e28a844d86
Without this changeset there will be no way to prevent these NICs from sending ARP, which is harmful in server farms that is configured as "Direct Server Return" behind a load balancer. A better fix would remove the whole hack completely but it would be later than 8.0-RELEASE. Reviewed by: jfv, yongari Approved by: re (kib)
5022 lines
140 KiB
C
5022 lines
140 KiB
C
/******************************************************************************
|
|
|
|
Copyright (c) 2001-2009, Intel Corporation
|
|
All rights reserved.
|
|
|
|
Redistribution and use in source and binary forms, with or without
|
|
modification, are permitted provided that the following conditions are met:
|
|
|
|
1. Redistributions of source code must retain the above copyright notice,
|
|
this list of conditions and the following disclaimer.
|
|
|
|
2. Redistributions in binary form must reproduce the above copyright
|
|
notice, this list of conditions and the following disclaimer in the
|
|
documentation and/or other materials provided with the distribution.
|
|
|
|
3. Neither the name of the Intel Corporation nor the names of its
|
|
contributors may be used to endorse or promote products derived from
|
|
this software without specific prior written permission.
|
|
|
|
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
|
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
|
|
LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
|
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
|
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
|
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
|
|
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
|
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
|
POSSIBILITY OF SUCH DAMAGE.
|
|
|
|
******************************************************************************/
|
|
/*$FreeBSD$*/
|
|
|
|
|
|
#ifdef HAVE_KERNEL_OPTION_HEADERS
|
|
#include "opt_device_polling.h"
|
|
#include "opt_inet.h"
|
|
#endif
|
|
|
|
#include <sys/param.h>
|
|
#include <sys/systm.h>
|
|
#if __FreeBSD_version >= 800000
|
|
#include <sys/buf_ring.h>
|
|
#endif
|
|
#include <sys/bus.h>
|
|
#include <sys/endian.h>
|
|
#include <sys/kernel.h>
|
|
#include <sys/kthread.h>
|
|
#include <sys/malloc.h>
|
|
#include <sys/mbuf.h>
|
|
#include <sys/module.h>
|
|
#include <sys/rman.h>
|
|
#include <sys/socket.h>
|
|
#include <sys/sockio.h>
|
|
#include <sys/sysctl.h>
|
|
#include <sys/taskqueue.h>
|
|
#include <sys/eventhandler.h>
|
|
#include <sys/pcpu.h>
|
|
#include <sys/smp.h>
|
|
#include <machine/smp.h>
|
|
#include <machine/bus.h>
|
|
#include <machine/resource.h>
|
|
|
|
#ifdef IGB_IEEE1588
|
|
#include <sys/ieee1588.h>
|
|
#endif
|
|
|
|
#include <net/bpf.h>
|
|
#include <net/ethernet.h>
|
|
#include <net/if.h>
|
|
#include <net/if_arp.h>
|
|
#include <net/if_dl.h>
|
|
#include <net/if_media.h>
|
|
|
|
#include <net/if_types.h>
|
|
#include <net/if_vlan_var.h>
|
|
|
|
#include <netinet/in_systm.h>
|
|
#include <netinet/in.h>
|
|
#include <netinet/if_ether.h>
|
|
#include <netinet/ip.h>
|
|
#include <netinet/ip6.h>
|
|
#include <netinet/tcp.h>
|
|
#include <netinet/tcp_lro.h>
|
|
#include <netinet/udp.h>
|
|
|
|
#include <machine/in_cksum.h>
|
|
#include <dev/pci/pcivar.h>
|
|
#include <dev/pci/pcireg.h>
|
|
|
|
#include "e1000_api.h"
|
|
#include "e1000_82575.h"
|
|
#include "if_igb.h"
|
|
|
|
/*********************************************************************
|
|
* Set this to one to display debug statistics
|
|
*********************************************************************/
|
|
int igb_display_debug_stats = 0;
|
|
|
|
/*********************************************************************
|
|
* Driver version:
|
|
*********************************************************************/
|
|
char igb_driver_version[] = "version - 1.7.3";
|
|
|
|
|
|
/*********************************************************************
|
|
* PCI Device ID Table
|
|
*
|
|
* Used by probe to select devices to load on
|
|
* Last field stores an index into e1000_strings
|
|
* Last entry must be all 0s
|
|
*
|
|
* { Vendor ID, Device ID, SubVendor ID, SubDevice ID, String Index }
|
|
*********************************************************************/
|
|
|
|
static igb_vendor_info_t igb_vendor_info_array[] =
|
|
{
|
|
{ 0x8086, E1000_DEV_ID_82575EB_COPPER, PCI_ANY_ID, PCI_ANY_ID, 0},
|
|
{ 0x8086, E1000_DEV_ID_82575EB_FIBER_SERDES,
|
|
PCI_ANY_ID, PCI_ANY_ID, 0},
|
|
{ 0x8086, E1000_DEV_ID_82575GB_QUAD_COPPER,
|
|
PCI_ANY_ID, PCI_ANY_ID, 0},
|
|
{ 0x8086, E1000_DEV_ID_82576, PCI_ANY_ID, PCI_ANY_ID, 0},
|
|
{ 0x8086, E1000_DEV_ID_82576_NS, PCI_ANY_ID, PCI_ANY_ID, 0},
|
|
{ 0x8086, E1000_DEV_ID_82576_FIBER, PCI_ANY_ID, PCI_ANY_ID, 0},
|
|
{ 0x8086, E1000_DEV_ID_82576_SERDES, PCI_ANY_ID, PCI_ANY_ID, 0},
|
|
{ 0x8086, E1000_DEV_ID_82576_SERDES_QUAD,
|
|
PCI_ANY_ID, PCI_ANY_ID, 0},
|
|
{ 0x8086, E1000_DEV_ID_82576_QUAD_COPPER,
|
|
PCI_ANY_ID, PCI_ANY_ID, 0},
|
|
/* required last entry */
|
|
{ 0, 0, 0, 0, 0}
|
|
};
|
|
|
|
/*********************************************************************
|
|
* Table of branding strings for all supported NICs.
|
|
*********************************************************************/
|
|
|
|
static char *igb_strings[] = {
|
|
"Intel(R) PRO/1000 Network Connection"
|
|
};
|
|
|
|
/*********************************************************************
|
|
* Function prototypes
|
|
*********************************************************************/
|
|
static int igb_probe(device_t);
|
|
static int igb_attach(device_t);
|
|
static int igb_detach(device_t);
|
|
static int igb_shutdown(device_t);
|
|
static int igb_suspend(device_t);
|
|
static int igb_resume(device_t);
|
|
static void igb_start(struct ifnet *);
|
|
static void igb_start_locked(struct tx_ring *, struct ifnet *ifp);
|
|
#if __FreeBSD_version >= 800000
|
|
static int igb_mq_start(struct ifnet *, struct mbuf *);
|
|
static int igb_mq_start_locked(struct ifnet *,
|
|
struct tx_ring *, struct mbuf *);
|
|
static void igb_qflush(struct ifnet *);
|
|
#endif
|
|
static int igb_ioctl(struct ifnet *, u_long, caddr_t);
|
|
static void igb_watchdog(struct adapter *);
|
|
static void igb_init(void *);
|
|
static void igb_init_locked(struct adapter *);
|
|
static void igb_stop(void *);
|
|
static void igb_media_status(struct ifnet *, struct ifmediareq *);
|
|
static int igb_media_change(struct ifnet *);
|
|
static void igb_identify_hardware(struct adapter *);
|
|
static int igb_allocate_pci_resources(struct adapter *);
|
|
static int igb_allocate_msix(struct adapter *);
|
|
static int igb_allocate_legacy(struct adapter *);
|
|
static int igb_setup_msix(struct adapter *);
|
|
static void igb_free_pci_resources(struct adapter *);
|
|
static void igb_local_timer(void *);
|
|
static int igb_hardware_init(struct adapter *);
|
|
static void igb_setup_interface(device_t, struct adapter *);
|
|
static int igb_allocate_queues(struct adapter *);
|
|
static void igb_configure_queues(struct adapter *);
|
|
|
|
static int igb_allocate_transmit_buffers(struct tx_ring *);
|
|
static void igb_setup_transmit_structures(struct adapter *);
|
|
static void igb_setup_transmit_ring(struct tx_ring *);
|
|
static void igb_initialize_transmit_units(struct adapter *);
|
|
static void igb_free_transmit_structures(struct adapter *);
|
|
static void igb_free_transmit_buffers(struct tx_ring *);
|
|
|
|
static int igb_allocate_receive_buffers(struct rx_ring *);
|
|
static int igb_setup_receive_structures(struct adapter *);
|
|
static int igb_setup_receive_ring(struct rx_ring *);
|
|
static void igb_initialize_receive_units(struct adapter *);
|
|
static void igb_free_receive_structures(struct adapter *);
|
|
static void igb_free_receive_buffers(struct rx_ring *);
|
|
|
|
static void igb_enable_intr(struct adapter *);
|
|
static void igb_disable_intr(struct adapter *);
|
|
static void igb_update_stats_counters(struct adapter *);
|
|
static bool igb_txeof(struct tx_ring *);
|
|
static bool igb_rxeof(struct rx_ring *, int);
|
|
static void igb_rx_checksum(u32, struct mbuf *, bool);
|
|
static int igb_tx_ctx_setup(struct tx_ring *, struct mbuf *);
|
|
static bool igb_tso_setup(struct tx_ring *, struct mbuf *, u32 *);
|
|
static void igb_set_promisc(struct adapter *);
|
|
static void igb_disable_promisc(struct adapter *);
|
|
static void igb_set_multi(struct adapter *);
|
|
static void igb_print_hw_stats(struct adapter *);
|
|
static void igb_update_link_status(struct adapter *);
|
|
static int igb_get_buf(struct rx_ring *, int, u8);
|
|
|
|
static void igb_register_vlan(void *, struct ifnet *, u16);
|
|
static void igb_unregister_vlan(void *, struct ifnet *, u16);
|
|
static void igb_setup_vlan_hw_support(struct adapter *);
|
|
|
|
static int igb_xmit(struct tx_ring *, struct mbuf **);
|
|
static int igb_dma_malloc(struct adapter *, bus_size_t,
|
|
struct igb_dma_alloc *, int);
|
|
static void igb_dma_free(struct adapter *, struct igb_dma_alloc *);
|
|
static void igb_print_debug_info(struct adapter *);
|
|
static void igb_print_nvm_info(struct adapter *);
|
|
static int igb_is_valid_ether_addr(u8 *);
|
|
static int igb_sysctl_stats(SYSCTL_HANDLER_ARGS);
|
|
static int igb_sysctl_debug_info(SYSCTL_HANDLER_ARGS);
|
|
/* Management and WOL Support */
|
|
static void igb_init_manageability(struct adapter *);
|
|
static void igb_release_manageability(struct adapter *);
|
|
static void igb_get_hw_control(struct adapter *);
|
|
static void igb_release_hw_control(struct adapter *);
|
|
static void igb_enable_wakeup(device_t);
|
|
|
|
static int igb_irq_fast(void *);
|
|
static void igb_add_rx_process_limit(struct adapter *, const char *,
|
|
const char *, int *, int);
|
|
static void igb_handle_rxtx(void *context, int pending);
|
|
static void igb_handle_tx(void *context, int pending);
|
|
static void igb_handle_rx(void *context, int pending);
|
|
|
|
/* These are MSIX only irq handlers */
|
|
static void igb_msix_rx(void *);
|
|
static void igb_msix_tx(void *);
|
|
static void igb_msix_link(void *);
|
|
|
|
/* Adaptive Interrupt Moderation */
|
|
static void igb_update_aim(struct rx_ring *);
|
|
|
|
/*********************************************************************
|
|
* FreeBSD Device Interface Entry Points
|
|
*********************************************************************/
|
|
|
|
static device_method_t igb_methods[] = {
|
|
/* Device interface */
|
|
DEVMETHOD(device_probe, igb_probe),
|
|
DEVMETHOD(device_attach, igb_attach),
|
|
DEVMETHOD(device_detach, igb_detach),
|
|
DEVMETHOD(device_shutdown, igb_shutdown),
|
|
DEVMETHOD(device_suspend, igb_suspend),
|
|
DEVMETHOD(device_resume, igb_resume),
|
|
{0, 0}
|
|
};
|
|
|
|
static driver_t igb_driver = {
|
|
"igb", igb_methods, sizeof(struct adapter),
|
|
};
|
|
|
|
static devclass_t igb_devclass;
|
|
DRIVER_MODULE(igb, pci, igb_driver, igb_devclass, 0, 0);
|
|
MODULE_DEPEND(igb, pci, 1, 1, 1);
|
|
MODULE_DEPEND(igb, ether, 1, 1, 1);
|
|
|
|
/*********************************************************************
|
|
* Tunable default values.
|
|
*********************************************************************/
|
|
|
|
/* Descriptor defaults */
|
|
static int igb_rxd = IGB_DEFAULT_RXD;
|
|
static int igb_txd = IGB_DEFAULT_TXD;
|
|
TUNABLE_INT("hw.igb.rxd", &igb_rxd);
|
|
TUNABLE_INT("hw.igb.txd", &igb_txd);
|
|
|
|
/*
|
|
** These parameters are used in Adaptive
|
|
** Interrupt Moderation. The value is set
|
|
** into EITR and controls the interrupt
|
|
** frequency. A variable static scheme can
|
|
** be created by changing the assigned value
|
|
** of igb_ave_latency to the desired value,
|
|
** and then set igb_enable_aim to FALSE.
|
|
** This will result in all EITR registers
|
|
** getting set to that value statically.
|
|
*/
|
|
static int igb_enable_aim = TRUE;
|
|
TUNABLE_INT("hw.igb.enable_aim", &igb_enable_aim);
|
|
static int igb_low_latency = IGB_LOW_LATENCY;
|
|
TUNABLE_INT("hw.igb.low_latency", &igb_low_latency);
|
|
static int igb_ave_latency = IGB_AVE_LATENCY;
|
|
TUNABLE_INT("hw.igb.ave_latency", &igb_ave_latency);
|
|
static int igb_bulk_latency = IGB_BULK_LATENCY;
|
|
TUNABLE_INT("hw.igb.bulk_latency", &igb_bulk_latency);
|
|
|
|
/*
|
|
** This will autoconfigure based on the number
|
|
** of CPUs if set to 0. Only a matched pair of
|
|
** TX and RX rings are allowed.
|
|
*/
|
|
static int igb_num_queues = 1;
|
|
TUNABLE_INT("hw.igb.num_queues", &igb_num_queues);
|
|
|
|
/* How many packets rxeof tries to clean at a time */
|
|
static int igb_rx_process_limit = 100;
|
|
TUNABLE_INT("hw.igb.rx_process_limit", &igb_rx_process_limit);
|
|
|
|
/* Flow control setting - default to FULL */
|
|
static int igb_fc_setting = e1000_fc_full;
|
|
TUNABLE_INT("hw.igb.fc_setting", &igb_fc_setting);
|
|
|
|
/*
|
|
** Shadow VFTA table, this is needed because
|
|
** the real filter table gets cleared during
|
|
** a soft reset and the driver needs to be able
|
|
** to repopulate it.
|
|
*/
|
|
static u32 igb_shadow_vfta[IGB_VFTA_SIZE];
|
|
|
|
|
|
/*********************************************************************
|
|
* Device identification routine
|
|
*
|
|
* igb_probe determines if the driver should be loaded on
|
|
* adapter based on PCI vendor/device id of the adapter.
|
|
*
|
|
* return BUS_PROBE_DEFAULT on success, positive on failure
|
|
*********************************************************************/
|
|
|
|
static int
|
|
igb_probe(device_t dev)
|
|
{
|
|
char adapter_name[60];
|
|
uint16_t pci_vendor_id = 0;
|
|
uint16_t pci_device_id = 0;
|
|
uint16_t pci_subvendor_id = 0;
|
|
uint16_t pci_subdevice_id = 0;
|
|
igb_vendor_info_t *ent;
|
|
|
|
INIT_DEBUGOUT("igb_probe: begin");
|
|
|
|
pci_vendor_id = pci_get_vendor(dev);
|
|
if (pci_vendor_id != IGB_VENDOR_ID)
|
|
return (ENXIO);
|
|
|
|
pci_device_id = pci_get_device(dev);
|
|
pci_subvendor_id = pci_get_subvendor(dev);
|
|
pci_subdevice_id = pci_get_subdevice(dev);
|
|
|
|
ent = igb_vendor_info_array;
|
|
while (ent->vendor_id != 0) {
|
|
if ((pci_vendor_id == ent->vendor_id) &&
|
|
(pci_device_id == ent->device_id) &&
|
|
|
|
((pci_subvendor_id == ent->subvendor_id) ||
|
|
(ent->subvendor_id == PCI_ANY_ID)) &&
|
|
|
|
((pci_subdevice_id == ent->subdevice_id) ||
|
|
(ent->subdevice_id == PCI_ANY_ID))) {
|
|
sprintf(adapter_name, "%s %s",
|
|
igb_strings[ent->index],
|
|
igb_driver_version);
|
|
device_set_desc_copy(dev, adapter_name);
|
|
return (BUS_PROBE_DEFAULT);
|
|
}
|
|
ent++;
|
|
}
|
|
|
|
return (ENXIO);
|
|
}
|
|
|
|
/*********************************************************************
|
|
* Device initialization routine
|
|
*
|
|
* The attach entry point is called when the driver is being loaded.
|
|
* This routine identifies the type of hardware, allocates all resources
|
|
* and initializes the hardware.
|
|
*
|
|
* return 0 on success, positive on failure
|
|
*********************************************************************/
|
|
|
|
static int
|
|
igb_attach(device_t dev)
|
|
{
|
|
struct adapter *adapter;
|
|
int error = 0;
|
|
u16 eeprom_data;
|
|
|
|
INIT_DEBUGOUT("igb_attach: begin");
|
|
|
|
adapter = device_get_softc(dev);
|
|
adapter->dev = adapter->osdep.dev = dev;
|
|
IGB_CORE_LOCK_INIT(adapter, device_get_nameunit(dev));
|
|
|
|
/* SYSCTL stuff */
|
|
SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev),
|
|
SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
|
|
OID_AUTO, "debug", CTLTYPE_INT|CTLFLAG_RW, adapter, 0,
|
|
igb_sysctl_debug_info, "I", "Debug Information");
|
|
|
|
SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev),
|
|
SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
|
|
OID_AUTO, "stats", CTLTYPE_INT|CTLFLAG_RW, adapter, 0,
|
|
igb_sysctl_stats, "I", "Statistics");
|
|
|
|
SYSCTL_ADD_INT(device_get_sysctl_ctx(adapter->dev),
|
|
SYSCTL_CHILDREN(device_get_sysctl_tree(adapter->dev)),
|
|
OID_AUTO, "flow_control", CTLTYPE_INT|CTLFLAG_RW,
|
|
&igb_fc_setting, 0, "Flow Control");
|
|
|
|
SYSCTL_ADD_INT(device_get_sysctl_ctx(dev),
|
|
SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
|
|
OID_AUTO, "enable_aim", CTLTYPE_INT|CTLFLAG_RW,
|
|
&igb_enable_aim, 1, "Interrupt Moderation");
|
|
|
|
SYSCTL_ADD_INT(device_get_sysctl_ctx(dev),
|
|
SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
|
|
OID_AUTO, "low_latency", CTLTYPE_INT|CTLFLAG_RW,
|
|
&igb_low_latency, 1, "Low Latency");
|
|
|
|
SYSCTL_ADD_INT(device_get_sysctl_ctx(dev),
|
|
SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
|
|
OID_AUTO, "ave_latency", CTLTYPE_INT|CTLFLAG_RW,
|
|
&igb_ave_latency, 1, "Average Latency");
|
|
|
|
SYSCTL_ADD_INT(device_get_sysctl_ctx(dev),
|
|
SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
|
|
OID_AUTO, "bulk_latency", CTLTYPE_INT|CTLFLAG_RW,
|
|
&igb_bulk_latency, 1, "Bulk Latency");
|
|
|
|
callout_init_mtx(&adapter->timer, &adapter->core_mtx, 0);
|
|
|
|
/* Determine hardware and mac info */
|
|
igb_identify_hardware(adapter);
|
|
|
|
/* Setup PCI resources */
|
|
if (igb_allocate_pci_resources(adapter)) {
|
|
device_printf(dev, "Allocation of PCI resources failed\n");
|
|
error = ENXIO;
|
|
goto err_pci;
|
|
}
|
|
|
|
/* Do Shared Code initialization */
|
|
if (e1000_setup_init_funcs(&adapter->hw, TRUE)) {
|
|
device_printf(dev, "Setup of Shared code failed\n");
|
|
error = ENXIO;
|
|
goto err_pci;
|
|
}
|
|
|
|
e1000_get_bus_info(&adapter->hw);
|
|
|
|
/* Sysctls for limiting the amount of work done in the taskqueue */
|
|
igb_add_rx_process_limit(adapter, "rx_processing_limit",
|
|
"max number of rx packets to process", &adapter->rx_process_limit,
|
|
igb_rx_process_limit);
|
|
|
|
/*
|
|
* Validate number of transmit and receive descriptors. It
|
|
* must not exceed hardware maximum, and must be multiple
|
|
* of E1000_DBA_ALIGN.
|
|
*/
|
|
if (((igb_txd * sizeof(struct e1000_tx_desc)) % IGB_DBA_ALIGN) != 0 ||
|
|
(igb_txd > IGB_MAX_TXD) || (igb_txd < IGB_MIN_TXD)) {
|
|
device_printf(dev, "Using %d TX descriptors instead of %d!\n",
|
|
IGB_DEFAULT_TXD, igb_txd);
|
|
adapter->num_tx_desc = IGB_DEFAULT_TXD;
|
|
} else
|
|
adapter->num_tx_desc = igb_txd;
|
|
if (((igb_rxd * sizeof(struct e1000_rx_desc)) % IGB_DBA_ALIGN) != 0 ||
|
|
(igb_rxd > IGB_MAX_RXD) || (igb_rxd < IGB_MIN_RXD)) {
|
|
device_printf(dev, "Using %d RX descriptors instead of %d!\n",
|
|
IGB_DEFAULT_RXD, igb_rxd);
|
|
adapter->num_rx_desc = IGB_DEFAULT_RXD;
|
|
} else
|
|
adapter->num_rx_desc = igb_rxd;
|
|
|
|
adapter->hw.mac.autoneg = DO_AUTO_NEG;
|
|
adapter->hw.phy.autoneg_wait_to_complete = FALSE;
|
|
adapter->hw.phy.autoneg_advertised = AUTONEG_ADV_DEFAULT;
|
|
|
|
/* Copper options */
|
|
if (adapter->hw.phy.media_type == e1000_media_type_copper) {
|
|
adapter->hw.phy.mdix = AUTO_ALL_MODES;
|
|
adapter->hw.phy.disable_polarity_correction = FALSE;
|
|
adapter->hw.phy.ms_type = IGB_MASTER_SLAVE;
|
|
}
|
|
|
|
/*
|
|
* Set the frame limits assuming
|
|
* standard ethernet sized frames.
|
|
*/
|
|
adapter->max_frame_size = ETHERMTU + ETHER_HDR_LEN + ETHERNET_FCS_SIZE;
|
|
adapter->min_frame_size = ETH_ZLEN + ETHERNET_FCS_SIZE;
|
|
|
|
/*
|
|
** Allocate and Setup Queues
|
|
*/
|
|
if (igb_allocate_queues(adapter)) {
|
|
error = ENOMEM;
|
|
goto err_pci;
|
|
}
|
|
|
|
/*
|
|
** Start from a known state, this is
|
|
** important in reading the nvm and
|
|
** mac from that.
|
|
*/
|
|
e1000_reset_hw(&adapter->hw);
|
|
|
|
/* Make sure we have a good EEPROM before we read from it */
|
|
if (e1000_validate_nvm_checksum(&adapter->hw) < 0) {
|
|
/*
|
|
** Some PCI-E parts fail the first check due to
|
|
** the link being in sleep state, call it again,
|
|
** if it fails a second time its a real issue.
|
|
*/
|
|
if (e1000_validate_nvm_checksum(&adapter->hw) < 0) {
|
|
device_printf(dev,
|
|
"The EEPROM Checksum Is Not Valid\n");
|
|
error = EIO;
|
|
goto err_late;
|
|
}
|
|
}
|
|
|
|
/*
|
|
** Copy the permanent MAC address out of the EEPROM
|
|
*/
|
|
if (e1000_read_mac_addr(&adapter->hw) < 0) {
|
|
device_printf(dev, "EEPROM read error while reading MAC"
|
|
" address\n");
|
|
error = EIO;
|
|
goto err_late;
|
|
}
|
|
/* Check its sanity */
|
|
if (!igb_is_valid_ether_addr(adapter->hw.mac.addr)) {
|
|
device_printf(dev, "Invalid MAC address\n");
|
|
error = EIO;
|
|
goto err_late;
|
|
}
|
|
|
|
/* Now Initialize the hardware */
|
|
if (igb_hardware_init(adapter)) {
|
|
device_printf(dev, "Unable to initialize the hardware\n");
|
|
error = EIO;
|
|
goto err_late;
|
|
}
|
|
|
|
/*
|
|
** Configure Interrupts
|
|
*/
|
|
if (adapter->msix > 1) /* MSIX */
|
|
error = igb_allocate_msix(adapter);
|
|
else /* MSI or Legacy */
|
|
error = igb_allocate_legacy(adapter);
|
|
if (error)
|
|
goto err_late;
|
|
|
|
/* Setup OS specific network interface */
|
|
igb_setup_interface(dev, adapter);
|
|
|
|
#ifdef IGB_IEEE1588
|
|
/*
|
|
** Setup the timer: IEEE 1588 support
|
|
*/
|
|
adapter->cycles.read = igb_read_clock;
|
|
adapter->cycles.mask = (u64)-1;
|
|
adapter->cycles.mult = 1;
|
|
adapter->cycles.shift = IGB_TSYNC_SHIFT;
|
|
E1000_WRITE_REG(&adapter->hw, E1000_TIMINCA, (1<<24) |
|
|
IGB_TSYNC_CYCLE_TIME * IGB_TSYNC_SHIFT);
|
|
E1000_WRITE_REG(&adapter->hw, E1000_SYSTIML, 0x00000000);
|
|
E1000_WRITE_REG(&adapter->hw, E1000_SYSTIMH, 0xFF800000);
|
|
|
|
// JFV - this is not complete yet
|
|
#endif
|
|
|
|
/* Initialize statistics */
|
|
igb_update_stats_counters(adapter);
|
|
|
|
adapter->hw.mac.get_link_status = 1;
|
|
igb_update_link_status(adapter);
|
|
|
|
/* Indicate SOL/IDER usage */
|
|
if (e1000_check_reset_block(&adapter->hw))
|
|
device_printf(dev,
|
|
"PHY reset is blocked due to SOL/IDER session.\n");
|
|
|
|
/* Determine if we have to control management hardware */
|
|
adapter->has_manage = e1000_enable_mng_pass_thru(&adapter->hw);
|
|
|
|
/*
|
|
* Setup Wake-on-Lan
|
|
*/
|
|
/* APME bit in EEPROM is mapped to WUC.APME */
|
|
eeprom_data = E1000_READ_REG(&adapter->hw, E1000_WUC) & E1000_WUC_APME;
|
|
if (eeprom_data)
|
|
adapter->wol = E1000_WUFC_MAG;
|
|
|
|
/* Register for VLAN events */
|
|
adapter->vlan_attach = EVENTHANDLER_REGISTER(vlan_config,
|
|
igb_register_vlan, adapter, EVENTHANDLER_PRI_FIRST);
|
|
adapter->vlan_detach = EVENTHANDLER_REGISTER(vlan_unconfig,
|
|
igb_unregister_vlan, adapter, EVENTHANDLER_PRI_FIRST);
|
|
|
|
/* Tell the stack that the interface is not active */
|
|
adapter->ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
|
|
|
|
INIT_DEBUGOUT("igb_attach: end");
|
|
|
|
return (0);
|
|
|
|
err_late:
|
|
igb_free_transmit_structures(adapter);
|
|
igb_free_receive_structures(adapter);
|
|
igb_release_hw_control(adapter);
|
|
err_pci:
|
|
igb_free_pci_resources(adapter);
|
|
IGB_CORE_LOCK_DESTROY(adapter);
|
|
|
|
return (error);
|
|
}
|
|
|
|
/*********************************************************************
|
|
* Device removal routine
|
|
*
|
|
* The detach entry point is called when the driver is being removed.
