freebsd-skq/sys/netpfil/ipfw/dn_aqm_pie.c
2020-09-01 21:19:14 +00:00

810 lines
21 KiB
C

/*
* PIE - Proportional Integral controller Enhanced AQM algorithm.
*
* $FreeBSD$
*
* Copyright (C) 2016 Centre for Advanced Internet Architectures,
* Swinburne University of Technology, Melbourne, Australia.
* Portions of this code were made possible in part by a gift from
* The Comcast Innovation Fund.
* Implemented by Rasool Al-Saadi <ralsaadi@swin.edu.au>
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#include <sys/cdefs.h>
#include "opt_inet6.h"
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/malloc.h>
#include <sys/mbuf.h>
#include <sys/kernel.h>
#include <sys/lock.h>
#include <sys/module.h>
#include <sys/mutex.h>
#include <sys/priv.h>
#include <sys/proc.h>
#include <sys/rwlock.h>
#include <sys/socket.h>
#include <sys/time.h>
#include <sys/sysctl.h>
#include <net/if.h> /* IFNAMSIZ, struct ifaddr, ifq head, lock.h mutex.h */
#include <net/netisr.h>
#include <net/vnet.h>
#include <netinet/in.h>
#include <netinet/ip.h> /* ip_len, ip_off */
#include <netinet/ip_var.h> /* ip_output(), IP_FORWARDING */
#include <netinet/ip_fw.h>
#include <netinet/ip_dummynet.h>
#include <netinet/if_ether.h> /* various ether_* routines */
#include <netinet/ip6.h> /* for ip6_input, ip6_output prototypes */
#include <netinet6/ip6_var.h>
#include <netpfil/ipfw/dn_heap.h>
#ifdef NEW_AQM
#include <netpfil/ipfw/ip_fw_private.h>
#include <netpfil/ipfw/ip_dn_private.h>
#include <netpfil/ipfw/dn_aqm.h>
#include <netpfil/ipfw/dn_aqm_pie.h>
#include <netpfil/ipfw/dn_sched.h>
/* for debugging */
#include <sys/syslog.h>
static struct dn_aqm pie_desc;
/* PIE defaults
* target=15ms, tupdate=15ms, max_burst=150ms,
* max_ecnth=0.1, alpha=0.125, beta=1.25,
*/
struct dn_aqm_pie_parms pie_sysctl =
{ 15 * AQM_TIME_1MS, 15 * AQM_TIME_1MS, 150 * AQM_TIME_1MS,
PIE_SCALE/10 , PIE_SCALE * 0.125, PIE_SCALE * 1.25 ,
PIE_CAPDROP_ENABLED | PIE_DEPRATEEST_ENABLED | PIE_DERAND_ENABLED };
static int
pie_sysctl_alpha_beta_handler(SYSCTL_HANDLER_ARGS)
{
int error;
long value;
if (!strcmp(oidp->oid_name,"alpha"))
value = pie_sysctl.alpha;
else
value = pie_sysctl.beta;
value = value * 1000 / PIE_SCALE;
error = sysctl_handle_long(oidp, &value, 0, req);
if (error != 0 || req->newptr == NULL)
return (error);
if (value < 1 || value > 7 * PIE_SCALE)
return (EINVAL);
value = (value * PIE_SCALE) / 1000;
if (!strcmp(oidp->oid_name,"alpha"))
pie_sysctl.alpha = value;
else
pie_sysctl.beta = value;
return (0);
}
static int
pie_sysctl_target_tupdate_maxb_handler(SYSCTL_HANDLER_ARGS)
{
int error;
long value;
if (!strcmp(oidp->oid_name,"target"))
value = pie_sysctl.qdelay_ref;
else if (!strcmp(oidp->oid_name,"tupdate"))
value = pie_sysctl.tupdate;
else
value = pie_sysctl.max_burst;
