freebsd-skq/sys/vm/swap_pager.c
dg c8b0a7332c NOTE: libkvm, w, ps, 'top', and any other utility which depends on struct
proc or any VM system structure will have to be rebuilt!!!

Much needed overhaul of the VM system. Included in this first round of
changes:

1) Improved pager interfaces: init, alloc, dealloc, getpages, putpages,
   haspage, and sync operations are supported. The haspage interface now
   provides information about clusterability. All pager routines now take
   struct vm_object's instead of "pagers".

2) Improved data structures. In the previous paradigm, there is constant
   confusion caused by pagers being both a data structure ("allocate a
   pager") and a collection of routines. The idea of a pager structure has
   escentially been eliminated. Objects now have types, and this type is
   used to index the appropriate pager. In most cases, items in the pager
   structure were duplicated in the object data structure and thus were
   unnecessary. In the few cases that remained, a un_pager structure union
   was created in the object to contain these items.

3) Because of the cleanup of #1 & #2, a lot of unnecessary layering can now
   be removed. For instance, vm_object_enter(), vm_object_lookup(),
   vm_object_remove(), and the associated object hash list were some of the
   things that were removed.

4) simple_lock's removed. Discussion with several people reveals that the
   SMP locking primitives used in the VM system aren't likely the mechanism
   that we'll be adopting. Even if it were, the locking that was in the code
   was very inadequate and would have to be mostly re-done anyway. The
   locking in a uni-processor kernel was a no-op but went a long way toward
   making the code difficult to read and debug.

5) Places that attempted to kludge-up the fact that we don't have kernel
   thread support have been fixed to reflect the reality that we are really
   dealing with processes, not threads. The VM system didn't have complete
   thread support, so the comments and mis-named routines were just wrong.
   We now use tsleep and wakeup directly in the lock routines, for instance.

6) Where appropriate, the pagers have been improved, especially in the
   pager_alloc routines. Most of the pager_allocs have been rewritten and
   are now faster and easier to maintain.

7) The pagedaemon pageout clustering algorithm has been rewritten and
   now tries harder to output an even number of pages before and after
   the requested page. This is sort of the reverse of the ideal pagein
   algorithm and should provide better overall performance.

8) Unnecessary (incorrect) casts to caddr_t in calls to tsleep & wakeup
   have been removed. Some other unnecessary casts have also been removed.

9) Some almost useless debugging code removed.

10) Terminology of shadow objects vs. backing objects straightened out.
    The fact that the vm_object data structure escentially had this
    backwards really confused things. The use of "shadow" and "backing
    object" throughout the code is now internally consistent and correct
    in the Mach terminology.

11) Several minor bug fixes, including one in the vm daemon that caused
    0 RSS objects to not get purged as intended.

12) A "default pager" has now been created which cleans up the transition
    of objects to the "swap" type. The previous checks throughout the code
    for swp->pg_data != NULL were really ugly. This change also provides
    the rudiments for future backing of "anonymous" memory by something
    other than the swap pager (via the vnode pager, for example), and it
    allows the decision about which of these pagers to use to be made
    dynamically (although will need some additional decision code to do
    this, of course).

13) (dyson) MAP_COPY has been deprecated and the corresponding "copy
    object" code has been removed. MAP_COPY was undocumented and non-
    standard. It was furthermore broken in several ways which caused its
    behavior to degrade to MAP_PRIVATE. Binaries that use MAP_COPY will
    continue to work correctly, but via the slightly different semantics
    of MAP_PRIVATE.

14) (dyson) Sharing maps have been removed. It's marginal usefulness in a
    threads design can be worked around in other ways. Both #12 and #13
    were done to simplify the code and improve readability and maintain-
    ability. (As were most all of these changes)

TODO:

1) Rewrite most of the vnode pager to use VOP_GETPAGES/PUTPAGES. Doing
   this will reduce the vnode pager to a mere fraction of its current size.

2) Rewrite vm_fault and the swap/vnode pagers to use the clustering
   information provided by the new haspage pager interface. This will
   substantially reduce the overhead by eliminating a large number of
   VOP_BMAP() calls. The VOP_BMAP() filesystem interface should be
   improved to provide both a "behind" and "ahead" indication of
   contiguousness.

3) Implement the extended features of pager_haspage in swap_pager_haspage().
   It currently just says 0 pages ahead/behind.

4) Re-implement the swap device (swstrategy) in a more elegant way, perhaps
   via a much more general mechanism that could also be used for disk
   striping of regular filesystems.

5) Do something to improve the architecture of vm_object_collapse(). The
   fact that it makes calls into the swap pager and knows too much about
   how the swap pager operates really bothers me. It also doesn't allow
   for collapsing of non-swap pager objects ("unnamed" objects backed by
   other pagers).
1995-07-13 08:48:48 +00:00