|
|
* This routine stops the adapter and deallocates all the resources
|
|
* that were allocated for driver operation.
|
|
*
|
|
* return 0 on success, positive on failure
|
|
*********************************************************************/
|
|
|
|
static int
|
|
igb_detach(device_t dev)
|
|
{
|
|
struct adapter *adapter = device_get_softc(dev);
|
|
struct ifnet *ifp = adapter->ifp;
|
|
|
|
INIT_DEBUGOUT("igb_detach: begin");
|
|
|
|
/* Make sure VLANS are not using driver */
|
|
if (adapter->ifp->if_vlantrunk != NULL) {
|
|
device_printf(dev,"Vlan in use, detach first\n");
|
|
return (EBUSY);
|
|
}
|
|
|
|
IGB_CORE_LOCK(adapter);
|
|
adapter->in_detach = 1;
|
|
igb_stop(adapter);
|
|
IGB_CORE_UNLOCK(adapter);
|
|
|
|
e1000_phy_hw_reset(&adapter->hw);
|
|
|
|
/* Give control back to firmware */
|
|
igb_release_manageability(adapter);
|
|
igb_release_hw_control(adapter);
|
|
|
|
if (adapter->wol) {
|
|
E1000_WRITE_REG(&adapter->hw, E1000_WUC, E1000_WUC_PME_EN);
|
|
E1000_WRITE_REG(&adapter->hw, E1000_WUFC, adapter->wol);
|
|
igb_enable_wakeup(dev);
|
|
}
|
|
|
|
/* Unregister VLAN events */
|
|
if (adapter->vlan_attach != NULL)
|
|
EVENTHANDLER_DEREGISTER(vlan_config, adapter->vlan_attach);
|
|
if (adapter->vlan_detach != NULL)
|
|
EVENTHANDLER_DEREGISTER(vlan_unconfig, adapter->vlan_detach);
|
|
|
|
ether_ifdetach(adapter->ifp);
|
|
|
|
callout_drain(&adapter->timer);
|
|
|
|
igb_free_pci_resources(adapter);
|
|
bus_generic_detach(dev);
|
|
if_free(ifp);
|
|
|
|
igb_free_transmit_structures(adapter);
|
|
igb_free_receive_structures(adapter);
|
|
|
|
IGB_CORE_LOCK_DESTROY(adapter);
|
|
|
|
return (0);
|
|
}
|
|
|
|
/*********************************************************************
|
|
*
|
|
* Shutdown entry point
|
|
*
|
|
**********************************************************************/
|
|
|
|
static int
|
|
igb_shutdown(device_t dev)
|
|
{
|
|
return igb_suspend(dev);
|
|
}
|
|
|
|
/*
|
|
* Suspend/resume device methods.
|
|
*/
|
|
static int
|
|
igb_suspend(device_t dev)
|
|
{
|
|
struct adapter *adapter = device_get_softc(dev);
|
|
|
|
IGB_CORE_LOCK(adapter);
|
|
|
|
igb_stop(adapter);
|
|
|
|
igb_release_manageability(adapter);
|
|
igb_release_hw_control(adapter);
|
|
|
|
if (adapter->wol) {
|
|
E1000_WRITE_REG(&adapter->hw, E1000_WUC, E1000_WUC_PME_EN);
|
|
E1000_WRITE_REG(&adapter->hw, E1000_WUFC, adapter->wol);
|
|
igb_enable_wakeup(dev);
|
|
}
|
|
|
|
IGB_CORE_UNLOCK(adapter);
|
|
|
|
return bus_generic_suspend(dev);
|
|
}
|
|
|
|
static int
|
|
igb_resume(device_t dev)
|
|
{
|
|
struct adapter *adapter = device_get_softc(dev);
|
|
struct ifnet *ifp = adapter->ifp;
|
|
|
|
IGB_CORE_LOCK(adapter);
|
|
igb_init_locked(adapter);
|
|
igb_init_manageability(adapter);
|
|
|
|
if ((ifp->if_flags & IFF_UP) &&
|
|
(ifp->if_drv_flags & IFF_DRV_RUNNING))
|
|
igb_start(ifp);
|
|
|
|
IGB_CORE_UNLOCK(adapter);
|
|
|
|
return bus_generic_resume(dev);
|
|
}
|
|
|
|
|
|
/*********************************************************************
|
|
* Transmit entry point
|
|
*
|
|
* igb_start is called by the stack to initiate a transmit.
|
|
* The driver will remain in this routine as long as there are
|
|
* packets to transmit and transmit resources are available.
|
|
* In case resources are not available stack is notified and
|
|
* the packet is requeued.
|
|
**********************************************************************/
|
|
|
|
static void
|
|
igb_start_locked(struct tx_ring *txr, struct ifnet *ifp)
|
|
{
|
|
struct adapter *adapter = ifp->if_softc;
|
|
struct mbuf *m_head;
|
|
|
|
IGB_TX_LOCK_ASSERT(txr);
|
|
|
|
if ((ifp->if_drv_flags & (IFF_DRV_RUNNING|IFF_DRV_OACTIVE)) !=
|
|
IFF_DRV_RUNNING)
|
|
return;
|
|
if (!adapter->link_active)
|
|
return;
|
|
|
|
while (!IFQ_DRV_IS_EMPTY(&ifp->if_snd)) {
|
|
|
|
IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head);
|
|
if (m_head == NULL)
|
|
break;
|
|
/*
|
|
* Encapsulation can modify our pointer, and or make it
|
|
* NULL on failure. In that event, we can't requeue.
|
|
*/
|
|
if (igb_xmit(txr, &m_head)) {
|
|
if (m_head == NULL)
|
|
break;
|
|
ifp->if_drv_flags |= IFF_DRV_OACTIVE;
|
|
IFQ_DRV_PREPEND(&ifp->if_snd, m_head);
|
|
break;
|
|
}
|
|
|
|
/* Send a copy of the frame to the BPF listener */
|
|
ETHER_BPF_MTAP(ifp, m_head);
|
|
|
|
/* Set timeout in case hardware has problems transmitting. */
|
|
txr->watchdog_timer = IGB_TX_TIMEOUT;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Legacy TX driver routine, called from the
|
|
* stack, always uses tx[0], and spins for it.
|
|
* Should not be used with multiqueue tx
|
|
*/
|
|
static void
|
|
igb_start(struct ifnet *ifp)
|
|
{
|
|
struct adapter *adapter = ifp->if_softc;
|
|
struct tx_ring *txr = adapter->tx_rings;
|
|
|
|
if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
|
|
IGB_TX_LOCK(txr);
|
|
igb_start_locked(txr, ifp);
|
|
IGB_TX_UNLOCK(txr);
|
|
}
|
|
return;
|
|
}
|
|
|
|
#if __FreeBSD_version >= 800000
|
|
/*
|
|
** Multiqueue Transmit driver
|
|
**
|
|
*/
|
|
static int
|
|
igb_mq_start(struct ifnet *ifp, struct mbuf *m)
|
|
{
|
|
struct adapter *adapter = ifp->if_softc;
|
|
struct tx_ring *txr;
|
|
int i = 0, err = 0;
|
|
|
|
/* Which queue to use */
|
|
if ((m->m_flags & M_FLOWID) != 0)
|
|
i = m->m_pkthdr.flowid % adapter->num_queues;
|
|
txr = &adapter->tx_rings[i];
|
|
|
|
if (IGB_TX_TRYLOCK(txr)) {
|
|
err = igb_mq_start_locked(ifp, txr, m);
|
|
IGB_TX_UNLOCK(txr);
|
|
} else
|
|
err = drbr_enqueue(ifp, txr->br, m);
|
|
|
|
return (err);
|
|
}
|
|
|
|
static int
|
|
igb_mq_start_locked(struct ifnet *ifp, struct tx_ring *txr, struct mbuf *m)
|
|
{
|
|
struct adapter *adapter = txr->adapter;
|
|
struct mbuf *next;
|
|
int err = 0;
|
|
|
|
if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) {
|
|
err = drbr_enqueue(ifp, txr->br, m);
|
|
return (err);
|
|
}
|
|
|
|
if (m == NULL) /* Called by tasklet */
|
|
goto process;
|
|
|
|
/* If nothing queued go right to xmit */
|
|
if (drbr_empty(ifp, txr->br)) {
|
|
if (igb_xmit(txr, &m)) {
|
|
if (m && (err = drbr_enqueue(ifp, txr->br, m)) != 0)
|
|
return (err);
|
|
} else {
|
|
/* Success, update stats */
|
|
drbr_stats_update(ifp, m->m_pkthdr.len, m->m_flags);
|
|
/* Send a copy of the frame to the BPF listener */
|
|
ETHER_BPF_MTAP(ifp, m);
|
|
/* Set the watchdog */
|
|
txr->watchdog_timer = IGB_TX_TIMEOUT;
|
|
}
|
|
|
|
} else if ((err = drbr_enqueue(ifp, txr->br, m)) != 0)
|
|
return (err);
|
|
|
|
process:
|
|
if (drbr_empty(ifp, txr->br))
|
|
return (err);
|
|
|
|
/* Process the queue */
|
|
while (TRUE) {
|
|
if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
|
|
break;
|
|
next = drbr_dequeue(ifp, txr->br);
|
|
if (next == NULL)
|
|
break;
|
|
if (igb_xmit(txr, &next))
|
|
break;
|
|
ETHER_BPF_MTAP(ifp, next);
|
|
/* Set the watchdog */
|
|
txr->watchdog_timer = IGB_TX_TIMEOUT;
|
|
}
|
|
|
|
if (txr->tx_avail <= IGB_TX_OP_THRESHOLD)
|
|
ifp->if_drv_flags |= IFF_DRV_OACTIVE;
|
|
|
|
return (err);
|
|
}
|
|
|
|
/*
|
|
** Flush all ring buffers
|
|
*/
|
|
static void
|
|
igb_qflush(struct ifnet *ifp)
|
|
{
|
|
struct adapter *adapter = ifp->if_softc;
|
|
struct tx_ring *txr = adapter->tx_rings;
|
|
struct mbuf *m;
|
|
|
|
for (int i = 0; i < adapter->num_queues; i++, txr++) {
|
|
IGB_TX_LOCK(txr);
|
|
while ((m = buf_ring_dequeue_sc(txr->br)) != NULL)
|
|
m_freem(m);
|
|
IGB_TX_UNLOCK(txr);
|
|
}
|
|
if_qflush(ifp);
|
|
}
|
|
#endif /* __FreeBSD_version >= 800000 */
|
|
|
|
/*********************************************************************
|
|
* Ioctl entry point
|
|
*
|
|
* igb_ioctl is called when the user wants to configure the
|
|
* interface.
|
|
*
|
|
* return 0 on success, positive on failure
|
|
**********************************************************************/
|
|
|
|
static int
|
|
igb_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
|
|
{
|
|
struct adapter *adapter = ifp->if_softc;
|
|
struct ifreq *ifr = (struct ifreq *)data;
|
|
#ifdef INET
|
|
struct ifaddr *ifa = (struct ifaddr *)data;
|
|
#endif
|
|
int error = 0;
|
|
|
|
if (adapter->in_detach)
|
|
return (error);
|
|
|
|
switch (command) {
|
|
case SIOCSIFADDR:
|
|
#ifdef INET
|
|
if (ifa->ifa_addr->sa_family == AF_INET) {
|
|
/*
|
|
* XXX
|
|
* Since resetting hardware takes a very long time
|
|
* and results in link renegotiation we only
|
|
* initialize the hardware only when it is absolutely
|
|
* required.
|
|
*/
|
|
ifp->if_flags |= IFF_UP;
|
|
if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) {
|
|
IGB_CORE_LOCK(adapter);
|
|
igb_init_locked(adapter);
|
|
IGB_CORE_UNLOCK(adapter);
|
|
}
|
|
if (!(ifp->if_flags & IFF_NOARP))
|
|
arp_ifinit(ifp, ifa);
|
|
} else
|
|
#endif
|
|
error = ether_ioctl(ifp, command, data);
|
|
break;
|
|
case SIOCSIFMTU:
|
|
{
|
|
int max_frame_size;
|
|
|
|
IOCTL_DEBUGOUT("ioctl rcv'd: SIOCSIFMTU (Set Interface MTU)");
|
|
|
|
IGB_CORE_LOCK(adapter);
|
|
max_frame_size = 9234;
|
|
if (ifr->ifr_mtu > max_frame_size - ETHER_HDR_LEN -
|
|
ETHER_CRC_LEN) {
|
|
IGB_CORE_UNLOCK(adapter);
|
|
error = EINVAL;
|
|
break;
|
|
}
|
|
|
|
ifp->if_mtu = ifr->ifr_mtu;
|
|
adapter->max_frame_size =
|
|
ifp->if_mtu + ETHER_HDR_LEN + ETHER_CRC_LEN;
|
|
igb_init_locked(adapter);
|
|
IGB_CORE_UNLOCK(adapter);
|
|
break;
|
|
}
|
|
case SIOCSIFFLAGS:
|
|
IOCTL_DEBUGOUT("ioctl rcv'd:\
|
|
SIOCSIFFLAGS (Set Interface Flags)");
|
|
IGB_CORE_LOCK(adapter);
|
|
if (ifp->if_flags & IFF_UP) {
|
|
if ((ifp->if_drv_flags & IFF_DRV_RUNNING)) {
|
|
if ((ifp->if_flags ^ adapter->if_flags) &
|
|
(IFF_PROMISC | IFF_ALLMULTI)) {
|
|
igb_disable_promisc(adapter);
|
|
igb_set_promisc(adapter);
|
|
}
|
|
} else
|
|
igb_init_locked(adapter);
|
|
} else
|
|
if (ifp->if_drv_flags & IFF_DRV_RUNNING)
|
|
igb_stop(adapter);
|
|
adapter->if_flags = ifp->if_flags;
|
|
IGB_CORE_UNLOCK(adapter);
|
|
break;
|
|
case SIOCADDMULTI:
|
|
case SIOCDELMULTI:
|
|
IOCTL_DEBUGOUT("ioctl rcv'd: SIOC(ADD|DEL)MULTI");
|
|
if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
|
|
IGB_CORE_LOCK(adapter);
|
|
igb_disable_intr(adapter);
|
|
igb_set_multi(adapter);
|
|
igb_enable_intr(adapter);
|
|
IGB_CORE_UNLOCK(adapter);
|
|
}
|
|
break;
|
|
case SIOCSIFMEDIA:
|
|
/* Check SOL/IDER usage */
|
|
IGB_CORE_LOCK(adapter);
|
|
if (e1000_check_reset_block(&adapter->hw)) {
|
|
IGB_CORE_UNLOCK(adapter);
|
|
device_printf(adapter->dev, "Media change is"
|
|
" blocked due to SOL/IDER session.\n");
|
|
break;
|
|
}
|
|
IGB_CORE_UNLOCK(adapter);
|
|
case SIOCGIFMEDIA:
|
|
IOCTL_DEBUGOUT("ioctl rcv'd: \
|
|
SIOCxIFMEDIA (Get/Set Interface Media)");
|
|
error = ifmedia_ioctl(ifp, ifr, &adapter->media, command);
|
|
break;
|
|
case SIOCSIFCAP:
|
|
{
|
|
int mask, reinit;
|
|
|
|
IOCTL_DEBUGOUT("ioctl rcv'd: SIOCSIFCAP (Set Capabilities)");
|
|
reinit = 0;
|
|
mask = ifr->ifr_reqcap ^ ifp->if_capenable;
|
|
if (mask & IFCAP_HWCSUM) {
|
|
ifp->if_capenable ^= IFCAP_HWCSUM;
|
|
reinit = 1;
|
|
}
|
|
if (mask & IFCAP_TSO4) {
|
|
ifp->if_capenable ^= IFCAP_TSO4;
|
|
reinit = 1;
|
|
}
|
|
if (mask & IFCAP_VLAN_HWTAGGING) {
|
|
ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING;
|
|
reinit = 1;
|
|
}
|
|
if (mask & IFCAP_LRO) {
|
|
ifp->if_capenable ^= IFCAP_LRO;
|
|
reinit = 1;
|
|
}
|
|
if (reinit && (ifp->if_drv_flags & IFF_DRV_RUNNING))
|
|
igb_init(adapter);
|
|
VLAN_CAPABILITIES(ifp);
|
|
break;
|
|
}
|
|
|
|
#ifdef IGB_IEEE1588
|
|
/*
|
|
** IOCTL support for Precision Time (IEEE 1588) Support
|
|
*/
|
|
case SIOCSHWTSTAMP:
|
|
error = igb_hwtstamp_ioctl(adapter, ifp);
|
|
break;
|
|
#endif
|
|
|
|
default:
|
|
error = ether_ioctl(ifp, command, data);
|
|
break;
|
|
}
|
|
|
|
return (error);
|
|
}
|
|
|
|
/*********************************************************************
|
|
* Watchdog timer:
|
|
*
|
|
* This routine is called from the local timer every second.
|
|
* As long as transmit descriptors are being cleaned the value
|
|
* is non-zero and we do nothing. Reaching 0 indicates a tx hang
|
|
* and we then reset the device.
|
|
*
|
|
**********************************************************************/
|
|
|
|
static void
|
|
igb_watchdog(struct adapter *adapter)
|
|
{
|
|
struct tx_ring *txr = adapter->tx_rings;
|
|
bool tx_hang = FALSE;
|
|
|
|
IGB_CORE_LOCK_ASSERT(adapter);
|
|
|
|
/*
|
|
** The timer is set to 5 every time start() queues a packet.
|
|
** Then txeof keeps resetting it as long as it cleans at
|
|
** least one descriptor.
|
|
** Finally, anytime all descriptors are clean the timer is
|
|
** set to 0.
|
|
**
|
|
** With TX Multiqueue we need to check every queue's timer,
|
|
** if any time out we do the reset.
|
|
*/
|
|
for (int i = 0; i < adapter->num_queues; i++, txr++) {
|
|
IGB_TX_LOCK(txr);
|
|
if (txr->watchdog_timer == 0 ||
|
|
(--txr->watchdog_timer)) {
|
|
IGB_TX_UNLOCK(txr);
|
|
continue;
|
|
} else {
|
|
tx_hang = TRUE;
|
|
IGB_TX_UNLOCK(txr);
|
|
break;
|
|
}
|
|
}
|
|
if (tx_hang == FALSE)
|
|
return;
|
|
|
|
/* If we are in this routine because of pause frames, then
|
|
* don't reset the hardware.
|
|
*/
|
|
if (E1000_READ_REG(&adapter->hw, E1000_STATUS) &
|
|
E1000_STATUS_TXOFF) {
|
|
txr = adapter->tx_rings; /* reset pointer */
|
|
for (int i = 0; i < adapter->num_queues; i++, txr++) {
|
|
IGB_TX_LOCK(txr);
|
|
txr->watchdog_timer = IGB_TX_TIMEOUT;
|
|
IGB_TX_UNLOCK(txr);
|
|
}
|
|
return;
|
|
}
|
|
|
|
if (e1000_check_for_link(&adapter->hw) == 0)
|
|
device_printf(adapter->dev, "watchdog timeout -- resetting\n");
|
|
|
|
for (int i = 0; i < adapter->num_queues; i++, txr++) {
|
|
device_printf(adapter->dev, "Queue(%d) tdh = %d, tdt = %d\n",
|
|
i, E1000_READ_REG(&adapter->hw, E1000_TDH(i)),
|
|
E1000_READ_REG(&adapter->hw, E1000_TDT(i)));
|
|
device_printf(adapter->dev, "Queue(%d) desc avail = %d,"
|
|
" Next Desc to Clean = %d\n", i, txr->tx_avail,
|
|
txr->next_to_clean);
|
|
}
|
|
|
|
adapter->ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
|
|
adapter->watchdog_events++;
|
|
|
|
igb_init_locked(adapter);
|
|
}
|
|
|
|
/*********************************************************************
|
|
* Init entry point
|
|
*
|
|
* This routine is used in two ways. It is used by the stack as
|
|
* init entry point in network interface structure. It is also used
|
|
* by the driver as a hw/sw initialization routine to get to a
|
|
* consistent state.
|
|
*
|
|
* return 0 on success, positive on failure
|
|
**********************************************************************/
|
|
|
|
static void
|
|
igb_init_locked(struct adapter *adapter)
|
|
{
|
|
struct rx_ring *rxr = adapter->rx_rings;
|
|
struct tx_ring *txr = adapter->tx_rings;
|
|
struct ifnet *ifp = adapter->ifp;
|
|
device_t dev = adapter->dev;
|
|
u32 pba = 0;
|
|
|
|
INIT_DEBUGOUT("igb_init: begin");
|
|
|
|
IGB_CORE_LOCK_ASSERT(adapter);
|
|
|
|
igb_stop(adapter);
|
|
|
|
/*
|
|
* Packet Buffer Allocation (PBA)
|
|
* Writing PBA sets the receive portion of the buffer
|
|
* the remainder is used for the transmit buffer.
|
|
*/
|
|
if (adapter->hw.mac.type == e1000_82575) {
|
|
INIT_DEBUGOUT1("igb_init: pba=%dK",pba);
|
|
pba = E1000_PBA_32K; /* 32K for Rx, 16K for Tx */
|
|
E1000_WRITE_REG(&adapter->hw, E1000_PBA, pba);
|
|
}
|
|
|
|
/* Get the latest mac address, User can use a LAA */
|
|
bcopy(IF_LLADDR(adapter->ifp), adapter->hw.mac.addr,
|
|
ETHER_ADDR_LEN);
|
|
|
|
/* Put the address into the Receive Address Array */
|
|
e1000_rar_set(&adapter->hw, adapter->hw.mac.addr, 0);
|
|
|
|
/* Initialize the hardware */
|
|
if (igb_hardware_init(adapter)) {
|
|
device_printf(dev, "Unable to initialize the hardware\n");
|
|
return;
|
|
}
|
|
igb_update_link_status(adapter);
|
|
|
|
E1000_WRITE_REG(&adapter->hw, E1000_VET, ETHERTYPE_VLAN);
|
|
|
|
/* Set hardware offload abilities */
|
|
ifp->if_hwassist = 0;
|
|
if (ifp->if_capenable & IFCAP_TXCSUM) {
|
|
ifp->if_hwassist |= (CSUM_TCP | CSUM_UDP);
|
|
#if __FreeBSD_version >= 800000
|
|
if (adapter->hw.mac.type == e1000_82576)
|
|
ifp->if_hwassist |= CSUM_SCTP;
|
|
#endif
|
|
}
|
|
|
|
if (ifp->if_capenable & IFCAP_TSO4)
|
|
ifp->if_hwassist |= CSUM_TSO;
|
|
|
|
/* Configure for OS presence */
|
|
igb_init_manageability(adapter);
|
|
|
|
/* Prepare transmit descriptors and buffers */
|
|
igb_setup_transmit_structures(adapter);
|
|
igb_initialize_transmit_units(adapter);
|
|
|
|
/* Setup Multicast table */
|
|
igb_set_multi(adapter);
|
|
|
|
/*
|
|
** Figure out the desired mbuf pool
|
|
** for doing jumbo/packetsplit
|
|
*/
|
|
if (ifp->if_mtu > ETHERMTU)
|
|
adapter->rx_mbuf_sz = MJUMPAGESIZE;
|
|
else
|
|
adapter->rx_mbuf_sz = MCLBYTES;
|
|
|
|
/* Prepare receive descriptors and buffers */
|
|
if (igb_setup_receive_structures(adapter)) {
|
|
device_printf(dev, "Could not setup receive structures\n");
|
|
igb_stop(adapter);
|
|
return;
|
|
}
|
|
igb_initialize_receive_units(adapter);
|
|
|
|
/* Don't lose promiscuous settings */
|
|
igb_set_promisc(adapter);
|
|
|
|
ifp->if_drv_flags |= IFF_DRV_RUNNING;
|
|
ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
|
|
|
|
callout_reset(&adapter->timer, hz, igb_local_timer, adapter);
|
|
e1000_clear_hw_cntrs_base_generic(&adapter->hw);
|
|
|
|
if (adapter->msix > 1) /* Set up queue routing */
|
|
igb_configure_queues(adapter);
|
|
|
|
/* Set up VLAN tag offload and filter */
|
|
igb_setup_vlan_hw_support(adapter);
|
|
|
|
/* Set default RX interrupt moderation */
|
|
for (int i = 0; i < adapter->num_queues; i++, rxr++) {
|
|
E1000_WRITE_REG(&adapter->hw,
|
|
E1000_EITR(rxr->msix), igb_ave_latency);
|
|
rxr->eitr_setting = igb_ave_latency;
|
|
}
|
|
|
|
/* Set TX interrupt rate & reset TX watchdog */
|
|
for (int i = 0; i < adapter->num_queues; i++, txr++) {
|
|
E1000_WRITE_REG(&adapter->hw,
|
|
E1000_EITR(txr->msix), igb_ave_latency);
|
|
txr->watchdog_timer = FALSE;
|
|
}
|
|
|
|
{
|
|
/* this clears any pending interrupts */
|
|
E1000_READ_REG(&adapter->hw, E1000_ICR);
|
|
igb_enable_intr(adapter);
|
|
E1000_WRITE_REG(&adapter->hw, E1000_ICS, E1000_ICS_LSC);
|
|
}
|
|
|
|
/* Don't reset the phy next time init gets called */
|
|
adapter->hw.phy.reset_disable = TRUE;
|
|
}
|
|
|
|
static void
|
|
igb_init(void *arg)
|
|
{
|
|
struct adapter *adapter = arg;
|
|
|
|
IGB_CORE_LOCK(adapter);
|
|
igb_init_locked(adapter);
|
|
IGB_CORE_UNLOCK(adapter);
|
|
}
|
|
|
|
|
|
static void
|
|
igb_handle_rxtx(void *context, int pending)
|
|
{
|
|
struct adapter *adapter = context;
|
|
struct tx_ring *txr = adapter->tx_rings;
|
|
struct rx_ring *rxr = adapter->rx_rings;
|
|
struct ifnet *ifp;
|
|
|
|
ifp = adapter->ifp;
|
|
|
|
if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
|
|
if (igb_rxeof(rxr, adapter->rx_process_limit))
|
|
taskqueue_enqueue(adapter->tq, &adapter->rxtx_task);
|
|
IGB_TX_LOCK(txr);
|
|
igb_txeof(txr);
|
|
|
|
#if __FreeBSD_version >= 800000
|
|
if (!drbr_empty(ifp, txr->br))
|
|
igb_mq_start_locked(ifp, txr, NULL);
|
|
#else
|
|
if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
|
|
igb_start_locked(txr, ifp);
|
|
#endif
|
|
IGB_TX_UNLOCK(txr);
|
|
}
|
|
|
|
igb_enable_intr(adapter);
|
|
}
|
|
|
|
static void
|
|
igb_handle_rx(void *context, int pending)
|
|
{
|
|
struct rx_ring *rxr = context;
|
|
struct adapter *adapter = rxr->adapter;
|
|
struct ifnet *ifp = adapter->ifp;
|
|
|
|
if (ifp->if_drv_flags & IFF_DRV_RUNNING)
|
|
if (igb_rxeof(rxr, adapter->rx_process_limit) != 0)
|
|
/* More to clean, schedule another task */
|
|
taskqueue_enqueue(adapter->tq, &rxr->rx_task);
|
|
|
|
}
|
|
|
|
static void
|
|
igb_handle_tx(void *context, int pending)
|
|
{
|
|
struct tx_ring *txr = context;
|
|
struct adapter *adapter = txr->adapter;
|
|
struct ifnet *ifp = adapter->ifp;
|
|
|
|
if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
|
|
IGB_TX_LOCK(txr);
|
|
igb_txeof(txr);
|
|
#if __FreeBSD_version >= 800000
|
|
if (!drbr_empty(ifp, txr->br))
|
|
igb_mq_start_locked(ifp, txr, NULL);
|
|
#else
|
|
if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
|
|
igb_start_locked(txr, ifp);
|
|
#endif
|
|
IGB_TX_UNLOCK(txr);
|
|
}
|
|
}
|
|
|
|
|
|
/*********************************************************************
|
|
*
|
|
* MSI/Legacy Deferred
|
|
* Interrupt Service routine
|
|
*
|
|
*********************************************************************/
|
|
static int
|
|
igb_irq_fast(void *arg)
|
|
{
|
|
struct adapter *adapter = arg;
|
|
uint32_t reg_icr;
|
|
|
|
|
|
reg_icr = E1000_READ_REG(&adapter->hw, E1000_ICR);
|
|
|
|
/* Hot eject? */
|
|
if (reg_icr == 0xffffffff)
|
|
return FILTER_STRAY;
|
|
|
|
/* Definitely not our interrupt. */
|
|
if (reg_icr == 0x0)
|
|
return FILTER_STRAY;
|
|
|
|
if ((reg_icr & E1000_ICR_INT_ASSERTED) == 0)
|
|
return FILTER_STRAY;
|
|
|
|
/*
|
|
* Mask interrupts until the taskqueue is finished running. This is
|
|
* cheap, just assume that it is needed. This also works around the
|
|
* MSI message reordering errata on certain systems.
