freebsd-skq/sys/compat/svr4/svr4_misc.c
mjg d7bc9285a6 Implement lockless resource limits.
Use the same scheme implemented to manage credentials.

Code needing to look at process's credentials (as opposed to thred's) is
provided with *_proc variants of relevant functions.

Places which possibly had to take the proc lock anyway still use the proc
pointer to access limits.
2015-06-10 10:48:12 +00:00

1672 lines
35 KiB
C

/*-
* Copyright (c) 1998 Mark Newton
* Copyright (c) 1994 Christos Zoulas
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. The name of the author may not be used to endorse or promote products
* derived from this software without specific prior written permission
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
/*
* SVR4 compatibility module.
*
* SVR4 system calls that are implemented differently in BSD are
* handled here.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/capsicum.h>
#include <sys/dirent.h>
#include <sys/fcntl.h>
#include <sys/filedesc.h>
#include <sys/imgact.h>
#include <sys/kernel.h>
#include <sys/lock.h>
#include <sys/malloc.h>
#include <sys/file.h> /* Must come after sys/malloc.h */
#include <sys/mman.h>
#include <sys/mount.h>
#include <sys/msg.h>
#include <sys/mutex.h>
#include <sys/namei.h>
#include <sys/priv.h>
#include <sys/proc.h>
#include <sys/ptrace.h>
#include <sys/resource.h>
#include <sys/resourcevar.h>
#include <sys/sem.h>
#include <sys/signalvar.h>
#include <sys/stat.h>
#include <sys/sx.h>
#include <sys/syscallsubr.h>
#include <sys/sysproto.h>
#include <sys/time.h>
#include <sys/times.h>
#include <sys/uio.h>
#include <sys/vnode.h>
#include <sys/wait.h>
#include <compat/svr4/svr4.h>
#include <compat/svr4/svr4_types.h>
#include <compat/svr4/svr4_signal.h>
#include <compat/svr4/svr4_proto.h>
#include <compat/svr4/svr4_util.h>
#include <compat/svr4/svr4_sysconfig.h>
#include <compat/svr4/svr4_dirent.h>
#include <compat/svr4/svr4_acl.h>
#include <compat/svr4/svr4_ulimit.h>
#include <compat/svr4/svr4_statvfs.h>
#include <compat/svr4/svr4_hrt.h>
#include <compat/svr4/svr4_mman.h>
#include <compat/svr4/svr4_wait.h>
#include <security/mac/mac_framework.h>
#include <machine/vmparam.h>
#include <vm/vm.h>
#include <vm/vm_param.h>
#include <vm/vm_map.h>
#if defined(__FreeBSD__)
#include <vm/uma.h>
#include <vm/vm_extern.h>
#endif
#if defined(NetBSD)
# if defined(UVM)
# include <uvm/uvm_extern.h>
# endif
#endif
#define BSD_DIRENT(cp) ((struct dirent *)(cp))
static int svr4_mknod(struct thread *, register_t *, char *,
svr4_mode_t, svr4_dev_t);
static __inline clock_t timeval_to_clock_t(struct timeval *);
static int svr4_setinfo (pid_t , struct rusage *, int, svr4_siginfo_t *);
struct svr4_hrtcntl_args;
static int svr4_hrtcntl (struct thread *, struct svr4_hrtcntl_args *,
register_t *);
static void bsd_statfs_to_svr4_statvfs(const struct statfs *,
struct svr4_statvfs *);
static void bsd_statfs_to_svr4_statvfs64(const struct statfs *,
struct svr4_statvfs64 *);
static struct proc *svr4_pfind(pid_t pid);
/* BOGUS noop */
#if defined(BOGUS)
int
svr4_sys_setitimer(td, uap)
struct thread *td;
struct svr4_sys_setitimer_args *uap;
{
td->td_retval[0] = 0;
return 0;
}
#endif
int
svr4_sys_wait(td, uap)
struct thread *td;
struct svr4_sys_wait_args *uap;
{
int error, st, sig;
error = kern_wait(td, WAIT_ANY, &st, 0, NULL);
if (error)
return (error);
if (WIFSIGNALED(st)) {
sig = WTERMSIG(st);
if (sig >= 0 && sig < NSIG)
st = (st & ~0177) | SVR4_BSD2SVR4_SIG(sig);
} else if (WIFSTOPPED(st)) {
sig = WSTOPSIG(st);
if (sig >= 0 && sig < NSIG)
st = (st & ~0xff00) | (SVR4_BSD2SVR4_SIG(sig) << 8);
}
/*
* It looks like wait(2) on svr4/solaris/2.4 returns
* the status in retval[1], and the pid on retval[0].
*/
td->td_retval[1] = st;
if (uap->status)
error = copyout(&st, uap->status, sizeof(st));
return (error);
}
int
svr4_sys_execv(td, uap)
struct thread *td;
struct svr4_sys_execv_args *uap;
{
struct image_args eargs;
struct vmspace *oldvmspace;
char *path;
int error;
CHECKALTEXIST(td, uap->path, &path);
error = pre_execve(td, &oldvmspace);
if (error != 0) {
free(path, M_TEMP);
return (error);
}
error = exec_copyin_args(&eargs, path, UIO_SYSSPACE, uap->argp, NULL);
free(path, M_TEMP);
if (error == 0)
error = kern_execve(td, &eargs, NULL);
post_execve(td, error, oldvmspace);
return (error);
}
int
svr4_sys_execve(td, uap)
struct thread *td;
struct svr4_sys_execve_args *uap;
{
struct image_args eargs;
struct vmspace *oldvmspace;
char *path;
int error;
CHECKALTEXIST(td, uap->path, &path);
error = pre_execve(td, &oldvmspace);
if (error != 0) {
free(path, M_TEMP);
return (error);
}
error = exec_copyin_args(&eargs, path, UIO_SYSSPACE, uap->argp,
uap->envp);
free(path, M_TEMP);
if (error == 0)
error = kern_execve(td, &eargs, NULL);
post_execve(td, error, oldvmspace);
return (error);
}
int
svr4_sys_time(td, v)
struct thread *td;
struct svr4_sys_time_args *v;
{
struct svr4_sys_time_args *uap = v;
int error = 0;
struct timeval tv;
microtime(&tv);
if (uap->t)
error = copyout(&tv.tv_sec, uap->t,
sizeof(*(uap->t)));
td->td_retval[0] = (int) tv.tv_sec;
return error;
}
/*
* Read SVR4-style directory entries. We suck them into kernel space so
* that they can be massaged before being copied out to user code.