1605 lines
37 KiB
C

/*
* Copyright (c) 1994 John S. Dyson
* Copyright (c) 1990 University of Utah.
* Copyright (c) 1991, 1993
* The Regents of the University of California. All rights reserved.
*
* This code is derived from software contributed to Berkeley by
* the Systems Programming Group of the University of Utah Computer
* Science Department.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by the University of
* California, Berkeley and its contributors.
* 4. Neither the name of the University nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* from: Utah $Hdr: swap_pager.c 1.4 91/04/30$
*
* @(#)swap_pager.c 8.9 (Berkeley) 3/21/94
* $Id: swap_pager.c,v 1.41 1995/05/30 08:15:55 rgrimes Exp $
*/
/*
* Quick hack to page to dedicated partition(s).
* TODO:
* Add multiprocessor locks
* Deal with async writes in a better fashion
*/
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/kernel.h>
#include <sys/proc.h>
#include <sys/buf.h>
#include <sys/vnode.h>
#include <sys/malloc.h>
#include <miscfs/specfs/specdev.h>
#include <sys/rlist.h>
#include <vm/vm.h>
#include <vm/vm_pager.h>
#include <vm/vm_page.h>
#include <vm/vm_pageout.h>
#include <vm/swap_pager.h>
#include <vm/vm_kern.h>
#ifndef NPENDINGIO
#define NPENDINGIO 10
#endif
int nswiodone;
int swap_pager_full;
extern int vm_swap_size;
int no_swap_space = 1;
struct rlist *swaplist;
int nswaplist;
#define MAX_PAGEOUT_CLUSTER 8
TAILQ_HEAD(swpclean, swpagerclean);
typedef struct swpagerclean *swp_clean_t;
struct swpagerclean {
TAILQ_ENTRY(swpagerclean) spc_list;
int spc_flags;
struct buf *spc_bp;
sw_pager_t spc_swp;
vm_offset_t spc_kva;
int spc_count;
vm_page_t spc_m[MAX_PAGEOUT_CLUSTER];
} swcleanlist[NPENDINGIO];
/* spc_flags values */
#define SPC_ERROR 0x01
#define SWB_EMPTY (-1)
struct swpclean swap_pager_done; /* list of completed page cleans */
struct swpclean swap_pager_inuse; /* list of pending page cleans */
struct swpclean swap_pager_free; /* list of free pager clean structs */
struct pagerlst swap_pager_object_list; /* list of "named" anon region objects */
struct pagerlst swap_pager_un_object_list; /* list of "unnamed" anon region objects */
#define SWAP_FREE_NEEDED 0x1 /* need a swap block */
#define SWAP_FREE_NEEDED_BY_PAGEOUT 0x2
int swap_pager_needflags;
struct pagerlst *swp_qs[] = {
&swap_pager_object_list, &swap_pager_un_object_list, (struct pagerlst *) 0
};
/*
* pagerops for OBJT_SWAP - "swap pager".
*/
struct pagerops swappagerops = {
swap_pager_init,
swap_pager_alloc,
swap_pager_dealloc,
swap_pager_getpages,
swap_pager_putpages,
swap_pager_haspage,
swap_pager_sync
};
int npendingio = NPENDINGIO;
void swap_pager_finish();
int dmmin, dmmax;
static inline void
swapsizecheck()
{
if (vm_swap_size < 128 * btodb(PAGE_SIZE)) {
if (swap_pager_full == 0)
printf("swap_pager: out of space\n");
swap_pager_full = 1;
} else if (vm_swap_size > 192 * btodb(PAGE_SIZE))
swap_pager_full = 0;
}
void
swap_pager_init()
{
TAILQ_INIT(&swap_pager_object_list);
TAILQ_INIT(&swap_pager_un_object_list);
/*
* Initialize clean lists
*/
TAILQ_INIT(&swap_pager_inuse);
TAILQ_INIT(&swap_pager_done);
TAILQ_INIT(&swap_pager_free);
/*
* Calculate the swap allocation constants.
*/
dmmin = CLBYTES / DEV_BSIZE;
dmmax = btodb(SWB_NPAGES * PAGE_SIZE) * 2;
}
void
swap_pager_swap_init()
{
swp_clean_t spc;
struct buf *bp;
int i;
/*
* kva's are allocated here so that we dont need to keep doing
* kmem_alloc pageables at runtime
*/
for (i = 0, spc = swcleanlist; i < npendingio; i++, spc++) {
spc->spc_kva = kmem_alloc_pageable(pager_map, PAGE_SIZE * MAX_PAGEOUT_CLUSTER);
if (!spc->spc_kva) {
break;
}
spc->spc_bp = malloc(sizeof(*bp), M_TEMP, M_KERNEL);
if (!spc->spc_bp) {
kmem_free_wakeup(pager_map, spc->spc_kva, PAGE_SIZE);
break;
}
spc->spc_flags = 0;
TAILQ_INSERT_TAIL(&swap_pager_free, spc, spc_list);
}
}
int
swap_pager_swp_alloc(object, wait)
vm_object_t object;
int wait;
{
register sw_pager_t swp;
int i, j;
if (object->pg_data != NULL)
panic("swap_pager_swp_alloc: swp already allocated");
swp = (sw_pager_t) malloc(sizeof *swp, M_VMPGDATA, wait);
if (swp == NULL) {
return 1;
}
swp->sw_nblocks = (btodb(object->size) + btodb(SWB_NPAGES * PAGE_SIZE) - 1) / btodb(SWB_NPAGES * PAGE_SIZE);
swp->sw_blocks = (sw_blk_t) malloc(swp->sw_nblocks * sizeof(*swp->sw_blocks), M_VMPGDATA, wait);
if (swp->sw_blocks == NULL) {
free((caddr_t) swp, M_VMPGDATA);
return 1;
}
for (i = 0; i < swp->sw_nblocks; i++) {
swp->sw_blocks[i].swb_valid = 0;
swp->sw_blocks[i].swb_locked = 0;
for (j = 0; j < SWB_NPAGES; j++)
swp->sw_blocks[i].swb_block[j] = SWB_EMPTY;
}
swp->sw_poip = 0;
swp->sw_allocsize = 0;
object->pg_data = swp;
if (object->handle != NULL) {
TAILQ_INSERT_TAIL(&swap_pager_object_list, object, pager_object_list);
} else {
TAILQ_INSERT_TAIL(&swap_pager_un_object_list, object, pager_object_list);
}
return 0;
}
/*
