freebsd-skq/sys/amd64/ia32/ia32_misc.c
Peter Wemm d85631c4ac Add BASIC i386 binary support for the amd64 kernel. This is largely
stolen from the ia64/ia32 code (indeed there was a repocopy), but I've
redone the MD parts and added and fixed a few essential syscalls.  It
is sufficient to run i386 binaries like /bin/ls, /usr/bin/id (dynamic)
and p4.  The ia64 code has not implemented signal delivery, so I had
to do that.

Before you say it, yes, this does need to go in a common place.  But
we're in a freeze at the moment and I didn't want to risk breaking ia64.
I will sort this out after the freeze so that the common code is in a
common place.

On the AMD64 side, this required adding segment selector context switch
support and some other support infrastructure.  The %fs/%gs etc code
is hairy because loading %gs will clobber the kernel's current MSR_GSBASE
setting.  The segment selectors are not used by the kernel, so they're only
changed at context switch time or when changing modes.  This still needs
to be optimized.

Approved by:	re (amd64/* blanket)
2003-05-14 04:10:49 +00:00

1437 lines
31 KiB
C

/*-
* Copyright (c) 2002 Doug Rabson
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* $FreeBSD$
*/
#include "opt_compat.h"
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/bus.h>
#include <sys/exec.h>
#include <sys/fcntl.h>
#include <sys/filedesc.h>
#include <sys/imgact.h>
#include <sys/kernel.h>
#include <sys/lock.h>
#include <sys/malloc.h>
#include <sys/file.h> /* Must come after sys/malloc.h */
#include <sys/mman.h>
#include <sys/module.h>
#include <sys/mount.h>
#include <sys/mutex.h>
#include <sys/namei.h>
#include <sys/param.h>
#include <sys/proc.h>
#include <sys/reboot.h>
#include <sys/resource.h>
#include <sys/resourcevar.h>
#include <sys/selinfo.h>
#include <sys/pipe.h> /* Must come after sys/selinfo.h */
#include <sys/signal.h>
#include <sys/signalvar.h>
#include <sys/socket.h>
#include <sys/socketvar.h>
#include <sys/stat.h>
#include <sys/syscallsubr.h>
#include <sys/sysctl.h>
#include <sys/sysent.h>
#include <sys/sysproto.h>
#include <sys/systm.h>
#include <sys/unistd.h>
#include <sys/user.h>
#include <sys/utsname.h>
#include <sys/vnode.h>
#include <vm/vm.h>
#include <vm/vm_kern.h>
#include <vm/vm_param.h>
#include <vm/pmap.h>
#include <vm/vm_map.h>
#include <vm/vm_object.h>
#include <vm/vm_extern.h>
#include <amd64/ia32/ia32_util.h>
#include <amd64/ia32/ia32.h>
#include <amd64/ia32/ia32_proto.h>
static const char ia32_emul_path[] = "/compat/ia32";
/*
* [ taken from the linux emulator ]
* Search an alternate path before passing pathname arguments on
* to system calls. Useful for keeping a separate 'emulation tree'.
*
* If cflag is set, we check if an attempt can be made to create
* the named file, i.e. we check if the directory it should
* be in exists.
*/
int
ia32_emul_find(td, sgp, prefix, path, pbuf, cflag)
struct thread *td;
caddr_t *sgp; /* Pointer to stackgap memory */
const char *prefix;
char *path;
char **pbuf;
int cflag;
{
int error;
size_t len, sz;
char *buf, *cp, *ptr;
struct ucred *ucred;
struct nameidata nd;
struct nameidata ndroot;
struct vattr vat;
struct vattr vatroot;
buf = (char *) malloc(MAXPATHLEN, M_TEMP, M_WAITOK);
*pbuf = path;
for (ptr = buf; (*ptr = *prefix) != '\0'; ptr++, prefix++)
continue;
sz = MAXPATHLEN - (ptr - buf);
/*
* If sgp is not given then the path is already in kernel space
*/
if (sgp == NULL)
error = copystr(path, ptr, sz, &len);
else
error = copyinstr(path, ptr, sz, &len);
if (error) {
free(buf, M_TEMP);
return error;
}
if (*ptr != '/') {
free(buf, M_TEMP);
return EINVAL;
}
/*
* We know that there is a / somewhere in this pathname.
* Search backwards for it, to find the file's parent dir
* to see if it exists in the alternate tree. If it does,
* and we want to create a file (cflag is set). We don't
* need to worry about the root comparison in this case.
*/
if (cflag) {
for (cp = &ptr[len] - 1; *cp != '/'; cp--)
;
*cp = '\0';
NDINIT(&nd, LOOKUP, FOLLOW, UIO_SYSSPACE, buf, td);
if ((error = namei(&nd)) != 0) {
free(buf, M_TEMP);
return error;
}
*cp = '/';
} else {
NDINIT(&nd, LOOKUP, FOLLOW, UIO_SYSSPACE, buf, td);
if ((error = namei(&nd)) != 0) {
free(buf, M_TEMP);
return error;
}
/*
* We now compare the vnode of the ia32_root to the one
* vnode asked. If they resolve to be the same, then we
* ignore the match so that the real root gets used.
