freebsd-skq/usr.sbin/bhyve/pci_e82545.c
Ryan Libby 558e4950b3 bhyve/pci_e82545.c: squelch gcc warning for noreturn procedure
Gcc complained that e82545_tx_thread has a return type declared but
doesn't return anything.  Annotate the procedure with _Noreturn.

Reviewed by:	grehan
Approved by:	markj (mentor)
Sponsored by:	Dell EMC Isilon
Differential Revision:	https://reviews.freebsd.org/D11774
2017-07-28 21:42:59 +00:00

2387 lines
60 KiB
C

/*
* Copyright (c) 2016 Alexander Motin <mav@FreeBSD.org>
* Copyright (c) 2015 Peter Grehan <grehan@freebsd.org>
* Copyright (c) 2013 Jeremiah Lott, Avere Systems
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer
* in this position and unchanged.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include <sys/types.h>
#ifndef WITHOUT_CAPSICUM
#include <sys/capsicum.h>
#endif
#include <sys/limits.h>
#include <sys/ioctl.h>
#include <sys/uio.h>
#include <net/ethernet.h>
#include <netinet/in.h>
#include <netinet/tcp.h>
#include <err.h>
#include <errno.h>
#include <fcntl.h>
#include <md5.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sysexits.h>
#include <unistd.h>
#include <pthread.h>
#include <pthread_np.h>
#include "e1000_regs.h"
#include "e1000_defines.h"
#include "mii.h"
#include "bhyverun.h"
#include "pci_emul.h"
#include "mevent.h"
/* Hardware/register definitions XXX: move some to common code. */
#define E82545_VENDOR_ID_INTEL 0x8086
#define E82545_DEV_ID_82545EM_COPPER 0x100F
#define E82545_SUBDEV_ID 0x1008
#define E82545_REVISION_4 4
#define E82545_MDIC_DATA_MASK 0x0000FFFF
#define E82545_MDIC_OP_MASK 0x0c000000
#define E82545_MDIC_IE 0x20000000
#define E82545_EECD_FWE_DIS 0x00000010 /* Flash writes disabled */
#define E82545_EECD_FWE_EN 0x00000020 /* Flash writes enabled */
#define E82545_EECD_FWE_MASK 0x00000030 /* Flash writes mask */
#define E82545_BAR_REGISTER 0
#define E82545_BAR_REGISTER_LEN (128*1024)
#define E82545_BAR_FLASH 1
#define E82545_BAR_FLASH_LEN (64*1024)
#define E82545_BAR_IO 2
#define E82545_BAR_IO_LEN 8
#define E82545_IOADDR 0x00000000
#define E82545_IODATA 0x00000004
#define E82545_IO_REGISTER_MAX 0x0001FFFF
#define E82545_IO_FLASH_BASE 0x00080000
#define E82545_IO_FLASH_MAX 0x000FFFFF
#define E82545_ARRAY_ENTRY(reg, offset) (reg + (offset<<2))
#define E82545_RAR_MAX 15
#define E82545_MTA_MAX 127
#define E82545_VFTA_MAX 127
/* Slightly modified from the driver versions, hardcoded for 3 opcode bits,
* followed by 6 address bits.
* TODO: make opcode bits and addr bits configurable?
* NVM Commands - Microwire */
#define E82545_NVM_OPCODE_BITS 3
#define E82545_NVM_ADDR_BITS 6
#define E82545_NVM_DATA_BITS 16
#define E82545_NVM_OPADDR_BITS (E82545_NVM_OPCODE_BITS + E82545_NVM_ADDR_BITS)
#define E82545_NVM_ADDR_MASK ((1 << E82545_NVM_ADDR_BITS)-1)
#define E82545_NVM_OPCODE_MASK \
(((1 << E82545_NVM_OPCODE_BITS) - 1) << E82545_NVM_ADDR_BITS)
#define E82545_NVM_OPCODE_READ (0x6 << E82545_NVM_ADDR_BITS) /* read */
#define E82545_NVM_OPCODE_WRITE (0x5 << E82545_NVM_ADDR_BITS) /* write */
#define E82545_NVM_OPCODE_ERASE (0x7 << E82545_NVM_ADDR_BITS) /* erase */
#define E82545_NVM_OPCODE_EWEN (0x4 << E82545_NVM_ADDR_BITS) /* wr-enable */
#define E82545_NVM_EEPROM_SIZE 64 /* 64 * 16-bit values == 128K */
#define E1000_ICR_SRPD 0x00010000
/* This is an arbitrary number. There is no hard limit on the chip. */
#define I82545_MAX_TXSEGS 64
/* Legacy receive descriptor */
struct e1000_rx_desc {
uint64_t buffer_addr; /* Address of the descriptor's data buffer */
uint16_t length; /* Length of data DMAed into data buffer */
uint16_t csum; /* Packet checksum */
uint8_t status; /* Descriptor status */
uint8_t errors; /* Descriptor Errors */
uint16_t special;
};
/* Transmit descriptor types */
#define E1000_TXD_MASK (E1000_TXD_CMD_DEXT | 0x00F00000)
#define E1000_TXD_TYP_L (0)
#define E1000_TXD_TYP_C (E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_C)
#define E1000_TXD_TYP_D (E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D)
/* Legacy transmit descriptor */
struct e1000_tx_desc {
uint64_t buffer_addr; /* Address of the descriptor's data buffer */
union {
uint32_t data;
struct {
uint16_t length; /* Data buffer length */
uint8_t cso; /* Checksum offset */
uint8_t cmd; /* Descriptor control */
} flags;
} lower;
union {
uint32_t data;
struct {
uint8_t status; /* Descriptor status */
uint8_t css; /* Checksum start */
uint16_t special;
} fields;
} upper;
};
/* Context descriptor */
struct e1000_context_desc {
union {
uint32_t ip_config;
struct {
uint8_t ipcss; /* IP checksum start */
uint8_t ipcso; /* IP checksum offset */
uint16_t ipcse; /* IP checksum end */
} ip_fields;
} lower_setup;
union {
uint32_t tcp_config;
struct {
uint8_t tucss; /* TCP checksum start */
uint8_t tucso; /* TCP checksum offset */
uint16_t tucse; /* TCP checksum end */
} tcp_fields;
} upper_setup;
uint32_t cmd_and_length;
union {
uint32_t data;
struct {
uint8_t status; /* Descriptor status */
uint8_t hdr_len; /* Header length */
uint16_t mss; /* Maximum segment size */
} fields;
} tcp_seg_setup;
};
/* Data descriptor */
struct e1000_data_desc {
uint64_t buffer_addr; /* Address of the descriptor's buffer address */
union {
uint32_t data;
struct {
uint16_t length; /* Data buffer length */
uint8_t typ_len_ext;
uint8_t cmd;
} flags;
} lower;
union {
uint32_t data;
struct {
uint8_t status; /* Descriptor status */
uint8_t popts; /* Packet Options */
uint16_t special;
} fields;
} upper;
};
union e1000_tx_udesc {
struct e1000_tx_desc td;
struct e1000_context_desc cd;
struct e1000_data_desc dd;
};
/* Tx checksum info for a packet. */
struct ck_info {
int ck_valid; /* ck_info is valid */
uint8_t ck_start; /* start byte of cksum calcuation */
uint8_t ck_off; /* offset of cksum insertion */
uint16_t ck_len; /* length of cksum calc: 0 is to packet-end */
};
/*
* Debug printf
*/
static int e82545_debug = 0;
#define DPRINTF(msg,params...) if (e82545_debug) fprintf(stderr, "e82545: " msg, params)
#define WPRINTF(msg,params...) fprintf(stderr, "e82545: " msg, params)
#define MIN(a,b) (((a)<(b))?(a):(b))
#define MAX(a,b) (((a)>(b))?(a):(b))
/* s/w representation of the RAL/RAH regs */
struct eth_uni {
int eu_valid;
int eu_addrsel;
struct ether_addr eu_eth;
};
struct e82545_softc {
struct pci_devinst *esc_pi;
struct vmctx *esc_ctx;
struct mevent *esc_mevp;
struct mevent *esc_mevpitr;
pthread_mutex_t esc_mtx;
struct ether_addr esc_mac;
int esc_tapfd;
/* General */
uint32_t esc_CTRL; /* x0000 device ctl */
uint32_t esc_FCAL; /* x0028 flow ctl addr lo */
uint32_t esc_FCAH; /* x002C flow ctl addr hi */
uint32_t esc_FCT; /* x0030 flow ctl type */
uint32_t esc_VET; /* x0038 VLAN eth type */
uint32_t esc_FCTTV; /* x0170 flow ctl tx timer */
uint32_t esc_LEDCTL; /* x0E00 LED control */
uint32_t esc_PBA; /* x1000 pkt buffer allocation */
/* Interrupt control */
int esc_irq_asserted;
uint32_t esc_ICR; /* x00C0 cause read/clear */
uint32_t esc_ITR; /* x00C4 intr throttling */
uint32_t esc_ICS; /* x00C8 cause set */
uint32_t esc_IMS; /* x00D0 mask set/read */
uint32_t esc_IMC; /* x00D8 mask clear */
/* Transmit */
union e1000_tx_udesc *esc_txdesc;
struct e1000_context_desc esc_txctx;
pthread_t esc_tx_tid;
pthread_cond_t esc_tx_cond;
int esc_tx_enabled;
int esc_tx_active;
uint32_t esc_TXCW; /* x0178 transmit config */
uint32_t esc_TCTL; /* x0400 transmit ctl */
uint32_t esc_TIPG; /* x0410 inter-packet gap */
uint16_t esc_AIT; /* x0458 Adaptive Interframe Throttle */
uint64_t esc_tdba; /* verified 64-bit desc table addr */
uint32_t esc_TDBAL; /* x3800 desc table addr, low bits */
uint32_t esc_TDBAH; /* x3804 desc table addr, hi 32-bits */
uint32_t esc_TDLEN; /* x3808 # descriptors in bytes */
uint16_t esc_TDH; /* x3810 desc table head idx */
uint16_t esc_TDHr; /* internal read version of TDH */
uint16_t esc_TDT; /* x3818 desc table tail idx */
uint32_t esc_TIDV; /* x3820 intr delay */
uint32_t esc_TXDCTL; /* x3828 desc control */
uint32_t esc_TADV; /* x382C intr absolute delay */
