f6080aabd7
CID: 1367751 Reviewed by: jhb
633 lines
17 KiB
C
633 lines
17 KiB
C
/*-
|
|
* Copyright (c) 1989, 1992, 1993
|
|
* The Regents of the University of California. All rights reserved.
|
|
*
|
|
* This code is derived from software developed by the Computer Systems
|
|
* Engineering group at Lawrence Berkeley Laboratory under DARPA contract
|
|
* BG 91-66 and contributed to Berkeley.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 4. Neither the name of the University nor the names of its contributors
|
|
* may be used to endorse or promote products derived from this software
|
|
* without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*/
|
|
|
|
#include <sys/cdefs.h>
|
|
__FBSDID("$FreeBSD$");
|
|
|
|
#include <sys/param.h>
|
|
#include <sys/fnv_hash.h>
|
|
|
|
#define _WANT_VNET
|
|
|
|
#include <sys/user.h>
|
|
#include <sys/linker.h>
|
|
#include <sys/pcpu.h>
|
|
#include <sys/stat.h>
|
|
|
|
#include <net/vnet.h>
|
|
|
|
#include <assert.h>
|
|
#include <fcntl.h>
|
|
#include <kvm.h>
|
|
#include <limits.h>
|
|
#include <paths.h>
|
|
#include <stdint.h>
|
|
#include <stdio.h>
|
|
#include <stdlib.h>
|
|
#include <string.h>
|
|
#include <unistd.h>
|
|
#include <stdarg.h>
|
|
|
|
#include "kvm_private.h"
|
|
|
|
/*
|
|
* Routines private to libkvm.
|
|
*/
|
|
|
|
/* from src/lib/libc/gen/nlist.c */
|
|
int __fdnlist(int, struct nlist *);
|
|
|
|
/*
|
|
* Report an error using printf style arguments. "program" is kd->program
|
|
* on hard errors, and 0 on soft errors, so that under sun error emulation,
|
|
* only hard errors are printed out (otherwise, programs like gdb will
|
|
* generate tons of error messages when trying to access bogus pointers).
|
|
*/
|
|
void
|
|
_kvm_err(kvm_t *kd, const char *program, const char *fmt, ...)
|
|
{
|
|
va_list ap;
|
|
|
|
va_start(ap, fmt);
|
|
if (program != NULL) {
|
|
(void)fprintf(stderr, "%s: ", program);
|
|
(void)vfprintf(stderr, fmt, ap);
|
|
(void)fputc('\n', stderr);
|
|
} else
|
|
(void)vsnprintf(kd->errbuf,
|
|
sizeof(kd->errbuf), fmt, ap);
|
|
|
|
va_end(ap);
|
|
}
|
|
|
|
void
|
|
_kvm_syserr(kvm_t *kd, const char *program, const char *fmt, ...)
|
|
{
|
|
va_list ap;
|
|
int n;
|
|
|
|
va_start(ap, fmt);
|
|
if (program != NULL) {
|
|
(void)fprintf(stderr, "%s: ", program);
|
|
(void)vfprintf(stderr, fmt, ap);
|
|
(void)fprintf(stderr, ": %s\n", strerror(errno));
|
|
} else {
|
|
char *cp = kd->errbuf;
|
|
|
|
(void)vsnprintf(cp, sizeof(kd->errbuf), fmt, ap);
|
|
n = strlen(cp);
|
|
(void)snprintf(&cp[n], sizeof(kd->errbuf) - n, ": %s",
|
|
strerror(errno));
|
|
}
|
|
va_end(ap);
|
|
}
|
|
|
|
void *
|
|
_kvm_malloc(kvm_t *kd, size_t n)
|
|
{
|
|
void *p;
|
|
|
|
if ((p = calloc(n, sizeof(char))) == NULL)
|
|
_kvm_err(kd, kd->program, "can't allocate %zu bytes: %s",
|
|
n, strerror(errno));
|
|
return (p);
|
|
}
|
|
|
|
int
|
|
_kvm_probe_elf_kernel(kvm_t *kd, int class, int machine)
|
|
{
|
|
|
|
return (kd->nlehdr.e_ident[EI_CLASS] == class &&
|
|
kd->nlehdr.e_type == ET_EXEC &&
|
|
kd->nlehdr.e_machine == machine);
|
|
}
|
|
|
|
int
|
|
_kvm_is_minidump(kvm_t *kd)
|
|
{
|
|
char minihdr[8];
|
|
|
|
if (kd->rawdump)
|
|
return (0);
|
|
if (pread(kd->pmfd, &minihdr, 8, 0) == 8 &&
|
|
memcmp(&minihdr, "minidump", 8) == 0)
|
|
return (1);
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* The powerpc backend has a hack to strip a leading kerneldump
|
|
* header from the core before treating it as an ELF header.