* This avoids the problem of traversing "../.." to find the
* root directory and never finding it, because "/" resolves
* to the emulation root directory. This is expensive :-(
*/
NDINIT(&ndroot, LOOKUP, FOLLOW, UIO_SYSSPACE, ia32_emul_path,
td);
if ((error = namei(&ndroot)) != 0) {
/* Cannot happen! */
free(buf, M_TEMP);
vrele(nd.ni_vp);
return error;
}
ucred = td->td_ucred;
if ((error = VOP_GETATTR(nd.ni_vp, &vat, ucred, td)) != 0) {
goto bad;
}
if ((error = VOP_GETATTR(ndroot.ni_vp, &vatroot, ucred,
td)) != 0) {
goto bad;
}
if (vat.va_fsid == vatroot.va_fsid &&
vat.va_fileid == vatroot.va_fileid) {
error = ENOENT;
goto bad;
}
}
if (sgp == NULL)
*pbuf = buf;
else {
sz = &ptr[len] - buf;
*pbuf = stackgap_alloc(sgp, sz + 1);
error = copyout(buf, *pbuf, sz);
free(buf, M_TEMP);
}
vrele(nd.ni_vp);
if (!cflag)
vrele(ndroot.ni_vp);
return error;
bad:
vrele(ndroot.ni_vp);
vrele(nd.ni_vp);
free(buf, M_TEMP);
return error;
}
int
ia32_open(struct thread *td, struct ia32_open_args *uap)
{
caddr_t sg;
sg = stackgap_init();
CHECKALTEXIST(td, &sg, uap->path);
return open(td, (struct open_args *) uap);
}
int
ia32_wait4(struct thread *td, struct ia32_wait4_args *uap)
{
int error;
caddr_t sg;
struct rusage32 *rusage32, ru32;
struct rusage *rusage = NULL, ru;
rusage32 = uap->rusage;
if (rusage32) {
sg = stackgap_init();
rusage = stackgap_alloc(&sg, sizeof(struct rusage));
uap->rusage = (struct rusage32 *)rusage;
}
error = wait4(td, (struct wait_args *)uap);
if (error)
return (error);
if (rusage32 && (error = copyin(rusage, &ru, sizeof(ru)) == 0)) {
TV_CP(ru, ru32, ru_utime);
TV_CP(ru, ru32, ru_stime);
CP(ru, ru32, ru_maxrss);
CP(ru, ru32, ru_ixrss);
CP(ru, ru32, ru_idrss);
CP(ru, ru32, ru_isrss);
CP(ru, ru32, ru_minflt);
CP(ru, ru32, ru_majflt);
CP(ru, ru32, ru_nswap);
CP(ru, ru32, ru_inblock);
CP(ru, ru32, ru_oublock);
CP(ru, ru32, ru_msgsnd);
CP(ru, ru32, ru_msgrcv);
CP(ru, ru32, ru_nsignals);
CP(ru, ru32, ru_nvcsw);
CP(ru, ru32, ru_nivcsw);
error = copyout(&ru32, rusage32, sizeof(ru32));
}
return (error);
}
static void
copy_statfs(struct statfs *in, struct statfs32 *out)
{
CP(*in, *out, f_bsize);
CP(*in, *out, f_iosize);
CP(*in, *out, f_blocks);
CP(*in, *out, f_bfree);
CP(*in, *out, f_bavail);
CP(*in, *out, f_files);
CP(*in, *out, f_ffree);
CP(*in, *out, f_fsid);
CP(*in, *out, f_owner);
CP(*in, *out, f_type);
CP(*in, *out, f_flags);
CP(*in, *out, f_flags);
CP(*in, *out, f_syncwrites);
CP(*in, *out, f_asyncwrites);
bcopy(in->f_fstypename,
out->f_fstypename, MFSNAMELEN);
bcopy(in->f_mntonname,
out->f_mntonname, MNAMELEN);
CP(*in, *out, f_syncreads);
CP(*in, *out, f_asyncreads);
bcopy(in->f_mntfromname,
out->f_mntfromname, MNAMELEN);
}
int
ia32_getfsstat(struct thread *td, struct ia32_getfsstat_args *uap)
{
int error;
caddr_t sg;
struct statfs32 *sp32, stat32;
struct statfs *sp = NULL, stat;
int maxcount, count, i;
sp32 = uap->buf;
maxcount = uap->bufsize / sizeof(struct statfs32);
if (sp32) {
sg = stackgap_init();
sp = stackgap_alloc(&sg, sizeof(struct statfs) * maxcount);
uap->buf = (struct statfs32 *)sp;
}
error = getfsstat(td, (struct getfsstat_args *) uap);
if (sp32 && !error) {
count = td->td_retval[0];
for (i = 0; i < count; i++) {
error = copyin(&sp[i], &stat, sizeof(stat));
if (error)
return (error);
copy_statfs(&stat, &stat32);
error = copyout(&stat32, &sp32[i], sizeof(stat32));
if (error)
return (error);
}
}
return (error);
}
int
ia32_access(struct thread *td, struct ia32_access_args *uap)
{
caddr_t sg;
sg = stackgap_init();
CHECKALTEXIST(td, &sg, uap->path);
return access(td, (struct access_args *)uap);
}
int
ia32_chflags(struct thread *td, struct ia32_chflags_args *uap)
{
caddr_t sg;