*
* This code is ported from the Linux emulator: Changes to the VFS interface
* between FreeBSD and NetBSD have made it simpler to port it from there than
* to adapt the NetBSD version.
*/
int
svr4_sys_getdents64(td, uap)
struct thread *td;
struct svr4_sys_getdents64_args *uap;
{
struct dirent *bdp;
struct vnode *vp;
caddr_t inp, buf; /* BSD-format */
int len, reclen; /* BSD-format */
caddr_t outp; /* SVR4-format */
int resid, svr4reclen=0; /* SVR4-format */
cap_rights_t rights;
struct file *fp;
struct uio auio;
struct iovec aiov;
off_t off;
struct svr4_dirent64 svr4_dirent;
int buflen, error, eofflag, nbytes, justone;
u_long *cookies = NULL, *cookiep;
int ncookies;
DPRINTF(("svr4_sys_getdents64(%d, *, %d)\n",
uap->fd, uap->nbytes));
error = getvnode(td->td_proc->p_fd, uap->fd,
cap_rights_init(&rights, CAP_READ), &fp);
if (error != 0)
return (error);
if ((fp->f_flag & FREAD) == 0) {
fdrop(fp, td);
return (EBADF);
}
vp = fp->f_vnode;
if (vp->v_type != VDIR) {
fdrop(fp, td);
return (EINVAL);
}
nbytes = uap->nbytes;
if (nbytes == 1) {
nbytes = sizeof (struct svr4_dirent64);
justone = 1;
}
else
justone = 0;
off = fp->f_offset;
#define DIRBLKSIZ 512 /* XXX we used to use ufs's DIRBLKSIZ */
buflen = max(DIRBLKSIZ, nbytes);
buflen = min(buflen, MAXBSIZE);
buf = malloc(buflen, M_TEMP, M_WAITOK);
vn_lock(vp, LK_SHARED | LK_RETRY);
again:
aiov.iov_base = buf;
aiov.iov_len = buflen;
auio.uio_iov = &aiov;
auio.uio_iovcnt = 1;
auio.uio_rw = UIO_READ;
auio.uio_segflg = UIO_SYSSPACE;
auio.uio_td = td;
auio.uio_resid = buflen;
auio.uio_offset = off;
if (cookies) {
free(cookies, M_TEMP);
cookies = NULL;
}
#ifdef MAC
error = mac_vnode_check_readdir(td->td_ucred, vp);
if (error)
goto out;
#endif
error = VOP_READDIR(vp, &auio, fp->f_cred, &eofflag,
&ncookies, &cookies);
if (error) {
goto out;
}
inp = buf;
outp = (caddr_t) uap->dp;
resid = nbytes;
if ((len = buflen - auio.uio_resid) <= 0) {
goto eof;
}
cookiep = cookies;
if (cookies) {
/*
* When using cookies, the vfs has the option of reading from
* a different offset than that supplied (UFS truncates the
* offset to a block boundary to make sure that it never reads
* partway through a directory entry, even if the directory
* has been compacted).
*/
while (len > 0 && ncookies > 0 && *cookiep <= off) {
bdp = (struct dirent *) inp;
len -= bdp->d_reclen;
inp += bdp->d_reclen;
cookiep++;
ncookies--;
}
}
while (len > 0) {
if (cookiep && ncookies == 0)
break;
bdp = (struct dirent *) inp;
reclen = bdp->d_reclen;
if (reclen & 3) {
DPRINTF(("svr4_readdir: reclen=%d\n", reclen));
error = EFAULT;
goto out;
}
if (bdp->d_fileno == 0) {
inp += reclen;
if (cookiep) {
off = *cookiep++;
ncookies--;
} else
off += reclen;
len -= reclen;
continue;
}
svr4reclen = SVR4_RECLEN(&svr4_dirent, bdp->d_namlen);
if (reclen > len || resid < svr4reclen) {
outp++;
break;
}
svr4_dirent.d_ino = (long) bdp->d_fileno;
if (justone) {
/*
* old svr4-style readdir usage.