|
|
*/
|
|
igb_disable_intr(adapter);
|
|
taskqueue_enqueue(adapter->tq, &adapter->rxtx_task);
|
|
|
|
/* Link status change */
|
|
if (reg_icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
|
|
adapter->hw.mac.get_link_status = 1;
|
|
igb_update_link_status(adapter);
|
|
}
|
|
|
|
if (reg_icr & E1000_ICR_RXO)
|
|
adapter->rx_overruns++;
|
|
return FILTER_HANDLED;
|
|
}
|
|
|
|
|
|
/*********************************************************************
|
|
*
|
|
* MSIX TX Interrupt Service routine
|
|
*
|
|
**********************************************************************/
|
|
static void
|
|
igb_msix_tx(void *arg)
|
|
{
|
|
struct tx_ring *txr = arg;
|
|
struct adapter *adapter = txr->adapter;
|
|
u32 loop = IGB_MAX_LOOP;
|
|
bool more;
|
|
|
|
++txr->tx_irq;
|
|
IGB_TX_LOCK(txr);
|
|
|
|
do {
|
|
more = igb_txeof(txr);
|
|
} while (loop-- && more);
|
|
|
|
IGB_TX_UNLOCK(txr);
|
|
|
|
/* Schedule a clean task */
|
|
taskqueue_enqueue(adapter->tq, &txr->tx_task);
|
|
|
|
/* Reenable this interrupt */
|
|
E1000_WRITE_REG(&adapter->hw, E1000_EIMS, txr->eims);
|
|
return;
|
|
}
|
|
|
|
/*********************************************************************
|
|
*
|
|
* MSIX RX Interrupt Service routine
|
|
*
|
|
**********************************************************************/
|
|
|
|
static void
|
|
igb_msix_rx(void *arg)
|
|
{
|
|
struct rx_ring *rxr = arg;
|
|
struct adapter *adapter = rxr->adapter;
|
|
u32 loop = IGB_MAX_LOOP;
|
|
bool more;
|
|
|
|
++rxr->rx_irq;
|
|
do {
|
|
more = igb_rxeof(rxr, adapter->rx_process_limit);
|
|
} while (loop-- && more);
|
|
|
|
/* Update interrupt rate */
|
|
if (igb_enable_aim == TRUE)
|
|
igb_update_aim(rxr);
|
|
|
|
/* Schedule another clean */
|
|
taskqueue_enqueue(adapter->tq, &rxr->rx_task);
|
|
|
|
/* Reenable this interrupt */
|
|
E1000_WRITE_REG(&adapter->hw, E1000_EIMS, rxr->eims);
|
|
return;
|
|
}
|
|
|
|
|
|
/*********************************************************************
|
|
*
|
|
* MSIX Link Interrupt Service routine
|
|
*
|
|
**********************************************************************/
|
|
|
|
static void
|
|
igb_msix_link(void *arg)
|
|
{
|
|
struct adapter *adapter = arg;
|
|
u32 icr;
|
|
|
|
++adapter->link_irq;
|
|
icr = E1000_READ_REG(&adapter->hw, E1000_ICR);
|
|
if (!(icr & E1000_ICR_LSC))
|
|
goto spurious;
|
|
adapter->hw.mac.get_link_status = 1;
|
|
igb_update_link_status(adapter);
|
|
|
|
spurious:
|
|
/* Rearm */
|
|
E1000_WRITE_REG(&adapter->hw, E1000_IMS, E1000_IMS_LSC);
|
|
E1000_WRITE_REG(&adapter->hw, E1000_EIMS, adapter->link_mask);
|
|
return;
|
|
}
|
|
|
|
|
|
/*
|
|
** Routine to adjust the RX EITR value based on traffic,
|
|
** its a simple three state model, but seems to help.
|
|
**
|
|
** Note that the three EITR values are tuneable using
|
|
** sysctl in real time. The feature can be effectively
|
|
** nullified by setting them equal.
|
|
*/
|
|
#define BULK_THRESHOLD 10000
|
|
#define AVE_THRESHOLD 1600
|
|
|
|
static void
|
|
igb_update_aim(struct rx_ring *rxr)
|
|
{
|
|
struct adapter *adapter = rxr->adapter;
|
|
u32 olditr, newitr;
|
|
|
|
/* Update interrupt moderation based on traffic */
|
|
olditr = rxr->eitr_setting;
|
|
newitr = olditr;
|
|
|
|
/* Idle, don't change setting */
|
|
if (rxr->bytes == 0)
|
|
return;
|
|
|
|
if (olditr == igb_low_latency) {
|
|
if (rxr->bytes > AVE_THRESHOLD)
|
|
newitr = igb_ave_latency;
|
|
} else if (olditr == igb_ave_latency) {
|
|
if (rxr->bytes < AVE_THRESHOLD)
|
|
newitr = igb_low_latency;
|
|
else if (rxr->bytes > BULK_THRESHOLD)
|
|
newitr = igb_bulk_latency;
|
|
} else if (olditr == igb_bulk_latency) {
|
|
if (rxr->bytes < BULK_THRESHOLD)
|
|
newitr = igb_ave_latency;
|
|
}
|
|
|
|
if (olditr != newitr) {
|
|
/* Change interrupt rate */
|
|
rxr->eitr_setting = newitr;
|
|
E1000_WRITE_REG(&adapter->hw, E1000_EITR(rxr->me),
|
|
newitr | (newitr << 16));
|
|
}
|
|
|
|
rxr->bytes = 0;
|
|
return;
|
|
}
|
|
|
|
|
|
/*********************************************************************
|
|
*
|
|
* Media Ioctl callback
|
|
*
|
|
* This routine is called whenever the user queries the status of
|
|
* the interface using ifconfig.
|
|
*
|
|
**********************************************************************/
|
|
static void
|
|
igb_media_status(struct ifnet *ifp, struct ifmediareq *ifmr)
|
|
{
|
|
struct adapter *adapter = ifp->if_softc;
|
|
u_char fiber_type = IFM_1000_SX;
|
|
|
|
INIT_DEBUGOUT("igb_media_status: begin");
|
|
|
|
IGB_CORE_LOCK(adapter);
|
|
igb_update_link_status(adapter);
|
|
|
|
ifmr->ifm_status = IFM_AVALID;
|
|
ifmr->ifm_active = IFM_ETHER;
|
|
|
|
if (!adapter->link_active) {
|
|
IGB_CORE_UNLOCK(adapter);
|
|
return;
|
|
}
|
|
|
|
ifmr->ifm_status |= IFM_ACTIVE;
|
|
|
|
if ((adapter->hw.phy.media_type == e1000_media_type_fiber) ||
|
|
(adapter->hw.phy.media_type == e1000_media_type_internal_serdes))
|
|
ifmr->ifm_active |= fiber_type | IFM_FDX;
|
|
else {
|
|
switch (adapter->link_speed) {
|
|
case 10:
|
|
ifmr->ifm_active |= IFM_10_T;
|
|
break;
|
|
case 100:
|
|
ifmr->ifm_active |= IFM_100_TX;
|
|
break;
|
|
case 1000:
|
|
ifmr->ifm_active |= IFM_1000_T;
|
|
break;
|
|
}
|
|
if (adapter->link_duplex == FULL_DUPLEX)
|
|
ifmr->ifm_active |= IFM_FDX;
|
|
else
|
|
ifmr->ifm_active |= IFM_HDX;
|
|
}
|
|
IGB_CORE_UNLOCK(adapter);
|
|
}
|
|
|
|
/*********************************************************************
|
|
*
|
|
* Media Ioctl callback
|
|
*
|
|
* This routine is called when the user changes speed/duplex using
|
|
* media/mediopt option with ifconfig.
|
|
*
|
|
**********************************************************************/
|
|
static int
|
|
igb_media_change(struct ifnet *ifp)
|
|
{
|
|
struct adapter *adapter = ifp->if_softc;
|
|
struct ifmedia *ifm = &adapter->media;
|
|
|
|
INIT_DEBUGOUT("igb_media_change: begin");
|
|
|
|
if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
|
|
return (EINVAL);
|
|
|
|
IGB_CORE_LOCK(adapter);
|
|
switch (IFM_SUBTYPE(ifm->ifm_media)) {
|
|
case IFM_AUTO:
|
|
adapter->hw.mac.autoneg = DO_AUTO_NEG;
|
|
adapter->hw.phy.autoneg_advertised = AUTONEG_ADV_DEFAULT;
|
|
break;
|
|
case IFM_1000_LX:
|
|
case IFM_1000_SX:
|
|
case IFM_1000_T:
|
|
adapter->hw.mac.autoneg = DO_AUTO_NEG;
|
|
adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
|
|
break;
|
|
case IFM_100_TX:
|
|
adapter->hw.mac.autoneg = FALSE;
|
|
adapter->hw.phy.autoneg_advertised = 0;
|
|
if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX)
|
|
adapter->hw.mac.forced_speed_duplex = ADVERTISE_100_FULL;
|
|
else
|
|
adapter->hw.mac.forced_speed_duplex = ADVERTISE_100_HALF;
|
|
break;
|
|
case IFM_10_T:
|
|
adapter->hw.mac.autoneg = FALSE;
|
|
adapter->hw.phy.autoneg_advertised = 0;
|
|
if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX)
|
|
adapter->hw.mac.forced_speed_duplex = ADVERTISE_10_FULL;
|
|
else
|
|
adapter->hw.mac.forced_speed_duplex = ADVERTISE_10_HALF;
|
|
break;
|
|
default:
|
|
device_printf(adapter->dev, "Unsupported media type\n");
|
|
}
|
|
|
|
/* As the speed/duplex settings my have changed we need to
|
|
* reset the PHY.
|
|
*/
|
|
adapter->hw.phy.reset_disable = FALSE;
|
|
|
|
igb_init_locked(adapter);
|
|
IGB_CORE_UNLOCK(adapter);
|
|
|
|
return (0);
|
|
}
|
|
|
|
|
|
/*********************************************************************
|
|
*
|
|
* This routine maps the mbufs to Advanced TX descriptors.
|
|
* used by the 82575 adapter.
|
|
*
|
|
**********************************************************************/
|
|
|
|
static int
|
|
igb_xmit(struct tx_ring *txr, struct mbuf **m_headp)
|
|
{
|
|
struct adapter *adapter = txr->adapter;
|
|
bus_dma_segment_t segs[IGB_MAX_SCATTER];
|
|
bus_dmamap_t map;
|
|
struct igb_tx_buffer *tx_buffer, *tx_buffer_mapped;
|
|
union e1000_adv_tx_desc *txd = NULL;
|
|
struct mbuf *m_head;
|
|
u32 olinfo_status = 0, cmd_type_len = 0;
|
|
int nsegs, i, j, error, first, last = 0;
|
|
u32 hdrlen = 0;
|
|
|
|
m_head = *m_headp;
|
|
|
|
|
|
/* Set basic descriptor constants */
|
|
cmd_type_len |= E1000_ADVTXD_DTYP_DATA;
|
|
cmd_type_len |= E1000_ADVTXD_DCMD_IFCS | E1000_ADVTXD_DCMD_DEXT;
|
|
if (m_head->m_flags & M_VLANTAG)
|
|
cmd_type_len |= E1000_ADVTXD_DCMD_VLE;
|
|
|
|
/*
|
|
* Force a cleanup if number of TX descriptors
|
|
* available hits the threshold
|
|
*/
|
|
if (txr->tx_avail <= IGB_TX_CLEANUP_THRESHOLD) {
|
|
igb_txeof(txr);
|
|
/* Now do we at least have a minimal? */
|
|
if (txr->tx_avail <= IGB_TX_OP_THRESHOLD) {
|
|
txr->no_desc_avail++;
|
|
return (ENOBUFS);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Map the packet for DMA.
|
|
*
|
|
* Capture the first descriptor index,
|
|
* this descriptor will have the index
|
|
* of the EOP which is the only one that
|
|
* now gets a DONE bit writeback.
|
|
*/
|
|
first = txr->next_avail_desc;
|
|
tx_buffer = &txr->tx_buffers[first];
|
|
tx_buffer_mapped = tx_buffer;
|
|
map = tx_buffer->map;
|
|
|
|
error = bus_dmamap_load_mbuf_sg(txr->txtag, map,
|
|
*m_headp, segs, &nsegs, BUS_DMA_NOWAIT);
|
|
|
|
if (error == EFBIG) {
|
|
struct mbuf *m;
|
|
|
|
m = m_defrag(*m_headp, M_DONTWAIT);
|
|
if (m == NULL) {
|
|
adapter->mbuf_defrag_failed++;
|
|
m_freem(*m_headp);
|
|
*m_headp = NULL;
|
|
return (ENOBUFS);
|
|
}
|
|
*m_headp = m;
|
|
|
|
/* Try it again */
|
|
error = bus_dmamap_load_mbuf_sg(txr->txtag, map,
|
|
*m_headp, segs, &nsegs, BUS_DMA_NOWAIT);
|
|
|
|
if (error == ENOMEM) {
|
|
adapter->no_tx_dma_setup++;
|
|
return (error);
|
|
} else if (error != 0) {
|
|
adapter->no_tx_dma_setup++;
|
|
m_freem(*m_headp);
|
|
*m_headp = NULL;
|
|
return (error);
|
|
}
|
|
} else if (error == ENOMEM) {
|
|
adapter->no_tx_dma_setup++;
|
|
return (error);
|
|
} else if (error != 0) {
|
|
adapter->no_tx_dma_setup++;
|
|
m_freem(*m_headp);
|
|
*m_headp = NULL;
|
|
return (error);
|
|
}
|
|
|
|
/* Check again to be sure we have enough descriptors */
|
|
if (nsegs > (txr->tx_avail - 2)) {
|
|
txr->no_desc_avail++;
|
|
bus_dmamap_unload(txr->txtag, map);
|
|
return (ENOBUFS);
|
|
}
|
|
m_head = *m_headp;
|
|
|
|
/*
|
|
* Set up the context descriptor:
|
|
* used when any hardware offload is done.
|
|
* This includes CSUM, VLAN, and TSO. It
|
|
* will use the first descriptor.
|
|
*/
|
|
if (m_head->m_pkthdr.csum_flags & CSUM_TSO) {
|
|
if (igb_tso_setup(txr, m_head, &hdrlen)) {
|
|
cmd_type_len |= E1000_ADVTXD_DCMD_TSE;
|
|
olinfo_status |= E1000_TXD_POPTS_IXSM << 8;
|
|
olinfo_status |= E1000_TXD_POPTS_TXSM << 8;
|
|
} else
|
|
return (ENXIO);
|
|
} else if (igb_tx_ctx_setup(txr, m_head))
|
|
olinfo_status |= E1000_TXD_POPTS_TXSM << 8;
|
|
|
|
#ifdef IGB_IEEE1588
|
|
/* This is changing soon to an mtag detection */
|
|
if (we detect this mbuf has a TSTAMP mtag)
|
|
cmd_type_len |= E1000_ADVTXD_MAC_TSTAMP;
|
|
#endif
|
|
/* Calculate payload length */
|
|
olinfo_status |= ((m_head->m_pkthdr.len - hdrlen)
|
|
<< E1000_ADVTXD_PAYLEN_SHIFT);
|
|
|
|
/* Set up our transmit descriptors */
|
|
i = txr->next_avail_desc;
|
|
for (j = 0; j < nsegs; j++) {
|
|
bus_size_t seg_len;
|
|
bus_addr_t seg_addr;
|
|
|
|
tx_buffer = &txr->tx_buffers[i];
|
|
txd = (union e1000_adv_tx_desc *)&txr->tx_base[i];
|
|
seg_addr = segs[j].ds_addr;
|
|
seg_len = segs[j].ds_len;
|
|
|
|
txd->read.buffer_addr = htole64(seg_addr);
|
|
txd->read.cmd_type_len = htole32(
|
|
adapter->txd_cmd | cmd_type_len | seg_len);
|
|
txd->read.olinfo_status = htole32(olinfo_status);
|
|
last = i;
|
|
if (++i == adapter->num_tx_desc)
|
|
i = 0;
|
|
tx_buffer->m_head = NULL;
|
|
tx_buffer->next_eop = -1;
|
|
}
|
|
|
|
txr->next_avail_desc = i;
|
|
txr->tx_avail -= nsegs;
|
|
|
|
tx_buffer->m_head = m_head;
|
|
tx_buffer_mapped->map = tx_buffer->map;
|
|
tx_buffer->map = map;
|
|
bus_dmamap_sync(txr->txtag, map, BUS_DMASYNC_PREWRITE);
|
|
|
|
/*
|
|
* Last Descriptor of Packet
|
|
* needs End Of Packet (EOP)
|
|
* and Report Status (RS)
|
|
*/
|
|
txd->read.cmd_type_len |=
|
|
htole32(E1000_TXD_CMD_EOP | E1000_TXD_CMD_RS);
|
|
/*
|
|
* Keep track in the first buffer which
|
|
* descriptor will be written back
|
|
*/
|
|
tx_buffer = &txr->tx_buffers[first];
|
|
tx_buffer->next_eop = last;
|
|
|
|
/*
|
|
* Advance the Transmit Descriptor Tail (TDT), this tells the E1000
|
|
* that this frame is available to transmit.
|
|
*/
|
|
bus_dmamap_sync(txr->txdma.dma_tag, txr->txdma.dma_map,
|
|
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
|
|
E1000_WRITE_REG(&adapter->hw, E1000_TDT(txr->me), i);
|
|
++txr->tx_packets;
|
|
|
|
return (0);
|
|
|
|
}
|
|
|
|
static void
|
|
igb_set_promisc(struct adapter *adapter)
|
|
{
|
|
struct ifnet *ifp = adapter->ifp;
|
|
uint32_t reg_rctl;
|
|
|
|
reg_rctl = E1000_READ_REG(&adapter->hw, E1000_RCTL);
|
|
|
|
if (ifp->if_flags & IFF_PROMISC) {
|
|
reg_rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
|
|
E1000_WRITE_REG(&adapter->hw, E1000_RCTL, reg_rctl);
|
|
} else if (ifp->if_flags & IFF_ALLMULTI) {
|
|
reg_rctl |= E1000_RCTL_MPE;
|
|
reg_rctl &= ~E1000_RCTL_UPE;
|
|
E1000_WRITE_REG(&adapter->hw, E1000_RCTL, reg_rctl);
|
|
}
|
|
}
|
|
|
|
static void
|
|
igb_disable_promisc(struct adapter *adapter)
|
|
{
|
|
uint32_t reg_rctl;
|
|
|
|
reg_rctl = E1000_READ_REG(&adapter->hw, E1000_RCTL);
|
|
|
|
reg_rctl &= (~E1000_RCTL_UPE);
|
|
reg_rctl &= (~E1000_RCTL_MPE);
|
|
E1000_WRITE_REG(&adapter->hw, E1000_RCTL, reg_rctl);
|
|
}
|
|
|
|
|
|
/*********************************************************************
|
|
* Multicast Update
|
|
*
|
|
* This routine is called whenever multicast address list is updated.
|
|
*
|
|
**********************************************************************/
|
|
|
|
static void
|
|
igb_set_multi(struct adapter *adapter)
|
|
{
|
|
struct ifnet *ifp = adapter->ifp;
|
|
struct ifmultiaddr *ifma;
|
|
u32 reg_rctl = 0;
|
|
u8 mta[MAX_NUM_MULTICAST_ADDRESSES * ETH_ADDR_LEN];
|
|
|
|
int mcnt = 0;
|
|
|
|
IOCTL_DEBUGOUT("igb_set_multi: begin");
|
|
|
|
if_maddr_rlock(ifp);
|
|
TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
|
|
if (ifma->ifma_addr->sa_family != AF_LINK)
|
|
continue;
|
|
|
|
if (mcnt == MAX_NUM_MULTICAST_ADDRESSES)
|
|
break;
|
|
|
|
bcopy(LLADDR((struct sockaddr_dl *)ifma->ifma_addr),
|
|
&mta[mcnt * ETH_ADDR_LEN], ETH_ADDR_LEN);
|
|
mcnt++;
|
|
}
|
|
if_maddr_runlock(ifp);
|
|
|
|
if (mcnt >= MAX_NUM_MULTICAST_ADDRESSES) {
|
|
reg_rctl = E1000_READ_REG(&adapter->hw, E1000_RCTL);
|
|
reg_rctl |= E1000_RCTL_MPE;
|
|
E1000_WRITE_REG(&adapter->hw, E1000_RCTL, reg_rctl);
|
|
} else
|
|
e1000_update_mc_addr_list(&adapter->hw, mta, mcnt);
|
|
}
|
|
|
|
|
|
/*********************************************************************
|
|
* Timer routine
|
|
*
|
|
* This routine checks for link status and updates statistics.
|
|
*
|
|
**********************************************************************/
|
|
|
|
static void
|
|
igb_local_timer(void *arg)
|
|
{
|
|
struct adapter *adapter = arg;
|
|
struct ifnet *ifp = adapter->ifp;
|
|
|
|
IGB_CORE_LOCK_ASSERT(adapter);
|
|
|
|
igb_update_link_status(adapter);
|
|
igb_update_stats_counters(adapter);
|
|
|
|
if (igb_display_debug_stats && ifp->if_drv_flags & IFF_DRV_RUNNING)
|
|
igb_print_hw_stats(adapter);
|
|
|
|
/*
|
|
* Each second we check the watchdog to
|
|
* protect against hardware hangs.
|
|
*/
|
|
igb_watchdog(adapter);
|
|
|
|
/* Trigger an RX interrupt on all queues */
|
|
E1000_WRITE_REG(&adapter->hw, E1000_EICS, adapter->rx_mask);
|
|
|
|
callout_reset(&adapter->timer, hz, igb_local_timer, adapter);
|
|
|
|
}
|
|
|
|
static void
|
|
igb_update_link_status(struct adapter *adapter)
|
|
{
|
|
struct e1000_hw *hw = &adapter->hw;
|
|
struct ifnet *ifp = adapter->ifp;
|
|
device_t dev = adapter->dev;
|
|
struct tx_ring *txr = adapter->tx_rings;
|
|
u32 link_check = 0;
|
|
|
|
/* Get the cached link value or read for real */
|
|
switch (hw->phy.media_type) {
|
|
case e1000_media_type_copper:
|
|
if (hw->mac.get_link_status) {
|
|
/* Do the work to read phy */
|
|
e1000_check_for_link(hw);
|
|
link_check = !hw->mac.get_link_status;
|
|
} else
|
|
link_check = TRUE;
|
|
break;
|
|
case e1000_media_type_fiber:
|
|
e1000_check_for_link(hw);
|
|
link_check = (E1000_READ_REG(hw, E1000_STATUS) &
|
|
E1000_STATUS_LU);
|
|
break;
|
|
case e1000_media_type_internal_serdes:
|
|
e1000_check_for_link(hw);
|
|
link_check = adapter->hw.mac.serdes_has_link;
|
|
break;
|
|
default:
|
|
case e1000_media_type_unknown:
|
|
break;
|
|
}
|
|
|
|
/* Now we check if a transition has happened */
|
|
if (link_check && (adapter->link_active == 0)) {
|
|
e1000_get_speed_and_duplex(&adapter->hw,
|
|
&adapter->link_speed, &adapter->link_duplex);
|
|
if (bootverbose)
|
|
device_printf(dev, "Link is up %d Mbps %s\n",
|
|
adapter->link_speed,
|
|
((adapter->link_duplex == FULL_DUPLEX) ?
