freebsd-skq/sys/powerpc/ofw/ofw_machdep.c
luporl 97ed980e58 [PPC] Avoid underflows in NUMA domains
On POWER8 systems with only one memory domain, the "ibm,associativity"
number that corresponds to it is 0, unlike POWER9 systems with two
or more domains, in which the minimum value is 1.

In POWER8 case, subtracting 1 causes an underflow on the unsigned domain
variable and a subsequent index out-of-bounds access.

Reviewed by:	jhibbits
Tested by:	bdragon, luporl
2019-10-22 18:28:58 +00:00

874 lines
20 KiB
C

/*-
* SPDX-License-Identifier: BSD-4-Clause
*
* Copyright (C) 1996 Wolfgang Solfrank.
* Copyright (C) 1996 TooLs GmbH.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by TooLs GmbH.
* 4. The name of TooLs GmbH may not be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY TOOLS GMBH ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL TOOLS GMBH BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
* OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
* WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
* OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
* ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
* $NetBSD: ofw_machdep.c,v 1.5 2000/05/23 13:25:43 tsubai Exp $
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include "opt_platform.h"
#include <sys/param.h>
#include <sys/bus.h>
#include <sys/systm.h>
#include <sys/conf.h>
#include <sys/disk.h>
#include <sys/fcntl.h>
#include <sys/lock.h>
#include <sys/malloc.h>
#include <sys/smp.h>
#include <sys/stat.h>
#include <sys/endian.h>
#include <net/ethernet.h>
#include <dev/fdt/fdt_common.h>
#include <dev/ofw/openfirm.h>
#include <dev/ofw/ofw_pci.h>
#include <dev/ofw/ofw_bus.h>
#include <dev/ofw/ofw_subr.h>
#include <vm/vm.h>
#include <vm/vm_param.h>
#include <vm/vm_page.h>
#include <vm/vm_phys.h>
#include <machine/bus.h>
#include <machine/cpu.h>
#include <machine/md_var.h>
#include <machine/platform.h>
#include <machine/ofw_machdep.h>
#include <machine/trap.h>
#include <contrib/libfdt/libfdt.h>
#ifdef POWERNV
#include <powerpc/powernv/opal.h>
#endif
static void *fdt;
int ofw_real_mode;
#ifdef AIM
extern register_t ofmsr[5];
extern void *openfirmware_entry;
char save_trap_init[0x2f00]; /* EXC_LAST */
char save_trap_of[0x2f00]; /* EXC_LAST */
int ofwcall(void *);
static int openfirmware(void *args);
__inline void
ofw_save_trap_vec(char *save_trap_vec)
{
if (!ofw_real_mode || !hw_direct_map)
return;
bcopy((void *)PHYS_TO_DMAP(EXC_RST), save_trap_vec, EXC_LAST - EXC_RST);
}
static __inline void
ofw_restore_trap_vec(char *restore_trap_vec)
{
if (!ofw_real_mode || !hw_direct_map)
return;
bcopy(restore_trap_vec, (void *)PHYS_TO_DMAP(EXC_RST),
EXC_LAST - EXC_RST);
__syncicache((void *)PHYS_TO_DMAP(EXC_RSVD), EXC_LAST - EXC_RSVD);
}
/*
* Saved SPRG0-3 from OpenFirmware. Will be restored prior to the callback.
*/
register_t ofw_sprg0_save;
static __inline void
ofw_sprg_prepare(void)
{
if (ofw_real_mode)
return;
/*
* Assume that interrupt are disabled at this point, or
* SPRG1-3 could be trashed
*/
#ifdef __powerpc64__
__asm __volatile("mtsprg1 %0\n\t"
"mtsprg2 %1\n\t"
"mtsprg3 %2\n\t"
:
: "r"(ofmsr[2]),
"r"(ofmsr[3]),
"r"(ofmsr[4]));
#else
__asm __volatile("mfsprg0 %0\n\t"
"mtsprg0 %1\n\t"
"mtsprg1 %2\n\t"
"mtsprg2 %3\n\t"
"mtsprg3 %4\n\t"
: "=&r"(ofw_sprg0_save)
: "r"(ofmsr[1]),
"r"(ofmsr[2]),
"r"(ofmsr[3]),
"r"(ofmsr[4]));
#endif
}
static __inline void
ofw_sprg_restore(void)
{
if (ofw_real_mode)
return;
/*
* Note that SPRG1-3 contents are irrelevant. They are scratch
* registers used in the early portion of trap handling when
* interrupts are disabled.