value = value / AQM_TIME_1US;
error = sysctl_handle_long(oidp, &value, 0, req);
if (error != 0 || req->newptr == NULL)
return (error);
if (value < 1 || value > 10 * AQM_TIME_1S)
return (EINVAL);
value = value * AQM_TIME_1US;
if (!strcmp(oidp->oid_name,"target"))
pie_sysctl.qdelay_ref = value;
else if (!strcmp(oidp->oid_name,"tupdate"))
pie_sysctl.tupdate = value;
else
pie_sysctl.max_burst = value;
return (0);
}
static int
pie_sysctl_max_ecnth_handler(SYSCTL_HANDLER_ARGS)
{
int error;
long value;
value = pie_sysctl.max_ecnth;
value = value * 1000 / PIE_SCALE;
error = sysctl_handle_long(oidp, &value, 0, req);
if (error != 0 || req->newptr == NULL)
return (error);
if (value < 1 || value > PIE_SCALE)
return (EINVAL);
value = (value * PIE_SCALE) / 1000;
pie_sysctl.max_ecnth = value;
return (0);
}
/* define PIE sysctl variables */
SYSBEGIN(f4)
SYSCTL_DECL(_net_inet);
SYSCTL_DECL(_net_inet_ip);
SYSCTL_DECL(_net_inet_ip_dummynet);
static SYSCTL_NODE(_net_inet_ip_dummynet, OID_AUTO, pie,
CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
"PIE");
#ifdef SYSCTL_NODE
SYSCTL_PROC(_net_inet_ip_dummynet_pie, OID_AUTO, target,
CTLTYPE_LONG | CTLFLAG_RW | CTLFLAG_NEEDGIANT, NULL, 0,
pie_sysctl_target_tupdate_maxb_handler, "L",
"queue target in microsecond");
SYSCTL_PROC(_net_inet_ip_dummynet_pie, OID_AUTO, tupdate,
CTLTYPE_LONG | CTLFLAG_RW | CTLFLAG_NEEDGIANT, NULL, 0,
pie_sysctl_target_tupdate_maxb_handler, "L",
"the frequency of drop probability calculation in microsecond");
SYSCTL_PROC(_net_inet_ip_dummynet_pie, OID_AUTO, max_burst,
CTLTYPE_LONG | CTLFLAG_RW | CTLFLAG_NEEDGIANT, NULL, 0,
pie_sysctl_target_tupdate_maxb_handler, "L",
"Burst allowance interval in microsecond");
SYSCTL_PROC(_net_inet_ip_dummynet_pie, OID_AUTO, max_ecnth,
CTLTYPE_LONG | CTLFLAG_RW | CTLFLAG_NEEDGIANT, NULL, 0,
pie_sysctl_max_ecnth_handler, "L",
"ECN safeguard threshold scaled by 1000");
SYSCTL_PROC(_net_inet_ip_dummynet_pie, OID_AUTO, alpha,
CTLTYPE_LONG | CTLFLAG_RW | CTLFLAG_NEEDGIANT, NULL, 0,
pie_sysctl_alpha_beta_handler, "L",
"PIE alpha scaled by 1000");
SYSCTL_PROC(_net_inet_ip_dummynet_pie, OID_AUTO, beta,
CTLTYPE_LONG | CTLFLAG_RW | CTLFLAG_NEEDGIANT, NULL, 0,
pie_sysctl_alpha_beta_handler, "L",
"beta scaled by 1000");
#endif
/*
* Callout function for drop probability calculation
* This function is called over tupdate ms and takes pointer of PIE
* status variables as an argument
*/
static void
calculate_drop_prob(void *x)
{
int64_t p, prob, oldprob;
struct dn_aqm_pie_parms *pprms;
struct pie_status *pst = (struct pie_status *) x;
int p_isneg;
pprms = pst->parms;
prob = pst->drop_prob;
/* calculate current qdelay using DRE method.
* If TS is used and no data in the queue, reset current_qdelay
* as it stays at last value during dequeue process.