|
|
*
|
|
* We can add that here if we can get a change to libelf to support
|
|
* an initial offset into the file. Alternatively we could patch
|
|
* savecore to extract cores from a regular file instead.
|
|
*/
|
|
int
|
|
_kvm_read_core_phdrs(kvm_t *kd, size_t *phnump, GElf_Phdr **phdrp)
|
|
{
|
|
GElf_Ehdr ehdr;
|
|
GElf_Phdr *phdr;
|
|
Elf *elf;
|
|
size_t i, phnum;
|
|
|
|
elf = elf_begin(kd->pmfd, ELF_C_READ, NULL);
|
|
if (elf == NULL) {
|
|
_kvm_err(kd, kd->program, "%s", elf_errmsg(0));
|
|
return (-1);
|
|
}
|
|
if (elf_kind(elf) != ELF_K_ELF) {
|
|
_kvm_err(kd, kd->program, "invalid core");
|
|
goto bad;
|
|
}
|
|
if (gelf_getclass(elf) != kd->nlehdr.e_ident[EI_CLASS]) {
|
|
_kvm_err(kd, kd->program, "invalid core");
|
|
goto bad;
|
|
}
|
|
if (gelf_getehdr(elf, &ehdr) == NULL) {
|
|
_kvm_err(kd, kd->program, "%s", elf_errmsg(0));
|
|
goto bad;
|
|
}
|
|
if (ehdr.e_type != ET_CORE) {
|
|
_kvm_err(kd, kd->program, "invalid core");
|
|
goto bad;
|
|
}
|
|
if (ehdr.e_machine != kd->nlehdr.e_machine) {
|
|
_kvm_err(kd, kd->program, "invalid core");
|
|
goto bad;
|
|
}
|
|
|
|
if (elf_getphdrnum(elf, &phnum) == -1) {
|
|
_kvm_err(kd, kd->program, "%s", elf_errmsg(0));
|
|
goto bad;
|
|
}
|
|
|
|
phdr = calloc(phnum, sizeof(*phdr));
|
|
if (phdr == NULL) {
|
|
_kvm_err(kd, kd->program, "failed to allocate phdrs");
|
|
goto bad;
|
|
}
|
|
|
|
for (i = 0; i < phnum; i++) {
|
|
if (gelf_getphdr(elf, i, &phdr[i]) == NULL) {
|
|
free(phdr);
|
|
_kvm_err(kd, kd->program, "%s", elf_errmsg(0));
|
|
goto bad;
|
|
}
|
|
}
|
|
elf_end(elf);
|
|
*phnump = phnum;
|
|
*phdrp = phdr;
|
|
return (0);
|
|
|
|
bad:
|
|
elf_end(elf);
|
|
return (-1);
|
|
}
|
|
|
|
/*
|
|
* Transform v such that only bits [bit0, bitN) may be set. Generates a
|
|
* bitmask covering the number of bits, then shifts so +bit0+ is the first.
|
|
*/
|
|
static uint64_t
|
|
bitmask_range(uint64_t v, uint64_t bit0, uint64_t bitN)
|
|
{
|
|
if (bit0 == 0 && bitN == BITS_IN(v))
|
|
return (v);
|
|
|
|
return (v & (((1ULL << (bitN - bit0)) - 1ULL) << bit0));
|
|
}
|
|
|
|
/*
|
|
* Returns the number of bits in a given byte array range starting at a
|
|
* given base, from bit0 to bitN. bit0 may be non-zero in the case of
|
|
* counting backwards from bitN.