* Allocate a pager structure and associated resources.
* Note that if we are called from the pageout daemon (handle == NULL)
* we should not wait for memory as it could resulting in deadlock.
*/
vm_object_t
swap_pager_alloc(handle, size, prot, offset)
void *handle;
register vm_size_t size;
vm_prot_t prot;
vm_offset_t offset;
{
vm_object_t object;
int i;
/*
* If this is a "named" anonymous region, look it up and use the
* object if it exists, otherwise allocate a new one.
*/
if (handle) {
object = vm_pager_object_lookup(&swap_pager_object_list, handle);
if (object != NULL) {
vm_object_reference(object);
} else {
/*
* XXX - there is a race condition here. Two processes
* can request the same named object simultaneuously,
* and if one blocks for memory, the result is a disaster.
* Probably quite rare, but is yet another reason to just
* rip support of "named anonymous regions" out altogether.
*/
object = vm_object_allocate(OBJT_SWAP, offset + size);
object->handle = handle;
(void) swap_pager_swp_alloc(object, M_WAITOK);
}
} else {
object = vm_object_allocate(OBJT_SWAP, offset + size);
(void) swap_pager_swp_alloc(object, M_WAITOK);
}
return (object);
}
/*
* returns disk block associated with pager and offset
* additionally, as a side effect returns a flag indicating
* if the block has been written
*/
inline static int *
swap_pager_diskaddr(object, offset, valid)
vm_object_t object;
vm_offset_t offset;
int *valid;
{
sw_pager_t swp = object->pg_data;
register sw_blk_t swb;
int ix;
if (valid)
*valid = 0;
ix = offset / (SWB_NPAGES * PAGE_SIZE);
if ((swp->sw_blocks == NULL) || (ix >= swp->sw_nblocks) ||
(offset >= object->size)) {
return (FALSE);
}
swb = &swp->sw_blocks[ix];
ix = (offset % (SWB_NPAGES * PAGE_SIZE)) / PAGE_SIZE;
if (valid)
*valid = swb->swb_valid & (1 << ix);
return &swb->swb_block[ix];
}
/*
* Utility routine to set the valid (written) bit for
* a block associated with a pager and offset
*/
static void
swap_pager_setvalid(swp, offset, valid)
sw_pager_t swp;
vm_offset_t offset;
int valid;
{
register sw_blk_t swb;
int ix;
ix = offset / (SWB_NPAGES * PAGE_SIZE);
if (swp->sw_blocks == NULL || ix >= swp->sw_nblocks)
return;
swb = &swp->sw_blocks[ix];
ix = (offset % (SWB_NPAGES * PAGE_SIZE)) / PAGE_SIZE;
if (valid)
swb->swb_valid |= (1 << ix);
else
swb->swb_valid &= ~(1 << ix);
return;
}
/*
* this routine allocates swap space with a fragmentation
* minimization policy.
*/
int
swap_pager_getswapspace(sw_pager_t swp, unsigned amount, unsigned *rtval)
{
vm_swap_size -= amount;
if (!rlist_alloc(&swaplist, amount, rtval)) {
vm_swap_size += amount;
return 0;
} else {
swapsizecheck();
swp->sw_allocsize += amount;
return 1;
}
}
/*
* this routine frees swap space with a fragmentation
* minimization policy.
*/
void
swap_pager_freeswapspace(sw_pager_t swp, unsigned from, unsigned to)
{
rlist_free(&swaplist, from, to);
vm_swap_size += (to - from) + 1;
swp->sw_allocsize -= (to - from) + 1;
swapsizecheck();
}
/*
* this routine frees swap blocks from a specified pager
*/
void
swap_pager_freespace(object, start, size)
vm_object_t object;
vm_offset_t start;
vm_offset_t size;
{
sw_pager_t swp = object->pg_data;
vm_offset_t i;
int s;
s = splbio();
for (i = start; i < round_page(start + size); i += PAGE_SIZE) {
int valid;
int *addr = swap_pager_diskaddr(object, i, &valid);
if (addr && *addr != SWB_EMPTY) {
swap_pager_freeswapspace(swp, *addr, *addr + btodb(PAGE_SIZE) - 1);
if (valid) {
swap_pager_setvalid(swp, i, 0);
}
*addr = SWB_EMPTY;
}
}
splx(s);
}
static void
swap_pager_free_swap(swp)
sw_pager_t swp;
{
register int i, j;
register sw_blk_t bp;
int first_block=0, block_count=0;
int s;
/*
* Free left over swap blocks
*/
s = splbio();
for (i = 0, bp = swp->sw_blocks; i < swp->sw_nblocks; i++, bp++) {
for (j = 0; j < SWB_NPAGES; j++) {
if (bp->swb_block[j] != SWB_EMPTY) {
/*
* initially the length of the run is zero
*/
if( block_count == 0) {
first_block = bp->swb_block[j];
block_count = btodb(PAGE_SIZE);
bp->swb_block[j] = SWB_EMPTY;
/*
* if the new block can be included into the current run
*/
} else if( bp->swb_block[j] == first_block + block_count) {
block_count += btodb(PAGE_SIZE);
bp->swb_block[j] = SWB_EMPTY;
/*
* terminate the previous run, and start a new one
*/
} else {
swap_pager_freeswapspace(swp, first_block,
(unsigned) first_block + block_count - 1);
first_block = bp->swb_block[j];
block_count = btodb(PAGE_SIZE);
bp->swb_block[j] = SWB_EMPTY;
}
}
}
}
if( block_count) {
swap_pager_freeswapspace(swp, first_block,
(unsigned) first_block + block_count - 1);
}
splx(s);
}
/*
* swap_pager_reclaim frees up over-allocated space from all pagers
* this eliminates internal fragmentation due to allocation of space
* for segments that are never swapped to. It has been written so that
* it does not block until the rlist_free operation occurs; it keeps
* the queues consistant.