*/
if (pprms->flags & PIE_DEPRATEEST_ENABLED)
pst->current_qdelay = ((uint64_t)pst->pq->ni.len_bytes *
pst->avg_dq_time) >> PIE_DQ_THRESHOLD_BITS;
else
if (!pst->pq->ni.len_bytes)
pst->current_qdelay = 0;
/* calculate drop probability */
p = (int64_t)pprms->alpha *
((int64_t)pst->current_qdelay - (int64_t)pprms->qdelay_ref);
p +=(int64_t) pprms->beta *
((int64_t)pst->current_qdelay - (int64_t)pst->qdelay_old);
/* take absolute value so right shift result is well defined */
p_isneg = p < 0;
if (p_isneg) {
p = -p;
}
/* We PIE_MAX_PROB shift by 12-bits to increase the division precision */
p *= (PIE_MAX_PROB << 12) / AQM_TIME_1S;
/* auto-tune drop probability */
if (prob < (PIE_MAX_PROB / 1000000)) /* 0.000001 */
p >>= 11 + PIE_FIX_POINT_BITS + 12;
else if (prob < (PIE_MAX_PROB / 100000)) /* 0.00001 */
p >>= 9 + PIE_FIX_POINT_BITS + 12;
else if (prob < (PIE_MAX_PROB / 10000)) /* 0.0001 */
p >>= 7 + PIE_FIX_POINT_BITS + 12;
else if (prob < (PIE_MAX_PROB / 1000)) /* 0.001 */
p >>= 5 + PIE_FIX_POINT_BITS + 12;
else if (prob < (PIE_MAX_PROB / 100)) /* 0.01 */
p >>= 3 + PIE_FIX_POINT_BITS + 12;
else if (prob < (PIE_MAX_PROB / 10)) /* 0.1 */
p >>= 1 + PIE_FIX_POINT_BITS + 12;
else
p >>= PIE_FIX_POINT_BITS + 12;
oldprob = prob;
if (p_isneg) {
prob = prob - p;
/* check for multiplication underflow */
if (prob > oldprob) {
prob= 0;
D("underflow");
}
} else {
/* Cap Drop adjustment */
if ((pprms->flags & PIE_CAPDROP_ENABLED) &&
prob >= PIE_MAX_PROB / 10 &&
p > PIE_MAX_PROB / 50 ) {
p = PIE_MAX_PROB / 50;
}
prob = prob + p;
/* check for multiplication overflow */
if (prob<oldprob) {
D("overflow");
prob= PIE_MAX_PROB;
}
}
/*
* decay the drop probability exponentially
* and restrict it to range 0 to PIE_MAX_PROB
*/
if (prob < 0) {
prob = 0;
} else {
if (pst->current_qdelay == 0 && pst->qdelay_old == 0) {
/* 0.98 ~= 1- 1/64 */
prob = prob - (prob >> 6);
}
if (prob > PIE_MAX_PROB) {
prob = PIE_MAX_PROB;
}
}
pst->drop_prob = prob;
/* store current queue delay value in old queue delay*/
pst->qdelay_old = pst->current_qdelay;
/* update burst allowance */
if ((pst->sflags & PIE_ACTIVE) && pst->burst_allowance>0) {
if (pst->burst_allowance > pprms->tupdate )
pst->burst_allowance -= pprms->tupdate;
else
pst->burst_allowance = 0;
}
/* reschedule calculate_drop_prob function */
if (pst->sflags & PIE_ACTIVE)
callout_reset_sbt(&pst->aqm_pie_callout,
(uint64_t)pprms->tupdate * SBT_1US, 0, calculate_drop_prob, pst, 0);
mtx_unlock(&pst->lock_mtx);
}
/*
* Extract a packet from the head of queue 'q'
* Return a packet or NULL if the queue is empty.
* If getts is set, also extract packet's timestamp from mtag.