sg = stackgap_init();
CHECKALTEXIST(td, &sg, uap->path);
return chflags(td, (struct chflags_args *)uap);
}
struct sigaltstack32 {
u_int32_t ss_sp;
u_int32_t ss_size;
int ss_flags;
};
int
ia32_sigaltstack(struct thread *td, struct ia32_sigaltstack_args *uap)
{
struct sigaltstack32 s32;
struct sigaltstack ss, oss, *ssp;
int error;
if (uap->ss != NULL) {
error = copyin(uap->ss, &s32, sizeof(s32));
if (error)
return (error);
PTRIN_CP(s32, ss, ss_sp);
CP(s32, ss, ss_size);
CP(s32, ss, ss_flags);
ssp = &ss;
} else
ssp = NULL;
error = kern_sigaltstack(td, ssp, &oss);
if (error == 0 && uap->oss != NULL) {
PTROUT_CP(oss, s32, ss_sp);
CP(oss, s32, ss_size);
CP(oss, s32, ss_flags);
error = copyout(&s32, uap->oss, sizeof(s32));
}
return (error);
}
int
ia32_execve(struct thread *td, struct ia32_execve_args *uap)
{
int error;
caddr_t sg;
struct execve_args ap;
u_int32_t *p32, arg;
char **p;
int count;
sg = stackgap_init();
CHECKALTEXIST(td, &sg, uap->fname);
ap.fname = uap->fname;
if (uap->argv) {
count = 0;
p32 = uap->argv;
do {
error = copyin(p32++, &arg, sizeof(arg));
if (error)
return error;
count++;
} while (arg != 0);
p = stackgap_alloc(&sg, count * sizeof(char *));
ap.argv = p;
p32 = uap->argv;
do {
error = copyin(p32++, &arg, sizeof(arg));
if (error)
return error;
*p++ = PTRIN(arg);
} while (arg != 0);
}
if (uap->envv) {
count = 0;
p32 = uap->envv;
do {
error = copyin(p32++, &arg, sizeof(arg));
if (error)
return error;
count++;
} while (arg != 0);
p = stackgap_alloc(&sg, count * sizeof(char *));
ap.envv = p;
p32 = uap->envv;
do {
error = copyin(p32++, &arg, sizeof(arg));
if (error)
return error;
*p++ = PTRIN(arg);
} while (arg != 0);
}
return execve(td, &ap);
}
#ifdef __ia64__
static int
ia32_mmap_partial(struct thread *td, vm_offset_t start, vm_offset_t end,
int prot, int fd, off_t pos)
{
vm_map_t map;
vm_map_entry_t entry;
int rv;
map = &td->td_proc->p_vmspace->vm_map;
if (fd != -1)
prot |= VM_PROT_WRITE;
if (vm_map_lookup_entry(map, start, &entry)) {
if ((entry->protection & prot) != prot) {
rv = vm_map_protect(map,
trunc_page(start),
round_page(end),
entry->protection | prot,
FALSE);
if (rv != KERN_SUCCESS)
return (EINVAL);
}
} else {
vm_offset_t addr = trunc_page(start);
rv = vm_map_find(map, 0, 0,
&addr, PAGE_SIZE, FALSE, prot,
VM_PROT_ALL, 0);
if (rv != KERN_SUCCESS)
return (EINVAL);
}
if (fd != -1) {
struct pread_args r;
r.fd = fd;
r.buf = (void *) start;
r.nbyte = end - start;
r.offset = pos;
return (pread(td, &r));
} else {
while (start < end) {
subyte((void *) start, 0);
start++;
}
return (0);
}
}
#endif
int
ia32_mmap(struct thread *td, struct ia32_mmap_args *uap)
{
struct mmap_args ap;
vm_offset_t addr = (vm_offset_t) uap->addr;
vm_size_t len = uap->len;
int prot = uap->prot;
int flags = uap->flags;
int fd = uap->fd;
off_t pos = (uap->poslo
| ((off_t)uap->poshi << 32));
#ifdef __ia64__
vm_size_t pageoff;
int error;
/*
* Attempt to handle page size hassles.
*/
pageoff = (pos & PAGE_MASK);
if (flags & MAP_FIXED) {
vm_offset_t start, end;
start = addr;
end = addr + len;
if (start != trunc_page(start)) {
error = ia32_mmap_partial(td, start, round_page(start),
prot, fd, pos);
if (fd != -1)
pos += round_page(start) - start;
start = round_page(start);
}
if (end != round_page(end)) {
vm_offset_t t = trunc_page(end);
error = ia32_mmap_partial(td, t, end,
prot, fd,
pos + t - start);
end = trunc_page(end);
}
if (end > start && fd != -1 && (pos & PAGE_MASK)) {
/*
* We can't map this region at all. The specified
* address doesn't have the same alignment as the file
* position. Fake the mapping by simply reading the
* entire region into memory. First we need to make
* sure the region exists.