*
* PCPU data cannot be used until this routine is called !
*/
#ifndef __powerpc64__
__asm __volatile("mtsprg0 %0" :: "r"(ofw_sprg0_save));
#endif
}
#endif
static int
parse_ofw_memory(phandle_t node, const char *prop, struct mem_region *output)
{
cell_t address_cells, size_cells;
cell_t OFmem[4 * PHYS_AVAIL_SZ];
int sz, i, j;
phandle_t phandle;
sz = 0;
/*
* Get #address-cells from root node, defaulting to 1 if it cannot
* be found.
*/
phandle = OF_finddevice("/");
if (OF_getencprop(phandle, "#address-cells", &address_cells,
sizeof(address_cells)) < (ssize_t)sizeof(address_cells))
address_cells = 1;
if (OF_getencprop(phandle, "#size-cells", &size_cells,
sizeof(size_cells)) < (ssize_t)sizeof(size_cells))
size_cells = 1;
/*
* Get memory.
*/
if (node == -1 || (sz = OF_getencprop(node, prop,
OFmem, sizeof(OFmem))) <= 0)
panic("Physical memory map not found");
i = 0;
j = 0;
while (i < sz/sizeof(cell_t)) {
output[j].mr_start = OFmem[i++];
if (address_cells == 2) {
output[j].mr_start <<= 32;
output[j].mr_start += OFmem[i++];
}
output[j].mr_size = OFmem[i++];
if (size_cells == 2) {
output[j].mr_size <<= 32;
output[j].mr_size += OFmem[i++];
}
if (output[j].mr_start > BUS_SPACE_MAXADDR)
continue;
/*
* Constrain memory to that which we can access.
* 32-bit AIM can only reference 32 bits of address currently,
* but Book-E can access 36 bits.
*/
if (((uint64_t)output[j].mr_start +
(uint64_t)output[j].mr_size - 1) >
BUS_SPACE_MAXADDR) {
output[j].mr_size = BUS_SPACE_MAXADDR -
output[j].mr_start + 1;
}
j++;
}
return (j);
}
static int
parse_numa_ofw_memory(phandle_t node, const char *prop,
struct numa_mem_region *output)
{
cell_t address_cells, size_cells;
cell_t OFmem[4 * PHYS_AVAIL_SZ];
int sz, i, j;
phandle_t phandle;
sz = 0;
/*
* Get #address-cells from root node, defaulting to 1 if it cannot
* be found.
*/
phandle = OF_finddevice("/");
if (OF_getencprop(phandle, "#address-cells", &address_cells,
sizeof(address_cells)) < (ssize_t)sizeof(address_cells))
address_cells = 1;
if (OF_getencprop(phandle, "#size-cells", &size_cells,
sizeof(size_cells)) < (ssize_t)sizeof(size_cells))
size_cells = 1;
/*
* Get memory.
*/
if (node == -1 || (sz = OF_getencprop(node, prop,
OFmem, sizeof(OFmem))) <= 0)
panic("Physical memory map not found");
i = 0;
j = 0;
while (i < sz/sizeof(cell_t)) {
output[j].mr_start = OFmem[i++];
if (address_cells == 2) {
output[j].mr_start <<= 32;
output[j].mr_start += OFmem[i++];
}
output[j].mr_size = OFmem[i++];
if (size_cells == 2) {
output[j].mr_size <<= 32;
output[j].mr_size += OFmem[i++];
}
j++;
}
return (j);
}
#ifdef FDT
static int
excise_reserved_regions(struct mem_region *avail, int asz,
struct mem_region *exclude, int esz)
{
int i, j, k;
for (i = 0; i < asz; i++) {
for (j = 0; j < esz; j++) {
/*
* Case 1: Exclusion region encloses complete
* available entry. Drop it and move on.