|
|
"Full Duplex" : "Half Duplex"));
|
|
adapter->link_active = 1;
|
|
ifp->if_baudrate = adapter->link_speed * 1000000;
|
|
if_link_state_change(ifp, LINK_STATE_UP);
|
|
} else if (!link_check && (adapter->link_active == 1)) {
|
|
ifp->if_baudrate = adapter->link_speed = 0;
|
|
adapter->link_duplex = 0;
|
|
if (bootverbose)
|
|
device_printf(dev, "Link is Down\n");
|
|
adapter->link_active = 0;
|
|
if_link_state_change(ifp, LINK_STATE_DOWN);
|
|
/* Turn off watchdogs */
|
|
for (int i = 0; i < adapter->num_queues; i++, txr++)
|
|
txr->watchdog_timer = FALSE;
|
|
}
|
|
}
|
|
|
|
/*********************************************************************
|
|
*
|
|
* This routine disables all traffic on the adapter by issuing a
|
|
* global reset on the MAC and deallocates TX/RX buffers.
|
|
*
|
|
**********************************************************************/
|
|
|
|
static void
|
|
igb_stop(void *arg)
|
|
{
|
|
struct adapter *adapter = arg;
|
|
struct ifnet *ifp = adapter->ifp;
|
|
|
|
IGB_CORE_LOCK_ASSERT(adapter);
|
|
|
|
INIT_DEBUGOUT("igb_stop: begin");
|
|
|
|
igb_disable_intr(adapter);
|
|
|
|
callout_stop(&adapter->timer);
|
|
|
|
/* Tell the stack that the interface is no longer active */
|
|
ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
|
|
|
|
e1000_reset_hw(&adapter->hw);
|
|
E1000_WRITE_REG(&adapter->hw, E1000_WUC, 0);
|
|
}
|
|
|
|
|
|
/*********************************************************************
|
|
*
|
|
* Determine hardware revision.
|
|
*
|
|
**********************************************************************/
|
|
static void
|
|
igb_identify_hardware(struct adapter *adapter)
|
|
{
|
|
device_t dev = adapter->dev;
|
|
|
|
/* Make sure our PCI config space has the necessary stuff set */
|
|
adapter->hw.bus.pci_cmd_word = pci_read_config(dev, PCIR_COMMAND, 2);
|
|
if (!((adapter->hw.bus.pci_cmd_word & PCIM_CMD_BUSMASTEREN) &&
|
|
(adapter->hw.bus.pci_cmd_word & PCIM_CMD_MEMEN))) {
|
|
device_printf(dev, "Memory Access and/or Bus Master bits "
|
|
"were not set!\n");
|
|
adapter->hw.bus.pci_cmd_word |=
|
|
(PCIM_CMD_BUSMASTEREN | PCIM_CMD_MEMEN);
|
|
pci_write_config(dev, PCIR_COMMAND,
|
|
adapter->hw.bus.pci_cmd_word, 2);
|
|
}
|
|
|
|
/* Save off the information about this board */
|
|
adapter->hw.vendor_id = pci_get_vendor(dev);
|
|
adapter->hw.device_id = pci_get_device(dev);
|
|
adapter->hw.revision_id = pci_read_config(dev, PCIR_REVID, 1);
|
|
adapter->hw.subsystem_vendor_id =
|
|
pci_read_config(dev, PCIR_SUBVEND_0, 2);
|
|
adapter->hw.subsystem_device_id =
|
|
pci_read_config(dev, PCIR_SUBDEV_0, 2);
|
|
|
|
/* Do Shared Code Init and Setup */
|
|
if (e1000_set_mac_type(&adapter->hw)) {
|
|
device_printf(dev, "Setup init failure\n");
|
|
return;
|
|
}
|
|
}
|
|
|
|
static int
|
|
igb_allocate_pci_resources(struct adapter *adapter)
|
|
{
|
|
device_t dev = adapter->dev;
|
|
int rid;
|
|
|
|
rid = PCIR_BAR(0);
|
|
adapter->pci_mem = bus_alloc_resource_any(dev, SYS_RES_MEMORY,
|
|
&rid, RF_ACTIVE);
|
|
if (adapter->pci_mem == NULL) {
|
|
device_printf(dev, "Unable to allocate bus resource: memory\n");
|
|
return (ENXIO);
|
|
}
|
|
adapter->osdep.mem_bus_space_tag =
|
|
rman_get_bustag(adapter->pci_mem);
|
|
adapter->osdep.mem_bus_space_handle =
|
|
rman_get_bushandle(adapter->pci_mem);
|
|
adapter->hw.hw_addr = (u8 *)&adapter->osdep.mem_bus_space_handle;
|
|
|
|
adapter->num_queues = 1; /* Defaults for Legacy or MSI */
|
|
|
|
/* This will setup either MSI/X or MSI */
|
|
adapter->msix = igb_setup_msix(adapter);
|
|
adapter->hw.back = &adapter->osdep;
|
|
|
|
return (0);
|
|
}
|
|
|
|
/*********************************************************************
|
|
*
|
|
* Setup the Legacy or MSI Interrupt handler
|
|
*
|
|
**********************************************************************/
|
|
static int
|
|
igb_allocate_legacy(struct adapter *adapter)
|
|
{
|
|
device_t dev = adapter->dev;
|
|
int error, rid = 0;
|
|
|
|
/* Turn off all interrupts */
|
|
E1000_WRITE_REG(&adapter->hw, E1000_IMC, 0xffffffff);
|
|
|
|
/* MSI RID is 1 */
|
|
if (adapter->msix == 1)
|
|
rid = 1;
|
|
|
|
/* We allocate a single interrupt resource */
|
|
adapter->res = bus_alloc_resource_any(dev,
|
|
SYS_RES_IRQ, &rid, RF_SHAREABLE | RF_ACTIVE);
|
|
if (adapter->res == NULL) {
|
|
device_printf(dev, "Unable to allocate bus resource: "
|
|
"interrupt\n");
|
|
return (ENXIO);
|
|
}
|
|
|
|
/*
|
|
* Try allocating a fast interrupt and the associated deferred
|
|
* processing contexts.
|
|
*/
|
|
TASK_INIT(&adapter->rxtx_task, 0, igb_handle_rxtx, adapter);
|
|
adapter->tq = taskqueue_create_fast("igb_taskq", M_NOWAIT,
|
|
taskqueue_thread_enqueue, &adapter->tq);
|
|
taskqueue_start_threads(&adapter->tq, 1, PI_NET, "%s taskq",
|
|
device_get_nameunit(adapter->dev));
|
|
if ((error = bus_setup_intr(dev, adapter->res,
|
|
INTR_TYPE_NET | INTR_MPSAFE, igb_irq_fast, NULL,
|
|
adapter, &adapter->tag)) != 0) {
|
|
device_printf(dev, "Failed to register fast interrupt "
|
|
"handler: %d\n", error);
|
|
taskqueue_free(adapter->tq);
|
|
adapter->tq = NULL;
|
|
return (error);
|
|
}
|
|
|
|
return (0);
|
|
}
|
|
|
|
|
|
/*********************************************************************
|
|
*
|
|
* Setup the MSIX Interrupt handlers:
|
|
*
|
|
**********************************************************************/
|
|
static int
|
|
igb_allocate_msix(struct adapter *adapter)
|
|
{
|
|
device_t dev = adapter->dev;
|
|
struct tx_ring *txr = adapter->tx_rings;
|
|
struct rx_ring *rxr = adapter->rx_rings;
|
|
int error, rid, vector = 0;
|
|
|
|
/*
|
|
* Setup the interrupt handlers
|
|
*/
|
|
|
|
/* TX Setup */
|
|
for (int i = 0; i < adapter->num_queues; i++, vector++, txr++) {
|
|
rid = vector +1;
|
|
txr->res = bus_alloc_resource_any(dev,
|
|
SYS_RES_IRQ, &rid, RF_SHAREABLE | RF_ACTIVE);
|
|
if (txr->res == NULL) {
|
|
device_printf(dev,
|
|
"Unable to allocate bus resource: "
|
|
"MSIX TX Interrupt\n");
|
|
return (ENXIO);
|
|
}
|
|
error = bus_setup_intr(dev, txr->res,
|
|
INTR_TYPE_NET | INTR_MPSAFE, NULL,
|
|
igb_msix_tx, txr, &txr->tag);
|
|
if (error) {
|
|
txr->res = NULL;
|
|
device_printf(dev, "Failed to register TX handler");
|
|
return (error);
|
|
}
|
|
/* Make tasklet for deferred handling - one per queue */
|
|
TASK_INIT(&txr->tx_task, 0, igb_handle_tx, txr);
|
|
txr->msix = vector;
|
|
if (adapter->hw.mac.type == e1000_82575)
|
|
txr->eims = E1000_EICR_TX_QUEUE0 << i;
|
|
else
|
|
txr->eims = 1 << vector;
|
|
/*
|
|
** Bind the msix vector, and thus the
|
|
** ring to the corresponding cpu.
|
|
*/
|
|
if (adapter->num_queues > 1)
|
|
bus_bind_intr(dev, txr->res, i);
|
|
}
|
|
|
|
/* RX Setup */
|
|
for (int i = 0; i < adapter->num_queues; i++, vector++, rxr++) {
|
|
rid = vector +1;
|
|
rxr->res = bus_alloc_resource_any(dev,
|
|
SYS_RES_IRQ, &rid, RF_SHAREABLE | RF_ACTIVE);
|
|
if (rxr->res == NULL) {
|
|
device_printf(dev,
|
|
"Unable to allocate bus resource: "
|
|
"MSIX RX Interrupt\n");
|
|
return (ENXIO);
|
|
}
|
|
error = bus_setup_intr(dev, rxr->res,
|
|
INTR_TYPE_NET | INTR_MPSAFE, NULL,
|
|
igb_msix_rx, rxr, &rxr->tag);
|
|
if (error) {
|
|
rxr->res = NULL;
|
|
device_printf(dev, "Failed to register RX handler");
|
|
return (error);
|
|
}
|
|
/* Make tasklet for deferred handling - one per queue */
|
|
TASK_INIT(&rxr->rx_task, 0, igb_handle_rx, rxr);
|
|
rxr->msix = vector;
|
|
if (adapter->hw.mac.type == e1000_82575)
|
|
rxr->eims = E1000_EICR_RX_QUEUE0 << i;
|
|
else
|
|
rxr->eims = 1 << vector;
|
|
/* Get a mask for local timer */
|
|
adapter->rx_mask |= rxr->eims;
|
|
/*
|
|
** Bind the msix vector, and thus the
|
|
** ring to the corresponding cpu.
|
|
** Notice that this makes an RX/TX pair
|
|
** bound to each CPU, limited by the MSIX
|
|
** vectors.
|
|
*/
|
|
if (adapter->num_queues > 1)
|
|
bus_bind_intr(dev, rxr->res, i);
|
|
}
|
|
|
|
/* And Link */
|
|
rid = vector +1;
|
|
adapter->res = bus_alloc_resource_any(dev,
|
|
SYS_RES_IRQ, &rid, RF_SHAREABLE | RF_ACTIVE);
|
|
if (adapter->res == NULL) {
|
|
device_printf(dev,
|
|
"Unable to allocate bus resource: "
|
|
"MSIX Link Interrupt\n");
|
|
return (ENXIO);
|
|
}
|
|
if ((error = bus_setup_intr(dev, adapter->res,
|
|
INTR_TYPE_NET | INTR_MPSAFE, NULL,
|
|
igb_msix_link, adapter, &adapter->tag)) != 0) {
|
|
device_printf(dev, "Failed to register Link handler");
|
|
return (error);
|
|
}
|
|
adapter->linkvec = vector;
|
|
adapter->tq = taskqueue_create_fast("igb_taskq", M_NOWAIT,
|
|
taskqueue_thread_enqueue, &adapter->tq);
|
|
taskqueue_start_threads(&adapter->tq, 1, PI_NET, "%s taskq",
|
|
device_get_nameunit(adapter->dev));
|
|
|
|
return (0);
|
|
}
|
|
|
|
|
|
static void
|
|
igb_configure_queues(struct adapter *adapter)
|
|
{
|
|
struct e1000_hw *hw = &adapter->hw;
|
|
struct tx_ring *txr;
|
|
struct rx_ring *rxr;
|
|
|
|
/* Turn on MSIX */
|
|
/*
|
|
** 82576 uses IVARs to route MSI/X
|
|
** interrupts, its not very intuitive,
|
|
** study the code carefully :)
|
|
*/
|
|
if (adapter->hw.mac.type == e1000_82576) {
|
|
u32 ivar = 0;
|
|
/* First turn on the capability */
|
|
E1000_WRITE_REG(hw, E1000_GPIE,
|
|
E1000_GPIE_MSIX_MODE |
|
|
E1000_GPIE_EIAME |
|
|
E1000_GPIE_PBA | E1000_GPIE_NSICR);
|
|
/* RX */
|
|
for (int i = 0; i < adapter->num_queues; i++) {
|
|
u32 index = i & 0x7; /* Each IVAR has two entries */
|
|
ivar = E1000_READ_REG_ARRAY(hw, E1000_IVAR0, index);
|
|
rxr = &adapter->rx_rings[i];
|
|
if (i < 8) {
|
|
ivar &= 0xFFFFFF00;
|
|
ivar |= rxr->msix | E1000_IVAR_VALID;
|
|
} else {
|
|
ivar &= 0xFF00FFFF;
|
|
ivar |= (rxr->msix | E1000_IVAR_VALID) << 16;
|
|
}
|
|
E1000_WRITE_REG_ARRAY(hw, E1000_IVAR0, index, ivar);
|
|
adapter->eims_mask |= rxr->eims;
|
|
}
|
|
/* TX */
|
|
for (int i = 0; i < adapter->num_queues; i++) {
|
|
u32 index = i & 0x7; /* Each IVAR has two entries */
|
|
ivar = E1000_READ_REG_ARRAY(hw, E1000_IVAR0, index);
|
|
txr = &adapter->tx_rings[i];
|
|
if (i < 8) {
|
|
ivar &= 0xFFFF00FF;
|
|
ivar |= (txr->msix | E1000_IVAR_VALID) << 8;
|
|
} else {
|
|
ivar &= 0x00FFFFFF;
|
|
ivar |= (txr->msix | E1000_IVAR_VALID) << 24;
|
|
}
|
|
E1000_WRITE_REG_ARRAY(hw, E1000_IVAR0, index, ivar);
|
|
adapter->eims_mask |= txr->eims;
|
|
}
|
|
|
|
/* And for the link interrupt */
|
|
ivar = (adapter->linkvec | E1000_IVAR_VALID) << 8;
|
|
adapter->link_mask = 1 << adapter->linkvec;
|
|
adapter->eims_mask |= adapter->link_mask;
|
|
E1000_WRITE_REG(hw, E1000_IVAR_MISC, ivar);
|
|
} else
|
|
{ /* 82575 */
|
|
int tmp;
|
|
|
|
/* enable MSI-X PBA support*/
|
|
tmp = E1000_READ_REG(hw, E1000_CTRL_EXT);
|
|
tmp |= E1000_CTRL_EXT_PBA_CLR;
|
|
/* Auto-Mask interrupts upon ICR read. */
|
|
tmp |= E1000_CTRL_EXT_EIAME;
|
|
tmp |= E1000_CTRL_EXT_IRCA;
|
|
E1000_WRITE_REG(hw, E1000_CTRL_EXT, tmp);
|
|
|
|
/* TX */
|
|
for (int i = 0; i < adapter->num_queues; i++) {
|
|
txr = &adapter->tx_rings[i];
|
|
E1000_WRITE_REG(hw, E1000_MSIXBM(txr->msix),
|
|
txr->eims);
|
|
adapter->eims_mask |= txr->eims;
|
|
}
|
|
|
|
/* RX */
|
|
for (int i = 0; i < adapter->num_queues; i++) {
|
|
rxr = &adapter->rx_rings[i];
|
|
E1000_WRITE_REG(hw, E1000_MSIXBM(rxr->msix),
|
|
rxr->eims);
|
|
adapter->eims_mask |= rxr->eims;
|
|
}
|
|
|
|
/* Link */
|
|
E1000_WRITE_REG(hw, E1000_MSIXBM(adapter->linkvec),
|
|
E1000_EIMS_OTHER);
|
|
adapter->link_mask |= E1000_EIMS_OTHER;
|
|
adapter->eims_mask |= adapter->link_mask;
|
|
}
|
|
return;
|
|
}
|
|
|
|
|
|
static void
|
|
igb_free_pci_resources(struct adapter *adapter)
|
|
{
|
|
struct tx_ring *txr = adapter->tx_rings;
|
|
struct rx_ring *rxr = adapter->rx_rings;
|
|
device_t dev = adapter->dev;
|
|
int rid;
|
|
|
|
/*
|
|
** There is a slight possibility of a failure mode
|
|
** in attach that will result in entering this function
|
|
** before interrupt resources have been initialized, and
|
|
** in that case we do not want to execute the loops below
|
|
** We can detect this reliably by the state of the adapter
|
|
** res pointer.
|
|
*/
|
|
if (adapter->res == NULL)
|
|
goto mem;
|
|
|
|
/*
|
|
* First release all the TX/RX interrupt resources:
|
|
*/
|
|
for (int i = 0; i < adapter->num_queues; i++, txr++) {
|
|
rid = txr->msix + 1;
|
|
if (txr->tag != NULL) {
|
|
bus_teardown_intr(dev, txr->res, txr->tag);
|
|
txr->tag = NULL;
|
|
}
|
|
if (txr->res != NULL)
|
|
bus_release_resource(dev, SYS_RES_IRQ, rid, txr->res);
|
|
}
|
|
|
|
for (int i = 0; i < adapter->num_queues; i++, rxr++) {
|
|
rid = rxr->msix + 1;
|
|
if (rxr->tag != NULL) {
|
|
bus_teardown_intr(dev, rxr->res, rxr->tag);
|
|
rxr->tag = NULL;
|
|
}
|
|
if (rxr->res != NULL)
|
|
bus_release_resource(dev, SYS_RES_IRQ, rid, rxr->res);
|
|
}
|
|
|
|
/* Clean the Legacy or Link interrupt last */
|
|
if (adapter->linkvec) /* we are doing MSIX */
|
|
rid = adapter->linkvec + 1;
|
|
else
|
|
(adapter->msix != 0) ? (rid = 1):(rid = 0);
|
|
|
|
if (adapter->tag != NULL) {
|
|
bus_teardown_intr(dev, adapter->res, adapter->tag);
|
|
adapter->tag = NULL;
|
|
}
|
|
if (adapter->res != NULL)
|
|
bus_release_resource(dev, SYS_RES_IRQ, rid, adapter->res);
|
|
|
|
mem:
|
|
if (adapter->msix)
|
|
pci_release_msi(dev);
|
|
|
|
if (adapter->msix_mem != NULL)
|
|
bus_release_resource(dev, SYS_RES_MEMORY,
|
|
PCIR_BAR(IGB_MSIX_BAR), adapter->msix_mem);
|
|
|
|
if (adapter->pci_mem != NULL)
|
|
bus_release_resource(dev, SYS_RES_MEMORY,
|
|
PCIR_BAR(0), adapter->pci_mem);
|
|
|
|
}
|
|
|
|
/*
|
|
* Setup Either MSI/X or MSI
|
|
*/
|
|
static int
|
|
igb_setup_msix(struct adapter *adapter)
|
|
{
|
|
device_t dev = adapter->dev;
|
|
int rid, want, queues, msgs;
|
|
|
|
/* First try MSI/X */
|
|
rid = PCIR_BAR(IGB_MSIX_BAR);
|
|
adapter->msix_mem = bus_alloc_resource_any(dev,
|
|
SYS_RES_MEMORY, &rid, RF_ACTIVE);
|
|
if (!adapter->msix_mem) {
|
|
/* May not be enabled */
|
|
device_printf(adapter->dev,
|
|
"Unable to map MSIX table \n");
|
|
goto msi;
|
|
}
|
|
|
|
msgs = pci_msix_count(dev);
|
|
if (msgs == 0) { /* system has msix disabled */
|
|
bus_release_resource(dev, SYS_RES_MEMORY,
|
|
PCIR_BAR(IGB_MSIX_BAR), adapter->msix_mem);
|
|
adapter->msix_mem = NULL;
|
|
goto msi;
|
|
}
|
|
|
|
/* Figure out a reasonable auto config value */
|
|
queues = (mp_ncpus > ((msgs-1)/2)) ? (msgs-1)/2 : mp_ncpus;
|
|
|
|
if (igb_num_queues == 0)
|
|
igb_num_queues = queues;
|
|
/*
|
|
** Two vectors (RX/TX pair) per queue
|
|
** plus an additional for Link interrupt
|
|
*/
|
|
want = (igb_num_queues * 2) + 1;
|
|
if (msgs >= want)
|
|
msgs = want;
|
|
else {
|
|
device_printf(adapter->dev,
|
|
"MSIX Configuration Problem, "
|
|
"%d vectors configured, but %d queues wanted!\n",
|
|
msgs, want);
|
|
return (ENXIO);
|
|
}
|
|
if ((msgs) && pci_alloc_msix(dev, &msgs) == 0) {
|
|
device_printf(adapter->dev,
|
|
"Using MSIX interrupts with %d vectors\n", msgs);
|
|
adapter->num_queues = igb_num_queues;
|
|
return (msgs);
|
|
}
|
|
msi:
|
|
msgs = pci_msi_count(dev);
|
|
if (msgs == 1 && pci_alloc_msi(dev, &msgs) == 0)
|
|
device_printf(adapter->dev,"Using MSI interrupt\n");
|
|
return (msgs);
|
|
}
|
|
|
|
/*********************************************************************
|
|
*
|
|
* Initialize the hardware to a configuration
|
|
* as specified by the adapter structure.
|
|
*
|
|
**********************************************************************/
|
|
static int
|
|
igb_hardware_init(struct adapter *adapter)
|
|
{
|
|
device_t dev = adapter->dev;
|
|
u32 rx_buffer_size;
|
|
|
|
INIT_DEBUGOUT("igb_hardware_init: begin");
|
|
|
|
/* Issue a global reset */
|
|
e1000_reset_hw(&adapter->hw);
|
|
|
|
/* Let the firmware know the OS is in control */
|
|
igb_get_hw_control(adapter);
|
|
|
|
/*
|
|
* These parameters control the automatic generation (Tx) and
|
|
* response (Rx) to Ethernet PAUSE frames.
|
|
* - High water mark should allow for at least two frames to be
|
|
* received after sending an XOFF.
|
|
* - Low water mark works best when it is very near the high water mark.
|
|
* This allows the receiver to restart by sending XON when it has
|
|
* drained a bit. Here we use an arbitary value of 1500 which will
|
|
* restart after one full frame is pulled from the buffer. There
|
|
* could be several smaller frames in the buffer and if so they will
|
|
* not trigger the XON until their total number reduces the buffer
|
|
* by 1500.
|
|
* - The pause time is fairly large at 1000 x 512ns = 512 usec.
|
|
*/
|
|
if (adapter->hw.mac.type == e1000_82576)
|
|
rx_buffer_size = ((E1000_READ_REG(&adapter->hw,
|
|
E1000_RXPBS) & 0xffff) << 10 );
|
|
else
|
|
rx_buffer_size = ((E1000_READ_REG(&adapter->hw,
|
|
E1000_PBA) & 0xffff) << 10 );
|
|
|
|
adapter->hw.fc.high_water = rx_buffer_size -
|
|
roundup2(adapter->max_frame_size, 1024);
|
|
adapter->hw.fc.low_water = adapter->hw.fc.high_water - 1500;
|
|
|
|
adapter->hw.fc.pause_time = IGB_FC_PAUSE_TIME;
|
|
adapter->hw.fc.send_xon = TRUE;
|
|
|
|
/* Set Flow control, use the tunable location if sane */
|
|
if ((igb_fc_setting >= 0) || (igb_fc_setting < 4))
|
|
adapter->hw.fc.requested_mode = igb_fc_setting;
|
|
else
|
|
adapter->hw.fc.requested_mode = e1000_fc_none;
|
|
|
|
if (e1000_init_hw(&adapter->hw) < 0) {
|
|
device_printf(dev, "Hardware Initialization Failed\n");
|
|
return (EIO);
|
|
}
|
|
|
|
e1000_check_for_link(&adapter->hw);
|
|
|
|
return (0);
|
|
}
|
|
|
|
/*********************************************************************
|
|
*
|
|
* Setup networking device structure and register an interface.
|
|
*
|
|
**********************************************************************/
|
|
static void
|
|
igb_setup_interface(device_t dev, struct adapter *adapter)
|
|
{
|
|
struct ifnet *ifp;
|
|
|
|
INIT_DEBUGOUT("igb_setup_interface: begin");
|
|
|
|
ifp = adapter->ifp = if_alloc(IFT_ETHER);
|
|
if (ifp == NULL)
|
|
panic("%s: can not if_alloc()", device_get_nameunit(dev));
|
|
if_initname(ifp, device_get_name(dev), device_get_unit(dev));
|
|
ifp->if_mtu = ETHERMTU;
|
|
ifp->if_init = igb_init;
|
|
ifp->if_softc = adapter;
|
|
ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
|
|
ifp->if_ioctl = igb_ioctl;
|
|
ifp->if_start = igb_start;
|
|
#if __FreeBSD_version >= 800000
|
|
ifp->if_transmit = igb_mq_start;
|
|
ifp->if_qflush = igb_qflush;
|
|
#endif
|
|
IFQ_SET_MAXLEN(&ifp->if_snd, adapter->num_tx_desc - 1);
|
|
ifp->if_snd.ifq_drv_maxlen = adapter->num_tx_desc - 1;
|
|
IFQ_SET_READY(&ifp->if_snd);
|
|
|
|
ether_ifattach(ifp, adapter->hw.mac.addr);
|
|
|
|
ifp->if_capabilities = ifp->if_capenable = 0;
|
|
|
|
ifp->if_capabilities = IFCAP_HWCSUM | IFCAP_VLAN_MTU;
|
|
ifp->if_capabilities |= IFCAP_TSO4;
|
|
ifp->if_capabilities |= IFCAP_JUMBO_MTU;
|
|
ifp->if_capenable = ifp->if_capabilities;
|
|
|
|
/*
|
|
* Tell the upper layer(s) we support long frames.