*/
svr4_dirent.d_off = (svr4_off_t) svr4reclen;
svr4_dirent.d_reclen = (u_short) bdp->d_namlen;
} else {
svr4_dirent.d_off = (svr4_off_t)(off + reclen);
svr4_dirent.d_reclen = (u_short) svr4reclen;
}
strlcpy(svr4_dirent.d_name, bdp->d_name, sizeof(svr4_dirent.d_name));
if ((error = copyout((caddr_t)&svr4_dirent, outp, svr4reclen)))
goto out;
inp += reclen;
if (cookiep) {
off = *cookiep++;
ncookies--;
} else
off += reclen;
outp += svr4reclen;
resid -= svr4reclen;
len -= reclen;
if (justone)
break;
}
if (outp == (caddr_t) uap->dp)
goto again;
fp->f_offset = off;
if (justone)
nbytes = resid + svr4reclen;
eof:
td->td_retval[0] = nbytes - resid;
out:
VOP_UNLOCK(vp, 0);
fdrop(fp, td);
if (cookies)
free(cookies, M_TEMP);
free(buf, M_TEMP);
return error;
}
int
svr4_sys_getdents(td, uap)
struct thread *td;
struct svr4_sys_getdents_args *uap;
{
struct dirent *bdp;
struct vnode *vp;
caddr_t inp, buf; /* BSD-format */
int len, reclen; /* BSD-format */
caddr_t outp; /* SVR4-format */
int resid, svr4_reclen; /* SVR4-format */
cap_rights_t rights;
struct file *fp;
struct uio auio;
struct iovec aiov;
struct svr4_dirent idb;
off_t off; /* true file offset */
int buflen, error, eofflag;
u_long *cookiebuf = NULL, *cookie;
int ncookies = 0, *retval = td->td_retval;
if (uap->nbytes < 0)
return (EINVAL);
error = getvnode(td->td_proc->p_fd, uap->fd,
cap_rights_init(&rights, CAP_READ), &fp);
if (error != 0)
return (error);
if ((fp->f_flag & FREAD) == 0) {
fdrop(fp, td);
return (EBADF);
}
vp = fp->f_vnode;
if (vp->v_type != VDIR) {
fdrop(fp, td);
return (EINVAL);
}
buflen = min(MAXBSIZE, uap->nbytes);
buf = malloc(buflen, M_TEMP, M_WAITOK);
vn_lock(vp, LK_SHARED | LK_RETRY);
off = fp->f_offset;
again:
aiov.iov_base = buf;
aiov.iov_len = buflen;
auio.uio_iov = &aiov;
auio.uio_iovcnt = 1;
auio.uio_rw = UIO_READ;
auio.uio_segflg = UIO_SYSSPACE;
auio.uio_td = td;
auio.uio_resid = buflen;
auio.uio_offset = off;
#ifdef MAC
error = mac_vnode_check_readdir(td->td_ucred, vp);
if (error)
goto out;
#endif
/*
* First we read into the malloc'ed buffer, then
* we massage it into user space, one record at a time.
*/
error = VOP_READDIR(vp, &auio, fp->f_cred, &eofflag, &ncookies,
&cookiebuf);
if (error) {
goto out;
}
inp = buf;
outp = uap->buf;
resid = uap->nbytes;
if ((len = buflen - auio.uio_resid) == 0)
goto eof;
for (cookie = cookiebuf; len > 0; len -= reclen) {
bdp = (struct dirent *)inp;
reclen = bdp->d_reclen;
if (reclen & 3)
panic("svr4_sys_getdents64: bad reclen");
if (cookie)
off = *cookie++; /* each entry points to the next */
else
off += reclen;
if ((off >> 32) != 0) {
uprintf("svr4_sys_getdents64: dir offset too large for emulated program");
error = EINVAL;
goto out;
}
if (bdp->d_fileno == 0) {
inp += reclen; /* it is a hole; squish it out */
continue;
}
svr4_reclen = SVR4_RECLEN(&idb, bdp->d_namlen);
if (reclen > len || resid < svr4_reclen) {
/* entry too big for buffer, so just stop */
outp++;
break;
}
/*
* Massage in place to make a SVR4-shaped dirent (otherwise
* we have to worry about touching user memory outside of
* the copyout() call).
*/
idb.d_ino = (svr4_ino_t)bdp->d_fileno;
idb.d_off = (svr4_off_t)off;
idb.d_reclen = (u_short)svr4_reclen;
strlcpy(idb.d_name, bdp->d_name, sizeof(idb.d_name));
if ((error = copyout((caddr_t)&idb, outp, svr4_reclen)))
goto out;
/* advance past this real entry */
inp += reclen;
/* advance output past SVR4-shaped entry */
outp += svr4_reclen;
resid -= svr4_reclen;
}
/* if we squished out the whole block, try again */
if (outp == uap->buf)
goto again;
fp->f_offset = off; /* update the vnode offset */
eof:
*retval = uap->nbytes - resid;
out:
VOP_UNLOCK(vp, 0);
fdrop(fp, td);
if (cookiebuf)
free(cookiebuf, M_TEMP);
free(buf, M_TEMP);
return error;
}
int
svr4_sys_mmap(td, uap)
struct thread *td;
struct svr4_sys_mmap_args *uap;
{
struct mmap_args mm;
int *retval;
retval = td->td_retval;
#define _MAP_NEW 0x80000000
/*
* Verify the arguments.
*/
if (uap->prot & ~(PROT_READ | PROT_WRITE | PROT_EXEC))
return EINVAL; /* XXX still needed? */
if (uap->len == 0)
return EINVAL;
mm.prot = uap->prot;
mm.len = uap->len;
mm.flags = uap->flags & ~_MAP_NEW;
mm.fd = uap->fd;
mm.addr = uap->addr;
mm.pos = uap->pos;
return sys_mmap(td, &mm);
}
int
svr4_sys_mmap64(td, uap)
struct thread *td;
struct svr4_sys_mmap64_args *uap;
{
struct mmap_args mm;
void *rp;
#define _MAP_NEW 0x80000000
/*
* Verify the arguments.