*/
vm_map_t map;
struct pread_args r;
int rv;
prot |= VM_PROT_WRITE;
map = &td->td_proc->p_vmspace->vm_map;
rv = vm_map_remove(map, start, end);
if (rv != KERN_SUCCESS)
return (EINVAL);
rv = vm_map_find(map, 0, 0,
&start, end - start, FALSE,
prot, VM_PROT_ALL, 0);
if (rv != KERN_SUCCESS)
return (EINVAL);
r.fd = fd;
r.buf = (void *) start;
r.nbyte = end - start;
r.offset = pos;
error = pread(td, &r);
if (error)
return (error);
td->td_retval[0] = addr;
return (0);
}
if (end == start) {
/*
* After dealing with the ragged ends, there
* might be none left.
*/
td->td_retval[0] = addr;
return (0);
}
addr = start;
len = end - start;
}
#endif
ap.addr = (void *) addr;
ap.len = len;
ap.prot = prot;
ap.flags = flags;
ap.fd = fd;
ap.pos = pos;
return (mmap(td, &ap));
}
struct itimerval32 {
struct timeval32 it_interval;
struct timeval32 it_value;
};
int
ia32_setitimer(struct thread *td, struct ia32_setitimer_args *uap)
{
int error;
caddr_t sg;
struct itimerval32 *p32, *op32, s32;
struct itimerval *p = NULL, *op = NULL, s;
p32 = uap->itv;
if (p32) {
sg = stackgap_init();
p = stackgap_alloc(&sg, sizeof(struct itimerval));
uap->itv = (struct itimerval32 *)p;
error = copyin(p32, &s32, sizeof(s32));
if (error)
return (error);
TV_CP(s32, s, it_interval);
TV_CP(s32, s, it_value);
error = copyout(&s, p, sizeof(s));
if (error)
return (error);
}
op32 = uap->oitv;
if (op32) {
sg = stackgap_init();
op = stackgap_alloc(&sg, sizeof(struct itimerval));
uap->oitv = (struct itimerval32 *)op;
}
error = setitimer(td, (struct setitimer_args *) uap);
if (error)
return (error);
if (op32) {
error = copyin(op, &s, sizeof(s));
if (error)
return (error);
TV_CP(s, s32, it_interval);
TV_CP(s, s32, it_value);
error = copyout(&s32, op32, sizeof(s32));
}
return (error);
}
int
ia32_select(struct thread *td, struct ia32_select_args *uap)
{
int error;
caddr_t sg;
struct timeval32 *p32, s32;
struct timeval *p = NULL, s;
p32 = uap->tv;
if (p32) {
sg = stackgap_init();
p = stackgap_alloc(&sg, sizeof(struct timeval));
uap->tv = (struct timeval32 *)p;
error = copyin(p32, &s32, sizeof(s32));
if (error)
return (error);
CP(s32, s, tv_sec);
CP(s32, s, tv_usec);
error = copyout(&s, p, sizeof(s));
if (error)
return (error);
}
/*
* XXX big-endian needs to convert the fd_sets too.
*/
return (select(td, (struct select_args *) uap));
}
struct kevent32 {
u_int32_t ident; /* identifier for this event */
short filter; /* filter for event */
u_short flags;
u_int fflags;
int32_t data;
u_int32_t udata; /* opaque user data identifier */
};
int
ia32_kevent(struct thread *td, struct ia32_kevent_args *uap)
{
int error;
caddr_t sg;
struct timespec32 ts32;
struct timespec ts;
struct kevent32 ks32;
struct kevent *ks;
struct kevent_args a;
int i;
sg = stackgap_init();
a.fd = uap->fd;
a.changelist = uap->changelist;
a.nchanges = uap->nchanges;
a.eventlist = uap->eventlist;
a.nevents = uap->nevents;
a.timeout = NULL;
if (uap->timeout) {
a.timeout = stackgap_alloc(&sg, sizeof(struct timespec));
error = copyin(uap->timeout, &ts32, sizeof(ts32));
if (error)
return (error);
CP(ts32, ts, tv_sec);
CP(ts32, ts, tv_nsec);
error = copyout(&ts, (void *)(uintptr_t)a.timeout, sizeof(ts));
if (error)
return (error);
}
if (uap->changelist) {
a.changelist = (struct kevent *)stackgap_alloc(&sg, uap->nchanges * sizeof(struct kevent));
for (i = 0; i < uap->nchanges; i++) {
error = copyin(&uap->changelist[i], &ks32, sizeof(ks32));
if (error)
return (error);
ks = (struct kevent *)(uintptr_t)&a.changelist[i];
CP(ks32, *ks, ident);
CP(ks32, *ks, filter);
CP(ks32, *ks, flags);
CP(ks32, *ks, fflags);