*/
if (exclude[j].mr_start <= avail[i].mr_start &&
exclude[j].mr_start + exclude[j].mr_size >=
avail[i].mr_start + avail[i].mr_size) {
for (k = i+1; k < asz; k++)
avail[k-1] = avail[k];
asz--;
i--; /* Repeat some entries */
continue;
}
/*
* Case 2: Exclusion region starts in available entry.
* Trim it to where the entry begins and append
* a new available entry with the region after
* the excluded region, if any.
*/
if (exclude[j].mr_start >= avail[i].mr_start &&
exclude[j].mr_start < avail[i].mr_start +
avail[i].mr_size) {
if (exclude[j].mr_start + exclude[j].mr_size <
avail[i].mr_start + avail[i].mr_size) {
avail[asz].mr_start =
exclude[j].mr_start + exclude[j].mr_size;
avail[asz].mr_size = avail[i].mr_start +
avail[i].mr_size -
avail[asz].mr_start;
asz++;
}
avail[i].mr_size = exclude[j].mr_start -
avail[i].mr_start;
}
/*
* Case 3: Exclusion region ends in available entry.
* Move start point to where the exclusion zone ends.
* The case of a contained exclusion zone has already
* been caught in case 2.
*/
if (exclude[j].mr_start + exclude[j].mr_size >=
avail[i].mr_start && exclude[j].mr_start +
exclude[j].mr_size < avail[i].mr_start +
avail[i].mr_size) {
avail[i].mr_size += avail[i].mr_start;
avail[i].mr_start =
exclude[j].mr_start + exclude[j].mr_size;
avail[i].mr_size -= avail[i].mr_start;
}
}
}
return (asz);
}
static int
excise_initrd_region(struct mem_region *avail, int asz)
{
phandle_t chosen;
uint64_t start, end;
ssize_t size;
struct mem_region initrdmap[1];
pcell_t cell[2];
chosen = OF_finddevice("/chosen");
size = OF_getencprop(chosen, "linux,initrd-start", cell, sizeof(cell));
if (size < 0)
return (asz);
else if (size == 4)
start = cell[0];
else if (size == 8)
start = (uint64_t)cell[0] << 32 | cell[1];
else {
/* Invalid value length */
printf("WARNING: linux,initrd-start must be either 4 or 8 bytes long\n");
return (asz);
}
size = OF_getencprop(chosen, "linux,initrd-end", cell, sizeof(cell));
if (size < 0)
return (asz);
else if (size == 4)
end = cell[0];
else if (size == 8)
end = (uint64_t)cell[0] << 32 | cell[1];
else {
/* Invalid value length */
printf("WARNING: linux,initrd-end must be either 4 or 8 bytes long\n");
return (asz);
}
if (end <= start)
return (asz);
initrdmap[0].mr_start = start;
initrdmap[0].mr_size = end - start;
asz = excise_reserved_regions(avail, asz, initrdmap, 1);
return (asz);
}
#ifdef POWERNV
static int
excise_msi_region(struct mem_region *avail, int asz)
{
uint64_t start, end;
struct mem_region initrdmap[1];
/*
* This range of physical addresses is used to implement optimized
* 32 bit MSI interrupts on POWER9. Exclude it to avoid accidentally
* using it for DMA, as this will cause an immediate PHB fence.
* While we could theoretically turn off this behavior in the ETU,
* doing so would break 32-bit MSI, so just reserve the range in
* the physical map instead.
* See section 4.4.2.8 of the PHB4 specification.