/* L2 frame acceptance */
struct eth_uni esc_uni[16]; /* 16 x unicast MAC addresses */
uint32_t esc_fmcast[128]; /* Multicast filter bit-match */
uint32_t esc_fvlan[128]; /* VLAN 4096-bit filter */
/* Receive */
struct e1000_rx_desc *esc_rxdesc;
pthread_cond_t esc_rx_cond;
int esc_rx_enabled;
int esc_rx_active;
int esc_rx_loopback;
uint32_t esc_RCTL; /* x0100 receive ctl */
uint32_t esc_FCRTL; /* x2160 flow cntl thresh, low */
uint32_t esc_FCRTH; /* x2168 flow cntl thresh, hi */
uint64_t esc_rdba; /* verified 64-bit desc table addr */
uint32_t esc_RDBAL; /* x2800 desc table addr, low bits */
uint32_t esc_RDBAH; /* x2804 desc table addr, hi 32-bits*/
uint32_t esc_RDLEN; /* x2808 #descriptors */
uint16_t esc_RDH; /* x2810 desc table head idx */
uint16_t esc_RDT; /* x2818 desc table tail idx */
uint32_t esc_RDTR; /* x2820 intr delay */
uint32_t esc_RXDCTL; /* x2828 desc control */
uint32_t esc_RADV; /* x282C intr absolute delay */
uint32_t esc_RSRPD; /* x2C00 recv small packet detect */
uint32_t esc_RXCSUM; /* x5000 receive cksum ctl */
/* IO Port register access */
uint32_t io_addr;
/* Shadow copy of MDIC */
uint32_t mdi_control;
/* Shadow copy of EECD */
uint32_t eeprom_control;
/* Latest NVM in/out */
uint16_t nvm_data;
uint16_t nvm_opaddr;
/* stats */
uint32_t missed_pkt_count; /* dropped for no room in rx queue */
uint32_t pkt_rx_by_size[6];
uint32_t pkt_tx_by_size[6];
uint32_t good_pkt_rx_count;
uint32_t bcast_pkt_rx_count;
uint32_t mcast_pkt_rx_count;
uint32_t good_pkt_tx_count;
uint32_t bcast_pkt_tx_count;
uint32_t mcast_pkt_tx_count;
uint32_t oversize_rx_count;
uint32_t tso_tx_count;
uint64_t good_octets_rx;
uint64_t good_octets_tx;
uint64_t missed_octets; /* counts missed and oversized */
uint8_t nvm_bits:6; /* number of bits remaining in/out */
uint8_t nvm_mode:2;
#define E82545_NVM_MODE_OPADDR 0x0
#define E82545_NVM_MODE_DATAIN 0x1
#define E82545_NVM_MODE_DATAOUT 0x2
/* EEPROM data */
uint16_t eeprom_data[E82545_NVM_EEPROM_SIZE];
};
static void e82545_reset(struct e82545_softc *sc, int dev);
static void e82545_rx_enable(struct e82545_softc *sc);
static void e82545_rx_disable(struct e82545_softc *sc);
static void e82545_tap_callback(int fd, enum ev_type type, void *param);
static void e82545_tx_start(struct e82545_softc *sc);
static void e82545_tx_enable(struct e82545_softc *sc);
static void e82545_tx_disable(struct e82545_softc *sc);
static inline int
e82545_size_stat_index(uint32_t size)
{
if (size <= 64) {
return 0;
} else if (size >= 1024) {
return 5;
} else {
/* should be 1-4 */
return (ffs(size) - 6);
}
}
static void
e82545_init_eeprom(struct e82545_softc *sc)
{
uint16_t checksum, i;
/* mac addr */
sc->eeprom_data[NVM_MAC_ADDR] = ((uint16_t)sc->esc_mac.octet[0]) |
(((uint16_t)sc->esc_mac.octet[1]) << 8);
sc->eeprom_data[NVM_MAC_ADDR+1] = ((uint16_t)sc->esc_mac.octet[2]) |
(((uint16_t)sc->esc_mac.octet[3]) << 8);
sc->eeprom_data[NVM_MAC_ADDR+2] = ((uint16_t)sc->esc_mac.octet[4]) |
(((uint16_t)sc->esc_mac.octet[5]) << 8);
/* pci ids */
sc->eeprom_data[NVM_SUB_DEV_ID] = E82545_SUBDEV_ID;
sc->eeprom_data[NVM_SUB_VEN_ID] = E82545_VENDOR_ID_INTEL;
sc->eeprom_data[NVM_DEV_ID] = E82545_DEV_ID_82545EM_COPPER;
sc->eeprom_data[NVM_VEN_ID] = E82545_VENDOR_ID_INTEL;
/* fill in the checksum */
checksum = 0;
for (i = 0; i < NVM_CHECKSUM_REG; i++) {
checksum += sc->eeprom_data[i];
}
checksum = NVM_SUM - checksum;
sc->eeprom_data[NVM_CHECKSUM_REG] = checksum;
DPRINTF("eeprom checksum: 0x%x\r\n", checksum);
}
static void
e82545_write_mdi(struct e82545_softc *sc, uint8_t reg_addr,
uint8_t phy_addr, uint32_t data)
{
DPRINTF("Write mdi reg:0x%x phy:0x%x data: 0x%x\r\n", reg_addr, phy_addr, data);
}
static uint32_t
e82545_read_mdi(struct e82545_softc *sc, uint8_t reg_addr,
uint8_t phy_addr)
{
//DPRINTF("Read mdi reg:0x%x phy:0x%x\r\n", reg_addr, phy_addr);
switch (reg_addr) {
case PHY_STATUS:
return (MII_SR_LINK_STATUS | MII_SR_AUTONEG_CAPS |
MII_SR_AUTONEG_COMPLETE);
case PHY_AUTONEG_ADV:
return NWAY_AR_SELECTOR_FIELD;
case PHY_LP_ABILITY:
return 0;
case PHY_1000T_STATUS:
return (SR_1000T_LP_FD_CAPS | SR_1000T_REMOTE_RX_STATUS |
SR_1000T_LOCAL_RX_STATUS);
case PHY_ID1:
return (M88E1011_I_PHY_ID >> 16) & 0xFFFF;
case PHY_ID2:
return (M88E1011_I_PHY_ID | E82545_REVISION_4) & 0xFFFF;
default:
DPRINTF("Unknown mdi read reg:0x%x phy:0x%x\r\n", reg_addr, phy_addr);
return 0;
}
/* not reached */
}
static void
e82545_eecd_strobe(struct e82545_softc *sc)
{
/* Microwire state machine */
/*
DPRINTF("eeprom state machine srtobe "
"0x%x 0x%x 0x%x 0x%x\r\n",
sc->nvm_mode, sc->nvm_bits,
sc->nvm_opaddr, sc->nvm_data);*/
if (sc->nvm_bits == 0) {
DPRINTF("eeprom state machine not expecting data! "
"0x%x 0x%x 0x%x 0x%x\r\n",
sc->nvm_mode, sc->nvm_bits,
sc->nvm_opaddr, sc->nvm_data);
return;
}
sc->nvm_bits--;
if (sc->nvm_mode == E82545_NVM_MODE_DATAOUT) {
/* shifting out */
if (sc->nvm_data & 0x8000) {
sc->eeprom_control |= E1000_EECD_DO;
} else {
sc->eeprom_control &= ~E1000_EECD_DO;
}
sc->nvm_data <<= 1;
if (sc->nvm_bits == 0) {
/* read done, back to opcode mode. */
sc->nvm_opaddr = 0;
sc->nvm_mode = E82545_NVM_MODE_OPADDR;
sc->nvm_bits = E82545_NVM_OPADDR_BITS;
}
} else if (sc->nvm_mode == E82545_NVM_MODE_DATAIN) {
/* shifting in */
sc->nvm_data <<= 1;
if (sc->eeprom_control & E1000_EECD_DI) {
sc->nvm_data |= 1;
}
if (sc->nvm_bits == 0) {
/* eeprom write */
uint16_t op = sc->nvm_opaddr & E82545_NVM_OPCODE_MASK;
uint16_t addr = sc->nvm_opaddr & E82545_NVM_ADDR_MASK;
if (op != E82545_NVM_OPCODE_WRITE) {
DPRINTF("Illegal eeprom write op 0x%x\r\n",
sc->nvm_opaddr);
} else if (addr >= E82545_NVM_EEPROM_SIZE) {
DPRINTF("Illegal eeprom write addr 0x%x\r\n",
sc->nvm_opaddr);
} else {
DPRINTF("eeprom write eeprom[0x%x] = 0x%x\r\n",
addr, sc->nvm_data);
sc->eeprom_data[addr] = sc->nvm_data;
}
/* back to opcode mode */
sc->nvm_opaddr = 0;
sc->nvm_mode = E82545_NVM_MODE_OPADDR;
sc->nvm_bits = E82545_NVM_OPADDR_BITS;
}
} else if (sc->nvm_mode == E82545_NVM_MODE_OPADDR) {
sc->nvm_opaddr <<= 1;
if (sc->eeprom_control & E1000_EECD_DI) {
sc->nvm_opaddr |= 1;
}
if (sc->nvm_bits == 0) {
uint16_t op = sc->nvm_opaddr & E82545_NVM_OPCODE_MASK;
switch (op) {
case E82545_NVM_OPCODE_EWEN:
DPRINTF("eeprom write enable: 0x%x\r\n",
sc->nvm_opaddr);
/* back to opcode mode */
sc->nvm_opaddr = 0;
sc->nvm_mode = E82545_NVM_MODE_OPADDR;
sc->nvm_bits = E82545_NVM_OPADDR_BITS;
break;
case E82545_NVM_OPCODE_READ:
{
uint16_t addr = sc->nvm_opaddr &
E82545_NVM_ADDR_MASK;
sc->nvm_mode = E82545_NVM_MODE_DATAOUT;
sc->nvm_bits = E82545_NVM_DATA_BITS;
if (addr < E82545_NVM_EEPROM_SIZE) {
sc->nvm_data = sc->eeprom_data[addr];
DPRINTF("eeprom read: eeprom[0x%x] = 0x%x\r\n",
addr, sc->nvm_data);
} else {
DPRINTF("eeprom illegal read: 0x%x\r\n",
sc->nvm_opaddr);
sc->nvm_data = 0;
}
break;
}
case E82545_NVM_OPCODE_WRITE:
sc->nvm_mode = E82545_NVM_MODE_DATAIN;
sc->nvm_bits = E82545_NVM_DATA_BITS;
sc->nvm_data = 0;
break;
default:
DPRINTF("eeprom unknown op: 0x%x\r\r",
sc->nvm_opaddr);
/* back to opcode mode */
sc->nvm_opaddr = 0;
sc->nvm_mode = E82545_NVM_MODE_OPADDR;
sc->nvm_bits = E82545_NVM_OPADDR_BITS;
}
}
} else {
DPRINTF("eeprom state machine wrong state! "
"0x%x 0x%x 0x%x 0x%x\r\n",
sc->nvm_mode, sc->nvm_bits,
sc->nvm_opaddr, sc->nvm_data);
}
}
static void
e82545_itr_callback(int fd, enum ev_type type, void *param)
{
uint32_t new;
struct e82545_softc *sc = param;
pthread_mutex_lock(&sc->esc_mtx);
new = sc->esc_ICR & sc->esc_IMS;
if (new && !sc->esc_irq_asserted) {
DPRINTF("itr callback: lintr assert %x\r\n", new);
sc->esc_irq_asserted = 1;
pci_lintr_assert(sc->esc_pi);
} else {
mevent_delete(sc->esc_mevpitr);
sc->esc_mevpitr = NULL;
}
pthread_mutex_unlock(&sc->esc_mtx);
}
static void
e82545_icr_assert(struct e82545_softc *sc, uint32_t bits)
{
uint32_t new;
DPRINTF("icr assert: 0x%x\r\n", bits);
/*
* An interrupt is only generated if bits are set that
* aren't already in the ICR, these bits are unmasked,
* and there isn't an interrupt already pending.