*/
static struct mbuf *
pie_extract_head(struct dn_queue *q, aqm_time_t *pkt_ts, int getts)
{
struct m_tag *mtag;
struct mbuf *m = q->mq.head;
if (m == NULL)
return m;
q->mq.head = m->m_nextpkt;
/* Update stats */
update_stats(q, -m->m_pkthdr.len, 0);
if (q->ni.length == 0) /* queue is now idle */
q->q_time = dn_cfg.curr_time;
if (getts) {
/* extract packet TS*/
mtag = m_tag_locate(m, MTAG_ABI_COMPAT, DN_AQM_MTAG_TS, NULL);
if (mtag == NULL) {
D("PIE timestamp mtag not found!");
*pkt_ts = 0;
} else {
*pkt_ts = *(aqm_time_t *)(mtag + 1);
m_tag_delete(m,mtag);
}
}
return m;
}
/*
* Initiate PIE variable and optionally activate it
*/
__inline static void
init_activate_pie(struct pie_status *pst, int resettimer)
{
struct dn_aqm_pie_parms *pprms;
mtx_lock(&pst->lock_mtx);
pprms = pst->parms;
pst->drop_prob = 0;
pst->qdelay_old = 0;
pst->burst_allowance = pprms->max_burst;
pst->accu_prob = 0;
pst->dq_count = 0;
pst->avg_dq_time = 0;
pst->sflags = PIE_INMEASUREMENT;
pst->measurement_start = AQM_UNOW;
if (resettimer) {
pst->sflags |= PIE_ACTIVE;
callout_reset_sbt(&pst->aqm_pie_callout,
(uint64_t)pprms->tupdate * SBT_1US,
0, calculate_drop_prob, pst, 0);
}
//DX(2, "PIE Activated");
mtx_unlock(&pst->lock_mtx);
}
/*
* Deactivate PIE and stop probe update callout
*/
__inline static void
deactivate_pie(struct pie_status *pst)
{
mtx_lock(&pst->lock_mtx);
pst->sflags &= ~(PIE_ACTIVE | PIE_INMEASUREMENT);
callout_stop(&pst->aqm_pie_callout);
//D("PIE Deactivated");
mtx_unlock(&pst->lock_mtx);
}
/*
* Dequeue and return a pcaket from queue 'q' or NULL if 'q' is empty.
* Also, caculate depature time or queue delay using timestamp
*/
static struct mbuf *
aqm_pie_dequeue(struct dn_queue *q)
{
struct mbuf *m;
struct dn_flow *ni; /* stats for scheduler instance */
struct dn_aqm_pie_parms *pprms;
struct pie_status *pst;
aqm_time_t now;
aqm_time_t pkt_ts, dq_time;
int32_t w;
pst = q->aqm_status;
pprms = pst->parms;
ni = &q->_si->ni;
/*we extarct packet ts only when Departure Rate Estimation dis not used*/
m = pie_extract_head(q, &pkt_ts, !(pprms->flags & PIE_DEPRATEEST_ENABLED));
if (!m || !(pst->sflags & PIE_ACTIVE))
return m;
now = AQM_UNOW;
if (pprms->flags & PIE_DEPRATEEST_ENABLED) {
/* calculate average depature time */
if(pst->sflags & PIE_INMEASUREMENT) {
pst->dq_count += m->m_pkthdr.len;
if (pst->dq_count >= PIE_DQ_THRESHOLD) {
dq_time = now - pst->measurement_start;
/*
* if we don't have old avg dq_time i.e PIE is (re)initialized,
* don't use weight to calculate new avg_dq_time
*/
if(pst->avg_dq_time == 0)
pst->avg_dq_time = dq_time;
else {
/*
* weight = PIE_DQ_THRESHOLD/2^6, but we scaled
* weight by 2^8. Thus, scaled
* weight = PIE_DQ_THRESHOLD /2^8
* */
w = PIE_DQ_THRESHOLD >> 8;
pst->avg_dq_time = (dq_time* w
+ (pst->avg_dq_time * ((1L << 8) - w))) >> 8;
pst->sflags &= ~PIE_INMEASUREMENT;
}
}
}
/*
* Start new measurment cycle when the queue has
* PIE_DQ_THRESHOLD worth of bytes.