*/
start = 0x00000000ffff0000ul;
end = 0x00000000fffffffful;
initrdmap[0].mr_start = start;
initrdmap[0].mr_size = end - start;
asz = excise_reserved_regions(avail, asz, initrdmap, 1);
return (asz);
}
#endif
static int
excise_fdt_reserved(struct mem_region *avail, int asz)
{
struct mem_region fdtmap[32];
ssize_t fdtmapsize;
phandle_t chosen;
int j, fdtentries;
chosen = OF_finddevice("/chosen");
fdtmapsize = OF_getprop(chosen, "fdtmemreserv", fdtmap, sizeof(fdtmap));
for (j = 0; j < fdtmapsize/sizeof(fdtmap[0]); j++) {
fdtmap[j].mr_start = be64toh(fdtmap[j].mr_start) & ~PAGE_MASK;
fdtmap[j].mr_size = round_page(be64toh(fdtmap[j].mr_size));
}
KASSERT(j*sizeof(fdtmap[0]) < sizeof(fdtmap),
("Exceeded number of FDT reservations"));
/* Add a virtual entry for the FDT itself */
if (fdt != NULL) {
fdtmap[j].mr_start = (vm_offset_t)fdt & ~PAGE_MASK;
fdtmap[j].mr_size = round_page(fdt_totalsize(fdt));
fdtmapsize += sizeof(fdtmap[0]);
}
fdtentries = fdtmapsize/sizeof(fdtmap[0]);
asz = excise_reserved_regions(avail, asz, fdtmap, fdtentries);
return (asz);
}
#endif
/*
* This is called during powerpc_init, before the system is really initialized.
* It shall provide the total and the available regions of RAM.
* The available regions need not take the kernel into account.
*/
void
ofw_numa_mem_regions(struct numa_mem_region *memp, int *memsz)
{
phandle_t phandle;
int res, count, msz;
char name[31];
cell_t associativity[5];
struct numa_mem_region *curmemp;
msz = 0;
/*
* Get memory from all the /memory nodes.
*/
for (phandle = OF_child(OF_peer(0)); phandle != 0;
phandle = OF_peer(phandle)) {
if (OF_getprop(phandle, "name", name, sizeof(name)) <= 0)
continue;
if (strncmp(name, "memory@", strlen("memory@")) != 0)
continue;
count = parse_numa_ofw_memory(phandle, "reg", &memp[msz]);
if (count == 0)
continue;
curmemp = &memp[msz];
res = OF_getproplen(phandle, "ibm,associativity");
if (res <= 0)
continue;
MPASS(count == 1);
OF_getencprop(phandle, "ibm,associativity",
associativity, res);
curmemp->mr_domain = associativity[3];
if (bootverbose)
printf("%s %#jx-%#jx domain(%ju)\n",
name, (uintmax_t)curmemp->mr_start,
(uintmax_t)curmemp->mr_start + curmemp->mr_size,
(uintmax_t)curmemp->mr_domain);
msz += count;
}
*memsz = msz;
}
/*
* This is called during powerpc_init, before the system is really initialized.
* It shall provide the total and the available regions of RAM.
* The available regions need not take the kernel into account.
*/
void
ofw_mem_regions(struct mem_region *memp, int *memsz,
struct mem_region *availp, int *availsz)
{
phandle_t phandle;
int asz, msz;
int res;
char name[31];
asz = msz = 0;
/*
* Get memory from all the /memory nodes.
*/
for (phandle = OF_child(OF_peer(0)); phandle != 0;
phandle = OF_peer(phandle)) {
if (OF_getprop(phandle, "name", name, sizeof(name)) <= 0)
continue;
if (strncmp(name, "memory", sizeof(name)) != 0 &&
strncmp(name, "memory@", strlen("memory@")) != 0)
continue;
res = parse_ofw_memory(phandle, "reg", &memp[msz]);
msz += res;
/*
* On POWER9 Systems we might have both linux,usable-memory and
* reg properties. 'reg' denotes all available memory, but we
* must use 'linux,usable-memory', a subset, as some memory
* regions are reserved for NVLink.
*/
if (OF_getproplen(phandle, "linux,usable-memory") >= 0)
res = parse_ofw_memory(phandle, "linux,usable-memory",
&availp[asz]);
else if (OF_getproplen(phandle, "available") >= 0)
res = parse_ofw_memory(phandle, "available",
&availp[asz]);
else
res = parse_ofw_memory(phandle, "reg", &availp[asz]);
asz += res;
}
#ifdef FDT
phandle = OF_finddevice("/chosen");
if (OF_hasprop(phandle, "fdtmemreserv"))
asz = excise_fdt_reserved(availp, asz);
/* If the kernel is being loaded through kexec, initrd region is listed
* in /chosen but the region is not marked as reserved, so, we might exclude
* it here.