*/
new = bits & ~sc->esc_ICR & sc->esc_IMS;
sc->esc_ICR |= bits;
if (new == 0) {
DPRINTF("icr assert: masked %x, ims %x\r\n", new, sc->esc_IMS);
} else if (sc->esc_mevpitr != NULL) {
DPRINTF("icr assert: throttled %x, ims %x\r\n", new, sc->esc_IMS);
} else if (!sc->esc_irq_asserted) {
DPRINTF("icr assert: lintr assert %x\r\n", new);
sc->esc_irq_asserted = 1;
pci_lintr_assert(sc->esc_pi);
if (sc->esc_ITR != 0) {
sc->esc_mevpitr = mevent_add(
(sc->esc_ITR + 3905) / 3906, /* 256ns -> 1ms */
EVF_TIMER, e82545_itr_callback, sc);
}
}
}
static void
e82545_ims_change(struct e82545_softc *sc, uint32_t bits)
{
uint32_t new;
/*
* Changing the mask may allow previously asserted
* but masked interrupt requests to generate an interrupt.
*/
new = bits & sc->esc_ICR & ~sc->esc_IMS;
sc->esc_IMS |= bits;
if (new == 0) {
DPRINTF("ims change: masked %x, ims %x\r\n", new, sc->esc_IMS);
} else if (sc->esc_mevpitr != NULL) {
DPRINTF("ims change: throttled %x, ims %x\r\n", new, sc->esc_IMS);
} else if (!sc->esc_irq_asserted) {
DPRINTF("ims change: lintr assert %x\n\r", new);
sc->esc_irq_asserted = 1;
pci_lintr_assert(sc->esc_pi);
if (sc->esc_ITR != 0) {
sc->esc_mevpitr = mevent_add(
(sc->esc_ITR + 3905) / 3906, /* 256ns -> 1ms */
EVF_TIMER, e82545_itr_callback, sc);
}
}
}
static void
e82545_icr_deassert(struct e82545_softc *sc, uint32_t bits)
{
DPRINTF("icr deassert: 0x%x\r\n", bits);
sc->esc_ICR &= ~bits;
/*
* If there are no longer any interrupt sources and there
* was an asserted interrupt, clear it
*/
if (sc->esc_irq_asserted && !(sc->esc_ICR & sc->esc_IMS)) {
DPRINTF("icr deassert: lintr deassert %x\r\n", bits);
pci_lintr_deassert(sc->esc_pi);
sc->esc_irq_asserted = 0;
}
}
static void
e82545_intr_write(struct e82545_softc *sc, uint32_t offset, uint32_t value)
{
DPRINTF("intr_write: off %x, val %x\n\r", offset, value);
switch (offset) {
case E1000_ICR:
e82545_icr_deassert(sc, value);
break;
case E1000_ITR:
sc->esc_ITR = value;
break;
case E1000_ICS:
sc->esc_ICS = value; /* not used: store for debug */
e82545_icr_assert(sc, value);
break;
case E1000_IMS:
e82545_ims_change(sc, value);
break;
case E1000_IMC:
sc->esc_IMC = value; /* for debug */
sc->esc_IMS &= ~value;
// XXX clear interrupts if all ICR bits now masked
// and interrupt was pending ?
break;
default:
break;
}
}
static uint32_t
e82545_intr_read(struct e82545_softc *sc, uint32_t offset)
{
uint32_t retval;
retval = 0;
DPRINTF("intr_read: off %x\n\r", offset);
switch (offset) {
case E1000_ICR:
retval = sc->esc_ICR;
sc->esc_ICR = 0;
e82545_icr_deassert(sc, ~0);
break;
case E1000_ITR:
retval = sc->esc_ITR;
break;
case E1000_ICS:
/* write-only register */
break;
case E1000_IMS:
retval = sc->esc_IMS;
break;
case E1000_IMC:
/* write-only register */
break;
default:
break;
}
return (retval);
}
static void
e82545_devctl(struct e82545_softc *sc, uint32_t val)
{
sc->esc_CTRL = val & ~E1000_CTRL_RST;
if (val & E1000_CTRL_RST) {
DPRINTF("e1k: s/w reset, ctl %x\n", val);
e82545_reset(sc, 1);
}
/* XXX check for phy reset ? */
}
static void
e82545_rx_update_rdba(struct e82545_softc *sc)
{
/* XXX verify desc base/len within phys mem range */
sc->esc_rdba = (uint64_t)sc->esc_RDBAH << 32 |
sc->esc_RDBAL;
/* Cache host mapping of guest descriptor array */
sc->esc_rxdesc = paddr_guest2host(sc->esc_ctx,
sc->esc_rdba, sc->esc_RDLEN);
}
static void
e82545_rx_ctl(struct e82545_softc *sc, uint32_t val)
{
int on;
on = ((val & E1000_RCTL_EN) == E1000_RCTL_EN);
/* Save RCTL after stripping reserved bits 31:27,24,21,14,11:10,0 */
sc->esc_RCTL = val & ~0xF9204c01;
DPRINTF("rx_ctl - %s RCTL %x, val %x\n",
on ? "on" : "off", sc->esc_RCTL, val);
/* state change requested */
if (on != sc->esc_rx_enabled) {
if (on) {
/* Catch disallowed/unimplemented settings */
//assert(!(val & E1000_RCTL_LBM_TCVR));
if (sc->esc_RCTL & E1000_RCTL_LBM_TCVR) {
sc->esc_rx_loopback = 1;
} else {
sc->esc_rx_loopback = 0;
}
e82545_rx_update_rdba(sc);
e82545_rx_enable(sc);
} else {
e82545_rx_disable(sc);
sc->esc_rx_loopback = 0;
sc->esc_rdba = 0;
sc->esc_rxdesc = NULL;
}
}
}
static void
e82545_tx_update_tdba(struct e82545_softc *sc)
{
/* XXX verify desc base/len within phys mem range */
sc->esc_tdba = (uint64_t)sc->esc_TDBAH << 32 | sc->esc_TDBAL;
/* Cache host mapping of guest descriptor array */
sc->esc_txdesc = paddr_guest2host(sc->esc_ctx, sc->esc_tdba,
sc->esc_TDLEN);
}
static void
e82545_tx_ctl(struct e82545_softc *sc, uint32_t val)
{
int on;
on = ((val & E1000_TCTL_EN) == E1000_TCTL_EN);
/* ignore TCTL_EN settings that don't change state */
if (on == sc->esc_tx_enabled)
return;
if (on) {
e82545_tx_update_tdba(sc);
e82545_tx_enable(sc);
} else {
e82545_tx_disable(sc);
sc->esc_tdba = 0;
sc->esc_txdesc = NULL;
}
/* Save TCTL value after stripping reserved bits 31:25,23,2,0 */
sc->esc_TCTL = val & ~0xFE800005;
}
int
e82545_bufsz(uint32_t rctl)
{
switch (rctl & (E1000_RCTL_BSEX | E1000_RCTL_SZ_256)) {
case (E1000_RCTL_SZ_2048): return (2048);
case (E1000_RCTL_SZ_1024): return (1024);
case (E1000_RCTL_SZ_512): return (512);
case (E1000_RCTL_SZ_256): return (256);
case (E1000_RCTL_BSEX|E1000_RCTL_SZ_16384): return (16384);
case (E1000_RCTL_BSEX|E1000_RCTL_SZ_8192): return (8192);
case (E1000_RCTL_BSEX|E1000_RCTL_SZ_4096): return (4096);
}
return (256); /* Forbidden value. */
}
static uint8_t dummybuf[2048];
/* XXX one packet at a time until this is debugged */
static void
e82545_tap_callback(int fd, enum ev_type type, void *param)
{
struct e82545_softc *sc = param;
struct e1000_rx_desc *rxd;
struct iovec vec[64];
int left, len, lim, maxpktsz, maxpktdesc, bufsz, i, n, size;
uint32_t cause = 0;
uint16_t *tp, tag, head;
pthread_mutex_lock(&sc->esc_mtx);
DPRINTF("rx_run: head %x, tail %x\r\n", sc->esc_RDH, sc->esc_RDT);
if (!sc->esc_rx_enabled || sc->esc_rx_loopback) {
DPRINTF("rx disabled (!%d || %d) -- packet(s) dropped\r\n",
sc->esc_rx_enabled, sc->esc_rx_loopback);
while (read(sc->esc_tapfd, dummybuf, sizeof(dummybuf)) > 0) {
}
goto done1;
}
bufsz = e82545_bufsz(sc->esc_RCTL);
maxpktsz = (sc->esc_RCTL & E1000_RCTL_LPE) ? 16384 : 1522;
maxpktdesc = (maxpktsz + bufsz - 1) / bufsz;
size = sc->esc_RDLEN / 16;
head = sc->esc_RDH;
left = (size + sc->esc_RDT - head) % size;
if (left < maxpktdesc) {
DPRINTF("rx overflow (%d < %d) -- packet(s) dropped\r\n",
left, maxpktdesc);
while (read(sc->esc_tapfd, dummybuf, sizeof(dummybuf)) > 0) {
}
goto done1;
}
sc->esc_rx_active = 1;
pthread_mutex_unlock(&sc->esc_mtx);
for (lim = size / 4; lim > 0 && left >= maxpktdesc; lim -= n) {
/* Grab rx descriptor pointed to by the head pointer */
for (i = 0; i < maxpktdesc; i++) {
rxd = &sc->esc_rxdesc[(head + i) % size];
vec[i].iov_base = paddr_guest2host(sc->esc_ctx,
rxd->buffer_addr, bufsz);
vec[i].iov_len = bufsz;
}
len = readv(sc->esc_tapfd, vec, maxpktdesc);
if (len <= 0) {
DPRINTF("tap: readv() returned %d\n", len);
goto done;
}
/*
* Adjust the packet length based on whether the CRC needs
* to be stripped or if the packet is less than the minimum
* eth packet size.