*/
/*
* Maximum number of blocks (pages) to reclaim per pass
*/
#define MAXRECLAIM 128
void
swap_pager_reclaim()
{
vm_object_t object;
sw_pager_t swp;
int i, j, k;
int s;
int reclaimcount;
static struct {
int address;
sw_pager_t pager;
} reclaims[MAXRECLAIM];
static int in_reclaim;
/*
* allow only one process to be in the swap_pager_reclaim subroutine
*/
s = splbio();
if (in_reclaim) {
tsleep(&in_reclaim, PSWP, "swrclm", 0);
splx(s);
return;
}
in_reclaim = 1;
reclaimcount = 0;
/* for each pager queue */
for (k = 0; swp_qs[k]; k++) {
object = swp_qs[k]->tqh_first;
while (object && (reclaimcount < MAXRECLAIM)) {
/*
* see if any blocks associated with a pager has been
* allocated but not used (written)
*/
swp = (sw_pager_t) object->pg_data;
for (i = 0; i < swp->sw_nblocks; i++) {
sw_blk_t swb = &swp->sw_blocks[i];
if (swb->swb_locked)
continue;
for (j = 0; j < SWB_NPAGES; j++) {
if (swb->swb_block[j] != SWB_EMPTY &&
(swb->swb_valid & (1 << j)) == 0) {
reclaims[reclaimcount].address = swb->swb_block[j];
reclaims[reclaimcount++].pager = swp;
swb->swb_block[j] = SWB_EMPTY;
if (reclaimcount >= MAXRECLAIM)
goto rfinished;
}
}
}
object = object->pager_object_list.tqe_next;
}
}
rfinished:
/*
* free the blocks that have been added to the reclaim list
*/
for (i = 0; i < reclaimcount; i++) {
swap_pager_freeswapspace(reclaims[i].pager, reclaims[i].address, reclaims[i].address + btodb(PAGE_SIZE) - 1);
}
splx(s);
in_reclaim = 0;
wakeup(&in_reclaim);
}
/*
* swap_pager_copy copies blocks from one pager to another and
* destroys the source pager
*/
void
swap_pager_copy(srcobject, srcoffset, dstobject, dstoffset, offset)
vm_object_t srcobject;
vm_offset_t srcoffset;
vm_object_t dstobject;
vm_offset_t dstoffset;
vm_offset_t offset;
{
sw_pager_t srcswp, dstswp;
vm_offset_t i;
int origsize;
int s;
if (vm_swap_size)
no_swap_space = 0;
srcswp = (sw_pager_t) srcobject->pg_data;
origsize = srcswp->sw_allocsize;
dstswp = (sw_pager_t) dstobject->pg_data;
/*
* remove the source object from the swap_pager internal queue
*/
if (srcobject->handle == NULL) {
TAILQ_REMOVE(&swap_pager_un_object_list, srcobject, pager_object_list);
} else {
TAILQ_REMOVE(&swap_pager_object_list, srcobject, pager_object_list);
}
s = splbio();
while (srcswp->sw_poip) {
tsleep(srcswp, PVM, "spgout", 0);
}
splx(s);
/*
* clean all of the pages that are currently active and finished
*/
swap_pager_sync();
s = splbio();
/*
* transfer source to destination
*/
for (i = 0; i < dstobject->size; i += PAGE_SIZE) {
int srcvalid, dstvalid;
int *srcaddrp = swap_pager_diskaddr(srcobject, i + offset + srcoffset,
&srcvalid);
int *dstaddrp;
/*
* see if the source has space allocated
*/
if (srcaddrp && *srcaddrp != SWB_EMPTY) {
/*
* if the source is valid and the dest has no space,
* then copy the allocation from the srouce to the
* dest.
*/
if (srcvalid) {
dstaddrp = swap_pager_diskaddr(dstobject, i + dstoffset,
&dstvalid);
/*
* if the dest already has a valid block,
* deallocate the source block without
* copying.
*/
if (!dstvalid && dstaddrp && *dstaddrp != SWB_EMPTY) {
swap_pager_freeswapspace(dstswp, *dstaddrp,
*dstaddrp + btodb(PAGE_SIZE) - 1);
*dstaddrp = SWB_EMPTY;
}
if (dstaddrp && *dstaddrp == SWB_EMPTY) {
*dstaddrp = *srcaddrp;
*srcaddrp = SWB_EMPTY;
dstswp->sw_allocsize += btodb(PAGE_SIZE);
srcswp->sw_allocsize -= btodb(PAGE_SIZE);
swap_pager_setvalid(dstswp, i + dstoffset, 1);
}
}
/*
* if the source is not empty at this point, then
* deallocate the space.
*/
if (*srcaddrp != SWB_EMPTY) {
swap_pager_freeswapspace(srcswp, *srcaddrp,
*srcaddrp + btodb(PAGE_SIZE) - 1);
*srcaddrp = SWB_EMPTY;
}
}
}
splx(s);
/*
* Free left over swap blocks
*/
swap_pager_free_swap(srcswp);
if( srcswp->sw_allocsize)
printf("swap_pager_copy: *warning* pager with %d blocks (orig: %d)\n", srcswp->sw_allocsize, origsize);
free((caddr_t) srcswp->sw_blocks, M_VMPGDATA);
srcswp->sw_blocks = 0;
free((caddr_t) srcswp, M_VMPGDATA);
srcobject->pg_data = NULL;
return;
}
void
swap_pager_dealloc(object)
vm_object_t object;
{
register sw_pager_t swp;
int s;
swp = (sw_pager_t) object->pg_data;
/* "Can't" happen. */
if (swp == NULL)
panic("swap_pager_dealloc: no swp data");
/*
* Remove from list right away so lookups will fail if we block for
* pageout completion.
*/
if (object->handle == NULL) {
TAILQ_REMOVE(&swap_pager_un_object_list, object, pager_object_list);
} else {
TAILQ_REMOVE(&swap_pager_object_list, object, pager_object_list);
}
/*
* Wait for all pageouts to finish and remove all entries from
* cleaning list.
*/
s = splbio();
while (swp->sw_poip) {
tsleep(swp, PVM, "swpout", 0);
}
splx(s);
swap_pager_sync();
/*
* Free left over swap blocks
*/
swap_pager_free_swap(swp);
if( swp->sw_allocsize)
printf("swap_pager_dealloc: *warning* freeing pager with %d blocks\n", swp->sw_allocsize);
/*
* Free swap management resources
*/