|
|
*/
|
|
static uint64_t
|
|
popcount_bytes(uint64_t *addr, uint32_t bit0, uint32_t bitN)
|
|
{
|
|
uint32_t res = bitN - bit0;
|
|
uint64_t count = 0;
|
|
uint32_t bound;
|
|
|
|
/* Align to 64-bit boundary on the left side if needed. */
|
|
if ((bit0 % BITS_IN(*addr)) != 0) {
|
|
bound = MIN(bitN, roundup2(bit0, BITS_IN(*addr)));
|
|
count += __bitcount64(bitmask_range(*addr, bit0, bound));
|
|
res -= (bound - bit0);
|
|
addr++;
|
|
}
|
|
|
|
while (res > 0) {
|
|
bound = MIN(res, BITS_IN(*addr));
|
|
count += __bitcount64(bitmask_range(*addr, 0, bound));
|
|
res -= bound;
|
|
addr++;
|
|
}
|
|
|
|
return (count);
|
|
}
|
|
|
|
int
|
|
_kvm_pt_init(kvm_t *kd, size_t map_len, off_t map_off, off_t sparse_off,
|
|
int page_size, int word_size)
|
|
{
|
|
uint64_t *addr;
|
|
uint32_t *popcount_bin;
|
|
int bin_popcounts = 0;
|
|
uint64_t pc_bins, res;
|
|
ssize_t rd;
|
|
|
|
/*
|
|
* Map the bitmap specified by the arguments.
|
|
*/
|
|
kd->pt_map = _kvm_malloc(kd, map_len);
|
|
if (kd->pt_map == NULL) {
|
|
_kvm_err(kd, kd->program, "cannot allocate %zu bytes for bitmap",
|
|
map_len);
|
|
return (-1);
|
|
}
|
|
rd = pread(kd->pmfd, kd->pt_map, map_len, map_off);
|
|
if (rd < 0 || rd != (ssize_t)map_len) {
|
|
_kvm_err(kd, kd->program, "cannot read %zu bytes for bitmap",
|
|
map_len);
|
|
return (-1);
|
|
}
|
|
kd->pt_map_size = map_len;
|
|
|
|
/*
|
|
* Generate a popcount cache for every POPCOUNT_BITS in the bitmap,
|
|
* so lookups only have to calculate the number of bits set between
|
|
* a cache point and their bit. This reduces lookups to O(1),
|
|
* without significantly increasing memory requirements.
|
|
*
|
|
* Round up the number of bins so that 'upper half' lookups work for
|
|
* the final bin, if needed. The first popcount is 0, since no bits
|
|
* precede bit 0, so add 1 for that also. Without this, extra work
|
|
* would be needed to handle the first PTEs in _kvm_pt_find().
|
|
*/
|
|
addr = kd->pt_map;
|
|
res = map_len;
|
|
pc_bins = 1 + (res * NBBY + POPCOUNT_BITS / 2) / POPCOUNT_BITS;
|
|
kd->pt_popcounts = calloc(pc_bins, sizeof(uint32_t));
|
|
if (kd->pt_popcounts == NULL)
|
|
return (-1);
|
|
|
|
for (popcount_bin = &kd->pt_popcounts[1]; res > 0;
|
|
addr++, res -= sizeof(*addr)) {
|
|
*popcount_bin += popcount_bytes(addr, 0,
|
|
MIN(res * NBBY, BITS_IN(*addr)));
|
|
if (++bin_popcounts == POPCOUNTS_IN(*addr)) {
|
|
popcount_bin++;
|
|
*popcount_bin = *(popcount_bin - 1);
|
|
bin_popcounts = 0;
|
|
}
|
|
}
|
|
|
|
assert(pc_bins * sizeof(*popcount_bin) ==
|
|
((uintptr_t)popcount_bin - (uintptr_t)kd->pt_popcounts));
|
|
|
|
kd->pt_sparse_off = sparse_off;
|
|
kd->pt_sparse_size = (uint64_t)*popcount_bin * PAGE_SIZE;
|
|
kd->pt_page_size = page_size;
|
|
kd->pt_word_size = word_size;
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Find the offset for the given physical page address; returns -1 otherwise.
|
|
*
|
|
* A page's offset is represented by the sparse page base offset plus the
|
|
* number of bits set before its bit multiplied by PAGE_SIZE. This means
|
|
* that if a page exists in the dump, it's necessary to know how many pages
|
|
* in the dump precede it. Reduce this O(n) counting to O(1) by caching the
|
|
* number of bits set at POPCOUNT_BITS intervals.
