freebsd-skq/sys/arm/broadcom/bcm2835/bcm2835_machdep.c
Andrew Turner d98d8a1e83 Reduce the diff between the FDT implementations of initarm.
This only touches whitespace and comments.
2012-09-22 22:41:38 +00:00

585 lines
16 KiB
C

/*-
* Copyright (c) 2012 Oleksandr Tymoshenko.
* Copyright (c) 1994-1998 Mark Brinicombe.
* Copyright (c) 1994 Brini.
* All rights reserved.
*
* This code is derived from software written for Brini by Mark Brinicombe
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by Brini.
* 4. The name of the company nor the name of the author may be used to
* endorse or promote products derived from this software without specific
* prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY BRINI ``AS IS'' AND ANY EXPRESS OR IMPLIED
* WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL BRINI OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
* INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* from: FreeBSD: //depot/projects/arm/src/sys/arm/at91/kb920x_machdep.c, rev 45
*/
#include "opt_ddb.h"
#include "opt_platform.h"
#include "opt_global.h"
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#define _ARM32_BUS_DMA_PRIVATE
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/sysproto.h>
#include <sys/signalvar.h>
#include <sys/imgact.h>
#include <sys/kernel.h>
#include <sys/ktr.h>
#include <sys/linker.h>
#include <sys/lock.h>
#include <sys/malloc.h>
#include <sys/mutex.h>
#include <sys/pcpu.h>
#include <sys/proc.h>
#include <sys/ptrace.h>
#include <sys/cons.h>
#include <sys/bio.h>
#include <sys/bus.h>
#include <sys/buf.h>
#include <sys/exec.h>
#include <sys/kdb.h>
#include <sys/msgbuf.h>
#include <machine/reg.h>
#include <machine/cpu.h>
#include <machine/fdt.h>
#include <dev/fdt/fdt_common.h>
#include <dev/ofw/openfirm.h>
#include <vm/vm.h>
#include <vm/pmap.h>
#include <vm/vm_object.h>
#include <vm/vm_page.h>
#include <vm/vm_pager.h>
#include <vm/vm_map.h>
#include <machine/pte.h>
#include <machine/pmap.h>
#include <machine/vmparam.h>
#include <machine/pcb.h>
#include <machine/undefined.h>
#include <machine/machdep.h>
#include <machine/metadata.h>
#include <machine/armreg.h>
#include <machine/bus.h>
#include <sys/reboot.h>
#include <arm/broadcom/bcm2835/bcm2835_wdog.h>
#define DEBUG
#ifdef DEBUG
#define debugf(fmt, args...) printf(fmt, ##args)
#else
#define debugf(fmt, args...)
#endif
/* Start of address space used for bootstrap map */
#define DEVMAP_BOOTSTRAP_MAP_START 0xE0000000
/*
* This is the number of L2 page tables required for covering max
* (hypothetical) memsize of 4GB and all kernel mappings (vectors, msgbuf,
* stacks etc.), uprounded to be divisible by 4.