CP(ks32, *ks, data);
PTRIN_CP(ks32, *ks, udata);
}
}
if (uap->eventlist) {
a.eventlist = stackgap_alloc(&sg, uap->nevents * sizeof(struct kevent));
}
error = kevent(td, &a);
if (uap->eventlist && error > 0) {
for (i = 0; i < error; i++) {
ks = &a.eventlist[i];
CP(*ks, ks32, ident);
CP(*ks, ks32, filter);
CP(*ks, ks32, flags);
CP(*ks, ks32, fflags);
CP(*ks, ks32, data);
PTROUT_CP(*ks, ks32, udata);
error = copyout(&ks32, &uap->eventlist[i], sizeof(ks32));
if (error)
return (error);
}
}
return error;
}
int
ia32_gettimeofday(struct thread *td, struct ia32_gettimeofday_args *uap)
{
int error;
caddr_t sg;
struct timeval32 *p32, s32;
struct timeval *p = NULL, s;
p32 = uap->tp;
if (p32) {
sg = stackgap_init();
p = stackgap_alloc(&sg, sizeof(struct timeval));
uap->tp = (struct timeval32 *)p;
}
error = gettimeofday(td, (struct gettimeofday_args *) uap);
if (error)
return (error);
if (p32) {
error = copyin(p, &s, sizeof(s));
if (error)
return (error);
CP(s, s32, tv_sec);
CP(s, s32, tv_usec);
error = copyout(&s32, p32, sizeof(s32));
if (error)
return (error);
}
return (error);
}
int
ia32_getrusage(struct thread *td, struct ia32_getrusage_args *uap)
{
int error;
caddr_t sg;
struct rusage32 *p32, s32;
struct rusage *p = NULL, s;
p32 = uap->rusage;
if (p32) {
sg = stackgap_init();
p = stackgap_alloc(&sg, sizeof(struct rusage));
uap->rusage = (struct rusage32 *)p;
}
error = getrusage(td, (struct getrusage_args *) uap);
if (error)
return (error);
if (p32) {
error = copyin(p, &s, sizeof(s));
if (error)
return (error);
TV_CP(s, s32, ru_utime);
TV_CP(s, s32, ru_stime);
CP(s, s32, ru_maxrss);
CP(s, s32, ru_ixrss);
CP(s, s32, ru_idrss);
CP(s, s32, ru_isrss);
CP(s, s32, ru_minflt);
CP(s, s32, ru_majflt);
CP(s, s32, ru_nswap);
CP(s, s32, ru_inblock);
CP(s, s32, ru_oublock);
CP(s, s32, ru_msgsnd);
CP(s, s32, ru_msgrcv);
CP(s, s32, ru_nsignals);
CP(s, s32, ru_nvcsw);
CP(s, s32, ru_nivcsw);
error = copyout(&s32, p32, sizeof(s32));
}
return (error);
}
struct iovec32 {
u_int32_t iov_base;
int iov_len;
};
#define STACKGAPLEN 400
int
ia32_readv(struct thread *td, struct ia32_readv_args *uap)
{
int error, osize, nsize, i;
caddr_t sg;
struct readv_args /* {
syscallarg(int) fd;
syscallarg(struct iovec *) iovp;
syscallarg(u_int) iovcnt;
} */ a;
struct iovec32 *oio;
struct iovec *nio;
sg = stackgap_init();
if (uap->iovcnt > (STACKGAPLEN / sizeof (struct iovec)))
return (EINVAL);
osize = uap->iovcnt * sizeof (struct iovec32);
nsize = uap->iovcnt * sizeof (struct iovec);
oio = malloc(osize, M_TEMP, M_WAITOK);
nio = malloc(nsize, M_TEMP, M_WAITOK);
error = 0;
if ((error = copyin(uap->iovp, oio, osize)))
goto punt;
for (i = 0; i < uap->iovcnt; i++) {
nio[i].iov_base = PTRIN(oio[i].iov_base);
nio[i].iov_len = oio[i].iov_len;
}
a.fd = uap->fd;
a.iovp = stackgap_alloc(&sg, nsize);
a.iovcnt = uap->iovcnt;
if ((error = copyout(nio, (caddr_t)a.iovp, nsize)))
goto punt;
error = readv(td, &a);
punt:
free(oio, M_TEMP);
free(nio, M_TEMP);
return (error);
}
int
ia32_writev(struct thread *td, struct ia32_writev_args *uap)
{
int error, i, nsize, osize;
caddr_t sg;
struct writev_args /* {
syscallarg(int) fd;
syscallarg(struct iovec *) iovp;
syscallarg(u_int) iovcnt;
} */ a;
struct iovec32 *oio;
struct iovec *nio;
sg = stackgap_init();
if (uap->iovcnt > (STACKGAPLEN / sizeof (struct iovec)))
return (EINVAL);
osize = uap->iovcnt * sizeof (struct iovec32);
nsize = uap->iovcnt * sizeof (struct iovec);
oio = malloc(osize, M_TEMP, M_WAITOK);
nio = malloc(nsize, M_TEMP, M_WAITOK);
error = 0;
if ((error = copyin(uap->iovp, oio, osize)))
goto punt;
for (i = 0; i < uap->iovcnt; i++) {