*/
if (len < ETHER_MIN_LEN - ETHER_CRC_LEN)
len = ETHER_MIN_LEN - ETHER_CRC_LEN;
if (!(sc->esc_RCTL & E1000_RCTL_SECRC))
len += ETHER_CRC_LEN;
n = (len + bufsz - 1) / bufsz;
DPRINTF("packet read %d bytes, %d segs, head %d\r\n",
len, n, head);
/* Apply VLAN filter. */
tp = (uint16_t *)vec[0].iov_base + 6;
if ((sc->esc_RCTL & E1000_RCTL_VFE) &&
(ntohs(tp[0]) == sc->esc_VET)) {
tag = ntohs(tp[1]) & 0x0fff;
if ((sc->esc_fvlan[tag >> 5] &
(1 << (tag & 0x1f))) != 0) {
DPRINTF("known VLAN %d\r\n", tag);
} else {
DPRINTF("unknown VLAN %d\r\n", tag);
n = 0;
continue;
}
}
/* Update all consumed descriptors. */
for (i = 0; i < n - 1; i++) {
rxd = &sc->esc_rxdesc[(head + i) % size];
rxd->length = bufsz;
rxd->csum = 0;
rxd->errors = 0;
rxd->special = 0;
rxd->status = E1000_RXD_STAT_DD;
}
rxd = &sc->esc_rxdesc[(head + i) % size];
rxd->length = len % bufsz;
rxd->csum = 0;
rxd->errors = 0;
rxd->special = 0;
/* XXX signal no checksum for now */
rxd->status = E1000_RXD_STAT_PIF | E1000_RXD_STAT_IXSM |
E1000_RXD_STAT_EOP | E1000_RXD_STAT_DD;
/* Schedule receive interrupts. */
if (len <= sc->esc_RSRPD) {
cause |= E1000_ICR_SRPD | E1000_ICR_RXT0;
} else {
/* XXX: RDRT and RADV timers should be here. */
cause |= E1000_ICR_RXT0;
}
head = (head + n) % size;
left -= n;
}
done:
pthread_mutex_lock(&sc->esc_mtx);
sc->esc_rx_active = 0;
if (sc->esc_rx_enabled == 0)
pthread_cond_signal(&sc->esc_rx_cond);
sc->esc_RDH = head;
/* Respect E1000_RCTL_RDMTS */
left = (size + sc->esc_RDT - head) % size;
if (left < (size >> (((sc->esc_RCTL >> 8) & 3) + 1)))
cause |= E1000_ICR_RXDMT0;
/* Assert all accumulated interrupts. */
if (cause != 0)
e82545_icr_assert(sc, cause);
done1:
DPRINTF("rx_run done: head %x, tail %x\r\n", sc->esc_RDH, sc->esc_RDT);
pthread_mutex_unlock(&sc->esc_mtx);
}
static uint16_t
e82545_carry(uint32_t sum)
{
sum = (sum & 0xFFFF) + (sum >> 16);
if (sum > 0xFFFF)
sum -= 0xFFFF;
return (sum);
}
static uint16_t
e82545_buf_checksum(uint8_t *buf, int len)
{
int i;
uint32_t sum = 0;
/* Checksum all the pairs of bytes first... */
for (i = 0; i < (len & ~1U); i += 2)
sum += *((u_int16_t *)(buf + i));
/*
* If there's a single byte left over, checksum it, too.
* Network byte order is big-endian, so the remaining byte is
* the high byte.
*/
if (i < len)
sum += htons(buf[i] << 8);
return (e82545_carry(sum));
}
static uint16_t
e82545_iov_checksum(struct iovec *iov, int iovcnt, int off, int len)
{
int now, odd;
uint32_t sum = 0, s;
/* Skip completely unneeded vectors. */
while (iovcnt > 0 && iov->iov_len <= off && off > 0) {
off -= iov->iov_len;
iov++;
iovcnt--;
}
/* Calculate checksum of requested range. */
odd = 0;
while (len > 0 && iovcnt > 0) {
now = MIN(len, iov->iov_len - off);
s = e82545_buf_checksum(iov->iov_base + off, now);
sum += odd ? (s << 8) : s;
odd ^= (now & 1);
len -= now;
off = 0;
iov++;
iovcnt--;
}
return (e82545_carry(sum));
}
/*
* Return the transmit descriptor type.
*/
int
e82545_txdesc_type(uint32_t lower)
{
int type;
type = 0;
if (lower & E1000_TXD_CMD_DEXT)
type = lower & E1000_TXD_MASK;
return (type);
}
static void
e82545_transmit_checksum(struct iovec *iov, int iovcnt, struct ck_info *ck)
{
uint16_t cksum;
int cklen;
DPRINTF("tx cksum: iovcnt/s/off/len %d/%d/%d/%d\r\n",
iovcnt, ck->ck_start, ck->ck_off, ck->ck_len);
cklen = ck->ck_len ? ck->ck_len - ck->ck_start + 1 : INT_MAX;
cksum = e82545_iov_checksum(iov, iovcnt, ck->ck_start, cklen);
*(uint16_t *)((uint8_t *)iov[0].iov_base + ck->ck_off) = ~cksum;
}
static void
e82545_transmit_backend(struct e82545_softc *sc, struct iovec *iov, int iovcnt)
{
if (sc->esc_tapfd == -1)
return;
(void) writev(sc->esc_tapfd, iov, iovcnt);
}
static void
e82545_transmit_done(struct e82545_softc *sc, uint16_t head, uint16_t tail,
uint16_t dsize, int *tdwb)
{
union e1000_tx_udesc *dsc;
for ( ; head != tail; head = (head + 1) % dsize) {
dsc = &sc->esc_txdesc[head];
if (dsc->td.lower.data & E1000_TXD_CMD_RS) {
dsc->td.upper.data |= E1000_TXD_STAT_DD;
*tdwb = 1;
}
}
}
static int
e82545_transmit(struct e82545_softc *sc, uint16_t head, uint16_t tail,
uint16_t dsize, uint16_t *rhead, int *tdwb)
{
uint8_t *hdr, *hdrp;
struct iovec iovb[I82545_MAX_TXSEGS + 2];
struct iovec tiov[I82545_MAX_TXSEGS + 2];
struct e1000_context_desc *cd;
struct ck_info ckinfo[2];
struct iovec *iov;
union e1000_tx_udesc *dsc;
int desc, dtype, len, ntype, iovcnt, tlen, hdrlen, vlen, tcp, tso;
int mss, paylen, seg, tiovcnt, left, now, nleft, nnow, pv, pvoff;
uint32_t tcpsum, tcpseq;
uint16_t ipcs, tcpcs, ipid, ohead;
ckinfo[0].ck_valid = ckinfo[1].ck_valid = 0;
iovcnt = 0;
tlen = 0;
ntype = 0;
tso = 0;
ohead = head;
/* iovb[0/1] may be used for writable copy of headers. */
iov = &iovb[2];
for (desc = 0; ; desc++, head = (head + 1) % dsize) {
if (head == tail) {
*rhead = head;
return (0);
}
dsc = &sc->esc_txdesc[head];
dtype = e82545_txdesc_type(dsc->td.lower.data);
if (desc == 0) {
switch (dtype) {
case E1000_TXD_TYP_C:
DPRINTF("tx ctxt desc idx %d: %016jx "
"%08x%08x\r\n",
head, dsc->td.buffer_addr,
dsc->td.upper.data, dsc->td.lower.data);
/* Save context and return */
sc->esc_txctx = dsc->cd;
goto done;
case E1000_TXD_TYP_L:
DPRINTF("tx legacy desc idx %d: %08x%08x\r\n",
head, dsc->td.upper.data, dsc->td.lower.data);
/*
* legacy cksum start valid in first descriptor
*/
ntype = dtype;
ckinfo[0].ck_start = dsc->td.upper.fields.css;
break;
case E1000_TXD_TYP_D:
DPRINTF("tx data desc idx %d: %08x%08x\r\n",
head, dsc->td.upper.data, dsc->td.lower.data);
ntype = dtype;
break;
default:
break;
}
} else {
/* Descriptor type must be consistent */
assert(dtype == ntype);
DPRINTF("tx next desc idx %d: %08x%08x\r\n",
head, dsc->td.upper.data, dsc->td.lower.data);
}
len = (dtype == E1000_TXD_TYP_L) ? dsc->td.lower.flags.length :
dsc->dd.lower.data & 0xFFFFF;
if (len > 0) {
/* Strip checksum supplied by guest. */
if ((dsc->td.lower.data & E1000_TXD_CMD_EOP) != 0 &&
(dsc->td.lower.data & E1000_TXD_CMD_IFCS) == 0)
len -= 2;
tlen += len;
if (iovcnt < I82545_MAX_TXSEGS) {
iov[iovcnt].iov_base = paddr_guest2host(
sc->esc_ctx, dsc->td.buffer_addr, len);
iov[iovcnt].iov_len = len;
}
iovcnt++;
}
/*
* Pull out info that is valid in the final descriptor
* and exit descriptor loop.