|
|
*/
|
|
ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
|
|
ifp->if_capabilities |= IFCAP_VLAN_HWTAGGING | IFCAP_VLAN_MTU;
|
|
ifp->if_capenable |= IFCAP_VLAN_HWTAGGING | IFCAP_VLAN_MTU;
|
|
|
|
/*
|
|
* Specify the media types supported by this adapter and register
|
|
* callbacks to update media and link information
|
|
*/
|
|
ifmedia_init(&adapter->media, IFM_IMASK,
|
|
igb_media_change, igb_media_status);
|
|
if ((adapter->hw.phy.media_type == e1000_media_type_fiber) ||
|
|
(adapter->hw.phy.media_type == e1000_media_type_internal_serdes)) {
|
|
ifmedia_add(&adapter->media, IFM_ETHER | IFM_1000_SX | IFM_FDX,
|
|
0, NULL);
|
|
ifmedia_add(&adapter->media, IFM_ETHER | IFM_1000_SX, 0, NULL);
|
|
} else {
|
|
ifmedia_add(&adapter->media, IFM_ETHER | IFM_10_T, 0, NULL);
|
|
ifmedia_add(&adapter->media, IFM_ETHER | IFM_10_T | IFM_FDX,
|
|
0, NULL);
|
|
ifmedia_add(&adapter->media, IFM_ETHER | IFM_100_TX,
|
|
0, NULL);
|
|
ifmedia_add(&adapter->media, IFM_ETHER | IFM_100_TX | IFM_FDX,
|
|
0, NULL);
|
|
if (adapter->hw.phy.type != e1000_phy_ife) {
|
|
ifmedia_add(&adapter->media,
|
|
IFM_ETHER | IFM_1000_T | IFM_FDX, 0, NULL);
|
|
ifmedia_add(&adapter->media,
|
|
IFM_ETHER | IFM_1000_T, 0, NULL);
|
|
}
|
|
}
|
|
ifmedia_add(&adapter->media, IFM_ETHER | IFM_AUTO, 0, NULL);
|
|
ifmedia_set(&adapter->media, IFM_ETHER | IFM_AUTO);
|
|
}
|
|
|
|
|
|
/*
|
|
* Manage DMA'able memory.
|
|
*/
|
|
static void
|
|
igb_dmamap_cb(void *arg, bus_dma_segment_t *segs, int nseg, int error)
|
|
{
|
|
if (error)
|
|
return;
|
|
*(bus_addr_t *) arg = segs[0].ds_addr;
|
|
}
|
|
|
|
static int
|
|
igb_dma_malloc(struct adapter *adapter, bus_size_t size,
|
|
struct igb_dma_alloc *dma, int mapflags)
|
|
{
|
|
int error;
|
|
|
|
error = bus_dma_tag_create(bus_get_dma_tag(adapter->dev), /* parent */
|
|
IGB_DBA_ALIGN, 0, /* alignment, bounds */
|
|
BUS_SPACE_MAXADDR, /* lowaddr */
|
|
BUS_SPACE_MAXADDR, /* highaddr */
|
|
NULL, NULL, /* filter, filterarg */
|
|
size, /* maxsize */
|
|
1, /* nsegments */
|
|
size, /* maxsegsize */
|
|
0, /* flags */
|
|
NULL, /* lockfunc */
|
|
NULL, /* lockarg */
|
|
&dma->dma_tag);
|
|
if (error) {
|
|
device_printf(adapter->dev,
|
|
"%s: bus_dma_tag_create failed: %d\n",
|
|
__func__, error);
|
|
goto fail_0;
|
|
}
|
|
|
|
error = bus_dmamem_alloc(dma->dma_tag, (void**) &dma->dma_vaddr,
|
|
BUS_DMA_NOWAIT, &dma->dma_map);
|
|
if (error) {
|
|
device_printf(adapter->dev,
|
|
"%s: bus_dmamem_alloc(%ju) failed: %d\n",
|
|
__func__, (uintmax_t)size, error);
|
|
goto fail_2;
|
|
}
|
|
|
|
dma->dma_paddr = 0;
|
|
error = bus_dmamap_load(dma->dma_tag, dma->dma_map, dma->dma_vaddr,
|
|
size, igb_dmamap_cb, &dma->dma_paddr, mapflags | BUS_DMA_NOWAIT);
|
|
if (error || dma->dma_paddr == 0) {
|
|
device_printf(adapter->dev,
|
|
"%s: bus_dmamap_load failed: %d\n",
|
|
__func__, error);
|
|
goto fail_3;
|
|
}
|
|
|
|
return (0);
|
|
|
|
fail_3:
|
|
bus_dmamap_unload(dma->dma_tag, dma->dma_map);
|
|
fail_2:
|
|
bus_dmamem_free(dma->dma_tag, dma->dma_vaddr, dma->dma_map);
|
|
bus_dma_tag_destroy(dma->dma_tag);
|
|
fail_0:
|
|
dma->dma_map = NULL;
|
|
dma->dma_tag = NULL;
|
|
|
|
return (error);
|
|
}
|
|
|
|
static void
|
|
igb_dma_free(struct adapter *adapter, struct igb_dma_alloc *dma)
|
|
{
|
|
if (dma->dma_tag == NULL)
|
|
return;
|
|
if (dma->dma_map != NULL) {
|
|
bus_dmamap_sync(dma->dma_tag, dma->dma_map,
|
|
BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
|
|
bus_dmamap_unload(dma->dma_tag, dma->dma_map);
|
|
bus_dmamem_free(dma->dma_tag, dma->dma_vaddr, dma->dma_map);
|
|
dma->dma_map = NULL;
|
|
}
|
|
bus_dma_tag_destroy(dma->dma_tag);
|
|
dma->dma_tag = NULL;
|
|
}
|
|
|
|
|
|
/*********************************************************************
|
|
*
|
|
* Allocate memory for the transmit and receive rings, and then
|
|
* the descriptors associated with each, called only once at attach.
|
|
*
|
|
**********************************************************************/
|
|
static int
|
|
igb_allocate_queues(struct adapter *adapter)
|
|
{
|
|
device_t dev = adapter->dev;
|
|
struct tx_ring *txr;
|
|
struct rx_ring *rxr;
|
|
int rsize, tsize, error = E1000_SUCCESS;
|
|
int txconf = 0, rxconf = 0;
|
|
|
|
/* First allocate the TX ring struct memory */
|
|
if (!(adapter->tx_rings =
|
|
(struct tx_ring *) malloc(sizeof(struct tx_ring) *
|
|
adapter->num_queues, M_DEVBUF, M_NOWAIT | M_ZERO))) {
|
|
device_printf(dev, "Unable to allocate TX ring memory\n");
|
|
error = ENOMEM;
|
|
goto fail;
|
|
}
|
|
txr = adapter->tx_rings;
|
|
|
|
/* Next allocate the RX */
|
|
if (!(adapter->rx_rings =
|
|
(struct rx_ring *) malloc(sizeof(struct rx_ring) *
|
|
adapter->num_queues, M_DEVBUF, M_NOWAIT | M_ZERO))) {
|
|
device_printf(dev, "Unable to allocate RX ring memory\n");
|
|
error = ENOMEM;
|
|
goto rx_fail;
|
|
}
|
|
rxr = adapter->rx_rings;
|
|
|
|
tsize = roundup2(adapter->num_tx_desc *
|
|
sizeof(union e1000_adv_tx_desc), IGB_DBA_ALIGN);
|
|
/*
|
|
* Now set up the TX queues, txconf is needed to handle the
|
|
* possibility that things fail midcourse and we need to
|
|
* undo memory gracefully
|
|
*/
|
|
for (int i = 0; i < adapter->num_queues; i++, txconf++) {
|
|
/* Set up some basics */
|
|
txr = &adapter->tx_rings[i];
|
|
txr->adapter = adapter;
|
|
txr->me = i;
|
|
|
|
/* Initialize the TX lock */
|
|
snprintf(txr->mtx_name, sizeof(txr->mtx_name), "%s:tx(%d)",
|
|
device_get_nameunit(dev), txr->me);
|
|
mtx_init(&txr->tx_mtx, txr->mtx_name, NULL, MTX_DEF);
|
|
|
|
if (igb_dma_malloc(adapter, tsize,
|
|
&txr->txdma, BUS_DMA_NOWAIT)) {
|
|
device_printf(dev,
|
|
"Unable to allocate TX Descriptor memory\n");
|
|
error = ENOMEM;
|
|
goto err_tx_desc;
|
|
}
|
|
txr->tx_base = (struct e1000_tx_desc *)txr->txdma.dma_vaddr;
|
|
bzero((void *)txr->tx_base, tsize);
|
|
|
|
/* Now allocate transmit buffers for the ring */
|
|
if (igb_allocate_transmit_buffers(txr)) {
|
|
device_printf(dev,
|
|
"Critical Failure setting up transmit buffers\n");
|
|
error = ENOMEM;
|
|
goto err_tx_desc;
|
|
}
|
|
#if __FreeBSD_version >= 800000
|
|
/* Allocate a buf ring */
|
|
txr->br = buf_ring_alloc(IGB_BR_SIZE, M_DEVBUF,
|
|
M_WAITOK, &txr->tx_mtx);
|
|
#endif
|
|
}
|
|
|
|
/*
|
|
* Next the RX queues...
|
|
*/
|
|
rsize = roundup2(adapter->num_rx_desc *
|
|
sizeof(union e1000_adv_rx_desc), IGB_DBA_ALIGN);
|
|
for (int i = 0; i < adapter->num_queues; i++, rxconf++) {
|
|
rxr = &adapter->rx_rings[i];
|
|
rxr->adapter = adapter;
|
|
rxr->me = i;
|
|
|
|
/* Initialize the RX lock */
|
|
snprintf(rxr->mtx_name, sizeof(rxr->mtx_name), "%s:rx(%d)",
|
|
device_get_nameunit(dev), txr->me);
|
|
mtx_init(&rxr->rx_mtx, rxr->mtx_name, NULL, MTX_DEF);
|
|
|
|
if (igb_dma_malloc(adapter, rsize,
|
|
&rxr->rxdma, BUS_DMA_NOWAIT)) {
|
|
device_printf(dev,
|
|
"Unable to allocate RxDescriptor memory\n");
|
|
error = ENOMEM;
|
|
goto err_rx_desc;
|
|
}
|
|
rxr->rx_base = (union e1000_adv_rx_desc *)rxr->rxdma.dma_vaddr;
|
|
bzero((void *)rxr->rx_base, rsize);
|
|
|
|
/* Allocate receive buffers for the ring*/
|
|
if (igb_allocate_receive_buffers(rxr)) {
|
|
device_printf(dev,
|
|
"Critical Failure setting up receive buffers\n");
|
|
error = ENOMEM;
|
|
goto err_rx_desc;
|
|
}
|
|
}
|
|
|
|
return (0);
|
|
|
|
err_rx_desc:
|
|
for (rxr = adapter->rx_rings; rxconf > 0; rxr++, rxconf--)
|
|
igb_dma_free(adapter, &rxr->rxdma);
|
|
err_tx_desc:
|
|
for (txr = adapter->tx_rings; txconf > 0; txr++, txconf--)
|
|
igb_dma_free(adapter, &txr->txdma);
|
|
free(adapter->rx_rings, M_DEVBUF);
|
|
rx_fail:
|
|
free(adapter->tx_rings, M_DEVBUF);
|
|
fail:
|
|
return (error);
|
|
}
|
|
|
|
/*********************************************************************
|
|
*
|
|
* Allocate memory for tx_buffer structures. The tx_buffer stores all
|
|
* the information needed to transmit a packet on the wire. This is
|
|
* called only once at attach, setup is done every reset.
|
|
*
|
|
**********************************************************************/
|
|
static int
|
|
igb_allocate_transmit_buffers(struct tx_ring *txr)
|
|
{
|
|
struct adapter *adapter = txr->adapter;
|
|
device_t dev = adapter->dev;
|
|
struct igb_tx_buffer *txbuf;
|
|
int error, i;
|
|
|
|
/*
|
|
* Setup DMA descriptor areas.
|
|
*/
|
|
if ((error = bus_dma_tag_create(NULL, /* parent */
|
|
PAGE_SIZE, 0, /* alignment, bounds */
|
|
BUS_SPACE_MAXADDR, /* lowaddr */
|
|
BUS_SPACE_MAXADDR, /* highaddr */
|
|
NULL, NULL, /* filter, filterarg */
|
|
IGB_TSO_SIZE, /* maxsize */
|
|
IGB_MAX_SCATTER, /* nsegments */
|
|
PAGE_SIZE, /* maxsegsize */
|
|
0, /* flags */
|
|
NULL, /* lockfunc */
|
|
NULL, /* lockfuncarg */
|
|
&txr->txtag))) {
|
|
device_printf(dev,"Unable to allocate TX DMA tag\n");
|
|
goto fail;
|
|
}
|
|
|
|
if (!(txr->tx_buffers =
|
|
(struct igb_tx_buffer *) malloc(sizeof(struct igb_tx_buffer) *
|
|
adapter->num_tx_desc, M_DEVBUF, M_NOWAIT | M_ZERO))) {
|
|
device_printf(dev, "Unable to allocate tx_buffer memory\n");
|
|
error = ENOMEM;
|
|
goto fail;
|
|
}
|
|
|
|
/* Create the descriptor buffer dma maps */
|
|
txbuf = txr->tx_buffers;
|
|
for (i = 0; i < adapter->num_tx_desc; i++, txbuf++) {
|
|
error = bus_dmamap_create(txr->txtag, 0, &txbuf->map);
|
|
if (error != 0) {
|
|
device_printf(dev, "Unable to create TX DMA map\n");
|
|
goto fail;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
fail:
|
|
/* We free all, it handles case where we are in the middle */
|
|
igb_free_transmit_structures(adapter);
|
|
return (error);
|
|
}
|
|
|
|
/*********************************************************************
|
|
*
|
|
* Initialize a transmit ring.
|
|
*
|
|
**********************************************************************/
|
|
static void
|
|
igb_setup_transmit_ring(struct tx_ring *txr)
|
|
{
|
|
struct adapter *adapter = txr->adapter;
|
|
struct igb_tx_buffer *txbuf;
|
|
int i;
|
|
|
|
/* Clear the old descriptor contents */
|
|
bzero((void *)txr->tx_base,
|
|
(sizeof(union e1000_adv_tx_desc)) * adapter->num_tx_desc);
|
|
/* Reset indices */
|
|
txr->next_avail_desc = 0;
|
|
txr->next_to_clean = 0;
|
|
|
|
/* Free any existing tx buffers. */
|
|
txbuf = txr->tx_buffers;
|
|
for (i = 0; i < adapter->num_tx_desc; i++, txbuf++) {
|
|
if (txbuf->m_head != NULL) {
|
|
bus_dmamap_sync(txr->txtag, txbuf->map,
|
|
BUS_DMASYNC_POSTWRITE);
|
|
bus_dmamap_unload(txr->txtag, txbuf->map);
|
|
m_freem(txbuf->m_head);
|
|
txbuf->m_head = NULL;
|
|
}
|
|
/* clear the watch index */
|
|
txbuf->next_eop = -1;
|
|
}
|
|
|
|
/* Set number of descriptors available */
|
|
txr->tx_avail = adapter->num_tx_desc;
|
|
|
|
bus_dmamap_sync(txr->txdma.dma_tag, txr->txdma.dma_map,
|
|
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
|
|
|
|
}
|
|
|
|
/*********************************************************************
|
|
*
|
|
* Initialize all transmit rings.
|
|
*
|
|
**********************************************************************/
|
|
static void
|
|
igb_setup_transmit_structures(struct adapter *adapter)
|
|
{
|
|
struct tx_ring *txr = adapter->tx_rings;
|
|
|
|
for (int i = 0; i < adapter->num_queues; i++, txr++)
|
|
igb_setup_transmit_ring(txr);
|
|
|
|
return;
|
|
}
|
|
|
|
/*********************************************************************
|
|
*
|
|
* Enable transmit unit.
|
|
*
|
|
**********************************************************************/
|
|
static void
|
|
igb_initialize_transmit_units(struct adapter *adapter)
|
|
{
|
|
struct tx_ring *txr = adapter->tx_rings;
|
|
u32 tctl, txdctl;
|
|
|
|
INIT_DEBUGOUT("igb_initialize_transmit_units: begin");
|
|
|
|
/* Setup the Base and Length of the Tx Descriptor Rings */
|
|
for (int i = 0; i < adapter->num_queues; i++, txr++) {
|
|
u64 bus_addr = txr->txdma.dma_paddr;
|
|
|
|
E1000_WRITE_REG(&adapter->hw, E1000_TDLEN(i),
|
|
adapter->num_tx_desc * sizeof(struct e1000_tx_desc));
|
|
E1000_WRITE_REG(&adapter->hw, E1000_TDBAH(i),
|
|
(uint32_t)(bus_addr >> 32));
|
|
E1000_WRITE_REG(&adapter->hw, E1000_TDBAL(i),
|
|
(uint32_t)bus_addr);
|
|
|
|
/* Setup the HW Tx Head and Tail descriptor pointers */
|
|
E1000_WRITE_REG(&adapter->hw, E1000_TDT(i), 0);
|
|
E1000_WRITE_REG(&adapter->hw, E1000_TDH(i), 0);
|
|
|
|
HW_DEBUGOUT2("Base = %x, Length = %x\n",
|
|
E1000_READ_REG(&adapter->hw, E1000_TDBAL(i)),
|
|
E1000_READ_REG(&adapter->hw, E1000_TDLEN(i)));
|
|
|
|
/* Setup Transmit Descriptor Base Settings */
|
|
adapter->txd_cmd = E1000_TXD_CMD_IFCS;
|
|
|
|
txdctl = E1000_READ_REG(&adapter->hw, E1000_TXDCTL(i));
|
|
txdctl |= E1000_TXDCTL_QUEUE_ENABLE;
|
|
E1000_WRITE_REG(&adapter->hw, E1000_TXDCTL(i), txdctl);
|
|
}
|
|
|
|
/* Program the Transmit Control Register */
|
|
tctl = E1000_READ_REG(&adapter->hw, E1000_TCTL);
|
|
tctl &= ~E1000_TCTL_CT;
|
|
tctl |= (E1000_TCTL_PSP | E1000_TCTL_RTLC | E1000_TCTL_EN |
|
|
(E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT));
|
|
|
|
e1000_config_collision_dist(&adapter->hw);
|
|
|
|
/* This write will effectively turn on the transmit unit. */
|
|
E1000_WRITE_REG(&adapter->hw, E1000_TCTL, tctl);
|
|
|
|
}
|
|
|
|
/*********************************************************************
|
|
*
|
|
* Free all transmit rings.
|
|
*
|
|
**********************************************************************/
|
|
static void
|
|
igb_free_transmit_structures(struct adapter *adapter)
|
|
{
|
|
struct tx_ring *txr = adapter->tx_rings;
|
|
|
|
for (int i = 0; i < adapter->num_queues; i++, txr++) {
|
|
IGB_TX_LOCK(txr);
|
|
igb_free_transmit_buffers(txr);
|
|
igb_dma_free(adapter, &txr->txdma);
|
|
IGB_TX_UNLOCK(txr);
|
|
IGB_TX_LOCK_DESTROY(txr);
|
|
}
|
|
free(adapter->tx_rings, M_DEVBUF);
|
|
}
|
|
|
|
/*********************************************************************
|
|
*
|
|
* Free transmit ring related data structures.
|
|
*
|
|
**********************************************************************/
|
|
static void
|
|
igb_free_transmit_buffers(struct tx_ring *txr)
|
|
{
|
|
struct adapter *adapter = txr->adapter;
|
|
struct igb_tx_buffer *tx_buffer;
|
|
int i;
|
|
|
|
INIT_DEBUGOUT("free_transmit_ring: begin");
|
|
|
|
if (txr->tx_buffers == NULL)
|
|
return;
|
|
|
|
tx_buffer = txr->tx_buffers;
|
|
for (i = 0; i < adapter->num_tx_desc; i++, tx_buffer++) {
|
|
if (tx_buffer->m_head != NULL) {
|
|
bus_dmamap_sync(txr->txtag, tx_buffer->map,
|
|
BUS_DMASYNC_POSTWRITE);
|
|
bus_dmamap_unload(txr->txtag,
|
|
tx_buffer->map);
|
|
m_freem(tx_buffer->m_head);
|
|
tx_buffer->m_head = NULL;
|
|
if (tx_buffer->map != NULL) {
|
|
bus_dmamap_destroy(txr->txtag,
|
|
tx_buffer->map);
|
|
tx_buffer->map = NULL;
|
|
}
|
|
} else if (tx_buffer->map != NULL) {
|
|
bus_dmamap_unload(txr->txtag,
|
|
tx_buffer->map);
|
|
bus_dmamap_destroy(txr->txtag,
|
|
tx_buffer->map);
|
|
tx_buffer->map = NULL;
|
|
}
|
|
}
|
|
#if __FreeBSD_version >= 800000
|
|
if (txr->br != NULL)
|
|
buf_ring_free(txr->br, M_DEVBUF);
|
|
#endif
|
|
if (txr->tx_buffers != NULL) {
|
|
free(txr->tx_buffers, M_DEVBUF);
|
|
txr->tx_buffers = NULL;
|
|
}
|
|
if (txr->txtag != NULL) {
|
|
bus_dma_tag_destroy(txr->txtag);
|
|
txr->txtag = NULL;
|
|
}
|
|
return;
|
|
}
|
|
|
|
/**********************************************************************
|
|
*
|
|
* Setup work for hardware segmentation offload (TSO) on
|
|
* adapters using advanced tx descriptors (82575)
|
|
*
|
|
**********************************************************************/
|
|
static boolean_t
|
|
igb_tso_setup(struct tx_ring *txr, struct mbuf *mp, u32 *hdrlen)
|
|
{
|
|
struct adapter *adapter = txr->adapter;
|
|
struct e1000_adv_tx_context_desc *TXD;
|
|
struct igb_tx_buffer *tx_buffer;
|
|
u32 vlan_macip_lens = 0, type_tucmd_mlhl = 0;
|
|
u32 mss_l4len_idx = 0;
|
|
u16 vtag = 0;
|
|
int ctxd, ehdrlen, ip_hlen, tcp_hlen;
|
|
struct ether_vlan_header *eh;
|
|
struct ip *ip;
|
|
struct tcphdr *th;
|
|
|
|
|
|
/*
|
|
* Determine where frame payload starts.
|
|
* Jump over vlan headers if already present
|
|
*/
|
|
eh = mtod(mp, struct ether_vlan_header *);
|
|
if (eh->evl_encap_proto == htons(ETHERTYPE_VLAN))
|
|
ehdrlen = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN;
|
|
else
|
|
ehdrlen = ETHER_HDR_LEN;
|
|
|
|
/* Ensure we have at least the IP+TCP header in the first mbuf. */
|
|
if (mp->m_len < ehdrlen + sizeof(struct ip) + sizeof(struct tcphdr))
|
|
return FALSE;
|
|
|
|
/* Only supports IPV4 for now */
|
|
ctxd = txr->next_avail_desc;
|
|
tx_buffer = &txr->tx_buffers[ctxd];
|
|
TXD = (struct e1000_adv_tx_context_desc *) &txr->tx_base[ctxd];
|
|
|
|
ip = (struct ip *)(mp->m_data + ehdrlen);
|
|
if (ip->ip_p != IPPROTO_TCP)
|
|
return FALSE; /* 0 */
|
|
ip->ip_sum = 0;
|
|
ip_hlen = ip->ip_hl << 2;
|
|
th = (struct tcphdr *)((caddr_t)ip + ip_hlen);
|
|
th->th_sum = in_pseudo(ip->ip_src.s_addr,
|
|
ip->ip_dst.s_addr, htons(IPPROTO_TCP));
|
|
tcp_hlen = th->th_off << 2;
|
|
/*
|
|
* Calculate header length, this is used
|
|
* in the transmit desc in igb_xmit
|
|
*/
|
|
*hdrlen = ehdrlen + ip_hlen + tcp_hlen;
|
|
|
|
/* VLAN MACLEN IPLEN */
|
|
if (mp->m_flags & M_VLANTAG) {
|
|
vtag = htole16(mp->m_pkthdr.ether_vtag);
|
|
vlan_macip_lens |= (vtag << E1000_ADVTXD_VLAN_SHIFT);
|
|
}
|
|
|
|
vlan_macip_lens |= (ehdrlen << E1000_ADVTXD_MACLEN_SHIFT);
|
|
vlan_macip_lens |= ip_hlen;
|
|
TXD->vlan_macip_lens |= htole32(vlan_macip_lens);
|
|
|
|
/* ADV DTYPE TUCMD */
|
|
type_tucmd_mlhl |= E1000_ADVTXD_DCMD_DEXT | E1000_ADVTXD_DTYP_CTXT;
|
|
type_tucmd_mlhl |= E1000_ADVTXD_TUCMD_L4T_TCP;
|
|
type_tucmd_mlhl |= E1000_ADVTXD_TUCMD_IPV4;
|
|
TXD->type_tucmd_mlhl |= htole32(type_tucmd_mlhl);
|
|
|
|
/* MSS L4LEN IDX */
|
|
mss_l4len_idx |= (mp->m_pkthdr.tso_segsz << E1000_ADVTXD_MSS_SHIFT);
|
|
mss_l4len_idx |= (tcp_hlen << E1000_ADVTXD_L4LEN_SHIFT);
|
|
TXD->mss_l4len_idx = htole32(mss_l4len_idx);
|
|
|
|
TXD->seqnum_seed = htole32(0);
|
|
tx_buffer->m_head = NULL;
|
|
tx_buffer->next_eop = -1;
|
|
|
|
if (++ctxd == adapter->num_tx_desc)
|
|
ctxd = 0;
|
|
|
|
txr->tx_avail--;
|
|
txr->next_avail_desc = ctxd;
|
|
return TRUE;
|
|
}
|
|
|
|
|
|
/*********************************************************************
|
|
*
|
|
* Context Descriptor setup for VLAN or CSUM
|
|
*
|
|
**********************************************************************/
|
|
|
|
static bool
|
|
igb_tx_ctx_setup(struct tx_ring *txr, struct mbuf *mp)
|
|
{
|
|
struct adapter *adapter = txr->adapter;
|
|
struct e1000_adv_tx_context_desc *TXD;
|
|
struct igb_tx_buffer *tx_buffer;
|
|
uint32_t vlan_macip_lens = 0, type_tucmd_mlhl = 0;
|
|
struct ether_vlan_header *eh;
|
|
struct ip *ip = NULL;
|
|
struct ip6_hdr *ip6;
|
|
int ehdrlen, ctxd, ip_hlen = 0;
|
|
u16 etype, vtag = 0;
|
|
u8 ipproto = 0;
|
|
bool offload = TRUE;
|
|
|
|
if ((mp->m_pkthdr.csum_flags & CSUM_OFFLOAD) == 0)
|
|
offload = FALSE;
|
|
|
|
ctxd = txr->next_avail_desc;
|
|
tx_buffer = &txr->tx_buffers[ctxd];
|
|
TXD = (struct e1000_adv_tx_context_desc *) &txr->tx_base[ctxd];
|
|
|
|
/*
|
|
** In advanced descriptors the vlan tag must
|
|
** be placed into the context descriptor, thus
|
|
** we need to be here just for that setup.
|
|
*/
|
|
if (mp->m_flags & M_VLANTAG) {
|
|
vtag = htole16(mp->m_pkthdr.ether_vtag);
|
|
vlan_macip_lens |= (vtag << E1000_ADVTXD_VLAN_SHIFT);
|
|
} else if (offload == FALSE)
|
|
return FALSE;
|
|
|
|
/*
|
|
* Determine where frame payload starts.