*/
if(!(pst->sflags & PIE_INMEASUREMENT) &&
q->ni.len_bytes >= PIE_DQ_THRESHOLD) {
pst->sflags |= PIE_INMEASUREMENT;
pst->measurement_start = now;
pst->dq_count = 0;
}
}
/* Optionally, use packet timestamp to estimate queue delay */
else
pst->current_qdelay = now - pkt_ts;
return m;
}
/*
* Enqueue a packet in q, subject to space and PIE queue management policy
* (whose parameters are in q->fs).
* Update stats for the queue and the scheduler.
* Return 0 on success, 1 on drop. The packet is consumed anyways.
*/
static int
aqm_pie_enqueue(struct dn_queue *q, struct mbuf* m)
{
struct dn_fs *f;
uint64_t len;
uint32_t qlen;
struct pie_status *pst;
struct dn_aqm_pie_parms *pprms;
int t;
len = m->m_pkthdr.len;
pst = q->aqm_status;
if(!pst) {
DX(2, "PIE queue is not initialized\n");
update_stats(q, 0, 1);
FREE_PKT(m);
return 1;
}
f = &(q->fs->fs);
pprms = pst->parms;
t = ENQUE;
/* get current queue length in bytes or packets*/
qlen = (f->flags & DN_QSIZE_BYTES) ?
q->ni.len_bytes : q->ni.length;
/* check for queue size and drop the tail if exceed queue limit*/
if (qlen >= f->qsize)
t = DROP;
/* drop/mark the packet when PIE is active and burst time elapsed */
else if ((pst->sflags & PIE_ACTIVE) && pst->burst_allowance==0
&& drop_early(pst, q->ni.len_bytes) == DROP) {
/*
* if drop_prob over ECN threshold, drop the packet
* otherwise mark and enqueue it.
*/
if ((pprms->flags & PIE_ECN_ENABLED) && pst->drop_prob <
(pprms->max_ecnth << (PIE_PROB_BITS - PIE_FIX_POINT_BITS))
&& ecn_mark(m))
t = ENQUE;
else
t = DROP;
}
/* Turn PIE on when 1/3 of the queue is full */
if (!(pst->sflags & PIE_ACTIVE) && qlen >= pst->one_third_q_size) {
init_activate_pie(pst, 1);
}
/* Reset burst tolerance and optinally turn PIE off*/
if ((pst->sflags & PIE_ACTIVE) && pst->drop_prob == 0 &&
pst->current_qdelay < (pprms->qdelay_ref >> 1) &&
pst->qdelay_old < (pprms->qdelay_ref >> 1)) {
pst->burst_allowance = pprms->max_burst;
if ((pprms->flags & PIE_ON_OFF_MODE_ENABLED) && qlen<=0)
deactivate_pie(pst);
}
/* Timestamp the packet if Departure Rate Estimation is disabled */
if (t != DROP && !(pprms->flags & PIE_DEPRATEEST_ENABLED)) {
/* Add TS to mbuf as a TAG */
struct m_tag *mtag;
mtag = m_tag_locate(m, MTAG_ABI_COMPAT, DN_AQM_MTAG_TS, NULL);
if (mtag == NULL)
mtag = m_tag_alloc(MTAG_ABI_COMPAT, DN_AQM_MTAG_TS,
sizeof(aqm_time_t), M_NOWAIT);
if (mtag == NULL) {
m_freem(m);
t = DROP;
}
*(aqm_time_t *)(mtag + 1) = AQM_UNOW;
m_tag_prepend(m, mtag);
}
if (t != DROP) {
mq_append(&q->mq, m);
update_stats(q, len, 0);
return (0);
} else {
update_stats(q, 0, 1);
/* reset accu_prob after packet drop */
pst->accu_prob = 0;
FREE_PKT(m);
return 1;
}
return 0;
}
/*
* initialize PIE for queue 'q'
* First allocate memory for PIE status.