nio[i].iov_base = PTRIN(oio[i].iov_base);
nio[i].iov_len = oio[i].iov_len;
}
a.fd = uap->fd;
a.iovp = stackgap_alloc(&sg, nsize);
a.iovcnt = uap->iovcnt;
if ((error = copyout(nio, (caddr_t)a.iovp, nsize)))
goto punt;
error = writev(td, &a);
punt:
free(oio, M_TEMP);
free(nio, M_TEMP);
return (error);
}
int
ia32_settimeofday(struct thread *td, struct ia32_settimeofday_args *uap)
{
int error;
caddr_t sg;
struct timeval32 *p32, s32;
struct timeval *p = NULL, s;
p32 = uap->tv;
if (p32) {
sg = stackgap_init();
p = stackgap_alloc(&sg, sizeof(struct timeval));
uap->tv = (struct timeval32 *)p;
error = copyin(p32, &s32, sizeof(s32));
if (error)
return (error);
CP(s32, s, tv_sec);
CP(s32, s, tv_usec);
error = copyout(&s, p, sizeof(s));
if (error)
return (error);
}
return (settimeofday(td, (struct settimeofday_args *) uap));
}
int
ia32_utimes(struct thread *td, struct ia32_utimes_args *uap)
{
int error;
caddr_t sg;
struct timeval32 *p32, s32[2];
struct timeval *p = NULL, s[2];
p32 = uap->tptr;
if (p32) {
sg = stackgap_init();
p = stackgap_alloc(&sg, 2*sizeof(struct timeval));
uap->tptr = (struct timeval32 *)p;
error = copyin(p32, s32, sizeof(s32));
if (error)
return (error);
CP(s32[0], s[0], tv_sec);
CP(s32[0], s[0], tv_usec);
CP(s32[1], s[1], tv_sec);
CP(s32[1], s[1], tv_usec);
error = copyout(s, p, sizeof(s));
if (error)
return (error);
}
return (utimes(td, (struct utimes_args *) uap));
}
int
ia32_adjtime(struct thread *td, struct ia32_adjtime_args *uap)
{
int error;
caddr_t sg;
struct timeval32 *p32, *op32, s32;
struct timeval *p = NULL, *op = NULL, s;
p32 = uap->delta;
if (p32) {
sg = stackgap_init();
p = stackgap_alloc(&sg, sizeof(struct timeval));
uap->delta = (struct timeval32 *)p;
error = copyin(p32, &s32, sizeof(s32));
if (error)
return (error);
CP(s32, s, tv_sec);
CP(s32, s, tv_usec);
error = copyout(&s, p, sizeof(s));
if (error)
return (error);
}
op32 = uap->olddelta;
if (op32) {
sg = stackgap_init();
op = stackgap_alloc(&sg, sizeof(struct timeval));
uap->olddelta = (struct timeval32 *)op;
}
error = utimes(td, (struct utimes_args *) uap);
if (error)
return error;
if (op32) {
error = copyin(op, &s, sizeof(s));
if (error)
return (error);
CP(s, s32, tv_sec);
CP(s, s32, tv_usec);
error = copyout(&s32, op32, sizeof(s32));
}
return (error);
}
int
ia32_statfs(struct thread *td, struct ia32_statfs_args *uap)
{
int error;
caddr_t sg;
struct statfs32 *p32, s32;
struct statfs *p = NULL, s;
p32 = uap->buf;
if (p32) {
sg = stackgap_init();
p = stackgap_alloc(&sg, sizeof(struct statfs));
uap->buf = (struct statfs32 *)p;
}
error = statfs(td, (struct statfs_args *) uap);
if (error)
return (error);
if (p32) {
error = copyin(p, &s, sizeof(s));
if (error)
return (error);
copy_statfs(&s, &s32);
error = copyout(&s32, p32, sizeof(s32));
}
return (error);
}
int
ia32_fstatfs(struct thread *td, struct ia32_fstatfs_args *uap)
{
int error;
caddr_t sg;
struct statfs32 *p32, s32;
struct statfs *p = NULL, s;
p32 = uap->buf;
if (p32) {
sg = stackgap_init();
p = stackgap_alloc(&sg, sizeof(struct statfs));
uap->buf = (struct statfs32 *)p;
}
error = fstatfs(td, (struct fstatfs_args *) uap);
if (error)
return (error);
if (p32) {
error = copyin(p, &s, sizeof(s));
if (error)
return (error);
copy_statfs(&s, &s32);
error = copyout(&s32, p32, sizeof(s32));
}
return (error);
}
int
ia32_semsys(struct thread *td, struct ia32_semsys_args *uap)
{
/*
* Vector through to semsys if it is loaded.
*/
return sysent[169].sy_call(td, uap);
}
int
ia32_msgsys(struct thread *td, struct ia32_msgsys_args *uap)
{
/*
* Vector through to msgsys if it is loaded.
