ecnth = ep->par[3];
|
|
if (ep->par[4] < 0)
|
|
pcfg->alpha = pie_sysctl.alpha;
|
|
else
|
|
pcfg->alpha = ep->par[4];
|
|
if (ep->par[5] < 0)
|
|
pcfg->beta = pie_sysctl.beta;
|
|
else
|
|
pcfg->beta = ep->par[5];
|
|
if (ep->par[6] < 0)
|
|
pcfg->flags = pie_sysctl.flags;
|
|
else
|
|
pcfg->flags = ep->par[6];
|
|
|
|
/* bound PIE configurations */
|
|
pcfg->qdelay_ref = BOUND_VAR(pcfg->qdelay_ref, 1, 10 * AQM_TIME_1S);
|
|
pcfg->tupdate = BOUND_VAR(pcfg->tupdate, 1, 10 * AQM_TIME_1S);
|
|
pcfg->max_burst = BOUND_VAR(pcfg->max_burst, 0, 10 * AQM_TIME_1S);
|
|
pcfg->max_ecnth = BOUND_VAR(pcfg->max_ecnth, 0, PIE_SCALE);
|
|
pcfg->alpha = BOUND_VAR(pcfg->alpha, 0, 7 * PIE_SCALE);
|
|
pcfg->beta = BOUND_VAR(pcfg->beta, 0 , 7 * PIE_SCALE);
|
|
|
|
pie_desc.cfg_ref_count++;
|
|
//D("pie cfg_ref_count=%d", pie_desc.cfg_ref_count);
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Deconfigure PIE and free memory allocation
|
|
*/
|
|
static int
|
|
aqm_pie_deconfig(struct dn_fsk* fs)
|
|
{
|
|
if (fs && fs->aqmcfg) {
|
|
free(fs->aqmcfg, M_DUMMYNET);
|
|
fs->aqmcfg = NULL;
|
|
pie_desc.cfg_ref_count--;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Retrieve PIE configuration parameters.
|
|
*/
|
|
static int
|
|
aqm_pie_getconfig (struct dn_fsk *fs, struct dn_extra_parms * ep)
|
|
{
|
|
struct dn_aqm_pie_parms *pcfg;
|
|
if (fs->aqmcfg) {
|
|
strlcpy(ep->name, pie_desc.name, sizeof(ep->name));
|
|
pcfg = fs->aqmcfg;
|
|
ep->par[0] = pcfg->qdelay_ref / AQM_TIME_1US;
|
|
ep->par[1] = pcfg->tupdate / AQM_TIME_1US;
|
|
ep->par[2] = pcfg->max_burst / AQM_TIME_1US;
|
|
ep->par[3] = pcfg->max_ecnth;
|
|
ep->par[4] = pcfg->alpha;
|
|
ep->par[5] = pcfg->beta;
|
|
ep->par[6] = pcfg->flags;
|
|
|
|
return 0;
|
|
}
|
|
return 1;
|
|
}
|
|
|
|
static struct dn_aqm pie_desc = {
|
|
_SI( .type = ) DN_AQM_PIE,
|
|
_SI( .name = ) "PIE",
|
|
_SI( .ref_count = ) 0,
|
|
_SI( .cfg_ref_count = ) 0,
|
|
_SI( .enqueue = ) aqm_pie_enqueue,
|
|
_SI( .dequeue = ) aqm_pie_dequeue,
|
|
_SI( .config = ) aqm_pie_config,
|
|
_SI( .deconfig = ) aqm_pie_deconfig,
|
|
_SI( .getconfig = ) aqm_pie_getconfig,
|
|
_SI( .init = ) aqm_pie_init,
|
|
_SI( .cleanup = ) aqm_pie_cleanup,
|
|
};
|
|
|
|
DECLARE_DNAQM_MODULE(dn_aqm_pie, &pie_desc);
|
|
#endif
|