*/
if (dsc->td.lower.data & E1000_TXD_CMD_EOP) {
if (dtype == E1000_TXD_TYP_L) {
if (dsc->td.lower.data & E1000_TXD_CMD_IC) {
ckinfo[0].ck_valid = 1;
ckinfo[0].ck_off =
dsc->td.lower.flags.cso;
ckinfo[0].ck_len = 0;
}
} else {
cd = &sc->esc_txctx;
if (dsc->dd.lower.data & E1000_TXD_CMD_TSE)
tso = 1;
if (dsc->dd.upper.fields.popts &
E1000_TXD_POPTS_IXSM)
ckinfo[0].ck_valid = 1;
if (dsc->dd.upper.fields.popts &
E1000_TXD_POPTS_IXSM || tso) {
ckinfo[0].ck_start =
cd->lower_setup.ip_fields.ipcss;
ckinfo[0].ck_off =
cd->lower_setup.ip_fields.ipcso;
ckinfo[0].ck_len =
cd->lower_setup.ip_fields.ipcse;
}
if (dsc->dd.upper.fields.popts &
E1000_TXD_POPTS_TXSM)
ckinfo[1].ck_valid = 1;
if (dsc->dd.upper.fields.popts &
E1000_TXD_POPTS_TXSM || tso) {
ckinfo[1].ck_start =
cd->upper_setup.tcp_fields.tucss;
ckinfo[1].ck_off =
cd->upper_setup.tcp_fields.tucso;
ckinfo[1].ck_len =
cd->upper_setup.tcp_fields.tucse;
}
}
break;
}
}
if (iovcnt > I82545_MAX_TXSEGS) {
WPRINTF("tx too many descriptors (%d > %d) -- dropped\r\n",
iovcnt, I82545_MAX_TXSEGS);
goto done;
}
hdrlen = vlen = 0;
/* Estimate writable space for VLAN header insertion. */
if ((sc->esc_CTRL & E1000_CTRL_VME) &&
(dsc->td.lower.data & E1000_TXD_CMD_VLE)) {
hdrlen = ETHER_ADDR_LEN*2;
vlen = ETHER_VLAN_ENCAP_LEN;
}
if (!tso) {
/* Estimate required writable space for checksums. */
if (ckinfo[0].ck_valid)
hdrlen = MAX(hdrlen, ckinfo[0].ck_off + 2);
if (ckinfo[1].ck_valid)
hdrlen = MAX(hdrlen, ckinfo[1].ck_off + 2);
/* Round up writable space to the first vector. */
if (hdrlen != 0 && iov[0].iov_len > hdrlen &&
iov[0].iov_len < hdrlen + 100)
hdrlen = iov[0].iov_len;
} else {
/* In case of TSO header length provided by software. */
hdrlen = sc->esc_txctx.tcp_seg_setup.fields.hdr_len;
}
/* Allocate, fill and prepend writable header vector. */
if (hdrlen != 0) {
hdr = __builtin_alloca(hdrlen + vlen);
hdr += vlen;
for (left = hdrlen, hdrp = hdr; left > 0;
left -= now, hdrp += now) {
now = MIN(left, iov->iov_len);
memcpy(hdrp, iov->iov_base, now);
iov->iov_base += now;
iov->iov_len -= now;
if (iov->iov_len == 0) {
iov++;
iovcnt--;
}
}
iov--;
iovcnt++;
iov->iov_base = hdr;
iov->iov_len = hdrlen;
}
/* Insert VLAN tag. */
if (vlen != 0) {
hdr -= ETHER_VLAN_ENCAP_LEN;
memmove(hdr, hdr + ETHER_VLAN_ENCAP_LEN, ETHER_ADDR_LEN*2);
hdrlen += ETHER_VLAN_ENCAP_LEN;
hdr[ETHER_ADDR_LEN*2 + 0] = sc->esc_VET >> 8;
hdr[ETHER_ADDR_LEN*2 + 1] = sc->esc_VET & 0xff;
hdr[ETHER_ADDR_LEN*2 + 2] = dsc->td.upper.fields.special >> 8;
hdr[ETHER_ADDR_LEN*2 + 3] = dsc->td.upper.fields.special & 0xff;
iov->iov_base = hdr;
iov->iov_len += ETHER_VLAN_ENCAP_LEN;
/* Correct checksum offsets after VLAN tag insertion. */
ckinfo[0].ck_start += ETHER_VLAN_ENCAP_LEN;
ckinfo[0].ck_off += ETHER_VLAN_ENCAP_LEN;
if (ckinfo[0].ck_len != 0)
ckinfo[0].ck_len += ETHER_VLAN_ENCAP_LEN;
ckinfo[1].ck_start += ETHER_VLAN_ENCAP_LEN;
ckinfo[1].ck_off += ETHER_VLAN_ENCAP_LEN;
if (ckinfo[1].ck_len != 0)
ckinfo[1].ck_len += ETHER_VLAN_ENCAP_LEN;
}
/* Simple non-TSO case. */
if (!tso) {
/* Calculate checksums and transmit. */
if (ckinfo[0].ck_valid)
e82545_transmit_checksum(iov, iovcnt, &ckinfo[0]);
if (ckinfo[1].ck_valid)
e82545_transmit_checksum(iov, iovcnt, &ckinfo[1]);
e82545_transmit_backend(sc, iov, iovcnt);
goto done;
}
/* Doing TSO. */
tcp = (sc->esc_txctx.cmd_and_length & E1000_TXD_CMD_TCP) != 0;
mss = sc->esc_txctx.tcp_seg_setup.fields.mss;
paylen = (sc->esc_txctx.cmd_and_length & 0x000fffff);
DPRINTF("tx %s segmentation offload %d+%d/%d bytes %d iovs\r\n",
tcp ? "TCP" : "UDP", hdrlen, paylen, mss, iovcnt);
ipid = ntohs(*(uint16_t *)&hdr[ckinfo[0].ck_start + 4]);
tcpseq = ntohl(*(uint32_t *)&hdr[ckinfo[1].ck_start + 4]);
ipcs = *(uint16_t *)&hdr[ckinfo[0].ck_off];
tcpcs = 0;
if (ckinfo[1].ck_valid) /* Save partial pseudo-header checksum. */
tcpcs = *(uint16_t *)&hdr[ckinfo[1].ck_off];
pv = 1;
pvoff = 0;
for (seg = 0, left = paylen; left > 0; seg++, left -= now) {
now = MIN(left, mss);
/* Construct IOVs for the segment. */
/* Include whole original header. */
tiov[0].iov_base = hdr;
tiov[0].iov_len = hdrlen;
tiovcnt = 1;
/* Include respective part of payload IOV. */
for (nleft = now; pv < iovcnt && nleft > 0; nleft -= nnow) {
nnow = MIN(nleft, iov[pv].iov_len - pvoff);
tiov[tiovcnt].iov_base = iov[pv].iov_base + pvoff;
tiov[tiovcnt++].iov_len = nnow;
if (pvoff + nnow == iov[pv].iov_len) {
pv++;
pvoff = 0;
} else
pvoff += nnow;
}
DPRINTF("tx segment %d %d+%d bytes %d iovs\r\n",
seg, hdrlen, now, tiovcnt);
/* Update IP header. */
if (sc->esc_txctx.cmd_and_length & E1000_TXD_CMD_IP) {
/* IPv4 -- set length and ID */
*(uint16_t *)&hdr[ckinfo[0].ck_start + 2] =
htons(hdrlen - ckinfo[0].ck_start + now);
*(uint16_t *)&hdr[ckinfo[0].ck_start + 4] =
htons(ipid + seg);
} else {
/* IPv6 -- set length */
*(uint16_t *)&hdr[ckinfo[0].ck_start + 4] =
htons(hdrlen - ckinfo[0].ck_start - 40 +
now);
}
/* Update pseudo-header checksum. */
tcpsum = tcpcs;
tcpsum += htons(hdrlen - ckinfo[1].ck_start + now);
/* Update TCP/UDP headers. */
if (tcp) {
/* Update sequence number and FIN/PUSH flags. */
*(uint32_t *)&hdr[ckinfo[1].ck_start + 4] =
htonl(tcpseq + paylen - left);
if (now < left) {
hdr[ckinfo[1].ck_start + 13] &=
~(TH_FIN | TH_PUSH);
}
} else {
/* Update payload length. */
*(uint32_t *)&hdr[ckinfo[1].ck_start + 4] =
hdrlen - ckinfo[1].ck_start + now;
}
/* Calculate checksums and transmit. */
if (ckinfo[0].ck_valid) {
*(uint16_t *)&hdr[ckinfo[0].ck_off] = ipcs;
e82545_transmit_checksum(tiov, tiovcnt, &ckinfo[0]);
}
if (ckinfo[1].ck_valid) {
*(uint16_t *)&hdr[ckinfo[1].ck_off] =
e82545_carry(tcpsum);
e82545_transmit_checksum(tiov, tiovcnt, &ckinfo[1]);
}
e82545_transmit_backend(sc, tiov, tiovcnt);
}
done:
head = (head + 1) % dsize;
e82545_transmit_done(sc, ohead, head, dsize, tdwb);
*rhead = head;
return (desc + 1);
}
static void
e82545_tx_run(struct e82545_softc *sc)
{
uint32_t cause;
uint16_t head, rhead, tail, size;
int lim, tdwb, sent;
head = sc->esc_TDH;
tail = sc->esc_TDT;
size = sc->esc_TDLEN / 16;
DPRINTF("tx_run: head %x, rhead %x, tail %x\r\n",
sc->esc_TDH, sc->esc_TDHr, sc->esc_TDT);