*/
return sysent[170].sy_call(td, uap);
}
int
ia32_shmsys(struct thread *td, struct ia32_shmsys_args *uap)
{
/*
* Vector through to shmsys if it is loaded.
*/
return sysent[171].sy_call(td, uap);
}
int
ia32_pread(struct thread *td, struct ia32_pread_args *uap)
{
struct pread_args ap;
ap.fd = uap->fd;
ap.buf = uap->buf;
ap.nbyte = uap->nbyte;
ap.offset = (uap->offsetlo
| ((off_t)uap->offsethi << 32));
return (pread(td, &ap));
}
int
ia32_pwrite(struct thread *td, struct ia32_pwrite_args *uap)
{
struct pwrite_args ap;
ap.fd = uap->fd;
ap.buf = uap->buf;
ap.nbyte = uap->nbyte;
ap.offset = (uap->offsetlo
| ((off_t)uap->offsethi << 32));
return (pwrite(td, &ap));
}
int
ia32_lseek(struct thread *td, struct ia32_lseek_args *uap)
{
int error;
struct lseek_args ap;
off_t pos;
ap.fd = uap->fd;
ap.offset = (uap->offsetlo
| ((off_t)uap->offsethi << 32));
ap.whence = uap->whence;
error = lseek(td, &ap);
/* Expand the quad return into two parts for eax and edx */
pos = *(off_t *)(td->td_retval);
td->td_retval[0] = pos & 0xffffffff; /* %eax */
td->td_retval[1] = pos >> 32; /* %edx */
return error;
}
int
ia32_truncate(struct thread *td, struct ia32_truncate_args *uap)
{
struct truncate_args ap;
ap.path = uap->path;
ap.length = (uap->lengthlo
| ((off_t)uap->lengthhi << 32));
return (truncate(td, &ap));
}
int
ia32_ftruncate(struct thread *td, struct ia32_ftruncate_args *uap)
{
struct ftruncate_args ap;
ap.fd = uap->fd;
ap.length = (uap->lengthlo
| ((off_t)uap->lengthhi << 32));
return (ftruncate(td, &ap));
}
#ifdef COMPAT_FREEBSD4
int
freebsd4_ia32_sendfile(struct thread *td,
struct freebsd4_ia32_sendfile_args *uap)
{
struct freebsd4_sendfile_args ap;
ap.fd = uap->fd;
ap.s = uap->s;
ap.offset = (uap->offsetlo
| ((off_t)uap->offsethi << 32));
ap.nbytes = uap->nbytes; /* XXX check */
ap.hdtr = uap->hdtr; /* XXX check */
ap.sbytes = uap->sbytes; /* XXX FIXME!! */
ap.flags = uap->flags;
return (freebsd4_sendfile(td, &ap));
}
#endif
int
ia32_sendfile(struct thread *td, struct ia32_sendfile_args *uap)
{
struct sendfile_args ap;
ap.fd = uap->fd;
ap.s = uap->s;
ap.offset = (uap->offsetlo
| ((off_t)uap->offsethi << 32));
ap.nbytes = uap->nbytes; /* XXX check */
ap.hdtr = uap->hdtr; /* XXX check */
ap.sbytes = uap->sbytes; /* XXX FIXME!! */
ap.flags = uap->flags;
return (sendfile(td, &ap));
}
struct stat32 {
udev_t st_dev;
ino_t st_ino;
mode_t st_mode;
nlink_t st_nlink;
uid_t st_uid;
gid_t st_gid;
udev_t st_rdev;
struct timespec32 st_atimespec;
struct timespec32 st_mtimespec;
struct timespec32 st_ctimespec;
off_t st_size;
int64_t st_blocks;
u_int32_t st_blksize;
u_int32_t st_flags;
u_int32_t st_gen;
};
static void
copy_stat( struct stat *in, struct stat32 *out)
{
CP(*in, *out, st_dev);
CP(*in, *out, st_ino);
CP(*in, *out, st_mode);
CP(*in, *out, st_nlink);
CP(*in, *out, st_uid);
CP(*in, *out, st_gid);
CP(*in, *out, st_rdev);
TS_CP(*in, *out, st_atimespec);
TS_CP(*in, *out, st_mtimespec);
TS_CP(*in, *out, st_ctimespec);
CP(*in, *out, st_size);
CP(*in, *out, st_blocks);
CP(*in, *out, st_blksize);
CP(*in, *out, st_flags);
CP(*in, *out, st_gen);
}
int
ia32_stat(struct thread *td, struct ia32_stat_args *uap)
{
int error;
caddr_t sg;
struct stat32 *p32, s32;
struct stat *p = NULL, s;
p32 = uap->ub;
if (p32) {
sg = stackgap_init();
p = stackgap_alloc(&sg, sizeof(struct stat));
uap->ub = (struct stat32 *)p;
}
error = stat(td, (struct stat_args *) uap);
if (error)
return (error);
if (p32) {
error = copyin(p, &s, sizeof(s));
if (error)
return (error);
copy_stat(&s, &s32);
error = copyout(&s32, p32, sizeof(s32));
