freebsd-skq/contrib/gcc/config/alpha/lib1funcs.asm
1999-10-16 06:09:09 +00:00

326 lines
7.3 KiB
NASM

/* DEC Alpha division and remainder support.
Copyright (C) 1994, 1999 Free Software Foundation, Inc.
This file is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the
Free Software Foundation; either version 2, or (at your option) any
later version.
In addition to the permissions in the GNU General Public License, the
Free Software Foundation gives you unlimited permission to link the
compiled version of this file with other programs, and to distribute
those programs without any restriction coming from the use of this
file. (The General Public License restrictions do apply in other
respects; for example, they cover modification of the file, and
distribution when not linked into another program.)
This file is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; see the file COPYING. If not, write to
the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. */
/* As a special exception, if you link this library with other files,
some of which are compiled with GCC, to produce an executable,
this library does not by itself cause the resulting executable
to be covered by the GNU General Public License.
This exception does not however invalidate any other reasons why
the executable file might be covered by the GNU General Public License. */
/* This had to be written in assembler because the division functions
use a non-standard calling convention.
This file provides an implementation of __divqu, __divq, __divlu,
__divl, __remqu, __remq, __remlu and __reml. CPP macros control
the exact operation.
Operation performed: $27 := $24 o $25, clobber $28, return address to
caller in $23, where o one of the operations.
The following macros need to be defined:
SIZE, the number of bits, 32 or 64.
TYPE, either UNSIGNED or SIGNED
OPERATION, either DIVISION or REMAINDER
SPECIAL_CALLING_CONVENTION, 0 or 1. It is useful for debugging to
define this to 0. That removes the `__' prefix to make the function
name not collide with the existing libc.a names, and uses the
standard Alpha procedure calling convention.
*/
#ifndef SPECIAL_CALLING_CONVENTION
#define SPECIAL_CALLING_CONVENTION 1
#endif
#ifdef L_divl
#if SPECIAL_CALLING_CONVENTION
#define FUNCTION_NAME __divl
#else
#define FUNCTION_NAME divl
#endif
#define SIZE 32
#define TYPE SIGNED
#define OPERATION DIVISION
#endif
#ifdef L_divlu
#if SPECIAL_CALLING_CONVENTION
#define FUNCTION_NAME __divlu
#else
#define FUNCTION_NAME divlu
#endif
#define SIZE 32
#define TYPE UNSIGNED
#define OPERATION DIVISION
#endif
#ifdef L_divq
#if SPECIAL_CALLING_CONVENTION
#define FUNCTION_NAME __divq
#else
#define FUNCTION_NAME divq
#endif
#define SIZE 64
#define TYPE SIGNED
#define OPERATION DIVISION
#endif
#ifdef L_divqu
#if SPECIAL_CALLING_CONVENTION
#define FUNCTION_NAME __divqu
#else
#define FUNCTION_NAME divqu
#endif
#define SIZE 64
#define TYPE UNSIGNED
#define OPERATION DIVISION
#endif
#ifdef L_reml
#if SPECIAL_CALLING_CONVENTION
#define FUNCTION_NAME __reml
#else
#define FUNCTION_NAME reml
#endif
#define SIZE 32
#define TYPE SIGNED
#define OPERATION REMAINDER
#endif
#ifdef L_remlu
#if SPECIAL_CALLING_CONVENTION
#define FUNCTION_NAME __remlu
#else
#define FUNCTION_NAME remlu
#endif
#define SIZE 32
#define TYPE UNSIGNED
#define OPERATION REMAINDER
#endif
#ifdef L_remq
#if SPECIAL_CALLING_CONVENTION
#define FUNCTION_NAME __remq
#else
#define FUNCTION_NAME remq
#endif
#define SIZE 64
#define TYPE SIGNED
#define OPERATION REMAINDER
#endif
#ifdef L_remqu