*/
if (OF_hasprop(phandle, "linux,initrd-start"))
asz = excise_initrd_region(availp, asz);
#endif
#ifdef POWERNV
if (opal_check() == 0)
asz = excise_msi_region(availp, asz);
#endif
*memsz = msz;
*availsz = asz;
}
void
OF_initial_setup(void *fdt_ptr, void *junk, int (*openfirm)(void *))
{
#ifdef AIM
ofmsr[0] = mfmsr();
#ifdef __powerpc64__
ofmsr[0] &= ~PSL_SF;
#else
__asm __volatile("mfsprg0 %0" : "=&r"(ofmsr[1]));
#endif
__asm __volatile("mfsprg1 %0" : "=&r"(ofmsr[2]));
__asm __volatile("mfsprg2 %0" : "=&r"(ofmsr[3]));
__asm __volatile("mfsprg3 %0" : "=&r"(ofmsr[4]));
openfirmware_entry = openfirm;
if (ofmsr[0] & PSL_DR)
ofw_real_mode = 0;
else
ofw_real_mode = 1;
ofw_save_trap_vec(save_trap_init);
#else
ofw_real_mode = 1;
#endif
fdt = fdt_ptr;
}
boolean_t
OF_bootstrap()
{
boolean_t status = FALSE;
int err = 0;
#ifdef AIM
if (openfirmware_entry != NULL) {
if (ofw_real_mode) {
status = OF_install(OFW_STD_REAL, 0);
} else {
#ifdef __powerpc64__
status = OF_install(OFW_STD_32BIT, 0);
#else
status = OF_install(OFW_STD_DIRECT, 0);
#endif
}
if (status != TRUE)
return status;
err = OF_init(openfirmware);
} else
#endif
if (fdt != NULL) {
#ifdef FDT
#ifdef AIM
bus_space_tag_t fdt_bt;
vm_offset_t tmp_fdt_ptr;
vm_size_t fdt_size;
uintptr_t fdt_va;
#endif
status = OF_install(OFW_FDT, 0);
if (status != TRUE)
return status;
#ifdef AIM /* AIM-only for now -- Book-E does this remapping in early init */
/* Get the FDT size for mapping if we can */
tmp_fdt_ptr = pmap_early_io_map((vm_paddr_t)fdt, PAGE_SIZE);
if (fdt_check_header((void *)tmp_fdt_ptr) != 0) {
pmap_early_io_unmap(tmp_fdt_ptr, PAGE_SIZE);
return FALSE;
}
fdt_size = fdt_totalsize((void *)tmp_fdt_ptr);
pmap_early_io_unmap(tmp_fdt_ptr, PAGE_SIZE);
/*
* Map this for real. Use bus_space_map() to take advantage
* of its auto-remapping function once the kernel is loaded.
* This is a dirty hack, but what we have.
*/
#ifdef _LITTLE_ENDIAN
fdt_bt = &bs_le_tag;
#else
fdt_bt = &bs_be_tag;
#endif
bus_space_map(fdt_bt, (vm_paddr_t)fdt, fdt_size, 0, &fdt_va);
err = OF_init((void *)fdt_va);
#else
err = OF_init(fdt);
#endif
#endif
}
#ifdef FDT_DTB_STATIC
/*
* Check for a statically included blob already in the kernel and
* needing no mapping.
*/
else {
status = OF_install(OFW_FDT, 0);
if (status != TRUE)
return status;
err = OF_init(&fdt_static_dtb);
}
#endif
if (err != 0) {
OF_install(NULL, 0);
status = FALSE;
}
return (status);
}
#ifdef AIM
void
ofw_quiesce(void)
{
struct {
cell_t name;
cell_t nargs;
cell_t nreturns;
} args;
KASSERT(!pmap_bootstrapped, ("Cannot call ofw_quiesce after VM is up"));
args.name = (cell_t)(uintptr_t)"quiesce";
args.nargs = 0;
args.nreturns = 0;
openfirmware(&args);
}
static int
openfirmware_core(void *args)
{
int result;
register_t oldmsr;
if (openfirmware_entry == NULL)
return (-1);
/*
* Turn off exceptions - we really don't want to end up
* anywhere unexpected with PCPU set to something strange
* or the stack pointer wrong.