}
return (error);
}
int
ia32_fstat(struct thread *td, struct ia32_fstat_args *uap)
{
int error;
caddr_t sg;
struct stat32 *p32, s32;
struct stat *p = NULL, s;
p32 = uap->ub;
if (p32) {
sg = stackgap_init();
p = stackgap_alloc(&sg, sizeof(struct stat));
uap->ub = (struct stat32 *)p;
}
error = fstat(td, (struct fstat_args *) uap);
if (error)
return (error);
if (p32) {
error = copyin(p, &s, sizeof(s));
if (error)
return (error);
copy_stat(&s, &s32);
error = copyout(&s32, p32, sizeof(s32));
}
return (error);
}
int
ia32_lstat(struct thread *td, struct ia32_lstat_args *uap)
{
int error;
caddr_t sg;
struct stat32 *p32, s32;
struct stat *p = NULL, s;
p32 = uap->ub;
if (p32) {
sg = stackgap_init();
p = stackgap_alloc(&sg, sizeof(struct stat));
uap->ub = (struct stat32 *)p;
}
error = lstat(td, (struct lstat_args *) uap);
if (error)
return (error);
if (p32) {
error = copyin(p, &s, sizeof(s));
if (error)
return (error);
copy_stat(&s, &s32);
error = copyout(&s32, p32, sizeof(s32));
}
return (error);
}
/*
* MPSAFE
*/
int
ia32_sysctl(struct thread *td, struct ia32_sysctl_args *uap)
{
int error, name[CTL_MAXNAME];
size_t j, oldlen;
if (uap->namelen > CTL_MAXNAME || uap->namelen < 2)
return (EINVAL);
error = copyin(uap->name, &name, uap->namelen * sizeof(int));
if (error)
return (error);
mtx_lock(&Giant);
if (uap->oldlenp)
oldlen = fuword32(uap->oldlenp);
else
oldlen = 0;
error = userland_sysctl(td, name, uap->namelen,
uap->old, &oldlen, 1,
uap->new, uap->newlen, &j);
if (error && error != ENOMEM)
goto done2;
if (uap->oldlenp) {
suword32(uap->oldlenp, j);
}
done2:
mtx_unlock(&Giant);
return (error);
}
struct sigaction32 {
u_int32_t sa_u;
int sa_flags;
sigset_t sa_mask;
};
int
ia32_sigaction(struct thread *td, struct ia32_sigaction_args *uap)
{
struct sigaction32 s32;
struct sigaction sa, osa, *sap;
int error;
if (uap->act) {
error = copyin(uap->act, &s32, sizeof(s32));
if (error)
return (error);
sa.sa_handler = PTRIN(s32.sa_u);
CP(s32, sa, sa_flags);
CP(s32, sa, sa_mask);
sap = &sa;
} else
sap = NULL;
error = kern_sigaction(td, uap->sig, sap, &osa, 0);
if (error != 0 && uap->oact != NULL) {
s32.sa_u = PTROUT(osa.sa_handler);
CP(osa, s32, sa_flags);
CP(osa, s32, sa_mask);
error = copyout(&s32, uap->oact, sizeof(s32));
}
return (error);
}
#ifdef COMPAT_FREEBSD4
int
freebsd4_ia32_sigaction(struct thread *td, struct freebsd4_ia32_sigaction_args *uap)
{
struct sigaction32 s32;
struct sigaction sa, osa, *sap;
int error;
if (uap->act) {
error = copyin(uap->act, &s32, sizeof(s32));
if (error)
return (error);
sa.sa_handler = PTRIN(s32.sa_u);
CP(s32, sa, sa_flags);
CP(s32, sa, sa_mask);
sap = &sa;
} else
sap = NULL;
error = kern_sigaction(td, uap->sig, sap, &osa, KSA_FREEBSD4);
if (error != 0 && uap->oact != NULL) {
s32.sa_u = PTROUT(osa.sa_handler);
CP(osa, s32, sa_flags);
CP(osa, s32, sa_mask);
error = copyout(&s32, uap->oact, sizeof(s32));
}
return (error);
}
#endif
#if 0
int
ia32_xxx(struct thread *td, struct ia32_xxx_args *uap)
{
int error;
caddr_t sg;
struct yyy32 *p32, s32;
struct yyy *p = NULL, s;
p32 = uap->zzz;
if (p32) {
sg = stackgap_init();
p = stackgap_alloc(&sg, sizeof(struct yyy));
uap->zzz = (struct yyy32 *)p;
error = copyin(p32, &s32, sizeof(s32));
if (error)
return (error);
/* translate in */
error = copyout(&s, p, sizeof(s));
if (error)
return (error);
}
error = xxx(td, (struct xxx_args *) uap);
if (error)
return (error);
if (p32) {
error = copyin(p, &s, sizeof(s));
if (error)
return (error);
/* translate out */
error = copyout(&s32, p32, sizeof(s32));
}
return (error);
}
#endif