*/
if (uap->prot & ~(PROT_READ | PROT_WRITE | PROT_EXEC))
return EINVAL; /* XXX still needed? */
if (uap->len == 0)
return EINVAL;
mm.prot = uap->prot;
mm.len = uap->len;
mm.flags = uap->flags & ~_MAP_NEW;
mm.fd = uap->fd;
mm.addr = uap->addr;
mm.pos = uap->pos;
rp = (void *) round_page((vm_offset_t)(td->td_proc->p_vmspace->vm_daddr + maxdsiz));
if ((mm.flags & MAP_FIXED) == 0 &&
mm.addr != 0 && (void *)mm.addr < rp)
mm.addr = rp;
return sys_mmap(td, &mm);
}
int
svr4_sys_fchroot(td, uap)
struct thread *td;
struct svr4_sys_fchroot_args *uap;
{
struct filedesc *fdp = td->td_proc->p_fd;
struct vnode *vp;
struct file *fp;
int error;
if ((error = priv_check(td, PRIV_VFS_FCHROOT)) != 0)
return error;
/* XXX: we have the chroot priv... what cap might we need? all? */
if ((error = getvnode(fdp, uap->fd, 0, &fp)) != 0)
return error;
vp = fp->f_vnode;
VREF(vp);
fdrop(fp, td);
vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
error = change_dir(vp, td);
if (error)
goto fail;
#ifdef MAC
error = mac_vnode_check_chroot(td->td_ucred, vp);
if (error)
goto fail;
#endif
VOP_UNLOCK(vp, 0);
error = change_root(vp, td);
vrele(vp);
return (error);
fail:
vput(vp);
return (error);
}
static int
svr4_mknod(td, retval, path, mode, dev)
struct thread *td;
register_t *retval;
char *path;
svr4_mode_t mode;
svr4_dev_t dev;
{
char *newpath;
int error;
CHECKALTEXIST(td, path, &newpath);
if (S_ISFIFO(mode)) {
error = kern_mkfifoat(td, AT_FDCWD, newpath, UIO_SYSSPACE,
mode);
} else {
error = kern_mknodat(td, AT_FDCWD, newpath, UIO_SYSSPACE,
mode, dev);
}
free(newpath, M_TEMP);
return (error);
}
int
svr4_sys_mknod(td, uap)
struct thread *td;
struct svr4_sys_mknod_args *uap;
{
int *retval = td->td_retval;
return svr4_mknod(td, retval,
uap->path, uap->mode,
(svr4_dev_t)svr4_to_bsd_odev_t(uap->dev));
}
int
svr4_sys_xmknod(td, uap)
struct thread *td;
struct svr4_sys_xmknod_args *uap;
{
int *retval = td->td_retval;
return svr4_mknod(td, retval,
uap->path, uap->mode,
(svr4_dev_t)svr4_to_bsd_dev_t(uap->dev));
}
int
svr4_sys_vhangup(td, uap)
struct thread *td;
struct svr4_sys_vhangup_args *uap;
{
return 0;
}
int
svr4_sys_sysconfig(td, uap)
struct thread *td;
struct svr4_sys_sysconfig_args *uap;
{
int *retval;
retval = &(td->td_retval[0]);
switch (uap->name) {
case SVR4_CONFIG_NGROUPS:
*retval = ngroups_max;
break;
case SVR4_CONFIG_CHILD_MAX:
*retval = maxproc;
break;
case SVR4_CONFIG_OPEN_FILES:
*retval = maxfiles;
break;
case SVR4_CONFIG_POSIX_VER:
*retval = 198808;
break;
case SVR4_CONFIG_PAGESIZE:
*retval = PAGE_SIZE;
break;
case SVR4_CONFIG_CLK_TCK:
*retval = 60; /* should this be `hz', ie. 100? */
break;
case SVR4_CONFIG_XOPEN_VER:
*retval = 2; /* XXX: What should that be? */
break;
case SVR4_CONFIG_PROF_TCK:
*retval = 60; /* XXX: What should that be? */
break;
case SVR4_CONFIG_NPROC_CONF:
*retval = 1; /* Only one processor for now */
break;
case SVR4_CONFIG_NPROC_ONLN:
*retval = 1; /* And it better be online */
break;
case SVR4_CONFIG_AIO_LISTIO_MAX:
case SVR4_CONFIG_AIO_MAX:
case SVR4_CONFIG_AIO_PRIO_DELTA_MAX:
*retval = 0; /* No aio support */
break;
case SVR4_CONFIG_DELAYTIMER_MAX:
*retval = 0; /* No delaytimer support */
break;
case SVR4_CONFIG_MQ_OPEN_MAX:
*retval = msginfo.msgmni;
break;
case SVR4_CONFIG_MQ_PRIO_MAX:
*retval = 0; /* XXX: Don't know */
break;
case SVR4_CONFIG_RTSIG_MAX:
*retval = 0;
break;
case SVR4_CONFIG_SEM_NSEMS_MAX:
*retval = seminfo.semmni;
break;
case SVR4_CONFIG_SEM_VALUE_MAX:
*retval = seminfo.semvmx;
break;
case SVR4_CONFIG_SIGQUEUE_MAX:
*retval = 0; /* XXX: Don't know */
break;
case SVR4_CONFIG_SIGRT_MIN:
case SVR4_CONFIG_SIGRT_MAX:
*retval = 0; /* No real time signals */
break;
case SVR4_CONFIG_TIMER_MAX:
*retval = 3; /* XXX: real, virtual, profiling */
break;
#if defined(NOTYET)
case SVR4_CONFIG_PHYS_PAGES:
#if defined(UVM)
*retval = uvmexp.free; /* XXX: free instead of total */
#else
*retval = vm_cnt.v_free_count; /* XXX: free instead of total */