|
|
* Jump over vlan headers if already present,
|
|
* helpful for QinQ too.
|
|
*/
|
|
eh = mtod(mp, struct ether_vlan_header *);
|
|
if (eh->evl_encap_proto == htons(ETHERTYPE_VLAN)) {
|
|
etype = ntohs(eh->evl_proto);
|
|
ehdrlen = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN;
|
|
} else {
|
|
etype = ntohs(eh->evl_encap_proto);
|
|
ehdrlen = ETHER_HDR_LEN;
|
|
}
|
|
|
|
/* Set the ether header length */
|
|
vlan_macip_lens |= ehdrlen << E1000_ADVTXD_MACLEN_SHIFT;
|
|
|
|
switch (etype) {
|
|
case ETHERTYPE_IP:
|
|
ip = (struct ip *)(mp->m_data + ehdrlen);
|
|
ip_hlen = ip->ip_hl << 2;
|
|
if (mp->m_len < ehdrlen + ip_hlen) {
|
|
offload = FALSE;
|
|
break;
|
|
}
|
|
ipproto = ip->ip_p;
|
|
type_tucmd_mlhl |= E1000_ADVTXD_TUCMD_IPV4;
|
|
break;
|
|
case ETHERTYPE_IPV6:
|
|
ip6 = (struct ip6_hdr *)(mp->m_data + ehdrlen);
|
|
ip_hlen = sizeof(struct ip6_hdr);
|
|
if (mp->m_len < ehdrlen + ip_hlen)
|
|
return (FALSE);
|
|
ipproto = ip6->ip6_nxt;
|
|
type_tucmd_mlhl |= E1000_ADVTXD_TUCMD_IPV6;
|
|
break;
|
|
default:
|
|
offload = FALSE;
|
|
break;
|
|
}
|
|
|
|
vlan_macip_lens |= ip_hlen;
|
|
type_tucmd_mlhl |= E1000_ADVTXD_DCMD_DEXT | E1000_ADVTXD_DTYP_CTXT;
|
|
|
|
switch (ipproto) {
|
|
case IPPROTO_TCP:
|
|
if (mp->m_pkthdr.csum_flags & CSUM_TCP)
|
|
type_tucmd_mlhl |= E1000_ADVTXD_TUCMD_L4T_TCP;
|
|
break;
|
|
case IPPROTO_UDP:
|
|
if (mp->m_pkthdr.csum_flags & CSUM_UDP)
|
|
type_tucmd_mlhl |= E1000_ADVTXD_TUCMD_L4T_UDP;
|
|
break;
|
|
#if __FreeBSD_version >= 800000
|
|
case IPPROTO_SCTP:
|
|
if (mp->m_pkthdr.csum_flags & CSUM_SCTP)
|
|
type_tucmd_mlhl |= E1000_ADVTXD_TUCMD_L4T_SCTP;
|
|
break;
|
|
#endif
|
|
default:
|
|
offload = FALSE;
|
|
break;
|
|
}
|
|
|
|
/* Now copy bits into descriptor */
|
|
TXD->vlan_macip_lens |= htole32(vlan_macip_lens);
|
|
TXD->type_tucmd_mlhl |= htole32(type_tucmd_mlhl);
|
|
TXD->seqnum_seed = htole32(0);
|
|
TXD->mss_l4len_idx = htole32(0);
|
|
|
|
tx_buffer->m_head = NULL;
|
|
tx_buffer->next_eop = -1;
|
|
|
|
/* We've consumed the first desc, adjust counters */
|
|
if (++ctxd == adapter->num_tx_desc)
|
|
ctxd = 0;
|
|
txr->next_avail_desc = ctxd;
|
|
--txr->tx_avail;
|
|
|
|
return (offload);
|
|
}
|
|
|
|
|
|
/**********************************************************************
|
|
*
|
|
* Examine each tx_buffer in the used queue. If the hardware is done
|
|
* processing the packet then free associated resources. The
|
|
* tx_buffer is put back on the free queue.
|
|
*
|
|
* TRUE return means there's work in the ring to clean, FALSE its empty.
|
|
**********************************************************************/
|
|
static bool
|
|
igb_txeof(struct tx_ring *txr)
|
|
{
|
|
struct adapter *adapter = txr->adapter;
|
|
int first, last, done, num_avail;
|
|
u32 cleaned = 0;
|
|
struct igb_tx_buffer *tx_buffer;
|
|
struct e1000_tx_desc *tx_desc, *eop_desc;
|
|
struct ifnet *ifp = adapter->ifp;
|
|
|
|
IGB_TX_LOCK_ASSERT(txr);
|
|
|
|
if (txr->tx_avail == adapter->num_tx_desc)
|
|
return FALSE;
|
|
|
|
num_avail = txr->tx_avail;
|
|
first = txr->next_to_clean;
|
|
tx_desc = &txr->tx_base[first];
|
|
tx_buffer = &txr->tx_buffers[first];
|
|
last = tx_buffer->next_eop;
|
|
eop_desc = &txr->tx_base[last];
|
|
|
|
/*
|
|
* What this does is get the index of the
|
|
* first descriptor AFTER the EOP of the
|
|
* first packet, that way we can do the
|
|
* simple comparison on the inner while loop.
|
|
*/
|
|
if (++last == adapter->num_tx_desc)
|
|
last = 0;
|
|
done = last;
|
|
|
|
bus_dmamap_sync(txr->txdma.dma_tag, txr->txdma.dma_map,
|
|
BUS_DMASYNC_POSTREAD);
|
|
|
|
while (eop_desc->upper.fields.status & E1000_TXD_STAT_DD) {
|
|
/* We clean the range of the packet */
|
|
while (first != done) {
|
|
tx_desc->upper.data = 0;
|
|
tx_desc->lower.data = 0;
|
|
tx_desc->buffer_addr = 0;
|
|
++num_avail; ++cleaned;
|
|
|
|
if (tx_buffer->m_head) {
|
|
ifp->if_opackets++;
|
|
bus_dmamap_sync(txr->txtag,
|
|
tx_buffer->map,
|
|
BUS_DMASYNC_POSTWRITE);
|
|
bus_dmamap_unload(txr->txtag,
|
|
tx_buffer->map);
|
|
|
|
m_freem(tx_buffer->m_head);
|
|
tx_buffer->m_head = NULL;
|
|
}
|
|
tx_buffer->next_eop = -1;
|
|
|
|
if (++first == adapter->num_tx_desc)
|
|
first = 0;
|
|
|
|
tx_buffer = &txr->tx_buffers[first];
|
|
tx_desc = &txr->tx_base[first];
|
|
}
|
|
/* See if we can continue to the next packet */
|
|
last = tx_buffer->next_eop;
|
|
if (last != -1) {
|
|
eop_desc = &txr->tx_base[last];
|
|
/* Get new done point */
|
|
if (++last == adapter->num_tx_desc) last = 0;
|
|
done = last;
|
|
} else
|
|
break;
|
|
}
|
|
bus_dmamap_sync(txr->txdma.dma_tag, txr->txdma.dma_map,
|
|
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
|
|
|
|
txr->next_to_clean = first;
|
|
|
|
/*
|
|
* If we have enough room, clear IFF_DRV_OACTIVE to tell the stack
|
|
* that it is OK to send packets.
|
|
* If there are no pending descriptors, clear the timeout. Otherwise,
|
|
* if some descriptors have been freed, restart the timeout.
|
|
*/
|
|
if (num_avail > IGB_TX_CLEANUP_THRESHOLD) {
|
|
ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
|
|
/* All clean, turn off the timer */
|
|
if (num_avail == adapter->num_tx_desc) {
|
|
txr->watchdog_timer = 0;
|
|
txr->tx_avail = num_avail;
|
|
return FALSE;
|
|
}
|
|
}
|
|
|
|
/* Some cleaned, reset the timer */
|
|
if (cleaned)
|
|
txr->watchdog_timer = IGB_TX_TIMEOUT;
|
|
txr->tx_avail = num_avail;
|
|
return TRUE;
|
|
}
|
|
|
|
|
|
/*********************************************************************
|
|
*
|
|
* Setup descriptor buffer(s) from system mbuf buffer pools.
|
|
* i - designates the ring index
|
|
* clean - tells the function whether to update
|
|
* the header, the packet buffer, or both.
|
|
*
|
|
**********************************************************************/
|
|
static int
|
|
igb_get_buf(struct rx_ring *rxr, int i, u8 clean)
|
|
{
|
|
struct adapter *adapter = rxr->adapter;
|
|
struct mbuf *mh, *mp;
|
|
bus_dma_segment_t seg[2];
|
|
bus_dmamap_t map;
|
|
struct igb_rx_buffer *rx_buffer;
|
|
int error, nsegs;
|
|
int merr = 0;
|
|
|
|
|
|
rx_buffer = &rxr->rx_buffers[i];
|
|
|
|
/* First get our header and payload mbuf */
|
|
if (clean & IGB_CLEAN_HEADER) {
|
|
mh = m_gethdr(M_DONTWAIT, MT_DATA);
|
|
if (mh == NULL)
|
|
goto remap;
|
|
} else /* reuse */
|
|
mh = rxr->rx_buffers[i].m_head;
|
|
|
|
mh->m_len = MHLEN;
|
|
mh->m_flags |= M_PKTHDR;
|
|
|
|
if (clean & IGB_CLEAN_PAYLOAD) {
|
|
mp = m_getjcl(M_DONTWAIT, MT_DATA,
|
|
M_PKTHDR, adapter->rx_mbuf_sz);
|
|
if (mp == NULL)
|
|
goto remap;
|
|
mp->m_len = adapter->rx_mbuf_sz;
|
|
mp->m_flags &= ~M_PKTHDR;
|
|
} else { /* reusing */
|
|
mp = rxr->rx_buffers[i].m_pack;
|
|
mp->m_len = adapter->rx_mbuf_sz;
|
|
mp->m_flags &= ~M_PKTHDR;
|
|
}
|
|
/*
|
|
** Need to create a chain for the following
|
|
** dmamap call at this point.
|
|
*/
|
|
mh->m_next = mp;
|
|
mh->m_pkthdr.len = mh->m_len + mp->m_len;
|
|
|
|
/* Get the memory mapping */
|
|
error = bus_dmamap_load_mbuf_sg(rxr->rxtag,
|
|
rxr->rx_spare_map, mh, seg, &nsegs, BUS_DMA_NOWAIT);
|
|
if (error != 0) {
|
|
printf("GET BUF: dmamap load failure - %d\n", error);
|
|
m_free(mh);
|
|
return (error);
|
|
}
|
|
|
|
/* Unload old mapping and update buffer struct */
|
|
if (rx_buffer->m_head != NULL)
|
|
bus_dmamap_unload(rxr->rxtag, rx_buffer->map);
|
|
map = rx_buffer->map;
|
|
rx_buffer->map = rxr->rx_spare_map;
|
|
rxr->rx_spare_map = map;
|
|
rx_buffer->m_head = mh;
|
|
rx_buffer->m_pack = mp;
|
|
bus_dmamap_sync(rxr->rxtag,
|
|
rx_buffer->map, BUS_DMASYNC_PREREAD);
|
|
|
|
/* Update descriptor */
|
|
rxr->rx_base[i].read.hdr_addr = htole64(seg[0].ds_addr);
|
|
rxr->rx_base[i].read.pkt_addr = htole64(seg[1].ds_addr);
|
|
|
|
return (0);
|
|
|
|
/*
|
|
** If we get here, we have an mbuf resource
|
|
** issue, so we discard the incoming packet
|
|
** and attempt to reuse existing mbufs next
|
|
** pass thru the ring, but to do so we must
|
|
** fix up the descriptor which had the address
|
|
** clobbered with writeback info.
|
|
*/
|
|
remap:
|
|
adapter->mbuf_header_failed++;
|
|
merr = ENOBUFS;
|
|
/* Is there a reusable buffer? */
|
|
mh = rxr->rx_buffers[i].m_head;
|
|
if (mh == NULL) /* Nope, init error */
|
|
return (merr);
|
|
mp = rxr->rx_buffers[i].m_pack;
|
|
if (mp == NULL) /* Nope, init error */
|
|
return (merr);
|
|
/* Get our old mapping */
|
|
rx_buffer = &rxr->rx_buffers[i];
|
|
error = bus_dmamap_load_mbuf_sg(rxr->rxtag,
|
|
rx_buffer->map, mh, seg, &nsegs, BUS_DMA_NOWAIT);
|
|
if (error != 0) {
|
|
/* We really have a problem */
|
|
m_free(mh);
|
|
return (error);
|
|
}
|
|
/* Now fix the descriptor as needed */
|
|
rxr->rx_base[i].read.hdr_addr = htole64(seg[0].ds_addr);
|
|
rxr->rx_base[i].read.pkt_addr = htole64(seg[1].ds_addr);
|
|
return (merr);
|
|
}
|
|
|
|
|
|
/*********************************************************************
|
|
*
|
|
* Allocate memory for rx_buffer structures. Since we use one
|
|
* rx_buffer per received packet, the maximum number of rx_buffer's
|
|
* that we'll need is equal to the number of receive descriptors
|
|
* that we've allocated.
|
|
*
|
|
**********************************************************************/
|
|
static int
|
|
igb_allocate_receive_buffers(struct rx_ring *rxr)
|
|
{
|
|
struct adapter *adapter = rxr->adapter;
|
|
device_t dev = adapter->dev;
|
|
struct igb_rx_buffer *rxbuf;
|
|
int i, bsize, error;
|
|
|
|
bsize = sizeof(struct igb_rx_buffer) * adapter->num_rx_desc;
|
|
if (!(rxr->rx_buffers =
|
|
(struct igb_rx_buffer *) malloc(bsize,
|
|
M_DEVBUF, M_NOWAIT | M_ZERO))) {
|
|
device_printf(dev, "Unable to allocate rx_buffer memory\n");
|
|
error = ENOMEM;
|
|
goto fail;
|
|
}
|
|
|
|
/*
|
|
** The tag is made to accomodate the largest buffer size
|
|
** with packet split (hence the two segments, even though
|
|
** it may not always use this.
|
|
*/
|
|
if ((error = bus_dma_tag_create(NULL, /* parent */
|
|
PAGE_SIZE, 0, /* alignment, bounds */
|
|
BUS_SPACE_MAXADDR, /* lowaddr */
|
|
BUS_SPACE_MAXADDR, /* highaddr */
|
|
NULL, NULL, /* filter, filterarg */
|
|
MJUM16BYTES, /* maxsize */
|
|
2, /* nsegments */
|
|
MJUMPAGESIZE, /* maxsegsize */
|
|
0, /* flags */
|
|
NULL, /* lockfunc */
|
|
NULL, /* lockfuncarg */
|
|
&rxr->rxtag))) {
|
|
device_printf(dev, "Unable to create RX DMA tag\n");
|
|
goto fail;
|
|
}
|
|
|
|
/* Create the spare map (used by getbuf) */
|
|
error = bus_dmamap_create(rxr->rxtag, BUS_DMA_NOWAIT,
|
|
&rxr->rx_spare_map);
|
|
if (error) {
|
|
device_printf(dev,
|
|
"%s: bus_dmamap_create header spare failed: %d\n",
|
|
__func__, error);
|
|
goto fail;
|
|
}
|
|
|
|
for (i = 0; i < adapter->num_rx_desc; i++, rxbuf++) {
|
|
rxbuf = &rxr->rx_buffers[i];
|
|
error = bus_dmamap_create(rxr->rxtag,
|
|
BUS_DMA_NOWAIT, &rxbuf->map);
|
|
if (error) {
|
|
device_printf(dev, "Unable to create RX DMA maps\n");
|
|
goto fail;
|
|
}
|
|
}
|
|
|
|
return (0);
|
|
|
|
fail:
|
|
/* Frees all, but can handle partial completion */
|
|
igb_free_receive_structures(adapter);
|
|
return (error);
|
|
}
|
|
|
|
/*********************************************************************
|
|
*
|
|
* Initialize a receive ring and its buffers.
|
|
*
|
|
**********************************************************************/
|
|
static int
|
|
igb_setup_receive_ring(struct rx_ring *rxr)
|
|
{
|
|
struct adapter *adapter;
|
|
struct ifnet *ifp;
|
|
device_t dev;
|
|
struct igb_rx_buffer *rxbuf;
|
|
struct lro_ctrl *lro = &rxr->lro;
|
|
int j, rsize;
|
|
|
|
adapter = rxr->adapter;
|
|
dev = adapter->dev;
|
|
ifp = adapter->ifp;
|
|
rxr->lro_enabled = FALSE;
|
|
rxr->hdr_split = FALSE;
|
|
|
|
/* Clear the ring contents */
|
|
rsize = roundup2(adapter->num_rx_desc *
|
|
sizeof(union e1000_adv_rx_desc), IGB_DBA_ALIGN);
|
|
bzero((void *)rxr->rx_base, rsize);
|
|
|
|
/*
|
|
** Free current RX buffer structures and their mbufs
|
|
*/
|
|
for (int i = 0; i < adapter->num_rx_desc; i++) {
|
|
rxbuf = &rxr->rx_buffers[i];
|
|
bus_dmamap_sync(rxr->rxtag, rxbuf->map,
|
|
BUS_DMASYNC_POSTREAD);
|
|
bus_dmamap_unload(rxr->rxtag, rxbuf->map);
|
|
if (rxbuf->m_head) {
|
|
rxbuf->m_head->m_next = rxbuf->m_pack;
|
|
m_freem(rxbuf->m_head);
|
|
}
|
|
rxbuf->m_head = NULL;
|
|
rxbuf->m_pack = NULL;
|
|
}
|
|
|
|
/* Next replenish the ring */
|
|
for (j = 0; j < adapter->num_rx_desc; j++) {
|
|
if (igb_get_buf(rxr, j, IGB_CLEAN_BOTH) == ENOBUFS) {
|
|
rxr->rx_buffers[j].m_head = NULL;
|
|
rxr->rx_buffers[j].m_pack = NULL;
|
|
rxr->rx_base[j].read.hdr_addr = 0;
|
|
rxr->rx_base[j].read.pkt_addr = 0;
|
|
goto fail;
|
|
}
|
|
}
|
|
|
|
/* Setup our descriptor indices */
|
|
rxr->next_to_check = 0;
|
|
rxr->last_cleaned = 0;
|
|
|
|
bus_dmamap_sync(rxr->rxdma.dma_tag, rxr->rxdma.dma_map,
|
|
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
|
|
|
|
/*
|
|
** Now set up the LRO interface, we
|
|
** also only do head split when LRO
|
|
** is enabled, since so often they
|
|
** are undesireable in similar setups.
|
|
*/
|
|
if (ifp->if_capenable & IFCAP_LRO) {
|
|
int err = tcp_lro_init(lro);
|
|
if (err) {
|
|
device_printf(dev,"LRO Initialization failed!\n");
|
|
goto fail;
|
|
}
|
|
INIT_DEBUGOUT("RX LRO Initialized\n");
|
|
rxr->lro_enabled = TRUE;
|
|
rxr->hdr_split = TRUE;
|
|
lro->ifp = adapter->ifp;
|
|
}
|
|
|
|
return (0);
|
|
fail:
|
|
/*
|
|
* We need to clean up any buffers allocated
|
|
* so far, 'j' is the failing index.
|
|
*/
|
|
for (int i = 0; i < j; i++) {
|
|
rxbuf = &rxr->rx_buffers[i];
|
|
if (rxbuf->m_head != NULL) {
|
|
bus_dmamap_sync(rxr->rxtag, rxbuf->map,
|
|
BUS_DMASYNC_POSTREAD);
|
|
bus_dmamap_unload(rxr->rxtag, rxbuf->map);
|
|
m_freem(rxbuf->m_head);
|
|
rxbuf->m_head = NULL;
|
|
}
|
|
}
|
|
return (ENOBUFS);
|
|
}
|
|
|
|
/*********************************************************************
|
|
*
|
|
* Initialize all receive rings.
|
|
*
|
|
**********************************************************************/
|
|
static int
|
|
igb_setup_receive_structures(struct adapter *adapter)
|
|
{
|
|
struct rx_ring *rxr = adapter->rx_rings;
|
|
int i, j;
|
|
|
|
for (i = 0; i < adapter->num_queues; i++, rxr++)
|
|
if (igb_setup_receive_ring(rxr))
|
|
goto fail;
|
|
|
|
return (0);
|
|
fail:
|
|
/*
|
|
* Free RX buffers allocated so far, we will only handle
|
|
* the rings that completed, the failing case will have
|
|
* cleaned up for itself. The value of 'i' will be the
|
|
* failed ring so we must pre-decrement it.
|
|
*/
|
|
rxr = adapter->rx_rings;
|
|
for (--i; i > 0; i--, rxr++) {
|
|
for (j = 0; j < adapter->num_rx_desc; j++) {
|
|
struct igb_rx_buffer *rxbuf;
|
|
rxbuf = &rxr->rx_buffers[j];
|
|
if (rxbuf->m_head != NULL) {
|
|
bus_dmamap_sync(rxr->rxtag, rxbuf->map,
|
|
BUS_DMASYNC_POSTREAD);
|
|
bus_dmamap_unload(rxr->rxtag, rxbuf->map);
|
|
m_freem(rxbuf->m_head);
|
|
rxbuf->m_head = NULL;
|
|
}
|
|
}
|
|
}
|
|
|
|
return (ENOBUFS);
|
|
}
|
|
|
|
/*********************************************************************
|
|
*
|
|
* Enable receive unit.
|
|
*
|
|
**********************************************************************/
|
|
static void
|
|
igb_initialize_receive_units(struct adapter *adapter)
|
|
{
|
|
struct rx_ring *rxr = adapter->rx_rings;
|
|
struct ifnet *ifp = adapter->ifp;
|
|
u32 rctl, rxcsum, psize, srrctl = 0;
|
|
|
|
INIT_DEBUGOUT("igb_initialize_receive_unit: begin");
|
|
|
|
/*
|
|
* Make sure receives are disabled while setting
|
|
* up the descriptor ring
|
|
*/
|
|
rctl = E1000_READ_REG(&adapter->hw, E1000_RCTL);
|
|
E1000_WRITE_REG(&adapter->hw, E1000_RCTL, rctl & ~E1000_RCTL_EN);
|
|
|
|
/*
|
|
** Set up for header split
|
|
*/
|
|
if (rxr->hdr_split) {
|
|
/* Use a standard mbuf for the header */
|
|
srrctl |= IGB_HDR_BUF << E1000_SRRCTL_BSIZEHDRSIZE_SHIFT;
|
|
srrctl |= E1000_SRRCTL_DESCTYPE_HDR_SPLIT_ALWAYS;
|
|
} else
|
|
srrctl |= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF;
|
|
|
|
/*
|
|
** Set up for jumbo frames
|
|
*/
|
|
if (ifp->if_mtu > ETHERMTU) {
|
|
rctl |= E1000_RCTL_LPE;
|
|
srrctl |= 4096 >> E1000_SRRCTL_BSIZEPKT_SHIFT;
|
|
rctl |= E1000_RCTL_SZ_4096 | E1000_RCTL_BSEX;
|
|
|
|
/* Set maximum packet len */
|
|
psize = adapter->max_frame_size;
|
|
/* are we on a vlan? */
|
|
if (adapter->ifp->if_vlantrunk != NULL)
|
|
psize += VLAN_TAG_SIZE;
|
|
E1000_WRITE_REG(&adapter->hw, E1000_RLPML, psize);
|
|
} else {
|
|
rctl &= ~E1000_RCTL_LPE;
|
|
srrctl |= 2048 >> E1000_SRRCTL_BSIZEPKT_SHIFT;
|
|
rctl |= E1000_RCTL_SZ_2048;
|
|
}
|
|
|
|
/* Setup the Base and Length of the Rx Descriptor Rings */
|
|
for (int i = 0; i < adapter->num_queues; i++, rxr++) {
|
|
u64 bus_addr = rxr->rxdma.dma_paddr;
|
|
u32 rxdctl;
|
|
|
|
E1000_WRITE_REG(&adapter->hw, E1000_RDLEN(i),
|
|
adapter->num_rx_desc * sizeof(struct e1000_rx_desc));
|
|
E1000_WRITE_REG(&adapter->hw, E1000_RDBAH(i),
|
|
(uint32_t)(bus_addr >> 32));
|
|
E1000_WRITE_REG(&adapter->hw, E1000_RDBAL(i),
|
|
(uint32_t)bus_addr);
|
|
E1000_WRITE_REG(&adapter->hw, E1000_SRRCTL(i), srrctl);
|
|
/* Enable this Queue */
|
|
rxdctl = E1000_READ_REG(&adapter->hw, E1000_RXDCTL(i));
|
|
rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
|
|
rxdctl &= 0xFFF00000;
|
|
rxdctl |= IGB_RX_PTHRESH;
|
|
rxdctl |= IGB_RX_HTHRESH << 8;
|
|
rxdctl |= IGB_RX_WTHRESH << 16;
|
|
E1000_WRITE_REG(&adapter->hw, E1000_RXDCTL(i), rxdctl);
|
|
}
|
|
|
|
/*
|
|
** Setup for RX MultiQueue
|
|
*/
|
|
rxcsum = E1000_READ_REG(&adapter->hw, E1000_RXCSUM);
|
|
if (adapter->num_queues >1) {
|
|
u32 random[10], mrqc, shift = 0;
|
|
union igb_reta {
|
|
u32 dword;
|
|
u8 bytes[4];
|
|
} reta;
|
|
|
|
arc4rand(&random, sizeof(random), 0);
|
|
if (adapter->hw.mac.type == e1000_82575)
|
|
shift = 6;
|
|
/* Warning FM follows */
|
|
for (int i = 0; i < 128; i++) {
|
|
reta.bytes[i & 3] =
|
|
(i % adapter->num_queues) << shift;
|
|
if ((i & 3) == 3)
|
|
E1000_WRITE_REG(&adapter->hw,
|
|
E1000_RETA(i >> 2), reta.dword);
|
|
}
|
|
/* Now fill in hash table */
|
|
mrqc = E1000_MRQC_ENABLE_RSS_4Q;
|
|
for (int i = 0; i < 10; i++)
|
|
E1000_WRITE_REG_ARRAY(&adapter->hw,
|
|
E1000_RSSRK(0), i, random[i]);
|
|
|
|
mrqc |= (E1000_MRQC_RSS_FIELD_IPV4 |
|
|
E1000_MRQC_RSS_FIELD_IPV4_TCP);
|
|
mrqc |= (E1000_MRQC_RSS_FIELD_IPV6 |
|
|
E1000_MRQC_RSS_FIELD_IPV6_TCP);
|
|
mrqc |=( E1000_MRQC_RSS_FIELD_IPV4_UDP |
|
|
E1000_MRQC_RSS_FIELD_IPV6_UDP);
|
|
mrqc |=( E1000_MRQC_RSS_FIELD_IPV6_UDP_EX |
|
|
E1000_MRQC_RSS_FIELD_IPV6_TCP_EX);
|
|
|
|
E1000_WRITE_REG(&adapter->hw, E1000_MRQC, mrqc);
|
|
|
|
/*
|
|
** NOTE: Receive Full-Packet Checksum Offload
|
|
** is mutually exclusive with Multiqueue. However
|
|
** this is not the same as TCP/IP checksums which
|
|
** still work.
|
|
*/
|
|
rxcsum |= E1000_RXCSUM_PCSD;
|
|
#if __FreeBSD_version >= 800000
|
|
/* For SCTP Offload */
|
|
if ((adapter->hw.mac.type == e1000_82576)
|
|
&& (ifp->if_capenable & IFCAP_RXCSUM))
|
|
rxcsum |= E1000_RXCSUM_CRCOFL;
|
|
#endif
|
|
} else {
|
|
/* Non RSS setup */
|
|
if (ifp->if_capenable & IFCAP_RXCSUM) {
|
|
rxcsum |= E1000_RXCSUM_IPPCSE;
|
|
#if __FreeBSD_version >= 800000
|
|
if (adapter->hw.mac.type == e1000_82576)
|
|
rxcsum |= E1000_RXCSUM_CRCOFL;
|
|
#endif
|
|
} else
|
|
rxcsum &= ~E1000_RXCSUM_TUOFL;
|
|
}
|
|
E1000_WRITE_REG(&adapter->hw, E1000_RXCSUM, rxcsum);
|
|
|
|
/* Setup the Receive Control Register */
|
|
rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
|
|
rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_LBM_NO |
|
|
E1000_RCTL_RDMTS_HALF |
|
|
(adapter->hw.mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
|
|
|
|
/* Make sure VLAN Filters are off */
|
|
rctl &= ~E1000_RCTL_VFE;
|
|
/* Don't store bad packets */
|
|
rctl &= ~E1000_RCTL_SBP;
|
|
|
|
/* Enable Receives */
|
|
E1000_WRITE_REG(&adapter->hw, E1000_RCTL, rctl);
|
|
|
|
/*
|
|
* Setup the HW Rx Head and Tail Descriptor Pointers
|
|
* - needs to be after enable
|
|
*/
|
|
for (int i = 0; i < adapter->num_queues; i++) {
|
|
E1000_WRITE_REG(&adapter->hw, E1000_RDH(i), 0);
|
|
E1000_WRITE_REG(&adapter->hw, E1000_RDT(i),
|
|
adapter->num_rx_desc - 1);
|
|
}
|
|
return;
|
|
}
|
|
|
|
/*********************************************************************
|
|
*
|
|
* Free receive rings.