free((caddr_t) swp->sw_blocks, M_VMPGDATA);
swp->sw_blocks = 0;
free((caddr_t) swp, M_VMPGDATA);
object->pg_data = 0;
}
static inline int
const
swap_pager_block_index(swp, offset)
sw_pager_t swp;
vm_offset_t offset;
{
return (offset / (SWB_NPAGES * PAGE_SIZE));
}
static inline int
const
swap_pager_block_offset(swp, offset)
sw_pager_t swp;
vm_offset_t offset;
{
return ((offset % (PAGE_SIZE * SWB_NPAGES)) / PAGE_SIZE);
}
/*
* swap_pager_haspage returns TRUE if the pager has data that has
* been written out.
*/
boolean_t
swap_pager_haspage(object, offset, before, after)
vm_object_t object;
vm_offset_t offset;
int *before;
int *after;
{
sw_pager_t swp = object->pg_data;
register sw_blk_t swb;
int ix;
if (before != NULL)
*before = 0;
if (after != NULL)
*after = 0;
ix = offset / (SWB_NPAGES * PAGE_SIZE);
if (swp->sw_blocks == NULL || ix >= swp->sw_nblocks) {
return (FALSE);
}
swb = &swp->sw_blocks[ix];
ix = (offset % (SWB_NPAGES * PAGE_SIZE)) / PAGE_SIZE;
if (swb->swb_block[ix] != SWB_EMPTY) {
if (swb->swb_valid & (1 << ix))
return TRUE;
}
return (FALSE);
}
/*
* swap_pager_freepage is a convienience routine that clears the busy
* bit and deallocates a page.
*/
static void
swap_pager_freepage(m)
vm_page_t m;
{
PAGE_WAKEUP(m);
vm_page_free(m);
}
/*
* swap_pager_ridpages is a convienience routine that deallocates all
* but the required page. this is usually used in error returns that
* need to invalidate the "extra" readahead pages.
*/
static void
swap_pager_ridpages(m, count, reqpage)
vm_page_t *m;
int count;
int reqpage;
{
int i;
for (i = 0; i < count; i++)
if (i != reqpage)
swap_pager_freepage(m[i]);
}
/*
* swap_pager_iodone1 is the completion routine for both reads and async writes
*/
void
swap_pager_iodone1(bp)
struct buf *bp;
{
bp->b_flags |= B_DONE;
bp->b_flags &= ~B_ASYNC;
wakeup(bp);
}
int
swap_pager_getpages(object, m, count, reqpage)
vm_object_t object;
vm_page_t *m;
int count, reqpage;
{
register sw_pager_t swp = object->pg_data;
register struct buf *bp;
sw_blk_t swb[count];
register int s;
int i;
boolean_t rv;
vm_offset_t kva, off[count];
swp_clean_t spc;
vm_offset_t paging_offset;
int reqaddr[count];
int sequential;
int first, last;
int failed;
int reqdskregion;
object = m[reqpage]->object;
paging_offset = object->paging_offset;
sequential = (m[reqpage]->offset == (object->last_read + PAGE_SIZE));
/*
* First determine if the page exists in the pager if this is a sync
* read. This quickly handles cases where we are following shadow
* chains looking for the top level object with the page.
*/
if (swp->sw_blocks == NULL) {
swap_pager_ridpages(m, count, reqpage);
return (VM_PAGER_FAIL);
}
for (i = 0; i < count; i++) {
vm_offset_t foff = m[i]->offset + paging_offset;
int ix = swap_pager_block_index(swp, foff);
if (ix >= swp->sw_nblocks) {
int j;
if (i <= reqpage) {
swap_pager_ridpages(m, count, reqpage);
return (VM_PAGER_FAIL);
}
for (j = i; j < count; j++) {
swap_pager_freepage(m[j]);
}
count = i;
break;
}
swb[i] = &swp->sw_blocks[ix];
off[i] = swap_pager_block_offset(swp, foff);
reqaddr[i] = swb[i]->swb_block[off[i]];
}
/* make sure that our required input request is existant */
if (reqaddr[reqpage] == SWB_EMPTY ||
(swb[reqpage]->swb_valid & (1 << off[reqpage])) == 0) {
swap_pager_ridpages(m, count, reqpage);
return (VM_PAGER_FAIL);
}
reqdskregion = reqaddr[reqpage] / dmmax;
/*
* search backwards for the first contiguous page to transfer
*/
failed = 0;
first = 0;
for (i = reqpage - 1; i >= 0; --i) {
if (sequential || failed || (reqaddr[i] == SWB_EMPTY) ||
(swb[i]->swb_valid & (1 << off[i])) == 0 ||
(reqaddr[i] != (reqaddr[reqpage] + (i - reqpage) * btodb(PAGE_SIZE))) ||
((reqaddr[i] / dmmax) != reqdskregion)) {
failed = 1;
swap_pager_freepage(m[i]);
if (first == 0)
first = i + 1;
}
}
/*
* search forwards for the last contiguous page to transfer
*/
failed = 0;
last = count;
for (i = reqpage + 1; i < count; i++) {
if (failed || (reqaddr[i] == SWB_EMPTY) ||
(swb[i]->swb_valid & (1 << off[i])) == 0 ||
(reqaddr[i] != (reqaddr[reqpage] + (i - reqpage) * btodb(PAGE_SIZE))) ||
((reqaddr[i] / dmmax) != reqdskregion)) {
failed = 1;
swap_pager_freepage(m[i]);
if (last == count)
last = i;
}
}
count = last;
if (first != 0) {
for (i = first; i < count; i++) {
m[i - first] = m[i];
reqaddr[i - first] = reqaddr[i];
off[i - first] = off[i];
}
count -= first;
reqpage -= first;
}
++swb[reqpage]->swb_locked;
/*
* at this point: "m" is a pointer to the array of vm_page_t for
* paging I/O "count" is the number of vm_page_t entries represented
* by "m" "object" is the vm_object_t for I/O "reqpage" is the index
* into "m" for the page actually faulted
*/
spc = NULL; /* we might not use an spc data structure */
if ((count == 1) && (swap_pager_free.tqh_first != NULL)) {
/*
* if a kva has not been allocated, we can only do a one page
* transfer, so we free the other pages that might have been