pthread_mutex_unlock(&sc->esc_mtx);
rhead = head;
tdwb = 0;
for (lim = size / 4; sc->esc_tx_enabled && lim > 0; lim -= sent) {
sent = e82545_transmit(sc, head, tail, size, &rhead, &tdwb);
if (sent == 0)
break;
head = rhead;
}
pthread_mutex_lock(&sc->esc_mtx);
sc->esc_TDH = head;
sc->esc_TDHr = rhead;
cause = 0;
if (tdwb)
cause |= E1000_ICR_TXDW;
if (lim != size / 4 && sc->esc_TDH == sc->esc_TDT)
cause |= E1000_ICR_TXQE;
if (cause)
e82545_icr_assert(sc, cause);
DPRINTF("tx_run done: head %x, rhead %x, tail %x\r\n",
sc->esc_TDH, sc->esc_TDHr, sc->esc_TDT);
}
static _Noreturn void *
e82545_tx_thread(void *param)
{
struct e82545_softc *sc = param;
pthread_mutex_lock(&sc->esc_mtx);
for (;;) {
while (!sc->esc_tx_enabled || sc->esc_TDHr == sc->esc_TDT) {
if (sc->esc_tx_enabled && sc->esc_TDHr != sc->esc_TDT)
break;
sc->esc_tx_active = 0;
if (sc->esc_tx_enabled == 0)
pthread_cond_signal(&sc->esc_tx_cond);
pthread_cond_wait(&sc->esc_tx_cond, &sc->esc_mtx);
}
sc->esc_tx_active = 1;
/* Process some tx descriptors. Lock dropped inside. */
e82545_tx_run(sc);
}
}
static void
e82545_tx_start(struct e82545_softc *sc)
{
if (sc->esc_tx_active == 0)
pthread_cond_signal(&sc->esc_tx_cond);
}
static void
e82545_tx_enable(struct e82545_softc *sc)
{
sc->esc_tx_enabled = 1;
}
static void
e82545_tx_disable(struct e82545_softc *sc)
{
sc->esc_tx_enabled = 0;
while (sc->esc_tx_active)
pthread_cond_wait(&sc->esc_tx_cond, &sc->esc_mtx);
}
static void
e82545_rx_enable(struct e82545_softc *sc)
{
sc->esc_rx_enabled = 1;
}
static void
e82545_rx_disable(struct e82545_softc *sc)
{
sc->esc_rx_enabled = 0;
while (sc->esc_rx_active)
pthread_cond_wait(&sc->esc_rx_cond, &sc->esc_mtx);
}
static void
e82545_write_ra(struct e82545_softc *sc, int reg, uint32_t wval)
{
struct eth_uni *eu;
int idx;
idx = reg >> 1;
assert(idx < 15);
eu = &sc->esc_uni[idx];
if (reg & 0x1) {
/* RAH */
eu->eu_valid = ((wval & E1000_RAH_AV) == E1000_RAH_AV);
eu->eu_addrsel = (wval >> 16) & 0x3;
eu->eu_eth.octet[5] = wval >> 8;
eu->eu_eth.octet[4] = wval;
} else {
/* RAL */
eu->eu_eth.octet[3] = wval >> 24;
eu->eu_eth.octet[2] = wval >> 16;
eu->eu_eth.octet[1] = wval >> 8;
eu->eu_eth.octet[0] = wval;
}
}
static uint32_t
e82545_read_ra(struct e82545_softc *sc, int reg)
{
struct eth_uni *eu;
uint32_t retval;
int idx;
idx = reg >> 1;
assert(idx < 15);
eu = &sc->esc_uni[idx];
if (reg & 0x1) {
/* RAH */
retval = (eu->eu_valid << 31) |
(eu->eu_addrsel << 16) |
(eu->eu_eth.octet[5] << 8) |
eu->eu_eth.octet[4];
} else {
/* RAL */
retval = (eu->eu_eth.octet[3] << 24) |
(eu->eu_eth.octet[2] << 16) |
(eu->eu_eth.octet[1] << 8) |
eu->eu_eth.octet[0];
}
return (retval);
}
static void
e82545_write_register(struct e82545_softc *sc, uint32_t offset, uint32_t value)
{
int ridx;
if (offset & 0x3) {
DPRINTF("Unaligned register write offset:0x%x value:0x%x\r\n", offset, value);
return;
}
DPRINTF("Register write: 0x%x value: 0x%x\r\n", offset, value);
switch (offset) {
case E1000_CTRL:
case E1000_CTRL_DUP:
e82545_devctl(sc, value);
break;
case E1000_FCAL:
sc->esc_FCAL = value;
break;
case E1000_FCAH:
sc->esc_FCAH = value & ~0xFFFF0000;
break;
case E1000_FCT:
sc->esc_FCT = value & ~0xFFFF0000;
break;
case E1000_VET:
sc->esc_VET = value & ~0xFFFF0000;
break;
case E1000_FCTTV:
sc->esc_FCTTV = value & ~0xFFFF0000;
break;
case E1000_LEDCTL:
sc->esc_LEDCTL = value & ~0x30303000;
break;
case E1000_PBA:
sc->esc_PBA = value & 0x0000FF80;
break;
case E1000_ICR:
case E1000_ITR:
case E1000_ICS:
case E1000_IMS:
case E1000_IMC:
e82545_intr_write(sc, offset, value);
break;
case E1000_RCTL:
e82545_rx_ctl(sc, value);
break;
case E1000_FCRTL:
sc->esc_FCRTL = value & ~0xFFFF0007;
break;
case E1000_FCRTH:
sc->esc_FCRTH = value & ~0xFFFF0007;
break;
case E1000_RDBAL(0):
sc->esc_RDBAL = value & ~0xF;
if (sc->esc_rx_enabled) {
/* Apparently legal: update cached address */
e82545_rx_update_rdba(sc);
}
break;
case E1000_RDBAH(0):
assert(!sc->esc_rx_enabled);
sc->esc_RDBAH = value;
break;
case E1000_RDLEN(0):
assert(!sc->esc_rx_enabled);
sc->esc_RDLEN = value & ~0xFFF0007F;
break;
case E1000_RDH(0):
/* XXX should only ever be zero ? Range check ? */
sc->esc_RDH = value;
break;
case E1000_RDT(0):
/* XXX if this opens up the rx ring, do something ? */
sc->esc_RDT = value;
break;
case E1000_RDTR:
/* ignore FPD bit 31 */
sc->esc_RDTR = value & ~0xFFFF0000;
break;
case E1000_RXDCTL(0):
sc->esc_RXDCTL = value & ~0xFEC0C0C0;
break;
case E1000_RADV:
sc->esc_RADV = value & ~0xFFFF0000;
break;
case E1000_RSRPD:
sc->esc_RSRPD = value & ~0xFFFFF000;
break;
case E1000_RXCSUM:
sc->esc_RXCSUM = value & ~0xFFFFF800;
break;
case E1000_TXCW:
sc->esc_TXCW = value & ~0x3FFF0000;
break;
case E1000_TCTL:
e82545_tx_ctl(sc, value);
break;
case E1000_TIPG:
sc->esc_TIPG = value;
break;
case E1000_AIT:
sc->esc_AIT = value;
break;
case E1000_TDBAL(0):
sc->esc_TDBAL = value & ~0xF;
if (sc->esc_tx_enabled) {
/* Apparently legal */
e82545_tx_update_tdba(sc);
}
break;
case E1000_TDBAH(0):
//assert(!sc->esc_tx_enabled);
sc->esc_TDBAH = value;
break;
case E1000_TDLEN(0):
//assert(!sc->esc_tx_enabled);
sc->esc_TDLEN = value & ~0xFFF0007F;
break;
case E1000_TDH(0):
//assert(!sc->esc_tx_enabled);
/* XXX should only ever be zero ? Range check ? */
sc->esc_TDHr = sc->esc_TDH = value;
break;
case E1000_TDT(0):
/* XXX range check ? */
sc->esc_TDT = value;
if (sc->esc_tx_enabled)
e82545_tx_start(sc);
break;
case E1000_TIDV:
sc->esc_TIDV = value & ~0xFFFF0000;
break;
case E1000_TXDCTL(0):
//assert(!sc->esc_tx_enabled);
sc->esc_TXDCTL = value & ~0xC0C0C0;
break;
case E1000_TADV:
sc->esc_TADV = value & ~0xFFFF0000;
break;
case E1000_RAL(0) ... E1000_RAH(15):
/* convert to u32 offset */
ridx = (offset - E1000_RAL(0)) >> 2;
e82545_write_ra(sc, ridx, value);
break;
case E1000_MTA ... (E1000_MTA + (127*4)):
sc->esc_fmcast[(offset - E1000_MTA) >> 2] = value;
break;
case E1000_VFTA ... (E1000_VFTA + (127*4)):
sc->esc_fvlan[(offset - E1000_VFTA) >> 2] = value;
break;
case E1000_EECD:
{
//DPRINTF("EECD write 0x%x -> 0x%x\r\n", sc->eeprom_control, value);
/* edge triggered low->high */
uint32_t eecd_strobe = ((sc->eeprom_control & E1000_EECD_SK) ?