#endif
break;
case SVR4_CONFIG_AVPHYS_PAGES:
#if defined(UVM)
*retval = uvmexp.active; /* XXX: active instead of avg */
#else
*retval = vm_cnt.v_active_count;/* XXX: active instead of avg */
#endif
break;
#endif /* NOTYET */
case SVR4_CONFIG_COHERENCY:
*retval = 0; /* XXX */
break;
case SVR4_CONFIG_SPLIT_CACHE:
*retval = 0; /* XXX */
break;
case SVR4_CONFIG_ICACHESZ:
*retval = 256; /* XXX */
break;
case SVR4_CONFIG_DCACHESZ:
*retval = 256; /* XXX */
break;
case SVR4_CONFIG_ICACHELINESZ:
*retval = 64; /* XXX */
break;
case SVR4_CONFIG_DCACHELINESZ:
*retval = 64; /* XXX */
break;
case SVR4_CONFIG_ICACHEBLKSZ:
*retval = 64; /* XXX */
break;
case SVR4_CONFIG_DCACHEBLKSZ:
*retval = 64; /* XXX */
break;
case SVR4_CONFIG_DCACHETBLKSZ:
*retval = 64; /* XXX */
break;
case SVR4_CONFIG_ICACHE_ASSOC:
*retval = 1; /* XXX */
break;
case SVR4_CONFIG_DCACHE_ASSOC:
*retval = 1; /* XXX */
break;
case SVR4_CONFIG_MAXPID:
*retval = PID_MAX;
break;
case SVR4_CONFIG_STACK_PROT:
*retval = PROT_READ|PROT_WRITE|PROT_EXEC;
break;
default:
return EINVAL;
}
return 0;
}
/* ARGSUSED */
int
svr4_sys_break(td, uap)
struct thread *td;
struct svr4_sys_break_args *uap;
{
struct obreak_args ap;
ap.nsize = uap->nsize;
return (sys_obreak(td, &ap));
}
static __inline clock_t
timeval_to_clock_t(tv)
struct timeval *tv;
{
return tv->tv_sec * hz + tv->tv_usec / (1000000 / hz);
}
int
svr4_sys_times(td, uap)
struct thread *td;
struct svr4_sys_times_args *uap;
{
struct timeval tv, utime, stime, cutime, cstime;
struct tms tms;
struct proc *p;
int error;
p = td->td_proc;
PROC_LOCK(p);
PROC_STATLOCK(p);
calcru(p, &utime, &stime);
PROC_STATUNLOCK(p);
calccru(p, &cutime, &cstime);
PROC_UNLOCK(p);
tms.tms_utime = timeval_to_clock_t(&utime);
tms.tms_stime = timeval_to_clock_t(&stime);
tms.tms_cutime = timeval_to_clock_t(&cutime);
tms.tms_cstime = timeval_to_clock_t(&cstime);
error = copyout(&tms, uap->tp, sizeof(tms));
if (error)
return (error);
microtime(&tv);
td->td_retval[0] = (int)timeval_to_clock_t(&tv);
return (0);
}
int
svr4_sys_ulimit(td, uap)
struct thread *td;
struct svr4_sys_ulimit_args *uap;
{
int *retval = td->td_retval;
int error;
switch (uap->cmd) {
case SVR4_GFILLIM:
*retval = lim_cur(td, RLIMIT_FSIZE) / 512;
if (*retval == -1)
*retval = 0x7fffffff;
return 0;
case SVR4_SFILLIM:
{
struct rlimit krl;
krl.rlim_cur = uap->newlimit * 512;
krl.rlim_max = lim_max(td, RLIMIT_FSIZE);
error = kern_setrlimit(td, RLIMIT_FSIZE, &krl);
if (error)
return error;
*retval = lim_cur(td, RLIMIT_FSIZE);
if (*retval == -1)
*retval = 0x7fffffff;
return 0;
}
case SVR4_GMEMLIM:
{
struct vmspace *vm = td->td_proc->p_vmspace;
register_t r;
r = lim_cur(td, RLIMIT_DATA);
if (r == -1)
r = 0x7fffffff;
r += (long) vm->vm_daddr;
if (r < 0)
r = 0x7fffffff;
*retval = r;
return 0;
}
case SVR4_GDESLIM:
*retval = lim_cur(td, RLIMIT_NOFILE);
if (*retval == -1)
*retval = 0x7fffffff;
return 0;
default:
return EINVAL;
}
}
static struct proc *
svr4_pfind(pid)
pid_t pid;
{
struct proc *p;
/* look in the live processes */
if ((p = pfind(pid)) == NULL)
/* look in the zombies */
p = zpfind(pid);
return p;
}
int
svr4_sys_pgrpsys(td, uap)
struct thread *td;
struct svr4_sys_pgrpsys_args *uap;
{
int *retval = td->td_retval;
struct proc *p = td->td_proc;
switch (uap->cmd) {
case 1: /* setpgrp() */
/*
* SVR4 setpgrp() (which takes no arguments) has the
* semantics that the session ID is also created anew, so
* in almost every sense, setpgrp() is identical to
* setsid() for SVR4. (Under BSD, the difference is that
* a setpgid(0,0) will not create a new session.)
*/
sys_setsid(td, NULL);
/*FALLTHROUGH*/
case 0: /* getpgrp() */
PROC_LOCK(p);
*retval = p->p_pgrp->pg_id;
PROC_UNLOCK(p);
return 0;
case 2: /* getsid(pid) */
if (uap->pid == 0)
PROC_LOCK(p);
else if ((p = svr4_pfind(uap->pid)) == NULL)
return ESRCH;
/*
* This has already been initialized to the pid of
* the session leader.