|
|
*
|
|
* Then to find the number of pages before the requested address, simply
|
|
* index into the cache and count the number of bits set between that cache
|
|
* bin and the page's bit. Halve the number of bytes that have to be
|
|
* checked by also counting down from the next higher bin if it's closer.
|
|
*/
|
|
off_t
|
|
_kvm_pt_find(kvm_t *kd, uint64_t pa)
|
|
{
|
|
uint64_t *bitmap = kd->pt_map;
|
|
uint64_t pte_bit_id = pa / PAGE_SIZE;
|
|
uint64_t pte_u64 = pte_bit_id / BITS_IN(*bitmap);
|
|
uint64_t popcount_id = pte_bit_id / POPCOUNT_BITS;
|
|
uint64_t pte_mask = 1ULL << (pte_bit_id % BITS_IN(*bitmap));
|
|
uint64_t bitN;
|
|
uint32_t count;
|
|
|
|
/* Check whether the page address requested is in the dump. */
|
|
if (pte_bit_id >= (kd->pt_map_size * NBBY) ||
|
|
(bitmap[pte_u64] & pte_mask) == 0)
|
|
return (-1);
|
|
|
|
/*
|
|
* Add/sub popcounts from the bitmap until the PTE's bit is reached.
|
|
* For bits that are in the upper half between the calculated
|
|
* popcount id and the next one, use the next one and subtract to
|
|
* minimize the number of popcounts required.
|
|
*/
|
|
if ((pte_bit_id % POPCOUNT_BITS) < (POPCOUNT_BITS / 2)) {
|
|
count = kd->pt_popcounts[popcount_id] + popcount_bytes(
|
|
bitmap + popcount_id * POPCOUNTS_IN(*bitmap),
|
|
0, pte_bit_id - popcount_id * POPCOUNT_BITS);
|
|
} else {
|
|
/*
|
|
* Counting in reverse is trickier, since we must avoid
|
|
* reading from bytes that are not in range, and invert.
|
|
*/
|
|
uint64_t pte_u64_bit_off = pte_u64 * BITS_IN(*bitmap);
|
|
|
|
popcount_id++;
|
|
bitN = MIN(popcount_id * POPCOUNT_BITS,
|
|
kd->pt_map_size * BITS_IN(uint8_t));
|
|
count = kd->pt_popcounts[popcount_id] - popcount_bytes(
|
|
bitmap + pte_u64,
|
|
pte_bit_id - pte_u64_bit_off, bitN - pte_u64_bit_off);
|
|
}
|
|
|
|
/*
|
|
* This can only happen if the core is truncated. Treat these
|
|
* entries as if they don't exist, since their backing doesn't.
|
|
*/
|
|
if (count >= (kd->pt_sparse_size / PAGE_SIZE))
|
|
return (-1);
|
|
|
|
return (kd->pt_sparse_off + (uint64_t)count * PAGE_SIZE);
|
|
}
|
|
|
|
static int
|
|
kvm_fdnlist(kvm_t *kd, struct kvm_nlist *list)
|
|
{
|
|
kvaddr_t addr;
|
|
int error, nfail;
|
|
|
|
if (kd->resolve_symbol == NULL) {
|
|
struct nlist *nl;
|
|
int count, i;
|
|
|
|
for (count = 0; list[count].n_name != NULL &&
|
|
list[count].n_name[0] != '\0'; count++)
|
|
;
|
|
nl = calloc(count + 1, sizeof(*nl));
|
|
for (i = 0; i < count; i++)
|
|
nl[i].n_name = list[i].n_name;
|
|
nfail = __fdnlist(kd->nlfd, nl);
|
|
for (i = 0; i < count; i++) {
|
|
list[i].n_type = nl[i].n_type;
|
|
list[i].n_value = nl[i].n_value;
|
|
}
|
|
free(nl);
|
|
return (nfail);
|
|
}
|
|
|
|
nfail = 0;
|
|
while (list->n_name != NULL && list->n_name[0] != '\0') {
|
|
error = kd->resolve_symbol(list->n_name, &addr);
|
|
if (error != 0) {
|
|
nfail++;
|
|
list->n_value = 0;
|
|
list->n_type = 0;
|
|
} else {
|
|
list->n_value = addr;
|
|
list->n_type = N_DATA | N_EXT;
|
|
}
|
|
list++;
|
|
}
|
|
return (nfail);
|
|
}
|
|
|
|
/*
|
|
* Walk the list of unresolved symbols, generate a new list and prefix the
|
|
* symbol names, try again, and merge back what we could resolve.