#if SPECIAL_CALLING_CONVENTION
#define FUNCTION_NAME __remqu
#else
#define FUNCTION_NAME remqu
#endif
#define SIZE 64
#define TYPE UNSIGNED
#define OPERATION REMAINDER
#endif
#define tmp0 $3
#define tmp1 $28
#define cnt $1
#define result_sign $2
#if SPECIAL_CALLING_CONVENTION
#define N $24
#define D $25
#define Q RETREG
#define RETREG $27
#else
#define N $16
#define D $17
#define Q RETREG
#define RETREG $0
#endif
/* Misc symbols to make alpha assembler easier to read. */
#define zero $31
#define sp $30
/* Symbols to make interface nicer. */
#define UNSIGNED 0
#define SIGNED 1
#define DIVISION 0
#define REMAINDER 1
.set noreorder
.set noat
.text
.align 3
.globl FUNCTION_NAME
.ent FUNCTION_NAME
FUNCTION_NAME:
.frame $30,0,$26,0
.prologue 0
/* Under the special calling convention, we have to preserve all register
values but $23 and $28. */
#if SPECIAL_CALLING_CONVENTION
lda sp,-64(sp)
#if OPERATION == DIVISION
stq N,0(sp)
#endif
stq D,8(sp)
stq cnt,16(sp)
stq result_sign,24(sp)
stq tmp0,32(sp)
#endif
/* If we are computing the remainder, move N to the register that is used
for the return value, and redefine what register is used for N. */
#if OPERATION == REMAINDER
bis N,N,RETREG
#undef N
#define N RETREG
#endif
/* Perform conversion from 32 bit types to 64 bit types. */
#if SIZE == 32
#if TYPE == SIGNED
/* If there are problems with the signed case, add these instructions.
The caller should already have done this.
addl N,0,N # sign extend N
addl D,0,D # sign extend D
*/
#else /* UNSIGNED */
zap N,0xf0,N # zero extend N (caller required to sign extend)
zap D,0xf0,D # zero extend D
#endif
#endif
/* Check for divide by zero. */
bne D,$34
lda $16,-2(zero)
call_pal 0xaa
$34:
#if TYPE == SIGNED
#if OPERATION == DIVISION
xor N,D,result_sign
#else
bis N,N,result_sign
#endif
/* Get the absolute values of N and D. */
subq zero,N,tmp0
cmovlt N,tmp0,N
subq zero,D,tmp0
cmovlt D,tmp0,D
#endif
/* Compute CNT = ceil(log2(N)) - ceil(log2(D)). This is the number of
divide iterations we will have to perform. Should you wish to optimize
this, check a few bits at a time, preferably using zap/zapnot. Be
careful though, this code runs fast fro the most common cases, when the
quotient is small. */
bge N,$35
bis zero,1,cnt
blt D,$40
.align 3
$39: addq D,D,D
addl cnt,1,cnt
bge D,$39
br zero,$40
$35: cmpult N,D,tmp0
bis zero,zero,cnt
bne tmp0,$42
.align 3
$44: addq D,D,D
cmpult N,D,tmp0
addl cnt,1,cnt
beq tmp0,$44
$42: srl D,1,D
$40:
subl cnt,1,cnt
/* Actual divide. Could be optimized with unrolling. */
#if OPERATION == DIVISION
bis zero,zero,Q
#endif
blt cnt,$46
.align 3
$49: cmpule D,N,tmp1
subq N,D,tmp0
srl D,1,D
subl cnt,1,cnt
cmovne tmp1,tmp0,N
#if OPERATION == DIVISION
addq Q,Q,Q
bis Q,tmp1,Q
#endif
bge cnt,$49
$46:
/* The result is now in RETREG. NOTE! It was written to RETREG using
either N or Q as a synonym! */
/* Change the sign of the result as needed. */
#if TYPE == SIGNED
subq zero,RETREG,tmp0
cmovlt result_sign,tmp0,RETREG
#endif
/* Restore clobbered registers. */
#if SPECIAL_CALLING_CONVENTION
#if OPERATION == DIVISION
ldq N,0(sp)
#endif
ldq D,8(sp)
ldq cnt,16(sp)
ldq result_sign,24(sp)
ldq tmp0,32(sp)
lda sp,64(sp)
#endif
/* Sign extend an *unsigned* 32 bit result, as required by the Alpha
conventions. */
#if TYPE == UNSIGNED && SIZE == 32
/* This could be avoided by adding some CPP hair to the divide loop.
It is probably not worth the added complexity. */
addl RETREG,0,RETREG
#endif
#if SPECIAL_CALLING_CONVENTION
ret zero,($23),1
#else
ret zero,($26),1
#endif
.end FUNCTION_NAME