*/
static int
aqm_pie_init(struct dn_queue *q)
{
struct pie_status *pst;
struct dn_aqm_pie_parms *pprms;
int err = 0;
pprms = q->fs->aqmcfg;
do { /* exit with break when error occurs*/
if (!pprms){
DX(2, "AQM_PIE is not configured");
err = EINVAL;
break;
}
q->aqm_status = malloc(sizeof(struct pie_status),
M_DUMMYNET, M_NOWAIT | M_ZERO);
if (q->aqm_status == NULL) {
D("cannot allocate PIE private data");
err = ENOMEM ;
break;
}
pst = q->aqm_status;
/* increase reference count for PIE module */
pie_desc.ref_count++;
pst->pq = q;
pst->parms = pprms;
/* For speed optimization, we caculate 1/3 queue size once here */
// we can use x/3 = (x >>2) + (x >>4) + (x >>7)
pst->one_third_q_size = q->fs->fs.qsize/3;
mtx_init(&pst->lock_mtx, "mtx_pie", NULL, MTX_DEF);
callout_init_mtx(&pst->aqm_pie_callout, &pst->lock_mtx,
CALLOUT_RETURNUNLOCKED);
pst->current_qdelay = 0;
init_activate_pie(pst, !(pprms->flags & PIE_ON_OFF_MODE_ENABLED));
//DX(2, "aqm_PIE_init");
} while(0);
return err;
}
/*
* Callout function to destroy pie mtx and free PIE status memory
*/
static void
pie_callout_cleanup(void *x)
{
struct pie_status *pst = (struct pie_status *) x;
mtx_unlock(&pst->lock_mtx);
mtx_destroy(&pst->lock_mtx);
free(x, M_DUMMYNET);
DN_BH_WLOCK();
pie_desc.ref_count--;
DN_BH_WUNLOCK();
}
/*
* Clean up PIE status for queue 'q'
* Destroy memory allocated for PIE status.
*/
static int
aqm_pie_cleanup(struct dn_queue *q)
{
if(!q) {
D("q is null");
return 0;
}
struct pie_status *pst = q->aqm_status;
if(!pst) {
//D("queue is already cleaned up");
return 0;
}
if(!q->fs || !q->fs->aqmcfg) {
D("fs is null or no cfg");
return 1;
}
if (q->fs->aqmfp && q->fs->aqmfp->type !=DN_AQM_PIE) {
D("Not PIE fs (%d)", q->fs->fs.fs_nr);
return 1;
}
/*
* Free PIE status allocated memory using pie_callout_cleanup() callout
* function to avoid any potential race.
* We reset aqm_pie_callout to call pie_callout_cleanup() in next 1um. This
* stops the scheduled calculate_drop_prob() callout and call pie_callout_cleanup()
* which does memory freeing.
*/
mtx_lock(&pst->lock_mtx);
callout_reset_sbt(&pst->aqm_pie_callout,
SBT_1US, 0, pie_callout_cleanup, pst, 0);
q->aqm_status = NULL;
mtx_unlock(&pst->lock_mtx);
return 0;
}
/*
* Config PIE parameters
* also allocate memory for PIE configurations
*/
static int
aqm_pie_config(struct dn_fsk* fs, struct dn_extra_parms *ep, int len)
{
struct dn_aqm_pie_parms *pcfg;
int l = sizeof(struct dn_extra_parms);
if (len < l) {
D("invalid sched parms length got %d need %d", len, l);
return EINVAL;
}
/* we free the old cfg because maybe the orignal allocation
* was used for diffirent AQM type.