*/
oldmsr = intr_disable();
ofw_sprg_prepare();
/* Save trap vectors */
ofw_save_trap_vec(save_trap_of);
/* Restore initially saved trap vectors */
ofw_restore_trap_vec(save_trap_init);
#ifndef __powerpc64__
/*
* Clear battable[] translations
*/
if (!(cpu_features & PPC_FEATURE_64))
__asm __volatile("mtdbatu 2, %0\n"
"mtdbatu 3, %0" : : "r" (0));
isync();
#endif
result = ofwcall(args);
/* Restore trap vecotrs */
ofw_restore_trap_vec(save_trap_of);
ofw_sprg_restore();
intr_restore(oldmsr);
return (result);
}
#ifdef SMP
struct ofw_rv_args {
void *args;
int retval;
volatile int in_progress;
};
static void
ofw_rendezvous_dispatch(void *xargs)
{
struct ofw_rv_args *rv_args = xargs;
/* NOTE: Interrupts are disabled here */
if (PCPU_GET(cpuid) == 0) {
/*
* Execute all OF calls on CPU 0
*/
rv_args->retval = openfirmware_core(rv_args->args);
rv_args->in_progress = 0;
} else {
/*
* Spin with interrupts off on other CPUs while OF has
* control of the machine.
*/
while (rv_args->in_progress)
cpu_spinwait();
}
}
#endif
static int
openfirmware(void *args)
{
int result;
#ifdef SMP
struct ofw_rv_args rv_args;
#endif
if (openfirmware_entry == NULL)
return (-1);
#ifdef SMP
if (cold) {
result = openfirmware_core(args);
} else {
rv_args.args = args;
rv_args.in_progress = 1;
smp_rendezvous(smp_no_rendezvous_barrier,
ofw_rendezvous_dispatch, smp_no_rendezvous_barrier,
&rv_args);
result = rv_args.retval;
}
#else
result = openfirmware_core(args);
#endif
return (result);
}
void
OF_reboot()
{
struct {
cell_t name;
cell_t nargs;
cell_t nreturns;
cell_t arg;
} args;
args.name = (cell_t)(uintptr_t)"interpret";
args.nargs = 1;
args.nreturns = 0;
args.arg = (cell_t)(uintptr_t)"reset-all";
openfirmware_core(&args); /* Don't do rendezvous! */
for (;;); /* just in case */
}
#endif /* AIM */
void
OF_getetheraddr(device_t dev, u_char *addr)
{
phandle_t node;
node = ofw_bus_get_node(dev);
OF_getprop(node, "local-mac-address", addr, ETHER_ADDR_LEN);
}
/*
* Return a bus handle and bus tag that corresponds to the register
* numbered regno for the device referenced by the package handle
* dev. This function is intended to be used by console drivers in
* early boot only. It works by mapping the address of the device's
* register in the address space of its parent and recursively walk
* the device tree upward this way.
*/
int
OF_decode_addr(phandle_t dev, int regno, bus_space_tag_t *tag,
bus_space_handle_t *handle, bus_size_t *sz)
{
bus_addr_t addr;
bus_size_t size;
pcell_t pci_hi;
int flags, res;
res = ofw_reg_to_paddr(dev, regno, &addr, &size, &pci_hi);
if (res < 0)
return (res);
if (pci_hi == OFW_PADDR_NOT_PCI) {
*tag = &bs_be_tag;
flags = 0;
} else {
*tag = &bs_le_tag;
flags = (pci_hi & OFW_PCI_PHYS_HI_PREFETCHABLE) ?
BUS_SPACE_MAP_PREFETCHABLE: 0;
}
if (sz != NULL)
*sz = size;
return (bus_space_map(*tag, addr, size, flags, handle));
}