* allocated by vm_fault.
*/
swap_pager_ridpages(m, count, reqpage);
m[0] = m[reqpage];
reqaddr[0] = reqaddr[reqpage];
count = 1;
reqpage = 0;
/*
* get a swap pager clean data structure, block until we get
* it
*/
if (swap_pager_free.tqh_first == NULL) {
s = splbio();
if (curproc == pageproc)
swap_pager_sync();
else
pagedaemon_wakeup();
while (swap_pager_free.tqh_first == NULL) {
swap_pager_needflags |= SWAP_FREE_NEEDED;
if (curproc == pageproc)
swap_pager_needflags |= SWAP_FREE_NEEDED_BY_PAGEOUT;
tsleep(&swap_pager_free,
PVM, "swpfre", 0);
if (curproc == pageproc)
swap_pager_sync();
else
pagedaemon_wakeup();
}
splx(s);
}
spc = swap_pager_free.tqh_first;
TAILQ_REMOVE(&swap_pager_free, spc, spc_list);
kva = spc->spc_kva;
bp = spc->spc_bp;
bzero(bp, sizeof *bp);
bp->b_spc = spc;
bp->b_vnbufs.le_next = NOLIST;
} else {
/*
* Get a swap buffer header to perform the IO
*/
bp = getpbuf();
kva = (vm_offset_t) bp->b_data;
}
/*
* map our page(s) into kva for input
*/
pmap_qenter(kva, m, count);
bp->b_flags = B_BUSY | B_READ | B_CALL | B_PAGING;
bp->b_iodone = swap_pager_iodone1;
bp->b_proc = &proc0; /* XXX (but without B_PHYS set this is ok) */
bp->b_rcred = bp->b_wcred = bp->b_proc->p_ucred;
crhold(bp->b_rcred);
crhold(bp->b_wcred);
bp->b_un.b_addr = (caddr_t) kva;
bp->b_blkno = reqaddr[0];
bp->b_bcount = PAGE_SIZE * count;
bp->b_bufsize = PAGE_SIZE * count;
pbgetvp(swapdev_vp, bp);
swp->sw_piip++;
cnt.v_swapin++;
cnt.v_swappgsin += count;
/*
* perform the I/O
*/
VOP_STRATEGY(bp);
/*
* wait for the sync I/O to complete
*/
s = splbio();
while ((bp->b_flags & B_DONE) == 0) {
tsleep(bp, PVM, "swread", 0);
}
if (bp->b_flags & B_ERROR) {
printf("swap_pager: I/O error - pagein failed; blkno %d, size %d, error %d\n",
bp->b_blkno, bp->b_bcount, bp->b_error);
rv = VM_PAGER_ERROR;
} else {
rv = VM_PAGER_OK;
}
--swp->sw_piip;
if (swp->sw_piip == 0)
wakeup(swp);
/*
* relpbuf does this, but we maintain our own buffer list also...
*/
if (bp->b_vp)
pbrelvp(bp);
splx(s);
--swb[reqpage]->swb_locked;
/*
* remove the mapping for kernel virtual
*/
pmap_qremove(kva, count);
if (spc) {
m[reqpage]->object->last_read = m[reqpage]->offset;
if (bp->b_flags & B_WANTED)
wakeup(bp);
/*
* if we have used an spc, we need to free it.
*/
if (bp->b_rcred != NOCRED)
crfree(bp->b_rcred);
if (bp->b_wcred != NOCRED)
crfree(bp->b_wcred);
TAILQ_INSERT_TAIL(&swap_pager_free, spc, spc_list);
if (swap_pager_needflags & SWAP_FREE_NEEDED) {
wakeup(&swap_pager_free);
}
if( swap_pager_needflags & SWAP_FREE_NEEDED_BY_PAGEOUT)
pagedaemon_wakeup();
swap_pager_needflags &= ~(SWAP_FREE_NEEDED|SWAP_FREE_NEEDED_BY_PAGEOUT);
} else {
/*
* release the physical I/O buffer
*/
relpbuf(bp);
/*
* finish up input if everything is ok
*/
if (rv == VM_PAGER_OK) {
for (i = 0; i < count; i++) {
pmap_clear_modify(VM_PAGE_TO_PHYS(m[i]));
m[i]->dirty = 0;
if (i != reqpage) {
/*
* whether or not to leave the page
* activated is up in the air, but we
* should put the page on a page queue
* somewhere. (it already is in the
* object). After some emperical
* results, it is best to deactivate
* the readahead pages.
*/
vm_page_deactivate(m[i]);
/*
* just in case someone was asking for
* this page we now tell them that it
* is ok to use
*/
m[i]->valid = VM_PAGE_BITS_ALL;
PAGE_WAKEUP(m[i]);
}
}
m[reqpage]->object->last_read = m[count-1]->offset;
/*
* If we're out of swap space, then attempt to free
* some whenever pages are brought in. We must clear
* the clean flag so that the page contents will be
* preserved.
*/
if (swap_pager_full) {
for (i = 0; i < count; i++) {
m[i]->dirty = VM_PAGE_BITS_ALL;
}
swap_pager_freespace(object, m[0]->offset + paging_offset, count * PAGE_SIZE);
}
} else {
swap_pager_ridpages(m, count, reqpage);
}
}
return (rv);
}
int
swap_pager_putpages(object, m, count, sync, rtvals)
vm_object_t object;
vm_page_t *m;
int count;
boolean_t sync;
int *rtvals;
{
register sw_pager_t swp = object->pg_data;
register struct buf *bp;
sw_blk_t swb[count];
register int s;
int i, j, ix;
boolean_t rv;
vm_offset_t kva, off, foff;
swp_clean_t spc;
vm_offset_t paging_offset;
int reqaddr[count];
int failed;
if (vm_swap_size)
no_swap_space = 0;
if (no_swap_space) {
for (i = 0; i < count; i++)
rtvals[i] = VM_PAGER_FAIL;
return VM_PAGER_FAIL;
}
spc = NULL;
object = m[0]->object;
paging_offset = object->paging_offset;
failed = 0;
for (j = 0; j < count; j++) {
foff = m[j]->offset + paging_offset;
ix = swap_pager_block_index(swp, foff);
swb[j] = 0;
if (swp->sw_blocks == NULL || ix >= swp->sw_nblocks) {
rtvals[j] = VM_PAGER_FAIL;
failed = 1;
continue;
} else {
rtvals[j] = VM_PAGER_OK;
}
swb[j] = &swp->sw_blocks[ix];
++swb[j]->swb_locked;
if (failed) {
rtvals[j] = VM_PAGER_FAIL;
continue;
}
off = swap_pager_block_offset(swp, foff);
reqaddr[j] = swb[j]->swb_block[off];
if (reqaddr[j] == SWB_EMPTY) {
int blk;
int tries;
int ntoget;