*/
*retval = (register_t) p->p_session->s_sid;
PROC_UNLOCK(p);
return 0;
case 3: /* setsid() */
return sys_setsid(td, NULL);
case 4: /* getpgid(pid) */
if (uap->pid == 0)
PROC_LOCK(p);
else if ((p = svr4_pfind(uap->pid)) == NULL)
return ESRCH;
*retval = (int) p->p_pgrp->pg_id;
PROC_UNLOCK(p);
return 0;
case 5: /* setpgid(pid, pgid); */
{
struct setpgid_args sa;
sa.pid = uap->pid;
sa.pgid = uap->pgid;
return sys_setpgid(td, &sa);
}
default:
return EINVAL;
}
}
struct svr4_hrtcntl_args {
int cmd;
int fun;
int clk;
svr4_hrt_interval_t * iv;
svr4_hrt_time_t * ti;
};
static int
svr4_hrtcntl(td, uap, retval)
struct thread *td;
struct svr4_hrtcntl_args *uap;
register_t *retval;
{
switch (uap->fun) {
case SVR4_HRT_CNTL_RES:
DPRINTF(("htrcntl(RES)\n"));
*retval = SVR4_HRT_USEC;
return 0;
case SVR4_HRT_CNTL_TOFD:
DPRINTF(("htrcntl(TOFD)\n"));
{
struct timeval tv;
svr4_hrt_time_t t;
if (uap->clk != SVR4_HRT_CLK_STD) {
DPRINTF(("clk == %d\n", uap->clk));
return EINVAL;
}
if (uap->ti == NULL) {
DPRINTF(("ti NULL\n"));
return EINVAL;
}
microtime(&tv);
t.h_sec = tv.tv_sec;
t.h_rem = tv.tv_usec;
t.h_res = SVR4_HRT_USEC;
return copyout(&t, uap->ti, sizeof(t));
}
case SVR4_HRT_CNTL_START:
DPRINTF(("htrcntl(START)\n"));
return ENOSYS;
case SVR4_HRT_CNTL_GET:
DPRINTF(("htrcntl(GET)\n"));
return ENOSYS;
default:
DPRINTF(("Bad htrcntl command %d\n", uap->fun));
return ENOSYS;
}
}
int
svr4_sys_hrtsys(td, uap)
struct thread *td;
struct svr4_sys_hrtsys_args *uap;
{
int *retval = td->td_retval;
switch (uap->cmd) {
case SVR4_HRT_CNTL:
return svr4_hrtcntl(td, (struct svr4_hrtcntl_args *) uap,
retval);
case SVR4_HRT_ALRM:
DPRINTF(("hrtalarm\n"));
return ENOSYS;
case SVR4_HRT_SLP:
DPRINTF(("hrtsleep\n"));
return ENOSYS;
case SVR4_HRT_CAN:
DPRINTF(("hrtcancel\n"));
return ENOSYS;
default:
DPRINTF(("Bad hrtsys command %d\n", uap->cmd));
return EINVAL;
}
}
static int
svr4_setinfo(pid, ru, st, s)
pid_t pid;
struct rusage *ru;
int st;
svr4_siginfo_t *s;
{
svr4_siginfo_t i;
int sig;
memset(&i, 0, sizeof(i));
i.svr4_si_signo = SVR4_SIGCHLD;
i.svr4_si_errno = 0; /* XXX? */
i.svr4_si_pid = pid;
if (ru) {
i.svr4_si_stime = ru->ru_stime.tv_sec;
i.svr4_si_utime = ru->ru_utime.tv_sec;
}
if (WIFEXITED(st)) {
i.svr4_si_status = WEXITSTATUS(st);
i.svr4_si_code = SVR4_CLD_EXITED;
} else if (WIFSTOPPED(st)) {
sig = WSTOPSIG(st);
if (sig >= 0 && sig < NSIG)
i.svr4_si_status = SVR4_BSD2SVR4_SIG(sig);
if (i.svr4_si_status == SVR4_SIGCONT)
i.svr4_si_code = SVR4_CLD_CONTINUED;
else
i.svr4_si_code = SVR4_CLD_STOPPED;
} else {
sig = WTERMSIG(st);
if (sig >= 0 && sig < NSIG)
i.svr4_si_status = SVR4_BSD2SVR4_SIG(sig);
if (WCOREDUMP(st))
i.svr4_si_code = SVR4_CLD_DUMPED;
else
i.svr4_si_code = SVR4_CLD_KILLED;
}
DPRINTF(("siginfo [pid %ld signo %d code %d errno %d status %d]\n",
i.svr4_si_pid, i.svr4_si_signo, i.svr4_si_code, i.svr4_si_errno,
i.svr4_si_status));
return copyout(&i, s, sizeof(i));
}
int
svr4_sys_waitsys(td, uap)
struct thread *td;
struct svr4_sys_waitsys_args *uap;
{
struct rusage ru;
pid_t pid;
int nfound, status;
int error, *retval = td->td_retval;
struct proc *p, *q;
DPRINTF(("waitsys(%d, %d, %p, %x)\n",
uap->grp, uap->id,
uap->info, uap->options));
q = td->td_proc;
switch (uap->grp) {
case SVR4_P_PID:
pid = uap->id;
break;
case SVR4_P_PGID:
PROC_LOCK(q);
pid = -q->p_pgid;
PROC_UNLOCK(q);
break;
case SVR4_P_ALL:
pid = WAIT_ANY;
break;
default:
return EINVAL;
}
/* Hand off the easy cases to kern_wait(). */
if (!(uap->options & (SVR4_WNOWAIT)) &&
(uap->options & (SVR4_WEXITED | SVR4_WTRAPPED))) {
int options;
options = 0;
if (uap->options & SVR4_WSTOPPED)
options |= WUNTRACED;
if (uap->options & SVR4_WCONTINUED)
options |= WCONTINUED;
if (uap->options & SVR4_WNOHANG)
options |= WNOHANG;
error = kern_wait(td, pid, &status, options, &ru);
if (error)
return (error);
if (uap->options & SVR4_WNOHANG && *retval == 0)
error = svr4_setinfo(*retval, NULL, 0, uap->info);
else
error = svr4_setinfo(*retval, &ru, status, uap->info);
*retval = 0;
return (error);
}
/*
* Ok, handle the weird cases. Either WNOWAIT is set (meaning we
* just want to see if there is a process to harvest, we don't
* want to actually harvest it), or WEXIT and WTRAPPED are clear
* meaning we want to ignore zombies. Either way, we don't have
* to handle harvesting zombies here. We do have to duplicate the
* other portions of kern_wait() though, especially for WCONTINUED
* and WSTOPPED.
*/
loop:
nfound = 0;
sx_slock(&proctree_lock);
LIST_FOREACH(p, &q->p_children, p_sibling) {
PROC_LOCK(p);
if (pid != WAIT_ANY &&
p->p_pid != pid && p->p_pgid != -pid) {
PROC_UNLOCK(p);
DPRINTF(("pid %d pgid %d != %d\n", p->p_pid,
p->p_pgid, pid));
continue;
}
if (p_canwait(td, p)) {
PROC_UNLOCK(p);
continue;
}
nfound++;
PROC_SLOCK(p);
/*
* See if we have a zombie. If so, WNOWAIT should be set,
* as otherwise we should have called kern_wait() up above.