0 : (value & E1000_EECD_SK));
uint32_t eecd_mask = (E1000_EECD_SK|E1000_EECD_CS|
E1000_EECD_DI|E1000_EECD_REQ);
sc->eeprom_control &= ~eecd_mask;
sc->eeprom_control |= (value & eecd_mask);
/* grant/revoke immediately */
if (value & E1000_EECD_REQ) {
sc->eeprom_control |= E1000_EECD_GNT;
} else {
sc->eeprom_control &= ~E1000_EECD_GNT;
}
if (eecd_strobe && (sc->eeprom_control & E1000_EECD_CS)) {
e82545_eecd_strobe(sc);
}
return;
}
case E1000_MDIC:
{
uint8_t reg_addr = (uint8_t)((value & E1000_MDIC_REG_MASK) >>
E1000_MDIC_REG_SHIFT);
uint8_t phy_addr = (uint8_t)((value & E1000_MDIC_PHY_MASK) >>
E1000_MDIC_PHY_SHIFT);
sc->mdi_control =
(value & ~(E1000_MDIC_ERROR|E1000_MDIC_DEST));
if ((value & E1000_MDIC_READY) != 0) {
DPRINTF("Incorrect MDIC ready bit: 0x%x\r\n", value);
return;
}
switch (value & E82545_MDIC_OP_MASK) {
case E1000_MDIC_OP_READ:
sc->mdi_control &= ~E82545_MDIC_DATA_MASK;
sc->mdi_control |= e82545_read_mdi(sc, reg_addr, phy_addr);
break;
case E1000_MDIC_OP_WRITE:
e82545_write_mdi(sc, reg_addr, phy_addr,
value & E82545_MDIC_DATA_MASK);
break;
default:
DPRINTF("Unknown MDIC op: 0x%x\r\n", value);
return;
}
/* TODO: barrier? */
sc->mdi_control |= E1000_MDIC_READY;
if (value & E82545_MDIC_IE) {
// TODO: generate interrupt
}
return;
}
case E1000_MANC:
case E1000_STATUS:
return;
default:
DPRINTF("Unknown write register: 0x%x value:%x\r\n", offset, value);
return;
}
}
static uint32_t
e82545_read_register(struct e82545_softc *sc, uint32_t offset)
{
uint32_t retval;
int ridx;
if (offset & 0x3) {
DPRINTF("Unaligned register read offset:0x%x\r\n", offset);
return 0;
}
DPRINTF("Register read: 0x%x\r\n", offset);
switch (offset) {
case E1000_CTRL:
retval = sc->esc_CTRL;
break;
case E1000_STATUS:
retval = E1000_STATUS_FD | E1000_STATUS_LU |
E1000_STATUS_SPEED_1000;
break;
case E1000_FCAL:
retval = sc->esc_FCAL;
break;
case E1000_FCAH:
retval = sc->esc_FCAH;
break;
case E1000_FCT:
retval = sc->esc_FCT;
break;
case E1000_VET:
retval = sc->esc_VET;
break;
case E1000_FCTTV:
retval = sc->esc_FCTTV;
break;
case E1000_LEDCTL:
retval = sc->esc_LEDCTL;
break;
case E1000_PBA:
retval = sc->esc_PBA;
break;
case E1000_ICR:
case E1000_ITR:
case E1000_ICS:
case E1000_IMS:
case E1000_IMC:
retval = e82545_intr_read(sc, offset);
break;
case E1000_RCTL:
retval = sc->esc_RCTL;
break;
case E1000_FCRTL:
retval = sc->esc_FCRTL;
break;
case E1000_FCRTH:
retval = sc->esc_FCRTH;
break;
case E1000_RDBAL(0):
retval = sc->esc_RDBAL;
break;
case E1000_RDBAH(0):
retval = sc->esc_RDBAH;
break;
case E1000_RDLEN(0):
retval = sc->esc_RDLEN;
break;
case E1000_RDH(0):
retval = sc->esc_RDH;
break;
case E1000_RDT(0):
retval = sc->esc_RDT;
break;
case E1000_RDTR:
retval = sc->esc_RDTR;
break;
case E1000_RXDCTL(0):
retval = sc->esc_RXDCTL;
break;
case E1000_RADV:
retval = sc->esc_RADV;
break;
case E1000_RSRPD:
retval = sc->esc_RSRPD;
break;
case E1000_RXCSUM:
retval = sc->esc_RXCSUM;
break;
case E1000_TXCW:
retval = sc->esc_TXCW;
break;
case E1000_TCTL:
retval = sc->esc_TCTL;
break;
case E1000_TIPG:
retval = sc->esc_TIPG;
break;
case E1000_AIT:
retval = sc->esc_AIT;
break;
case E1000_TDBAL(0):
retval = sc->esc_TDBAL;
break;
case E1000_TDBAH(0):
retval = sc->esc_TDBAH;
break;
case E1000_TDLEN(0):
retval = sc->esc_TDLEN;
break;
case E1000_TDH(0):
retval = sc->esc_TDH;
break;
case E1000_TDT(0):
retval = sc->esc_TDT;
break;
case E1000_TIDV:
retval = sc->esc_TIDV;
break;
case E1000_TXDCTL(0):
retval = sc->esc_TXDCTL;
break;
case E1000_TADV:
retval = sc->esc_TADV;
break;
case E1000_RAL(0) ... E1000_RAH(15):
/* convert to u32 offset */
ridx = (offset - E1000_RAL(0)) >> 2;
retval = e82545_read_ra(sc, ridx);
break;
case E1000_MTA ... (E1000_MTA + (127*4)):
retval = sc->esc_fmcast[(offset - E1000_MTA) >> 2];
break;
case E1000_VFTA ... (E1000_VFTA + (127*4)):
retval = sc->esc_fvlan[(offset - E1000_VFTA) >> 2];
break;
case E1000_EECD:
//DPRINTF("EECD read %x\r\n", sc->eeprom_control);
retval = sc->eeprom_control;
break;
case E1000_MDIC:
retval = sc->mdi_control;
break;
case E1000_MANC:
retval = 0;
break;
/* stats that we emulate. */
case E1000_MPC:
retval = sc->missed_pkt_count;
break;
case E1000_PRC64:
retval = sc->pkt_rx_by_size[0];
break;
case E1000_PRC127:
retval = sc->pkt_rx_by_size[1];
break;
case E1000_PRC255:
retval = sc->pkt_rx_by_size[2];
break;
case E1000_PRC511:
retval = sc->pkt_rx_by_size[3];
break;
case E1000_PRC1023:
retval = sc->pkt_rx_by_size[4];
break;
case E1000_PRC1522:
retval = sc->pkt_rx_by_size[5];
break;
case E1000_GPRC:
retval = sc->good_pkt_rx_count;
break;
case E1000_BPRC:
retval = sc->bcast_pkt_rx_count;
break;
case E1000_MPRC:
retval = sc->mcast_pkt_rx_count;
break;
case E1000_GPTC:
case E1000_TPT:
retval = sc->good_pkt_tx_count;
break;
case E1000_GORCL:
retval = (uint32_t)sc->good_octets_rx;
break;
case E1000_GORCH:
retval = (uint32_t)(sc->good_octets_rx >> 32);
break;
case E1000_TOTL:
case E1000_GOTCL:
retval = (uint32_t)sc->good_octets_tx;
break;
case E1000_TOTH:
case E1000_GOTCH:
retval = (uint32_t)(sc->good_octets_tx >> 32);
break;
case E1000_ROC:
retval = sc->oversize_rx_count;
break;
case E1000_TORL:
retval = (uint32_t)(sc->good_octets_rx + sc->missed_octets);
break;
case E1000_TORH:
retval = (uint32_t)((sc->good_octets_rx +
sc->missed_octets) >> 32);
break;
case E1000_TPR:
retval = sc->good_pkt_rx_count + sc->missed_pkt_count +
sc->oversize_rx_count;
break;
case E1000_PTC64:
retval = sc->pkt_tx_by_size[0];
break;
case E1000_PTC127:
retval = sc->pkt_tx_by_size[1];
break;
case E1000_PTC255:
retval = sc->pkt_tx_by_size[2];
break;
case E1000_PTC511:
retval = sc->pkt_tx_by_size[3];
break;
case E1000_PTC1023:
retval = sc->pkt_tx_by_size[4];
break;
case E1000_PTC1522:
retval = sc->pkt_tx_by_size[5];
break;
case E1000_MPTC:
retval = sc->mcast_pkt_tx_count;
break;
case E1000_BPTC:
retval = sc->bcast_pkt_tx_count;
break;
case E1000_TSCTC:
retval = sc->tso_tx_count;
break;
/* stats that are always 0. */
case E1000_CRCERRS:
case E1000_ALGNERRC:
case E1000_SYMERRS:
case E1000_RXERRC:
case E1000_SCC:
case E1000_ECOL:
case E1000_MCC:
case E1000_LATECOL:
case E1000_COLC:
case E1000_DC:
case E1000_TNCRS:
case E1000_SEC:
case E1000_CEXTERR:
case E1000_RLEC:
case E1000_XONRXC:
case E1000_XONTXC:
case E1000_XOFFRXC:
case E1000_XOFFTXC:
case E1000_FCRUC:
case E1000_RNBC:
case E1000_RUC:
case E1000_RFC:
case E1000_RJC:
case E1000_MGTPRC:
case E1000_MGTPDC:
case E1000_MGTPTC:
case E1000_TSCTFC:
retval = 0;
break;
default:
DPRINTF("Unknown read register: 0x%x\r\n", offset);
retval = 0;
break;
}
return (retval);
}
static void
e82545_write(struct vmctx *ctx, int vcpu, struct pci_devinst *pi, int baridx,
uint64_t offset, int size, uint64_t value)
{
struct e82545_softc *sc;
//DPRINTF("Write bar:%d offset:0x%lx value:0x%lx size:%d\r\n", baridx, offset, value, size);
sc = pi->pi_arg;
pthread_mutex_lock(&sc->esc_mtx);
switch (baridx) {
case E82545_BAR_IO:
switch (offset) {
case E82545_IOADDR:
if (size != 4) {
DPRINTF("Wrong io addr write sz:%d value:0x%lx\r\n", size, value);
} else
sc->io_addr = (uint32_t)value;
break;
case E82545_IODATA:
if (size != 4) {
DPRINTF("Wrong io data write size:%d value:0x%lx\r\n", size, value);
} else if (sc->io_addr > E82545_IO_REGISTER_MAX) {
DPRINTF("Non-register io write addr:0x%x value:0x%lx\r\n", sc->io_addr, value);
} else
e82545_write_register(sc, sc->io_addr,
(uint32_t)value);
break;
default:
DPRINTF("Unknown io bar write offset:0x%lx value:0x%lx size:%d\r\n", offset, value, size);
break;
}
break;
case E82545_BAR_REGISTER:
if (size != 4) {
DPRINTF("Wrong register write size:%d offset:0x%lx value:0x%lx\r\n", size, offset, value);
} else
e82545_write_register(sc, (uint32_t)offset,
(uint32_t)value);
break;
default:
DPRINTF("Unknown write bar:%d off:0x%lx val:0x%lx size:%d\r\n",
baridx, offset, value, size);
}
pthread_mutex_unlock(&sc->esc_mtx);
}
static uint64_t
e82545_read(struct vmctx *ctx, int vcpu, struct pci_devinst *pi, int baridx,
uint64_t offset, int size)
{
struct e82545_softc *sc;
uint64_t retval;
//DPRINTF("Read bar:%d offset:0x%lx size:%d\r\n", baridx, offset, size);
sc = pi->pi_arg;
retval = 0;
pthread_mutex_lock(&sc->esc_mtx);
switch (baridx) {
case E82545_BAR_IO:
switch (offset) {
case E82545_IOADDR:
if (size != 4) {
DPRINTF("Wrong io addr read sz:%d\r\n", size);
} else
retval = sc->io_addr;
break;
case E82545_IODATA:
if (size != 4) {
DPRINTF("Wrong io data read sz:%d\r\n", size);
}
if (sc->io_addr > E82545_IO_REGISTER_MAX) {
DPRINTF("Non-register io read addr:0x%x\r\n",
sc->io_addr);
} else
retval = e82545_read_register(sc, sc->io_addr);
break;
default:
DPRINTF("Unknown io bar read offset:0x%lx size:%d\r\n",
offset, size);
break;
}
break;
case E82545_BAR_REGISTER:
if (size != 4) {
DPRINTF("Wrong register read size:%d offset:0x%lx\r\n",
size, offset);
} else
retval = e82545_read_register(sc, (uint32_t)offset);
break;
default:
DPRINTF("Unknown read bar:%d offset:0x%lx size:%d\r\n",
baridx, offset, size);
break;
}
pthread_mutex_unlock(&sc->esc_mtx);
return (retval);
}
static void
e82545_reset(struct e82545_softc *sc, int drvr)
{
int i;
e82545_rx_disable(sc);
e82545_tx_disable(sc);
/* clear outstanding interrupts */
if (sc->esc_irq_asserted)
pci_lintr_deassert(sc->esc_pi);
/* misc */
if (!drvr) {
sc->esc_FCAL = 0;
sc->esc_FCAH = 0;
sc->esc_FCT = 0;
sc->esc_VET = 0;
sc->esc_FCTTV = 0;
}
sc->esc_LEDCTL = 0x07061302;
sc->esc_PBA = 0x00100030;
/* start nvm in opcode mode. */
sc->nvm_opaddr = 0;
sc->nvm_mode = E82545_NVM_MODE_OPADDR;
sc->nvm_bits = E82545_NVM_OPADDR_BITS;
sc->eeprom_control = E1000_EECD_PRES | E82545_EECD_FWE_EN;
e82545_init_eeprom(sc);
/* interrupt */
sc->esc_ICR = 0;
sc->esc_ITR = 250;
sc->esc_ICS = 0;
sc->esc_IMS = 0;
sc->esc_IMC = 0;
/* L2 filters */
if (!drvr) {
memset(sc->esc_fvlan, 0, sizeof(sc->esc_fvlan));
memset(sc->esc_fmcast, 0, sizeof(sc->esc_fmcast));
memset(sc->esc_uni, 0, sizeof(sc->esc_uni));
/* XXX not necessary on 82545 ?? */
sc->esc_uni[0].eu_valid = 1;
memcpy(sc->esc_uni[0].eu_eth.octet, sc->esc_mac.octet,
ETHER_ADDR_LEN);
} else {
/* Clear RAH valid bits */
for (i = 0; i < 16; i++)
sc->esc_uni[i].eu_valid = 0;
}
/* receive */
if (!drvr) {
sc->esc_RDBAL = 0;
sc->esc_RDBAH = 0;
}
sc->esc_RCTL = 0;
sc->esc_FCRTL = 0;
sc->esc_FCRTH = 0;
sc->esc_RDLEN = 0;
sc->esc_RDH = 0;
sc->esc_RDT = 0;
sc->esc_RDTR = 0;
sc->esc_RXDCTL = (1 << 24) | (1 << 16); /* default GRAN/WTHRESH */
sc->esc_RADV = 0;
sc->esc_RXCSUM = 0;
/* transmit */
if (!drvr) {
sc->esc_TDBAL = 0;
sc->esc_TDBAH = 0;
sc->esc_TIPG = 0;
sc->esc_AIT = 0;
sc->esc_TIDV = 0;
sc->esc_TADV = 0;
}
sc->esc_tdba = 0;
sc->esc_txdesc = NULL;
sc->esc_TXCW = 0;
sc->esc_TCTL = 0;
sc->esc_TDLEN = 0;
sc->esc_TDT = 0;
sc->esc_TDHr = sc->esc_TDH = 0;
sc->esc_TXDCTL = 0;
}
static void
e82545_open_tap(struct e82545_softc *sc, char *opts)
{
char tbuf[80];
#ifndef WITHOUT_CAPSICUM
cap_rights_t rights;
#endif
if (opts == NULL) {
sc->esc_tapfd = -1;
return;
}
strcpy(tbuf, "/dev/");
strlcat(tbuf, opts, sizeof(tbuf));
sc->esc_tapfd = open(tbuf, O_RDWR);
if (sc->esc_tapfd == -1) {
DPRINTF("unable to open tap device %s\n", opts);
exit(1);
}
/*
* Set non-blocking and register for read
* notifications with the event loop
*/
int opt = 1;
if (ioctl(sc->esc_tapfd, FIONBIO, &opt) < 0) {
WPRINTF("tap device O_NONBLOCK failed: %d\n", errno);
close(sc->esc_tapfd);
sc->esc_tapfd = -1;
}
#ifndef WITHOUT_CAPSICUM
cap_rights_init(&rights, CAP_EVENT, CAP_READ, CAP_WRITE);
if (cap_rights_limit(sc->esc_tapfd, &rights) == -1 && errno != ENOSYS)
errx(EX_OSERR, "Unable to apply rights for sandbox");
#endif
sc->esc_mevp = mevent_add(sc->esc_tapfd,
EVF_READ,
e82545_tap_callback,
sc);
if (sc->esc_mevp == NULL) {
DPRINTF("Could not register mevent %d\n", EVF_READ);
close(sc->esc_tapfd);
sc->esc_tapfd = -1;
}
}
static int
e82545_parsemac(char *mac_str, uint8_t *mac_addr)
{
struct ether_addr *ea;
char *tmpstr;
char zero_addr[ETHER_ADDR_LEN] = { 0, 0, 0, 0, 0, 0 };
tmpstr = strsep(&mac_str,"=");
if ((mac_str != NULL) && (!strcmp(tmpstr,"mac"))) {
ea = ether_aton(mac_str);
if (ea == NULL || ETHER_IS_MULTICAST(ea->octet) ||
memcmp(ea->octet, zero_addr, ETHER_ADDR_LEN) == 0) {
fprintf(stderr, "Invalid MAC %s\n", mac_str);
return (1);
} else
memcpy(mac_addr, ea->octet, ETHER_ADDR_LEN);
}
return (0);
}
static int
e82545_init(struct vmctx *ctx, struct pci_devinst *pi, char *opts)
{
DPRINTF("Loading with options: %s\r\n", opts);
MD5_CTX mdctx;
unsigned char digest[16];
char nstr[80];
struct e82545_softc *sc;
char *devname;
char *vtopts;
int mac_provided;
/* Setup our softc */
sc = calloc(1, sizeof(*sc));
pi->pi_arg = sc;
sc->esc_pi = pi;
sc->esc_ctx = ctx;
pthread_mutex_init(&sc->esc_mtx, NULL);
pthread_cond_init(&sc->esc_rx_cond, NULL);
pthread_cond_init(&sc->esc_tx_cond, NULL);
pthread_create(&sc->esc_tx_tid, NULL, e82545_tx_thread, sc);
snprintf(nstr, sizeof(nstr), "e82545-%d:%d tx", pi->pi_slot,
pi->pi_func);
pthread_set_name_np(sc->esc_tx_tid, nstr);
pci_set_cfgdata16(pi, PCIR_DEVICE, E82545_DEV_ID_82545EM_COPPER);
pci_set_cfgdata16(pi, PCIR_VENDOR, E82545_VENDOR_ID_INTEL);
pci_set_cfgdata8(pi, PCIR_CLASS, PCIC_NETWORK);
pci_set_cfgdata8(pi, PCIR_SUBCLASS, PCIS_NETWORK_ETHERNET);
pci_set_cfgdata16(pi, PCIR_SUBDEV_0, E82545_SUBDEV_ID);
pci_set_cfgdata16(pi, PCIR_SUBVEND_0, E82545_VENDOR_ID_INTEL);
pci_set_cfgdata8(pi, PCIR_HDRTYPE, PCIM_HDRTYPE_NORMAL);
pci_set_cfgdata8(pi, PCIR_INTPIN, 0x1);
/* TODO: this card also supports msi, but the freebsd driver for it
* does not, so I have not implemented it. */
pci_lintr_request(pi);
pci_emul_alloc_bar(pi, E82545_BAR_REGISTER, PCIBAR_MEM32,
E82545_BAR_REGISTER_LEN);
pci_emul_alloc_bar(pi, E82545_BAR_FLASH, PCIBAR_MEM32,
E82545_BAR_FLASH_LEN);
pci_emul_alloc_bar(pi, E82545_BAR_IO, PCIBAR_IO,
E82545_BAR_IO_LEN);
/*
* Attempt to open the tap device and read the MAC address
* if specified. Copied from virtio-net, slightly modified.
*/
mac_provided = 0;
sc->esc_tapfd = -1;
if (opts != NULL) {
int err;
devname = vtopts = strdup(opts);
(void) strsep(&vtopts, ",");
if (vtopts != NULL) {
err = e82545_parsemac(vtopts, sc->esc_mac.octet);
if (err != 0) {
free(devname);
return (err);
}
mac_provided = 1;
}
if (strncmp(devname, "tap", 3) == 0 ||
strncmp(devname, "vmnet", 5) == 0)
e82545_open_tap(sc, devname);
free(devname);
}
/*
* The default MAC address is the standard NetApp OUI of 00-a0-98,
* followed by an MD5 of the PCI slot/func number and dev name
*/
if (!mac_provided) {
snprintf(nstr, sizeof(nstr), "%d-%d-%s", pi->pi_slot,
pi->pi_func, vmname);
MD5Init(&mdctx);
MD5Update(&mdctx, nstr, strlen(nstr));
MD5Final(digest, &mdctx);
sc->esc_mac.octet[0] = 0x00;
sc->esc_mac.octet[1] = 0xa0;
sc->esc_mac.octet[2] = 0x98;
sc->esc_mac.octet[3] = digest[0];
sc->esc_mac.octet[4] = digest[1];
sc->esc_mac.octet[5] = digest[2];
}
/* H/w initiated reset */
e82545_reset(sc, 0);
return (0);
}
struct pci_devemu pci_de_e82545 = {
.pe_emu = "e1000",
.pe_init = e82545_init,
.pe_barwrite = e82545_write,
.pe_barread = e82545_read
};
PCI_EMUL_SET(pci_de_e82545);