tries = 0;
s = splbio();
/*
* if any other pages have been allocated in this
* block, we only try to get one page.
*/
for (i = 0; i < SWB_NPAGES; i++) {
if (swb[j]->swb_block[i] != SWB_EMPTY)
break;
}
ntoget = (i == SWB_NPAGES) ? SWB_NPAGES : 1;
/*
* this code is alittle conservative, but works (the
* intent of this code is to allocate small chunks for
* small objects)
*/
if ((foff == 0) &&
((ntoget * PAGE_SIZE) > object->size)) {
ntoget = (object->size + (PAGE_SIZE - 1)) / PAGE_SIZE;
}
retrygetspace:
if (!swap_pager_full && ntoget > 1 &&
swap_pager_getswapspace(swp, ntoget * btodb(PAGE_SIZE), &blk)) {
for (i = 0; i < ntoget; i++) {
swb[j]->swb_block[i] = blk + btodb(PAGE_SIZE) * i;
swb[j]->swb_valid = 0;
}
reqaddr[j] = swb[j]->swb_block[off];
} else if (!swap_pager_getswapspace(swp, btodb(PAGE_SIZE),
&swb[j]->swb_block[off])) {
/*
* if the allocation has failed, we try to
* reclaim space and retry.
*/
if (++tries == 1) {
swap_pager_reclaim();
goto retrygetspace;
}
rtvals[j] = VM_PAGER_AGAIN;
failed = 1;
swap_pager_full = 1;
} else {
reqaddr[j] = swb[j]->swb_block[off];
swb[j]->swb_valid &= ~(1 << off);
}
splx(s);
}
}
/*
* search forwards for the last contiguous page to transfer
*/
failed = 0;
for (i = 0; i < count; i++) {
if (failed || (reqaddr[i] != reqaddr[0] + i * btodb(PAGE_SIZE)) ||
(reqaddr[i] / dmmax) != (reqaddr[0] / dmmax) ||
(rtvals[i] != VM_PAGER_OK)) {
failed = 1;
if (rtvals[i] == VM_PAGER_OK)
rtvals[i] = VM_PAGER_AGAIN;
}
}
for (i = 0; i < count; i++) {
if (rtvals[i] != VM_PAGER_OK) {
if (swb[i])
--swb[i]->swb_locked;
}
}
for (i = 0; i < count; i++)
if (rtvals[i] != VM_PAGER_OK)
break;
if (i == 0) {
return VM_PAGER_AGAIN;
}
count = i;
for (i = 0; i < count; i++) {
if (reqaddr[i] == SWB_EMPTY)
printf("I/O to empty block????\n");
}
/*
* For synchronous writes, we clean up all completed async pageouts.
*/
if (sync == TRUE) {
swap_pager_sync();
}
kva = 0;
/*
* get a swap pager clean data structure, block until we get it
*/
if (swap_pager_free.tqh_first == NULL ||
swap_pager_free.tqh_first->spc_list.tqe_next == NULL ||
swap_pager_free.tqh_first->spc_list.tqe_next->spc_list.tqe_next == NULL) {
s = splbio();
if (curproc == pageproc) {
swap_pager_sync();
#if 0
splx(s);
return VM_PAGER_AGAIN;
#endif
} else
pagedaemon_wakeup();
while (swap_pager_free.tqh_first == NULL ||
swap_pager_free.tqh_first->spc_list.tqe_next == NULL ||
swap_pager_free.tqh_first->spc_list.tqe_next->spc_list.tqe_next == NULL) {
if (curproc == pageproc) {
swap_pager_needflags |= SWAP_FREE_NEEDED_BY_PAGEOUT;
if((cnt.v_free_count + cnt.v_cache_count) > cnt.v_free_reserved)
wakeup(&cnt.v_free_count);
}
swap_pager_needflags |= SWAP_FREE_NEEDED;
tsleep(&swap_pager_free, PVM, "swpfre", 0);
if (curproc == pageproc)
swap_pager_sync();
else
pagedaemon_wakeup();
}
splx(s);
}
spc = swap_pager_free.tqh_first;
TAILQ_REMOVE(&swap_pager_free, spc, spc_list);
kva = spc->spc_kva;
/*
* map our page(s) into kva for I/O
*/
pmap_qenter(kva, m, count);
/*
* get the base I/O offset into the swap file
*/
for (i = 0; i < count; i++) {
foff = m[i]->offset + paging_offset;
off = swap_pager_block_offset(swp, foff);
/*
* set the valid bit
*/
swb[i]->swb_valid |= (1 << off);
/*
* and unlock the data structure
*/
--swb[i]->swb_locked;
}
/*
* Get a swap buffer header and perform the IO
*/
bp = spc->spc_bp;
bzero(bp, sizeof *bp);
bp->b_spc = spc;
bp->b_vnbufs.le_next = NOLIST;
bp->b_flags = B_BUSY | B_PAGING;
bp->b_proc = &proc0; /* XXX (but without B_PHYS set this is ok) */
bp->b_rcred = bp->b_wcred = bp->b_proc->p_ucred;
if (bp->b_rcred != NOCRED)
crhold(bp->b_rcred);
if (bp->b_wcred != NOCRED)
crhold(bp->b_wcred);
bp->b_data = (caddr_t) kva;
bp->b_blkno = reqaddr[0];
pbgetvp(swapdev_vp, bp);
bp->b_bcount = PAGE_SIZE * count;
bp->b_bufsize = PAGE_SIZE * count;
swapdev_vp->v_numoutput++;
/*
* If this is an async write we set up additional buffer fields and
* place a "cleaning" entry on the inuse queue.
*/
s = splbio();
if (sync == FALSE) {
spc->spc_flags = 0;
spc->spc_swp = swp;
for (i = 0; i < count; i++)
spc->spc_m[i] = m[i];
spc->spc_count = count;
/*
* the completion routine for async writes
*/
bp->b_flags |= B_CALL;
bp->b_iodone = swap_pager_iodone;
bp->b_dirtyoff = 0;
bp->b_dirtyend = bp->b_bcount;
swp->sw_poip++;
TAILQ_INSERT_TAIL(&swap_pager_inuse, spc, spc_list);
} else {
swp->sw_poip++;
bp->b_flags |= B_CALL;
bp->b_iodone = swap_pager_iodone1;
}
cnt.v_swapout++;
cnt.v_swappgsout += count;
/*
* perform the I/O
*/
VOP_STRATEGY(bp);
if (sync == FALSE) {
if ((bp->b_flags & B_DONE) == B_DONE) {
swap_pager_sync();
}
splx(s);
for (i = 0; i < count; i++) {
rtvals[i] = VM_PAGER_PEND;
}
return VM_PAGER_PEND;
}
/*
* wait for the sync I/O to complete
*/
while ((bp->b_flags & B_DONE) == 0) {
tsleep(bp, PVM, "swwrt", 0);
}
if (bp->b_flags & B_ERROR) {
printf("swap_pager: I/O error - pageout failed; blkno %d, size %d, error %d\n",