|
|
*
|
|
**********************************************************************/
|
|
static void
|
|
igb_free_receive_structures(struct adapter *adapter)
|
|
{
|
|
struct rx_ring *rxr = adapter->rx_rings;
|
|
|
|
for (int i = 0; i < adapter->num_queues; i++, rxr++) {
|
|
struct lro_ctrl *lro = &rxr->lro;
|
|
igb_free_receive_buffers(rxr);
|
|
tcp_lro_free(lro);
|
|
igb_dma_free(adapter, &rxr->rxdma);
|
|
}
|
|
|
|
free(adapter->rx_rings, M_DEVBUF);
|
|
}
|
|
|
|
/*********************************************************************
|
|
*
|
|
* Free receive ring data structures.
|
|
*
|
|
**********************************************************************/
|
|
static void
|
|
igb_free_receive_buffers(struct rx_ring *rxr)
|
|
{
|
|
struct adapter *adapter = rxr->adapter;
|
|
struct igb_rx_buffer *rx_buffer;
|
|
|
|
INIT_DEBUGOUT("free_receive_structures: begin");
|
|
|
|
if (rxr->rx_spare_map) {
|
|
bus_dmamap_destroy(rxr->rxtag, rxr->rx_spare_map);
|
|
rxr->rx_spare_map = NULL;
|
|
}
|
|
|
|
/* Cleanup any existing buffers */
|
|
if (rxr->rx_buffers != NULL) {
|
|
rx_buffer = &rxr->rx_buffers[0];
|
|
for (int i = 0; i < adapter->num_rx_desc; i++, rx_buffer++) {
|
|
if (rx_buffer->m_head != NULL) {
|
|
bus_dmamap_sync(rxr->rxtag, rx_buffer->map,
|
|
BUS_DMASYNC_POSTREAD);
|
|
bus_dmamap_unload(rxr->rxtag,
|
|
rx_buffer->map);
|
|
m_freem(rx_buffer->m_head);
|
|
rx_buffer->m_head = NULL;
|
|
} else if (rx_buffer->map != NULL)
|
|
bus_dmamap_unload(rxr->rxtag,
|
|
rx_buffer->map);
|
|
if (rx_buffer->map != NULL) {
|
|
bus_dmamap_destroy(rxr->rxtag,
|
|
rx_buffer->map);
|
|
rx_buffer->map = NULL;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (rxr->rx_buffers != NULL) {
|
|
free(rxr->rx_buffers, M_DEVBUF);
|
|
rxr->rx_buffers = NULL;
|
|
}
|
|
|
|
if (rxr->rxtag != NULL) {
|
|
bus_dma_tag_destroy(rxr->rxtag);
|
|
rxr->rxtag = NULL;
|
|
}
|
|
}
|
|
/*********************************************************************
|
|
*
|
|
* This routine executes in interrupt context. It replenishes
|
|
* the mbufs in the descriptor and sends data which has been
|
|
* dma'ed into host memory to upper layer.
|
|
*
|
|
* We loop at most count times if count is > 0, or until done if
|
|
* count < 0.
|
|
*
|
|
* Return TRUE if more to clean, FALSE otherwise
|
|
*********************************************************************/
|
|
static bool
|
|
igb_rxeof(struct rx_ring *rxr, int count)
|
|
{
|
|
struct adapter *adapter = rxr->adapter;
|
|
struct ifnet *ifp;
|
|
struct lro_ctrl *lro = &rxr->lro;
|
|
struct lro_entry *queued;
|
|
int i;
|
|
u32 staterr;
|
|
union e1000_adv_rx_desc *cur;
|
|
|
|
|
|
IGB_RX_LOCK(rxr);
|
|
ifp = adapter->ifp;
|
|
i = rxr->next_to_check;
|
|
cur = &rxr->rx_base[i];
|
|
staterr = cur->wb.upper.status_error;
|
|
|
|
if (!(staterr & E1000_RXD_STAT_DD)) {
|
|
IGB_RX_UNLOCK(rxr);
|
|
return FALSE;
|
|
}
|
|
|
|
/* Sync the ring */
|
|
bus_dmamap_sync(rxr->rxdma.dma_tag, rxr->rxdma.dma_map,
|
|
BUS_DMASYNC_POSTREAD);
|
|
|
|
/* Main clean loop */
|
|
while ((staterr & E1000_RXD_STAT_DD) &&
|
|
(count != 0) &&
|
|
(ifp->if_drv_flags & IFF_DRV_RUNNING)) {
|
|
struct mbuf *sendmp, *mh, *mp;
|
|
u16 hlen, plen, hdr, ptype, len_adj, vtag;
|
|
u8 dopayload, accept_frame, eop;
|
|
|
|
accept_frame = 1;
|
|
hlen = plen = len_adj = vtag = 0;
|
|
sendmp = mh = mp = NULL;
|
|
ptype = (u16)(cur->wb.lower.lo_dword.data >> 4);
|
|
|
|
/* Sync the buffers */
|
|
bus_dmamap_sync(rxr->rxtag, rxr->rx_buffers[i].map,
|
|
BUS_DMASYNC_POSTREAD);
|
|
|
|
/*
|
|
** The way the hardware is configured to
|
|
** split, it will ONLY use the header buffer
|
|
** when header split is enabled, otherwise we
|
|
** get normal behavior, ie, both header and
|
|
** payload are DMA'd into the payload buffer.
|
|
**
|
|
** The fmp test is to catch the case where a
|
|
** packet spans multiple descriptors, in that
|
|
** case only the first header is valid.
|
|
*/
|
|
if ((rxr->hdr_split) && (rxr->fmp == NULL)){
|
|
hdr = le16toh(cur->
|
|
wb.lower.lo_dword.hs_rss.hdr_info);
|
|
hlen = (hdr & E1000_RXDADV_HDRBUFLEN_MASK) >>
|
|
E1000_RXDADV_HDRBUFLEN_SHIFT;
|
|
if (hlen > IGB_HDR_BUF)
|
|
hlen = IGB_HDR_BUF;
|
|
plen = le16toh(cur->wb.upper.length);
|
|
/* Handle the header mbuf */
|
|
mh = rxr->rx_buffers[i].m_head;
|
|
mh->m_len = hlen;
|
|
dopayload = IGB_CLEAN_HEADER;
|
|
/*
|
|
** Get the payload length, this
|
|
** could be zero if its a small
|
|
** packet.
|
|
*/
|
|
if (plen) {
|
|
mp = rxr->rx_buffers[i].m_pack;
|
|
mp->m_len = plen;
|
|
mp->m_next = NULL;
|
|
mp->m_flags &= ~M_PKTHDR;
|
|
mh->m_next = mp;
|
|
mh->m_flags |= M_PKTHDR;
|
|
dopayload = IGB_CLEAN_BOTH;
|
|
rxr->rx_split_packets++;
|
|
} else { /* small packets */
|
|
mh->m_flags &= ~M_PKTHDR;
|
|
mh->m_next = NULL;
|
|
}
|
|
} else {
|
|
/*
|
|
** Either no header split, or a
|
|
** secondary piece of a fragmented
|
|
** split packet.
|
|
*/
|
|
mh = rxr->rx_buffers[i].m_pack;
|
|
mh->m_flags |= M_PKTHDR;
|
|
mh->m_len = le16toh(cur->wb.upper.length);
|
|
dopayload = IGB_CLEAN_PAYLOAD;
|
|
}
|
|
|
|
if (staterr & E1000_RXD_STAT_EOP) {
|
|
count--;
|
|
eop = 1;
|
|
/*
|
|
** Strip CRC and account for frag
|
|
*/
|
|
if (mp) {
|
|
if (mp->m_len < ETHER_CRC_LEN) {
|
|
/* a frag, how much is left? */
|
|
len_adj = ETHER_CRC_LEN - mp->m_len;
|
|
mp->m_len = 0;
|
|
} else
|
|
mp->m_len -= ETHER_CRC_LEN;
|
|
} else { /* not split */
|
|
if (mh->m_len < ETHER_CRC_LEN) {
|
|
len_adj = ETHER_CRC_LEN - mh->m_len;
|
|
mh->m_len = 0;
|
|
} else
|
|
mh->m_len -= ETHER_CRC_LEN;
|
|
}
|
|
} else
|
|
eop = 0;
|
|
|
|
if (staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK)
|
|
accept_frame = 0;
|
|
#ifdef IGB_IEEE1588
|
|
This linux code needs to be converted to work here
|
|
-----------------------------------------------------
|
|
if (unlikely(staterr & E1000_RXD_STAT_TS)) {
|
|
u64 regval;
|
|
u64 ns;
|
|
// Create an mtag and set it up
|
|
struct skb_shared_hwtstamps *shhwtstamps =
|
|
skb_hwtstamps(skb);
|
|
|
|
rd32(E1000_TSYNCRXCTL) & E1000_TSYNCRXCTL_VALID),
|
|
"igb: no RX time stamp available for time stamped packet");
|
|
regval = rd32(E1000_RXSTMPL);
|
|
regval |= (u64)rd32(E1000_RXSTMPH) << 32;
|
|
// Do time conversion from the register
|
|
ns = timecounter_cyc2time(&adapter->clock, regval);
|
|
clocksync_update(&adapter->sync, ns);
|
|
memset(shhwtstamps, 0, sizeof(*shhwtstamps));
|
|
shhwtstamps->hwtstamp = ns_to_ktime(ns);
|
|
shhwtstamps->syststamp =
|
|
clocksync_hw2sys(&adapter->sync, ns);
|
|
}
|
|
#endif
|
|
if (accept_frame) {
|
|
/*
|
|
** get_buf will overwrite the writeback
|
|
** descriptor so save the VLAN tag now.
|
|
*/
|
|
vtag = le16toh(cur->wb.upper.vlan);
|
|
if (igb_get_buf(rxr, i, dopayload) != 0) {
|
|
ifp->if_iqdrops++;
|
|
goto discard;
|
|
}
|
|
/* Initial frame - setup */
|
|
if (rxr->fmp == NULL) {
|
|
mh->m_flags |= M_PKTHDR;
|
|
mh->m_pkthdr.len = mh->m_len;
|
|
rxr->fmp = mh; /* Store the first mbuf */
|
|
rxr->lmp = mh;
|
|
if (mp) { /* Add payload if split */
|
|
mh->m_pkthdr.len += mp->m_len;
|
|
rxr->lmp = mh->m_next;
|
|
}
|
|
} else {
|
|
/* Chain mbuf's together */
|
|
mh->m_flags &= ~M_PKTHDR;
|
|
rxr->lmp->m_next = mh;
|
|
rxr->lmp = rxr->lmp->m_next;
|
|
rxr->fmp->m_pkthdr.len += mh->m_len;
|
|
/* Adjust for CRC frag */
|
|
if (len_adj) {
|
|
rxr->lmp->m_len -= len_adj;
|
|
rxr->fmp->m_pkthdr.len -= len_adj;
|
|
}
|
|
}
|
|
|
|
if (eop) {
|
|
bool sctp = ((ptype & 0x40) != 0);
|
|
rxr->fmp->m_pkthdr.rcvif = ifp;
|
|
ifp->if_ipackets++;
|
|
rxr->rx_packets++;
|
|
/* capture data for AIM */
|
|
rxr->bytes += rxr->fmp->m_pkthdr.len;
|
|
rxr->rx_bytes += rxr->fmp->m_pkthdr.len;
|
|
|
|
igb_rx_checksum(staterr, rxr->fmp, sctp);
|
|
if (staterr & E1000_RXD_STAT_VP) {
|
|
rxr->fmp->m_pkthdr.ether_vtag = vtag;
|
|
rxr->fmp->m_flags |= M_VLANTAG;
|
|
}
|
|
#if __FreeBSD_version >= 800000
|
|
rxr->fmp->m_pkthdr.flowid = curcpu;
|
|
rxr->fmp->m_flags |= M_FLOWID;
|
|
#endif
|
|
sendmp = rxr->fmp;
|
|
rxr->fmp = NULL;
|
|
rxr->lmp = NULL;
|
|
}
|
|
} else {
|
|
ifp->if_ierrors++;
|
|
discard:
|
|
/* Reuse loaded DMA map and just update mbuf chain */
|
|
if (hlen) {
|
|
mh = rxr->rx_buffers[i].m_head;
|
|
mh->m_len = MHLEN;
|
|
mh->m_next = NULL;
|
|
}
|
|
mp = rxr->rx_buffers[i].m_pack;
|
|
mp->m_len = mp->m_pkthdr.len = adapter->rx_mbuf_sz;
|
|
mp->m_data = mp->m_ext.ext_buf;
|
|
mp->m_next = NULL;
|
|
if (adapter->max_frame_size <=
|
|
(MCLBYTES - ETHER_ALIGN))
|
|
m_adj(mp, ETHER_ALIGN);
|
|
if (rxr->fmp != NULL) {
|
|
/* handles the whole chain */
|
|
m_freem(rxr->fmp);
|
|
rxr->fmp = NULL;
|
|
rxr->lmp = NULL;
|
|
}
|
|
sendmp = NULL;
|
|
}
|
|
|
|
bus_dmamap_sync(rxr->rxdma.dma_tag, rxr->rxdma.dma_map,
|
|
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
|
|
|
|
rxr->last_cleaned = i; /* For updating tail */
|
|
|
|
/* Advance our pointers to the next descriptor. */
|
|
if (++i == adapter->num_rx_desc)
|
|
i = 0;
|
|
|
|
/*
|
|
** Note that we hold the RX lock thru
|
|
** the following call so this ring's
|
|
** next_to_check is not gonna change.
|
|
*/
|
|
if (sendmp != NULL) {
|
|
/*
|
|
** Send to the stack if:
|
|
** - LRO not enabled, or
|
|
** - no LRO resources, or
|
|
** - lro enqueue fails
|
|
*/
|
|
if ((!rxr->lro_enabled) ||
|
|
((!lro->lro_cnt) || (tcp_lro_rx(lro, sendmp, 0))))
|
|
(*ifp->if_input)(ifp, sendmp);
|
|
}
|
|
|
|
/* Get the next descriptor */
|
|
cur = &rxr->rx_base[i];
|
|
staterr = cur->wb.upper.status_error;
|
|
}
|
|
rxr->next_to_check = i;
|
|
|
|
/* Advance the E1000's Receive Queue #0 "Tail Pointer". */
|
|
E1000_WRITE_REG(&adapter->hw, E1000_RDT(rxr->me), rxr->last_cleaned);
|
|
|
|
/*
|
|
* Flush any outstanding LRO work
|
|
*/
|
|
while (!SLIST_EMPTY(&lro->lro_active)) {
|
|
queued = SLIST_FIRST(&lro->lro_active);
|
|
SLIST_REMOVE_HEAD(&lro->lro_active, next);
|
|
tcp_lro_flush(lro, queued);
|
|
}
|
|
|
|
IGB_RX_UNLOCK(rxr);
|
|
|
|
/*
|
|
** We still have cleaning to do?
|
|
** Schedule another interrupt if so.
|
|
*/
|
|
if (staterr & E1000_RXD_STAT_DD) {
|
|
E1000_WRITE_REG(&adapter->hw, E1000_EICS, rxr->eims);
|
|
return TRUE;
|
|
}
|
|
|
|
return FALSE;
|
|
}
|
|
|
|
|
|
/*********************************************************************
|
|
*
|
|
* Verify that the hardware indicated that the checksum is valid.
|
|
* Inform the stack about the status of checksum so that stack
|
|
* doesn't spend time verifying the checksum.
|
|
*
|
|
*********************************************************************/
|
|
static void
|
|
igb_rx_checksum(u32 staterr, struct mbuf *mp, bool sctp)
|
|
{
|
|
u16 status = (u16)staterr;
|
|
u8 errors = (u8) (staterr >> 24);
|
|
|
|
/* Ignore Checksum bit is set */
|
|
if (status & E1000_RXD_STAT_IXSM) {
|
|
mp->m_pkthdr.csum_flags = 0;
|
|
return;
|
|
}
|
|
|
|
if (status & E1000_RXD_STAT_IPCS) {
|
|
/* Did it pass? */
|
|
if (!(errors & E1000_RXD_ERR_IPE)) {
|
|
/* IP Checksum Good */
|
|
mp->m_pkthdr.csum_flags = CSUM_IP_CHECKED;
|
|
mp->m_pkthdr.csum_flags |= CSUM_IP_VALID;
|
|
} else
|
|
mp->m_pkthdr.csum_flags = 0;
|
|
}
|
|
|
|
if (status & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS)) {
|
|
u16 type = (CSUM_DATA_VALID | CSUM_PSEUDO_HDR);
|
|
#if __FreeBSD_version >= 800000
|
|
if (sctp) /* reassign */
|
|
type = CSUM_SCTP_VALID;
|
|
#endif
|
|
/* Did it pass? */
|
|
if (!(errors & E1000_RXD_ERR_TCPE)) {
|
|
mp->m_pkthdr.csum_flags |= type;
|
|
if (!sctp)
|
|
mp->m_pkthdr.csum_data = htons(0xffff);
|
|
}
|
|
}
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* This routine is run via an vlan
|
|
* config EVENT
|
|
*/
|
|
static void
|
|
igb_register_vlan(void *arg, struct ifnet *ifp, u16 vtag)
|
|
{
|
|
struct adapter *adapter = ifp->if_softc;
|
|
u32 index, bit;
|
|
|
|
if (ifp->if_softc != arg) /* Not our event */
|
|
return;
|
|
|
|
if ((vtag == 0) || (vtag > 4095)) /* Invalid */
|
|
return;
|
|
|
|
index = (vtag >> 5) & 0x7F;
|
|
bit = vtag & 0x1F;
|
|
igb_shadow_vfta[index] |= (1 << bit);
|
|
++adapter->num_vlans;
|
|
/* Re-init to load the changes */
|
|
igb_init(adapter);
|
|
}
|
|
|
|
/*
|
|
* This routine is run via an vlan
|
|
* unconfig EVENT
|
|
*/
|
|
static void
|
|
igb_unregister_vlan(void *arg, struct ifnet *ifp, u16 vtag)
|
|
{
|
|
struct adapter *adapter = ifp->if_softc;
|
|
u32 index, bit;
|
|
|
|
if (ifp->if_softc != arg)
|
|
return;
|
|
|
|
if ((vtag == 0) || (vtag > 4095)) /* Invalid */
|
|
return;
|
|
|
|
index = (vtag >> 5) & 0x7F;
|
|
bit = vtag & 0x1F;
|
|
igb_shadow_vfta[index] &= ~(1 << bit);
|
|
--adapter->num_vlans;
|
|
/* Re-init to load the changes */
|
|
igb_init(adapter);
|
|
}
|
|
|
|
static void
|
|
igb_setup_vlan_hw_support(struct adapter *adapter)
|
|
{
|
|
struct e1000_hw *hw = &adapter->hw;
|
|
u32 reg;
|
|
|
|
/*
|
|
** We get here thru init_locked, meaning
|
|
** a soft reset, this has already cleared
|
|
** the VFTA and other state, so if there
|
|
** have been no vlan's registered do nothing.
|
|
*/
|
|
if (adapter->num_vlans == 0)
|
|
return;
|
|
|
|
/*
|
|
** A soft reset zero's out the VFTA, so
|
|
** we need to repopulate it now.
|
|
*/
|
|
for (int i = 0; i < IGB_VFTA_SIZE; i++)
|
|
if (igb_shadow_vfta[i] != 0)
|
|
E1000_WRITE_REG_ARRAY(hw, E1000_VFTA,
|
|
i, igb_shadow_vfta[i]);
|
|
|
|
reg = E1000_READ_REG(hw, E1000_CTRL);
|
|
reg |= E1000_CTRL_VME;
|
|
E1000_WRITE_REG(hw, E1000_CTRL, reg);
|
|
|
|
/* Enable the Filter Table */
|
|
reg = E1000_READ_REG(hw, E1000_RCTL);
|
|
reg &= ~E1000_RCTL_CFIEN;
|
|
reg |= E1000_RCTL_VFE;
|
|
E1000_WRITE_REG(hw, E1000_RCTL, reg);
|
|
|
|
/* Update the frame size */
|
|
E1000_WRITE_REG(&adapter->hw, E1000_RLPML,
|
|
adapter->max_frame_size + VLAN_TAG_SIZE);
|
|
}
|
|
|
|
static void
|
|
igb_enable_intr(struct adapter *adapter)
|
|
{
|
|
/* With RSS set up what to auto clear */
|
|
if (adapter->msix_mem) {
|
|
E1000_WRITE_REG(&adapter->hw, E1000_EIAC,
|
|
adapter->eims_mask);
|
|
E1000_WRITE_REG(&adapter->hw, E1000_EIAM,
|
|
adapter->eims_mask);
|
|
E1000_WRITE_REG(&adapter->hw, E1000_EIMS,
|
|
adapter->eims_mask);
|
|
E1000_WRITE_REG(&adapter->hw, E1000_IMS,
|
|
E1000_IMS_LSC);
|
|
} else {
|
|
E1000_WRITE_REG(&adapter->hw, E1000_IMS,
|
|
IMS_ENABLE_MASK);
|
|
}
|
|
E1000_WRITE_FLUSH(&adapter->hw);
|
|
|
|
return;
|
|
}
|
|
|
|
static void
|
|
igb_disable_intr(struct adapter *adapter)
|
|
{
|
|
if (adapter->msix_mem) {
|
|
E1000_WRITE_REG(&adapter->hw, E1000_EIMC, ~0);
|
|
E1000_WRITE_REG(&adapter->hw, E1000_EIAC, 0);
|
|
}
|
|
E1000_WRITE_REG(&adapter->hw, E1000_IMC, ~0);
|
|
E1000_WRITE_FLUSH(&adapter->hw);
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* Bit of a misnomer, what this really means is
|
|
* to enable OS management of the system... aka
|
|
* to disable special hardware management features
|
|
*/
|
|
static void
|
|
igb_init_manageability(struct adapter *adapter)
|
|
{
|
|
if (adapter->has_manage) {
|
|
int manc2h = E1000_READ_REG(&adapter->hw, E1000_MANC2H);
|
|
int manc = E1000_READ_REG(&adapter->hw, E1000_MANC);
|
|
|
|
/* disable hardware interception of ARP */
|
|
manc &= ~(E1000_MANC_ARP_EN);
|
|
|
|
/* enable receiving management packets to the host */
|
|
manc |= E1000_MANC_EN_MNG2HOST;
|
|
manc2h |= 1 << 5; /* Mng Port 623 */
|
|
manc2h |= 1 << 6; /* Mng Port 664 */
|
|
E1000_WRITE_REG(&adapter->hw, E1000_MANC2H, manc2h);
|
|
E1000_WRITE_REG(&adapter->hw, E1000_MANC, manc);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Give control back to hardware management
|
|
* controller if there is one.
|
|
*/
|
|
static void
|
|
igb_release_manageability(struct adapter *adapter)
|
|
{
|
|
if (adapter->has_manage) {
|
|
int manc = E1000_READ_REG(&adapter->hw, E1000_MANC);
|
|
|
|
/* re-enable hardware interception of ARP */
|
|
manc |= E1000_MANC_ARP_EN;
|
|
manc &= ~E1000_MANC_EN_MNG2HOST;
|
|
|
|
E1000_WRITE_REG(&adapter->hw, E1000_MANC, manc);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* igb_get_hw_control sets CTRL_EXT:DRV_LOAD bit.
|
|
* For ASF and Pass Through versions of f/w this means that
|
|
* the driver is loaded.
|
|
*
|
|
*/
|
|
static void
|
|
igb_get_hw_control(struct adapter *adapter)
|
|
{
|
|
u32 ctrl_ext;
|
|
|
|
/* Let firmware know the driver has taken over */
|
|
ctrl_ext = E1000_READ_REG(&adapter->hw, E1000_CTRL_EXT);
|
|
E1000_WRITE_REG(&adapter->hw, E1000_CTRL_EXT,
|
|
ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
|
|
}
|
|
|
|
/*
|
|
* igb_release_hw_control resets CTRL_EXT:DRV_LOAD bit.
|
|
* For ASF and Pass Through versions of f/w this means that the
|
|
* driver is no longer loaded.