|
|
*/
|
|
static int
|
|
kvm_fdnlist_prefix(kvm_t *kd, struct kvm_nlist *nl, int missing,
|
|
const char *prefix, kvaddr_t (*validate_fn)(kvm_t *, kvaddr_t))
|
|
{
|
|
struct kvm_nlist *n, *np, *p;
|
|
char *cp, *ce;
|
|
const char *ccp;
|
|
size_t len;
|
|
int slen, unresolved;
|
|
|
|
/*
|
|
* Calculate the space we need to malloc for nlist and names.
|
|
* We are going to store the name twice for later lookups: once
|
|
* with the prefix and once the unmodified name delmited by \0.
|
|
*/
|
|
len = 0;
|
|
unresolved = 0;
|
|
for (p = nl; p->n_name && p->n_name[0]; ++p) {
|
|
if (p->n_type != N_UNDF)
|
|
continue;
|
|
len += sizeof(struct kvm_nlist) + strlen(prefix) +
|
|
2 * (strlen(p->n_name) + 1);
|
|
unresolved++;
|
|
}
|
|
if (unresolved == 0)
|
|
return (unresolved);
|
|
/* Add space for the terminating nlist entry. */
|
|
len += sizeof(struct kvm_nlist);
|
|
unresolved++;
|
|
|
|
/* Alloc one chunk for (nlist, [names]) and setup pointers. */
|
|
n = np = malloc(len);
|
|
bzero(n, len);
|
|
if (n == NULL)
|
|
return (missing);
|
|
cp = ce = (char *)np;
|
|
cp += unresolved * sizeof(struct kvm_nlist);
|
|
ce += len;
|
|
|
|
/* Generate shortened nlist with special prefix. */
|
|
unresolved = 0;
|
|
for (p = nl; p->n_name && p->n_name[0]; ++p) {
|
|
if (p->n_type != N_UNDF)
|
|
continue;
|
|
*np = *p;
|
|
/* Save the new\0orig. name so we can later match it again. */
|
|
slen = snprintf(cp, ce - cp, "%s%s%c%s", prefix,
|
|
(prefix[0] != '\0' && p->n_name[0] == '_') ?
|
|
(p->n_name + 1) : p->n_name, '\0', p->n_name);
|
|
if (slen < 0 || slen >= ce - cp)
|
|
continue;
|
|
np->n_name = cp;
|
|
cp += slen + 1;
|
|
np++;
|
|
unresolved++;
|
|
}
|
|
|
|
/* Do lookup on the reduced list. */
|
|
np = n;
|
|
unresolved = kvm_fdnlist(kd, np);
|
|
|
|
/* Check if we could resolve further symbols and update the list. */
|
|
if (unresolved >= 0 && unresolved < missing) {
|
|
/* Find the first freshly resolved entry. */
|
|
for (; np->n_name && np->n_name[0]; np++)
|
|
if (np->n_type != N_UNDF)
|
|
break;
|
|
/*
|
|
* The lists are both in the same order,
|
|
* so we can walk them in parallel.
|
|
*/
|
|
for (p = nl; np->n_name && np->n_name[0] &&
|
|
p->n_name && p->n_name[0]; ++p) {
|
|
if (p->n_type != N_UNDF)
|
|
continue;
|
|
/* Skip expanded name and compare to orig. one. */
|
|
ccp = np->n_name + strlen(np->n_name) + 1;
|
|
if (strcmp(ccp, p->n_name) != 0)
|
|
continue;
|
|
/* Update nlist with new, translated results. */
|
|
p->n_type = np->n_type;
|
|
if (validate_fn)
|
|
p->n_value = (*validate_fn)(kd, np->n_value);
|
|
else
|
|
p->n_value = np->n_value;
|
|
missing--;
|
|
/* Find next freshly resolved entry. */
|
|
for (np++; np->n_name && np->n_name[0]; np++)
|
|
if (np->n_type != N_UNDF)
|
|
break;
|
|
}
|
|
}
|
|
/* We could assert missing = unresolved here. */
|
|
|
|
free(n);
|
|
return (unresolved);
|
|
}
|
|
|
|
int
|
|
_kvm_nlist(kvm_t *kd, struct kvm_nlist *nl, int initialize)
|
|
{
|
|
struct kvm_nlist *p;
|
|
int nvalid;
|
|
struct kld_sym_lookup lookup;
|
|
int error;
|
|
const char *prefix = "";
|
|
char symname[1024]; /* XXX-BZ symbol name length limit? */
|
|
int tried_vnet, tried_dpcpu;
|
|
|
|
/*
|
|
* If we can't use the kld symbol lookup, revert to the
|
|
* slow library call.