bp->b_blkno, bp->b_bcount, bp->b_error);
rv = VM_PAGER_ERROR;
} else {
rv = VM_PAGER_OK;
}
--swp->sw_poip;
if (swp->sw_poip == 0)
wakeup(swp);
if (bp->b_vp)
pbrelvp(bp);
if (bp->b_flags & B_WANTED)
wakeup(bp);
splx(s);
/*
* remove the mapping for kernel virtual
*/
pmap_qremove(kva, count);
/*
* if we have written the page, then indicate that the page is clean.
*/
if (rv == VM_PAGER_OK) {
for (i = 0; i < count; i++) {
if (rtvals[i] == VM_PAGER_OK) {
pmap_clear_modify(VM_PAGE_TO_PHYS(m[i]));
m[i]->dirty = 0;
/*
* optimization, if a page has been read
* during the pageout process, we activate it.
*/
if ((m[i]->flags & PG_ACTIVE) == 0 &&
((m[i]->flags & (PG_WANTED|PG_REFERENCED)) ||
pmap_is_referenced(VM_PAGE_TO_PHYS(m[i])))) {
vm_page_activate(m[i]);
}
}
}
} else {
for (i = 0; i < count; i++) {
rtvals[i] = rv;
}
}
if (bp->b_rcred != NOCRED)
crfree(bp->b_rcred);
if (bp->b_wcred != NOCRED)
crfree(bp->b_wcred);
TAILQ_INSERT_TAIL(&swap_pager_free, spc, spc_list);
if (swap_pager_needflags & SWAP_FREE_NEEDED) {
wakeup(&swap_pager_free);
}
if( swap_pager_needflags & SWAP_FREE_NEEDED_BY_PAGEOUT)
pagedaemon_wakeup();
swap_pager_needflags &= ~(SWAP_FREE_NEEDED|SWAP_FREE_NEEDED_BY_PAGEOUT);
return (rv);
}
void
swap_pager_sync()
{
register swp_clean_t spc, tspc;
register int s;
tspc = NULL;
if (swap_pager_done.tqh_first == NULL)
return;
for (;;) {
s = splbio();
/*
* Look up and removal from done list must be done at splbio()
* to avoid conflicts with swap_pager_iodone.
*/
while ((spc = swap_pager_done.tqh_first) != 0) {
pmap_qremove(spc->spc_kva, spc->spc_count);
swap_pager_finish(spc);
TAILQ_REMOVE(&swap_pager_done, spc, spc_list);
goto doclean;
}
/*
* No operations done, thats all we can do for now.
*/
splx(s);
break;
/*
* The desired page was found to be busy earlier in the scan
* but has since completed.
*/
doclean:
if (tspc && tspc == spc) {
tspc = NULL;
}
spc->spc_flags = 0;
TAILQ_INSERT_TAIL(&swap_pager_free, spc, spc_list);
if (swap_pager_needflags & SWAP_FREE_NEEDED) {
wakeup(&swap_pager_free);
}
if( swap_pager_needflags & SWAP_FREE_NEEDED_BY_PAGEOUT)
pagedaemon_wakeup();
swap_pager_needflags &= ~(SWAP_FREE_NEEDED|SWAP_FREE_NEEDED_BY_PAGEOUT);
splx(s);
}
return;
}
void
swap_pager_finish(spc)
register swp_clean_t spc;
{
vm_object_t object = spc->spc_m[0]->object;
int i;
object->paging_in_progress -= spc->spc_count;
if ((object->paging_in_progress == 0) &&
(object->flags & OBJ_PIPWNT)) {
object->flags &= ~OBJ_PIPWNT;
wakeup(object);
}
/*
* If no error, mark as clean and inform the pmap system. If error,
* mark as dirty so we will try again. (XXX could get stuck doing
* this, should give up after awhile)
*/
if (spc->spc_flags & SPC_ERROR) {
for (i = 0; i < spc->spc_count; i++) {
printf("swap_pager_finish: I/O error, clean of page %lx failed\n",
(u_long) VM_PAGE_TO_PHYS(spc->spc_m[i]));
}
} else {
for (i = 0; i < spc->spc_count; i++) {
pmap_clear_modify(VM_PAGE_TO_PHYS(spc->spc_m[i]));
spc->spc_m[i]->dirty = 0;
if ((spc->spc_m[i]->flags & PG_ACTIVE) == 0 &&
((spc->spc_m[i]->flags & PG_WANTED) || pmap_is_referenced(VM_PAGE_TO_PHYS(spc->spc_m[i]))))
vm_page_activate(spc->spc_m[i]);
}
}
for (i = 0; i < spc->spc_count; i++) {
/*
* we wakeup any processes that are waiting on these pages.
*/
PAGE_WAKEUP(spc->spc_m[i]);
}
nswiodone -= spc->spc_count;
return;
}
/*
* swap_pager_iodone
*/
void
swap_pager_iodone(bp)
register struct buf *bp;
{
register swp_clean_t spc;
int s;
s = splbio();
spc = (swp_clean_t) bp->b_spc;
TAILQ_REMOVE(&swap_pager_inuse, spc, spc_list);
TAILQ_INSERT_TAIL(&swap_pager_done, spc, spc_list);
if (bp->b_flags & B_ERROR) {
spc->spc_flags |= SPC_ERROR;
printf("swap_pager: I/O error - async %s failed; blkno %lu, size %ld, error %d\n",
(bp->b_flags & B_READ) ? "pagein" : "pageout",
(u_long) bp->b_blkno, bp->b_bcount, bp->b_error);
}
if (bp->b_vp)
pbrelvp(bp);
if (bp->b_flags & B_WANTED)
wakeup(bp);
if (bp->b_rcred != NOCRED)
crfree(bp->b_rcred);
if (bp->b_wcred != NOCRED)
crfree(bp->b_wcred);
nswiodone += spc->spc_count;
if (--spc->spc_swp->sw_poip == 0) {
wakeup(spc->spc_swp);
}
if ((swap_pager_needflags & SWAP_FREE_NEEDED) ||
swap_pager_inuse.tqh_first == 0) {
swap_pager_needflags &= ~SWAP_FREE_NEEDED;
wakeup(&swap_pager_free);
}
if( swap_pager_needflags & SWAP_FREE_NEEDED_BY_PAGEOUT) {
swap_pager_needflags &= ~SWAP_FREE_NEEDED_BY_PAGEOUT;
pagedaemon_wakeup();
}
if (vm_pageout_pages_needed) {
wakeup(&vm_pageout_pages_needed);
vm_pageout_pages_needed = 0;
}
if ((swap_pager_inuse.tqh_first == NULL) ||
((cnt.v_free_count + cnt.v_cache_count) < cnt.v_free_min &&
nswiodone + cnt.v_free_count + cnt.v_cache_count >= cnt.v_free_min)) {
pagedaemon_wakeup();
}
splx(s);
}
/*
* return true if any swap control structures can be allocated
*/
int
swap_pager_ready()
{
if (swap_pager_free.tqh_first)
return 1;
else
return 0;
}