*/
if ((p->p_state == PRS_ZOMBIE) &&
((uap->options & (SVR4_WEXITED|SVR4_WTRAPPED)))) {
PROC_SUNLOCK(p);
KASSERT(uap->options & SVR4_WNOWAIT,
("WNOWAIT is clear"));
/* Found a zombie, so cache info in local variables. */
pid = p->p_pid;
status = p->p_xstat;
ru = p->p_ru;
PROC_STATLOCK(p);
calcru(p, &ru.ru_utime, &ru.ru_stime);
PROC_STATUNLOCK(p);
PROC_UNLOCK(p);
sx_sunlock(&proctree_lock);
/* Copy the info out to userland. */
*retval = 0;
DPRINTF(("found %d\n", pid));
return (svr4_setinfo(pid, &ru, status, uap->info));
}
/*
* See if we have a stopped or continued process.
* XXX: This duplicates the same code in kern_wait().
*/
if ((p->p_flag & P_STOPPED_SIG) &&
(p->p_suspcount == p->p_numthreads) &&
(p->p_flag & P_WAITED) == 0 &&
(p->p_flag & P_TRACED || uap->options & SVR4_WSTOPPED)) {
PROC_SUNLOCK(p);
if (((uap->options & SVR4_WNOWAIT)) == 0)
p->p_flag |= P_WAITED;
sx_sunlock(&proctree_lock);
pid = p->p_pid;
status = W_STOPCODE(p->p_xstat);
ru = p->p_ru;
PROC_STATLOCK(p);
calcru(p, &ru.ru_utime, &ru.ru_stime);
PROC_STATUNLOCK(p);
PROC_UNLOCK(p);
if (((uap->options & SVR4_WNOWAIT)) == 0) {
PROC_LOCK(q);
sigqueue_take(p->p_ksi);
PROC_UNLOCK(q);
}
*retval = 0;
DPRINTF(("jobcontrol %d\n", pid));
return (svr4_setinfo(pid, &ru, status, uap->info));
}
PROC_SUNLOCK(p);
if (uap->options & SVR4_WCONTINUED &&
(p->p_flag & P_CONTINUED)) {
sx_sunlock(&proctree_lock);
if (((uap->options & SVR4_WNOWAIT)) == 0)
p->p_flag &= ~P_CONTINUED;
pid = p->p_pid;
ru = p->p_ru;
status = SIGCONT;
PROC_STATLOCK(p);
calcru(p, &ru.ru_utime, &ru.ru_stime);
PROC_STATUNLOCK(p);
PROC_UNLOCK(p);
if (((uap->options & SVR4_WNOWAIT)) == 0) {
PROC_LOCK(q);
sigqueue_take(p->p_ksi);
PROC_UNLOCK(q);
}
*retval = 0;
DPRINTF(("jobcontrol %d\n", pid));
return (svr4_setinfo(pid, &ru, status, uap->info));
}
PROC_UNLOCK(p);
}
if (nfound == 0) {
sx_sunlock(&proctree_lock);
return (ECHILD);
}
if (uap->options & SVR4_WNOHANG) {
sx_sunlock(&proctree_lock);
*retval = 0;
return (svr4_setinfo(0, NULL, 0, uap->info));
}
PROC_LOCK(q);
sx_sunlock(&proctree_lock);
if (q->p_flag & P_STATCHILD) {
q->p_flag &= ~P_STATCHILD;
error = 0;
} else
error = msleep(q, &q->p_mtx, PWAIT | PCATCH, "svr4_wait", 0);
PROC_UNLOCK(q);
if (error)
return error;
goto loop;
}
static void
bsd_statfs_to_svr4_statvfs(bfs, sfs)
const struct statfs *bfs;
struct svr4_statvfs *sfs;
{
sfs->f_bsize = bfs->f_iosize; /* XXX */
sfs->f_frsize = bfs->f_bsize;
sfs->f_blocks = bfs->f_blocks;
sfs->f_bfree = bfs->f_bfree;
sfs->f_bavail = bfs->f_bavail;
sfs->f_files = bfs->f_files;
sfs->f_ffree = bfs->f_ffree;
sfs->f_favail = bfs->f_ffree;
sfs->f_fsid = bfs->f_fsid.val[0];
memcpy(sfs->f_basetype, bfs->f_fstypename, sizeof(sfs->f_basetype));
sfs->f_flag = 0;
if (bfs->f_flags & MNT_RDONLY)
sfs->f_flag |= SVR4_ST_RDONLY;
if (bfs->f_flags & MNT_NOSUID)
sfs->f_flag |= SVR4_ST_NOSUID;
sfs->f_namemax = MAXNAMLEN;
memcpy(sfs->f_fstr, bfs->f_fstypename, sizeof(sfs->f_fstr)); /* XXX */
memset(sfs->f_filler, 0, sizeof(sfs->f_filler));
}
static void
bsd_statfs_to_svr4_statvfs64(bfs, sfs)
const struct statfs *bfs;
struct svr4_statvfs64 *sfs;
{
sfs->f_bsize = bfs->f_iosize; /* XXX */
sfs->f_frsize = bfs->f_bsize;
sfs->f_blocks = bfs->f_blocks;
sfs->f_bfree = bfs->f_bfree;
sfs->f_bavail = bfs->f_bavail;
sfs->f_files = bfs->f_files;
sfs->f_ffree = bfs->f_ffree;
sfs->f_favail = bfs->f_ffree;
sfs->f_fsid = bfs->f_fsid.val[0];
memcpy(sfs->f_basetype, bfs->f_fstypename, sizeof(sfs->f_basetype));
sfs->f_flag = 0;
if (bfs->f_flags & MNT_RDONLY)
sfs->f_flag |= SVR4_ST_RDONLY;
if (bfs->f_flags & MNT_NOSUID)
sfs->f_flag |= SVR4_ST_NOSUID;
sfs->f_namemax = MAXNAMLEN;
memcpy(sfs->f_fstr, bfs->f_fstypename, sizeof(sfs->f_fstr)); /* XXX */
memset(sfs->f_filler, 0, sizeof(sfs->f_filler));
}
int
svr4_sys_statvfs(td, uap)
struct thread *td;
struct svr4_sys_statvfs_args *uap;
{
struct svr4_statvfs sfs;
struct statfs bfs;
char *path;
int error;
CHECKALTEXIST(td, uap->path, &path);