|
|
*/
|
|
if (!ISALIVE(kd)) {
|
|
error = kvm_fdnlist(kd, nl);
|
|
if (error <= 0) /* Hard error or success. */
|
|
return (error);
|
|
|
|
if (_kvm_vnet_initialized(kd, initialize))
|
|
error = kvm_fdnlist_prefix(kd, nl, error,
|
|
VNET_SYMPREFIX, _kvm_vnet_validaddr);
|
|
|
|
if (error > 0 && _kvm_dpcpu_initialized(kd, initialize))
|
|
error = kvm_fdnlist_prefix(kd, nl, error,
|
|
DPCPU_SYMPREFIX, _kvm_dpcpu_validaddr);
|
|
|
|
return (error);
|
|
}
|
|
|
|
/*
|
|
* We can use the kld lookup syscall. Go through each nlist entry
|
|
* and look it up with a kldsym(2) syscall.
|
|
*/
|
|
nvalid = 0;
|
|
tried_vnet = 0;
|
|
tried_dpcpu = 0;
|
|
again:
|
|
for (p = nl; p->n_name && p->n_name[0]; ++p) {
|
|
if (p->n_type != N_UNDF)
|
|
continue;
|
|
|
|
lookup.version = sizeof(lookup);
|
|
lookup.symvalue = 0;
|
|
lookup.symsize = 0;
|
|
|
|
error = snprintf(symname, sizeof(symname), "%s%s", prefix,
|
|
(prefix[0] != '\0' && p->n_name[0] == '_') ?
|
|
(p->n_name + 1) : p->n_name);
|
|
if (error < 0 || error >= (int)sizeof(symname))
|
|
continue;
|
|
lookup.symname = symname;
|
|
if (lookup.symname[0] == '_')
|
|
lookup.symname++;
|
|
|
|
if (kldsym(0, KLDSYM_LOOKUP, &lookup) != -1) {
|
|
p->n_type = N_TEXT;
|
|
if (_kvm_vnet_initialized(kd, initialize) &&
|
|
strcmp(prefix, VNET_SYMPREFIX) == 0)
|
|
p->n_value =
|
|
_kvm_vnet_validaddr(kd, lookup.symvalue);
|
|
else if (_kvm_dpcpu_initialized(kd, initialize) &&
|
|
strcmp(prefix, DPCPU_SYMPREFIX) == 0)
|
|
p->n_value =
|
|
_kvm_dpcpu_validaddr(kd, lookup.symvalue);
|
|
else
|
|
p->n_value = lookup.symvalue;
|
|
++nvalid;
|
|
/* lookup.symsize */
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Check the number of entries that weren't found. If they exist,
|
|
* try again with a prefix for virtualized or DPCPU symbol names.
|
|
*/
|
|
error = ((p - nl) - nvalid);
|
|
if (error && _kvm_vnet_initialized(kd, initialize) && !tried_vnet) {
|
|
tried_vnet = 1;
|
|
prefix = VNET_SYMPREFIX;
|
|
goto again;
|
|
}
|
|
if (error && _kvm_dpcpu_initialized(kd, initialize) && !tried_dpcpu) {
|
|
tried_dpcpu = 1;
|
|
prefix = DPCPU_SYMPREFIX;
|
|
goto again;
|
|
}
|
|
|
|
/*
|
|
* Return the number of entries that weren't found. If they exist,
|
|
* also fill internal error buffer.
|
|
*/
|
|
error = ((p - nl) - nvalid);
|
|
if (error)
|
|
_kvm_syserr(kd, kd->program, "kvm_nlist");
|
|
return (error);
|
|
}
|