|
|
*
|
|
*/
|
|
static void
|
|
igb_release_hw_control(struct adapter *adapter)
|
|
{
|
|
u32 ctrl_ext;
|
|
|
|
/* Let firmware taken over control of h/w */
|
|
ctrl_ext = E1000_READ_REG(&adapter->hw, E1000_CTRL_EXT);
|
|
E1000_WRITE_REG(&adapter->hw, E1000_CTRL_EXT,
|
|
ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
|
|
}
|
|
|
|
static int
|
|
igb_is_valid_ether_addr(uint8_t *addr)
|
|
{
|
|
char zero_addr[6] = { 0, 0, 0, 0, 0, 0 };
|
|
|
|
if ((addr[0] & 1) || (!bcmp(addr, zero_addr, ETHER_ADDR_LEN))) {
|
|
return (FALSE);
|
|
}
|
|
|
|
return (TRUE);
|
|
}
|
|
|
|
|
|
/*
|
|
* Enable PCI Wake On Lan capability
|
|
*/
|
|
void
|
|
igb_enable_wakeup(device_t dev)
|
|
{
|
|
u16 cap, status;
|
|
u8 id;
|
|
|
|
/* First find the capabilities pointer*/
|
|
cap = pci_read_config(dev, PCIR_CAP_PTR, 2);
|
|
/* Read the PM Capabilities */
|
|
id = pci_read_config(dev, cap, 1);
|
|
if (id != PCIY_PMG) /* Something wrong */
|
|
return;
|
|
/* OK, we have the power capabilities, so
|
|
now get the status register */
|
|
cap += PCIR_POWER_STATUS;
|
|
status = pci_read_config(dev, cap, 2);
|
|
status |= PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE;
|
|
pci_write_config(dev, cap, status, 2);
|
|
return;
|
|
}
|
|
|
|
|
|
/**********************************************************************
|
|
*
|
|
* Update the board statistics counters.
|
|
*
|
|
**********************************************************************/
|
|
static void
|
|
igb_update_stats_counters(struct adapter *adapter)
|
|
{
|
|
struct ifnet *ifp;
|
|
|
|
if(adapter->hw.phy.media_type == e1000_media_type_copper ||
|
|
(E1000_READ_REG(&adapter->hw, E1000_STATUS) & E1000_STATUS_LU)) {
|
|
adapter->stats.symerrs += E1000_READ_REG(&adapter->hw, E1000_SYMERRS);
|
|
adapter->stats.sec += E1000_READ_REG(&adapter->hw, E1000_SEC);
|
|
}
|
|
adapter->stats.crcerrs += E1000_READ_REG(&adapter->hw, E1000_CRCERRS);
|
|
adapter->stats.mpc += E1000_READ_REG(&adapter->hw, E1000_MPC);
|
|
adapter->stats.scc += E1000_READ_REG(&adapter->hw, E1000_SCC);
|
|
adapter->stats.ecol += E1000_READ_REG(&adapter->hw, E1000_ECOL);
|
|
|
|
adapter->stats.mcc += E1000_READ_REG(&adapter->hw, E1000_MCC);
|
|
adapter->stats.latecol += E1000_READ_REG(&adapter->hw, E1000_LATECOL);
|
|
adapter->stats.colc += E1000_READ_REG(&adapter->hw, E1000_COLC);
|
|
adapter->stats.dc += E1000_READ_REG(&adapter->hw, E1000_DC);
|
|
adapter->stats.rlec += E1000_READ_REG(&adapter->hw, E1000_RLEC);
|
|
adapter->stats.xonrxc += E1000_READ_REG(&adapter->hw, E1000_XONRXC);
|
|
adapter->stats.xontxc += E1000_READ_REG(&adapter->hw, E1000_XONTXC);
|
|
adapter->stats.xoffrxc += E1000_READ_REG(&adapter->hw, E1000_XOFFRXC);
|
|
adapter->stats.xofftxc += E1000_READ_REG(&adapter->hw, E1000_XOFFTXC);
|
|
adapter->stats.fcruc += E1000_READ_REG(&adapter->hw, E1000_FCRUC);
|
|
adapter->stats.prc64 += E1000_READ_REG(&adapter->hw, E1000_PRC64);
|
|
adapter->stats.prc127 += E1000_READ_REG(&adapter->hw, E1000_PRC127);
|
|
adapter->stats.prc255 += E1000_READ_REG(&adapter->hw, E1000_PRC255);
|
|
adapter->stats.prc511 += E1000_READ_REG(&adapter->hw, E1000_PRC511);
|
|
adapter->stats.prc1023 += E1000_READ_REG(&adapter->hw, E1000_PRC1023);
|
|
adapter->stats.prc1522 += E1000_READ_REG(&adapter->hw, E1000_PRC1522);
|
|
adapter->stats.gprc += E1000_READ_REG(&adapter->hw, E1000_GPRC);
|
|
adapter->stats.bprc += E1000_READ_REG(&adapter->hw, E1000_BPRC);
|
|
adapter->stats.mprc += E1000_READ_REG(&adapter->hw, E1000_MPRC);
|
|
adapter->stats.gptc += E1000_READ_REG(&adapter->hw, E1000_GPTC);
|
|
|
|
/* For the 64-bit byte counters the low dword must be read first. */
|
|
/* Both registers clear on the read of the high dword */
|
|
|
|
adapter->stats.gorc += E1000_READ_REG(&adapter->hw, E1000_GORCH);
|
|
adapter->stats.gotc += E1000_READ_REG(&adapter->hw, E1000_GOTCH);
|
|
|
|
adapter->stats.rnbc += E1000_READ_REG(&adapter->hw, E1000_RNBC);
|
|
adapter->stats.ruc += E1000_READ_REG(&adapter->hw, E1000_RUC);
|
|
adapter->stats.rfc += E1000_READ_REG(&adapter->hw, E1000_RFC);
|
|
adapter->stats.roc += E1000_READ_REG(&adapter->hw, E1000_ROC);
|
|
adapter->stats.rjc += E1000_READ_REG(&adapter->hw, E1000_RJC);
|
|
|
|
adapter->stats.tor += E1000_READ_REG(&adapter->hw, E1000_TORH);
|
|
adapter->stats.tot += E1000_READ_REG(&adapter->hw, E1000_TOTH);
|
|
|
|
adapter->stats.tpr += E1000_READ_REG(&adapter->hw, E1000_TPR);
|
|
adapter->stats.tpt += E1000_READ_REG(&adapter->hw, E1000_TPT);
|
|
adapter->stats.ptc64 += E1000_READ_REG(&adapter->hw, E1000_PTC64);
|
|
adapter->stats.ptc127 += E1000_READ_REG(&adapter->hw, E1000_PTC127);
|
|
adapter->stats.ptc255 += E1000_READ_REG(&adapter->hw, E1000_PTC255);
|
|
adapter->stats.ptc511 += E1000_READ_REG(&adapter->hw, E1000_PTC511);
|
|
adapter->stats.ptc1023 += E1000_READ_REG(&adapter->hw, E1000_PTC1023);
|
|
adapter->stats.ptc1522 += E1000_READ_REG(&adapter->hw, E1000_PTC1522);
|
|
adapter->stats.mptc += E1000_READ_REG(&adapter->hw, E1000_MPTC);
|
|
adapter->stats.bptc += E1000_READ_REG(&adapter->hw, E1000_BPTC);
|
|
|
|
adapter->stats.algnerrc +=
|
|
E1000_READ_REG(&adapter->hw, E1000_ALGNERRC);
|
|
adapter->stats.rxerrc +=
|
|
E1000_READ_REG(&adapter->hw, E1000_RXERRC);
|
|
adapter->stats.tncrs +=
|
|
E1000_READ_REG(&adapter->hw, E1000_TNCRS);
|
|
adapter->stats.cexterr +=
|
|
E1000_READ_REG(&adapter->hw, E1000_CEXTERR);
|
|
adapter->stats.tsctc +=
|
|
E1000_READ_REG(&adapter->hw, E1000_TSCTC);
|
|
adapter->stats.tsctfc +=
|
|
E1000_READ_REG(&adapter->hw, E1000_TSCTFC);
|
|
ifp = adapter->ifp;
|
|
|
|
ifp->if_collisions = adapter->stats.colc;
|
|
|
|
/* Rx Errors */
|
|
ifp->if_ierrors = adapter->dropped_pkts + adapter->stats.rxerrc +
|
|
adapter->stats.crcerrs + adapter->stats.algnerrc +
|
|
adapter->stats.ruc + adapter->stats.roc +
|
|
adapter->stats.mpc + adapter->stats.cexterr;
|
|
|
|
/* Tx Errors */
|
|
ifp->if_oerrors = adapter->stats.ecol +
|
|
adapter->stats.latecol + adapter->watchdog_events;
|
|
}
|
|
|
|
|
|
/**********************************************************************
|
|
*
|
|
* This routine is called only when igb_display_debug_stats is enabled.
|
|
* This routine provides a way to take a look at important statistics
|
|
* maintained by the driver and hardware.
|
|
*
|
|
**********************************************************************/
|
|
static void
|
|
igb_print_debug_info(struct adapter *adapter)
|
|
{
|
|
device_t dev = adapter->dev;
|
|
struct rx_ring *rxr = adapter->rx_rings;
|
|
struct tx_ring *txr = adapter->tx_rings;
|
|
uint8_t *hw_addr = adapter->hw.hw_addr;
|
|
|
|
device_printf(dev, "Adapter hardware address = %p \n", hw_addr);
|
|
device_printf(dev, "CTRL = 0x%x RCTL = 0x%x \n",
|
|
E1000_READ_REG(&adapter->hw, E1000_CTRL),
|
|
E1000_READ_REG(&adapter->hw, E1000_RCTL));
|
|
|
|
#if (DEBUG_HW > 0) /* Dont output these errors normally */
|
|
device_printf(dev, "IMS = 0x%x EIMS = 0x%x \n",
|
|
E1000_READ_REG(&adapter->hw, E1000_IMS),
|
|
E1000_READ_REG(&adapter->hw, E1000_EIMS));
|
|
#endif
|
|
|
|
device_printf(dev, "Packet buffer = Tx=%dk Rx=%dk \n",
|
|
((E1000_READ_REG(&adapter->hw, E1000_PBA) & 0xffff0000) >> 16),\
|
|
(E1000_READ_REG(&adapter->hw, E1000_PBA) & 0xffff) );
|
|
device_printf(dev, "Flow control watermarks high = %d low = %d\n",
|
|
adapter->hw.fc.high_water,
|
|
adapter->hw.fc.low_water);
|
|
|
|
for (int i = 0; i < adapter->num_queues; i++, txr++) {
|
|
device_printf(dev, "Queue(%d) tdh = %d, tdt = %d\n", i,
|
|
E1000_READ_REG(&adapter->hw, E1000_TDH(i)),
|
|
E1000_READ_REG(&adapter->hw, E1000_TDT(i)));
|
|
device_printf(dev, "TX(%d) no descriptors avail event = %lld\n",
|
|
txr->me, (long long)txr->no_desc_avail);
|
|
device_printf(dev, "TX(%d) MSIX IRQ Handled = %lld\n", txr->me,
|
|
(long long)txr->tx_irq);
|
|
device_printf(dev, "TX(%d) Packets sent = %lld\n", txr->me,
|
|
(long long)txr->tx_packets);
|
|
}
|
|
|
|
for (int i = 0; i < adapter->num_queues; i++, rxr++) {
|
|
struct lro_ctrl *lro = &rxr->lro;
|
|
device_printf(dev, "Queue(%d) rdh = %d, rdt = %d\n", i,
|
|
E1000_READ_REG(&adapter->hw, E1000_RDH(i)),
|
|
E1000_READ_REG(&adapter->hw, E1000_RDT(i)));
|
|
device_printf(dev, "RX(%d) Packets received = %lld\n", rxr->me,
|
|
(long long)rxr->rx_packets);
|
|
device_printf(dev, "RX(%d) Split Packets = %lld\n", rxr->me,
|
|
(long long)rxr->rx_split_packets);
|
|
device_printf(dev, "RX(%d) Byte count = %lld\n", rxr->me,
|
|
(long long)rxr->rx_bytes);
|
|
device_printf(dev, "RX(%d) MSIX IRQ Handled = %lld\n", rxr->me,
|
|
(long long)rxr->rx_irq);
|
|
device_printf(dev,"RX(%d) LRO Queued= %d\n",
|
|
rxr->me, lro->lro_queued);
|
|
device_printf(dev,"RX(%d) LRO Flushed= %d\n",
|
|
rxr->me, lro->lro_flushed);
|
|
}
|
|
|
|
device_printf(dev, "LINK MSIX IRQ Handled = %u\n", adapter->link_irq);
|
|
|
|
device_printf(dev, "Mbuf defrag failed = %ld\n",
|
|
adapter->mbuf_defrag_failed);
|
|
device_printf(dev, "Std mbuf header failed = %ld\n",
|
|
adapter->mbuf_header_failed);
|
|
device_printf(dev, "Std mbuf packet failed = %ld\n",
|
|
adapter->mbuf_packet_failed);
|
|
device_printf(dev, "Driver dropped packets = %ld\n",
|
|
adapter->dropped_pkts);
|
|
device_printf(dev, "Driver tx dma failure in xmit = %ld\n",
|
|
adapter->no_tx_dma_setup);
|
|
}
|
|
|
|
static void
|
|
igb_print_hw_stats(struct adapter *adapter)
|
|
{
|
|
device_t dev = adapter->dev;
|
|
|
|
device_printf(dev, "Excessive collisions = %lld\n",
|
|
(long long)adapter->stats.ecol);
|
|
#if (DEBUG_HW > 0) /* Dont output these errors normally */
|
|
device_printf(dev, "Symbol errors = %lld\n",
|
|
(long long)adapter->stats.symerrs);
|
|
#endif
|
|
device_printf(dev, "Sequence errors = %lld\n",
|
|
(long long)adapter->stats.sec);
|
|
device_printf(dev, "Defer count = %lld\n",
|
|
(long long)adapter->stats.dc);
|
|
device_printf(dev, "Missed Packets = %lld\n",
|
|
(long long)adapter->stats.mpc);
|
|
device_printf(dev, "Receive No Buffers = %lld\n",
|
|
(long long)adapter->stats.rnbc);
|
|
/* RLEC is inaccurate on some hardware, calculate our own. */
|
|
device_printf(dev, "Receive Length Errors = %lld\n",
|
|
((long long)adapter->stats.roc + (long long)adapter->stats.ruc));
|
|
device_printf(dev, "Receive errors = %lld\n",
|
|
(long long)adapter->stats.rxerrc);
|
|
device_printf(dev, "Crc errors = %lld\n",
|
|
(long long)adapter->stats.crcerrs);
|
|
device_printf(dev, "Alignment errors = %lld\n",
|
|
(long long)adapter->stats.algnerrc);
|
|
/* On 82575 these are collision counts */
|
|
device_printf(dev, "Collision/Carrier extension errors = %lld\n",
|
|
(long long)adapter->stats.cexterr);
|
|
device_printf(dev, "RX overruns = %ld\n", adapter->rx_overruns);
|
|
device_printf(dev, "watchdog timeouts = %ld\n",
|
|
adapter->watchdog_events);
|
|
device_printf(dev, "XON Rcvd = %lld\n",
|
|
(long long)adapter->stats.xonrxc);
|
|
device_printf(dev, "XON Xmtd = %lld\n",
|
|
(long long)adapter->stats.xontxc);
|
|
device_printf(dev, "XOFF Rcvd = %lld\n",
|
|
(long long)adapter->stats.xoffrxc);
|
|
device_printf(dev, "XOFF Xmtd = %lld\n",
|
|
(long long)adapter->stats.xofftxc);
|
|
device_printf(dev, "Good Packets Rcvd = %lld\n",
|
|
(long long)adapter->stats.gprc);
|
|
device_printf(dev, "Good Packets Xmtd = %lld\n",
|
|
(long long)adapter->stats.gptc);
|
|
device_printf(dev, "TSO Contexts Xmtd = %lld\n",
|
|
(long long)adapter->stats.tsctc);
|
|
device_printf(dev, "TSO Contexts Failed = %lld\n",
|
|
(long long)adapter->stats.tsctfc);
|
|
}
|
|
|
|
/**********************************************************************
|
|
*
|
|
* This routine provides a way to dump out the adapter eeprom,
|
|
* often a useful debug/service tool. This only dumps the first
|
|
* 32 words, stuff that matters is in that extent.
|
|
*
|
|
**********************************************************************/
|
|
static void
|
|
igb_print_nvm_info(struct adapter *adapter)
|
|
{
|
|
u16 eeprom_data;
|
|
int i, j, row = 0;
|
|
|
|
/* Its a bit crude, but it gets the job done */
|
|
printf("\nInterface EEPROM Dump:\n");
|
|
printf("Offset\n0x0000 ");
|
|
for (i = 0, j = 0; i < 32; i++, j++) {
|
|
if (j == 8) { /* Make the offset block */
|
|
j = 0; ++row;
|
|
printf("\n0x00%x0 ",row);
|
|
}
|
|
e1000_read_nvm(&adapter->hw, i, 1, &eeprom_data);
|
|
printf("%04x ", eeprom_data);
|
|
}
|
|
printf("\n");
|
|
}
|
|
|
|
static int
|
|
igb_sysctl_debug_info(SYSCTL_HANDLER_ARGS)
|
|
{
|
|
struct adapter *adapter;
|
|
int error;
|
|
int result;
|
|
|
|
result = -1;
|
|
error = sysctl_handle_int(oidp, &result, 0, req);
|
|
|
|
if (error || !req->newptr)
|
|
return (error);
|
|
|
|
if (result == 1) {
|
|
adapter = (struct adapter *)arg1;
|
|
igb_print_debug_info(adapter);
|
|
}
|
|
/*
|
|
* This value will cause a hex dump of the
|
|
* first 32 16-bit words of the EEPROM to
|
|
* the screen.
|
|
*/
|
|
if (result == 2) {
|
|
adapter = (struct adapter *)arg1;
|
|
igb_print_nvm_info(adapter);
|
|
}
|
|
|
|
return (error);
|
|
}
|
|
|
|
|
|
static int
|
|
igb_sysctl_stats(SYSCTL_HANDLER_ARGS)
|
|
{
|
|
struct adapter *adapter;
|
|
int error;
|
|
int result;
|
|
|
|
result = -1;
|
|
error = sysctl_handle_int(oidp, &result, 0, req);
|
|
|
|
if (error || !req->newptr)
|
|
return (error);
|
|
|
|
if (result == 1) {
|
|
adapter = (struct adapter *)arg1;
|
|
igb_print_hw_stats(adapter);
|
|
}
|
|
|
|
return (error);
|
|
}
|
|
|
|
static void
|
|
igb_add_rx_process_limit(struct adapter *adapter, const char *name,
|
|
const char *description, int *limit, int value)
|
|
{
|
|
*limit = value;
|
|
SYSCTL_ADD_INT(device_get_sysctl_ctx(adapter->dev),
|
|
SYSCTL_CHILDREN(device_get_sysctl_tree(adapter->dev)),
|
|
OID_AUTO, name, CTLTYPE_INT|CTLFLAG_RW, limit, value, description);
|
|
}
|
|
|
|
#ifdef IGB_IEEE1588
|
|
/*
|
|
** igb_hwtstamp_ioctl - control hardware time stamping
|
|
**
|
|
** Outgoing time stamping can be enabled and disabled. Play nice and
|
|
** disable it when requested, although it shouldn't case any overhead
|
|
** when no packet needs it. At most one packet in the queue may be
|
|
** marked for time stamping, otherwise it would be impossible to tell
|
|
** for sure to which packet the hardware time stamp belongs.
|
|
**
|
|
** Incoming time stamping has to be configured via the hardware
|
|
** filters. Not all combinations are supported, in particular event
|
|
** type has to be specified. Matching the kind of event packet is
|
|
** not supported, with the exception of "all V2 events regardless of
|
|
** level 2 or 4".
|
|
**
|
|
*/
|
|
static int
|
|
igb_hwtstamp_ioctl(struct adapter *adapter, struct ifreq *ifr)
|
|
{
|
|
struct e1000_hw *hw = &adapter->hw;
|
|
struct hwtstamp_ctrl *config;
|
|
u32 tsync_tx_ctl_bit = E1000_TSYNCTXCTL_ENABLED;
|
|
u32 tsync_rx_ctl_bit = E1000_TSYNCRXCTL_ENABLED;
|
|
u32 tsync_rx_ctl_type = 0;
|
|
u32 tsync_rx_cfg = 0;
|
|
int is_l4 = 0;
|
|
int is_l2 = 0;
|
|
u16 port = 319; /* PTP */
|
|
u32 regval;
|
|
|
|
config = (struct hwtstamp_ctrl *) ifr->ifr_data;
|
|
|
|
/* reserved for future extensions */
|
|
if (config->flags)
|
|
return (EINVAL);
|
|
|
|
switch (config->tx_type) {
|
|
case HWTSTAMP_TX_OFF:
|
|
tsync_tx_ctl_bit = 0;
|
|
break;
|
|
case HWTSTAMP_TX_ON:
|
|
tsync_tx_ctl_bit = E1000_TSYNCTXCTL_ENABLED;
|
|
break;
|
|
default:
|
|
return (ERANGE);
|
|
}
|
|
|
|
switch (config->rx_filter) {
|
|
case HWTSTAMP_FILTER_NONE:
|
|
tsync_rx_ctl_bit = 0;
|
|
break;
|
|
case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
|
|
case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
|
|
case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
|
|
case HWTSTAMP_FILTER_ALL:
|
|
/*
|
|
* register TSYNCRXCFG must be set, therefore it is not
|
|
* possible to time stamp both Sync and Delay_Req messages
|
|
* => fall back to time stamping all packets
|
|
*/
|
|
tsync_rx_ctl_type = E1000_TSYNCRXCTL_TYPE_ALL;
|
|
config->rx_filter = HWTSTAMP_FILTER_ALL;
|
|
break;
|
|
case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
|
|
tsync_rx_ctl_type = E1000_TSYNCRXCTL_TYPE_L4_V1;
|
|
tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V1_SYNC_MESSAGE;
|
|
is_l4 = 1;
|
|
break;
|
|
case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
|
|
tsync_rx_ctl_type = E1000_TSYNCRXCTL_TYPE_L4_V1;
|
|
tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V1_DELAY_REQ_MESSAGE;
|
|
is_l4 = 1;
|
|
break;
|
|
case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
|
|
case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
|
|
tsync_rx_ctl_type = E1000_TSYNCRXCTL_TYPE_L2_L4_V2;
|
|
tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V2_SYNC_MESSAGE;
|
|
is_l2 = 1;
|
|
is_l4 = 1;
|
|
config->rx_filter = HWTSTAMP_FILTER_SOME;
|
|
break;
|
|
case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
|
|
case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
|
|
tsync_rx_ctl_type = E1000_TSYNCRXCTL_TYPE_L2_L4_V2;
|
|
tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V2_DELAY_REQ_MESSAGE;
|
|
is_l2 = 1;
|
|
is_l4 = 1;
|
|
config->rx_filter = HWTSTAMP_FILTER_SOME;
|
|
break;
|
|
case HWTSTAMP_FILTER_PTP_V2_EVENT:
|
|
case HWTSTAMP_FILTER_PTP_V2_SYNC:
|
|
case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
|
|
tsync_rx_ctl_type = E1000_TSYNCRXCTL_TYPE_EVENT_V2;
|
|
config->rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
|
|
is_l2 = 1;
|
|
break;
|
|
default:
|
|
return -ERANGE;
|
|
}
|
|
|
|
/* enable/disable TX */
|
|
regval = E1000_READ_REG(hw, E1000_TSYNCTXCTL);
|
|
regval = (regval & ~E1000_TSYNCTXCTL_ENABLED) | tsync_tx_ctl_bit;
|
|
E1000_WRITE_REG(hw, E1000_TSYNCTXCTL, regval);
|
|
|
|
/* enable/disable RX, define which PTP packets are time stamped */
|
|
regval = E1000_READ_REG(hw, E1000_TSYNCRXCTL);
|
|
regval = (regval & ~E1000_TSYNCRXCTL_ENABLED) | tsync_rx_ctl_bit;
|
|
regval = (regval & ~0xE) | tsync_rx_ctl_type;
|
|
E1000_WRITE_REG(hw, E1000_TSYNCRXCTL, regval);
|
|
E1000_WRITE_REG(hw, E1000_TSYNCRXCFG, tsync_rx_cfg);
|
|
|
|
/*
|
|
* Ethertype Filter Queue Filter[0][15:0] = 0x88F7
|
|
* (Ethertype to filter on)
|
|
* Ethertype Filter Queue Filter[0][26] = 0x1 (Enable filter)
|
|
* Ethertype Filter Queue Filter[0][30] = 0x1 (Enable Timestamping)
|
|
*/
|
|
E1000_WRITE_REG(hw, E1000_ETQF0, is_l2 ? 0x440088f7 : 0);
|
|
|
|
/* L4 Queue Filter[0]: only filter by source and destination port */
|
|
E1000_WRITE_REG(hw, E1000_SPQF0, htons(port));
|
|
E1000_WRITE_REG(hw, E1000_IMIREXT(0), is_l4 ?
|
|
((1<<12) | (1<<19) /* bypass size and control flags */) : 0);
|
|
E1000_WRITE_REG(hw, E1000_IMIR(0), is_l4 ?
|
|
(htons(port)
|
|
| (0<<16) /* immediate interrupt disabled */
|
|
| 0 /* (1<<17) bit cleared: do not bypass
|
|
destination port check */)
|
|
: 0);
|
|
E1000_WRITE_REG(hw, E1000_FTQF0, is_l4 ?
|
|
(0x11 /* UDP */
|
|
| (1<<15) /* VF not compared */
|
|
| (1<<27) /* Enable Timestamping */
|
|
| (7<<28) /* only source port filter enabled,
|
|
source/target address and protocol
|
|
masked */)
|
|
: ((1<<15) | (15<<28) /* all mask bits set = filter not
|
|
enabled */));
|
|
|
|
wrfl();
|
|
|
|
adapter->hwtstamp_ctrl = config;
|
|
|
|
/* clear TX/RX time stamp registers, just to be sure */
|
|
regval = E1000_READ_REG(hw, E1000_TXSTMPH);
|
|
regval = E1000_READ_REG(hw, E1000_RXSTMPH);
|
|
|
|
return (error);
|
|
}
|
|
|
|
/*
|
|
** igb_read_clock - read raw cycle counter (to be used by time counter)
|
|
*/
|
|
static cycle_t igb_read_clock(const struct cyclecounter *tc)
|
|
{
|
|
struct igb_adapter *adapter =
|
|
container_of(tc, struct igb_adapter, cycles);
|
|
struct e1000_hw *hw = &adapter->hw;
|
|
u64 stamp;
|
|
|
|
stamp = E1000_READ_REG(hw, E1000_SYSTIML);
|
|
stamp |= (u64)E1000_READ_REG(hw, E1000_SYSTIMH) << 32ULL;
|
|
|
|
return (stamp);
|
|
}
|
|
|
|
#endif /* IGB_IEEE1588 */
|