*/
if (fs->aqmcfg) {
free(fs->aqmcfg, M_DUMMYNET);
fs->aqmcfg = NULL;
}
fs->aqmcfg = malloc(sizeof(struct dn_aqm_pie_parms),
M_DUMMYNET, M_NOWAIT | M_ZERO);
if (fs->aqmcfg== NULL) {
D("cannot allocate PIE configuration parameters");
return ENOMEM;
}
/* par array contains pie configuration as follow
* 0- qdelay_ref,1- tupdate, 2- max_burst
* 3- max_ecnth, 4- alpha, 5- beta, 6- flags
*/
/* configure PIE parameters */
pcfg = fs->aqmcfg;
if (ep->par[0] < 0)
pcfg->qdelay_ref = pie_sysctl.qdelay_ref * AQM_TIME_1US;
else
pcfg->qdelay_ref = ep->par[0];
if (ep->par[1] < 0)
pcfg->tupdate = pie_sysctl.tupdate * AQM_TIME_1US;
else
pcfg->tupdate = ep->par[1];
if (ep->par[2] < 0)
pcfg->max_burst = pie_sysctl.max_burst * AQM_TIME_1US;
else
pcfg->max_burst = ep->par[2];
if (ep->par[3] < 0)
pcfg->max_ecnth = pie_sysctl.max_ecnth;
else
pcfg->max_ecnth = ep->par[3];
if (ep->par[4] < 0)
pcfg->alpha = pie_sysctl.alpha;
else
pcfg->alpha = ep->par[4];
if (ep->par[5] < 0)
pcfg->beta = pie_sysctl.beta;
else
pcfg->beta = ep->par[5];
if (ep->par[6] < 0)
pcfg->flags = pie_sysctl.flags;
else
pcfg->flags = ep->par[6];
/* bound PIE configurations */
pcfg->qdelay_ref = BOUND_VAR(pcfg->qdelay_ref, 1, 10 * AQM_TIME_1S);
pcfg->tupdate = BOUND_VAR(pcfg->tupdate, 1, 10 * AQM_TIME_1S);
pcfg->max_burst = BOUND_VAR(pcfg->max_burst, 0, 10 * AQM_TIME_1S);
pcfg->max_ecnth = BOUND_VAR(pcfg->max_ecnth, 0, PIE_SCALE);
pcfg->alpha = BOUND_VAR(pcfg->alpha, 0, 7 * PIE_SCALE);
pcfg->beta = BOUND_VAR(pcfg->beta, 0 , 7 * PIE_SCALE);
pie_desc.cfg_ref_count++;
//D("pie cfg_ref_count=%d", pie_desc.cfg_ref_count);
return 0;
}
/*
* Deconfigure PIE and free memory allocation
*/
static int
aqm_pie_deconfig(struct dn_fsk* fs)
{
if (fs && fs->aqmcfg) {
free(fs->aqmcfg, M_DUMMYNET);
fs->aqmcfg = NULL;
pie_desc.cfg_ref_count--;
}
return 0;
}
/*
* Retrieve PIE configuration parameters.
*/
static int
aqm_pie_getconfig (struct dn_fsk *fs, struct dn_extra_parms * ep)
{
struct dn_aqm_pie_parms *pcfg;
if (fs->aqmcfg) {
strlcpy(ep->name, pie_desc.name, sizeof(ep->name));
pcfg = fs->aqmcfg;
ep->par[0] = pcfg->qdelay_ref / AQM_TIME_1US;
ep->par[1] = pcfg->tupdate / AQM_TIME_1US;
ep->par[2] = pcfg->max_burst / AQM_TIME_1US;
ep->par[3] = pcfg->max_ecnth;
ep->par[4] = pcfg->alpha;
ep->par[5] = pcfg->beta;
ep->par[6] = pcfg->flags;
return 0;
}
return 1;
}
static struct dn_aqm pie_desc = {
_SI( .type = ) DN_AQM_PIE,
_SI( .name = ) "PIE",
_SI( .ref_count = ) 0,
_SI( .cfg_ref_count = ) 0,
_SI( .enqueue = ) aqm_pie_enqueue,
_SI( .dequeue = ) aqm_pie_dequeue,
_SI( .config = ) aqm_pie_config,
_SI( .deconfig = ) aqm_pie_deconfig,
_SI( .getconfig = ) aqm_pie_getconfig,
_SI( .init = ) aqm_pie_init,
_SI( .cleanup = ) aqm_pie_cleanup,
};
DECLARE_DNAQM_MODULE(dn_aqm_pie, &pie_desc);
#endif