error = kern_statfs(td, path, UIO_SYSSPACE, &bfs);
free(path, M_TEMP);
if (error)
return (error);
bsd_statfs_to_svr4_statvfs(&bfs, &sfs);
return copyout(&sfs, uap->fs, sizeof(sfs));
}
int
svr4_sys_fstatvfs(td, uap)
struct thread *td;
struct svr4_sys_fstatvfs_args *uap;
{
struct svr4_statvfs sfs;
struct statfs bfs;
int error;
error = kern_fstatfs(td, uap->fd, &bfs);
if (error)
return (error);
bsd_statfs_to_svr4_statvfs(&bfs, &sfs);
return copyout(&sfs, uap->fs, sizeof(sfs));
}
int
svr4_sys_statvfs64(td, uap)
struct thread *td;
struct svr4_sys_statvfs64_args *uap;
{
struct svr4_statvfs64 sfs;
struct statfs bfs;
char *path;
int error;
CHECKALTEXIST(td, uap->path, &path);
error = kern_statfs(td, path, UIO_SYSSPACE, &bfs);
free(path, M_TEMP);
if (error)
return (error);
bsd_statfs_to_svr4_statvfs64(&bfs, &sfs);
return copyout(&sfs, uap->fs, sizeof(sfs));
}
int
svr4_sys_fstatvfs64(td, uap)
struct thread *td;
struct svr4_sys_fstatvfs64_args *uap;
{
struct svr4_statvfs64 sfs;
struct statfs bfs;
int error;
error = kern_fstatfs(td, uap->fd, &bfs);
if (error)
return (error);
bsd_statfs_to_svr4_statvfs64(&bfs, &sfs);
return copyout(&sfs, uap->fs, sizeof(sfs));
}
int
svr4_sys_alarm(td, uap)
struct thread *td;
struct svr4_sys_alarm_args *uap;
{
struct itimerval itv, oitv;
int error;
timevalclear(&itv.it_interval);
itv.it_value.tv_sec = uap->sec;
itv.it_value.tv_usec = 0;
error = kern_setitimer(td, ITIMER_REAL, &itv, &oitv);
if (error)
return (error);
if (oitv.it_value.tv_usec != 0)
oitv.it_value.tv_sec++;
td->td_retval[0] = oitv.it_value.tv_sec;
return (0);
}
int
svr4_sys_gettimeofday(td, uap)
struct thread *td;
struct svr4_sys_gettimeofday_args *uap;
{
if (uap->tp) {
struct timeval atv;
microtime(&atv);
return copyout(&atv, uap->tp, sizeof (atv));
}
return 0;
}
int
svr4_sys_facl(td, uap)
struct thread *td;
struct svr4_sys_facl_args *uap;
{
int *retval;
retval = td->td_retval;
*retval = 0;
switch (uap->cmd) {
case SVR4_SYS_SETACL:
/* We don't support acls on any filesystem */
return ENOSYS;
case SVR4_SYS_GETACL:
return copyout(retval, &uap->num,
sizeof(uap->num));
case SVR4_SYS_GETACLCNT:
return 0;
default:
return EINVAL;
}
}
int
svr4_sys_acl(td, uap)
struct thread *td;
struct svr4_sys_acl_args *uap;
{
/* XXX: for now the same */
return svr4_sys_facl(td, (struct svr4_sys_facl_args *)uap);
}
int
svr4_sys_auditsys(td, uap)
struct thread *td;
struct svr4_sys_auditsys_args *uap;
{
/*
* XXX: Big brother is *not* watching.
*/
return 0;
}
int
svr4_sys_memcntl(td, uap)
struct thread *td;
struct svr4_sys_memcntl_args *uap;
{
switch (uap->cmd) {
case SVR4_MC_SYNC:
{
struct msync_args msa;
msa.addr = uap->addr;
msa.len = uap->len;
msa.flags = (int)uap->arg;
return sys_msync(td, &msa);
}
case SVR4_MC_ADVISE:
{
struct madvise_args maa;
maa.addr = uap->addr;
maa.len = uap->len;
maa.behav = (int)uap->arg;
return sys_madvise(td, &maa);
}
case SVR4_MC_LOCK:
case SVR4_MC_UNLOCK:
case SVR4_MC_LOCKAS:
case SVR4_MC_UNLOCKAS:
return EOPNOTSUPP;
default:
return ENOSYS;
}
}
int
svr4_sys_nice(td, uap)
struct thread *td;
struct svr4_sys_nice_args *uap;
{
struct setpriority_args ap;
int error;
ap.which = PRIO_PROCESS;
ap.who = 0;
ap.prio = uap->prio;
if ((error = sys_setpriority(td, &ap)) != 0)
return error;
/* the cast is stupid, but the structures are the same */
if ((error = sys_getpriority(td, (struct getpriority_args *)&ap)) != 0)
return error;
return 0;
}
int
svr4_sys_resolvepath(td, uap)
struct thread *td;
struct svr4_sys_resolvepath_args *uap;
{
struct nameidata nd;
int error, *retval = td->td_retval;
unsigned int ncopy;
NDINIT(&nd, LOOKUP, NOFOLLOW | SAVENAME, UIO_USERSPACE,
uap->path, td);
if ((error = namei(&nd)) != 0)
return (error);
NDFREE(&nd, NDF_NO_FREE_PNBUF);
ncopy = min(uap->bufsiz, strlen(nd.ni_cnd.cn_pnbuf) + 1);
if ((error = copyout(nd.ni_cnd.cn_pnbuf, uap->buf, ncopy)) != 0)
goto bad;
*retval = ncopy;
bad:
NDFREE(&nd, NDF_ONLY_PNBUF);
return error;
}