*/
#define KERNEL_PT_MAX 78
extern unsigned char kernbase[];
extern unsigned char _etext[];
extern unsigned char _edata[];
extern unsigned char __bss_start[];
extern unsigned char _end[];
#ifdef DDB
extern vm_offset_t ksym_start, ksym_end;
#endif
extern u_int data_abort_handler_address;
extern u_int prefetch_abort_handler_address;
extern u_int undefined_handler_address;
extern vm_offset_t pmap_bootstrap_lastaddr;
extern int *end;
struct pv_addr kernel_pt_table[KERNEL_PT_MAX];
/* Physical and virtual addresses for some global pages */
vm_paddr_t phys_avail[10];
vm_paddr_t dump_avail[4];
vm_offset_t physical_pages;
vm_offset_t pmap_bootstrap_lastaddr;
vm_paddr_t pmap_pa;
const struct pmap_devmap *pmap_devmap_bootstrap_table;
struct pv_addr systempage;
struct pv_addr msgbufpv;
struct pv_addr irqstack;
struct pv_addr undstack;
struct pv_addr abtstack;
struct pv_addr kernelstack;
static struct mem_region availmem_regions[FDT_MEM_REGIONS];
static int availmem_regions_sz;
static void print_kenv(void);
static void print_kernel_section_addr(void);
static void physmap_init(void);
static int platform_devmap_init(void);
static char *
kenv_next(char *cp)
{
if (cp != NULL) {
while (*cp != 0)
cp++;
cp++;
if (*cp == 0)
cp = NULL;
}
return (cp);
}
static void
print_kenv(void)
{
int len;
char *cp;
debugf("loader passed (static) kenv:\n");
if (kern_envp == NULL) {
debugf(" no env, null ptr\n");
return;
}
debugf(" kern_envp = 0x%08x\n", (uint32_t)kern_envp);
len = 0;
for (cp = kern_envp; cp != NULL; cp = kenv_next(cp))
debugf(" %x %s\n", (uint32_t)cp, cp);
}
static void
print_kernel_section_addr(void)
{
debugf("kernel image addresses:\n");
debugf(" kernbase = 0x%08x\n", (uint32_t)kernbase);
debugf(" _etext (sdata) = 0x%08x\n", (uint32_t)_etext);
debugf(" _edata = 0x%08x\n", (uint32_t)_edata);
debugf(" __bss_start = 0x%08x\n", (uint32_t)__bss_start);
debugf(" _end = 0x%08x\n", (uint32_t)_end);
}
static void
physmap_init(void)
{
int i, j, cnt;
vm_offset_t phys_kernelend, kernload;
uint32_t s, e, sz;
struct mem_region *mp, *mp1;
phys_kernelend = KERNPHYSADDR + (virtual_avail - KERNVIRTADDR);
kernload = KERNPHYSADDR;
/*
* Remove kernel physical address range from avail
* regions list. Page align all regions.
* Non-page aligned memory isn't very interesting to us.
* Also, sort the entries for ascending addresses.
*/
sz = 0;
cnt = availmem_regions_sz;
debugf("processing avail regions:\n");
for (mp = availmem_regions; mp->mr_size; mp++) {
s = mp->mr_start;
e = mp->mr_start + mp->mr_size;
debugf(" %08x-%08x -> ", s, e);
/* Check whether this region holds all of the kernel. */
if (s < kernload && e > phys_kernelend) {
availmem_regions[cnt].mr_start = phys_kernelend;
availmem_regions[cnt++].mr_size = e - phys_kernelend;
e = kernload;
}
/* Look whether this regions starts within the kernel. */
if (s >= kernload && s < phys_kernelend) {
if (e <= phys_kernelend)
goto empty;
s = phys_kernelend;
}
/* Now look whether this region ends within the kernel. */
if (e > kernload && e <= phys_kernelend) {
if (s >= kernload) {
goto empty;
}
e = kernload;
}
/* Now page align the start and size of the region. */
s = round_page(s);
e = trunc_page(e);
if (e < s)
e = s;
sz = e - s;
debugf("%08x-%08x = %x\n", s, e, sz);
/* Check whether some memory is left here. */
if (sz == 0) {
empty:
printf("skipping\n");
bcopy(mp + 1, mp,
(cnt - (mp - availmem_regions)) * sizeof(*mp));
cnt--;
mp--;
continue;
}
/* Do an insertion sort. */
for (mp1 = availmem_regions; mp1 < mp; mp1++)
if (s < mp1->mr_start)
break;
if (mp1 < mp) {
bcopy(mp1, mp1 + 1, (char *)mp - (char *)mp1);
mp1->mr_start = s;
mp1->mr_size = sz;
} else {
mp->mr_start = s;
mp->mr_size = sz;
}
}
availmem_regions_sz = cnt;
/* Fill in phys_avail table, based on availmem_regions */
debugf("fill in phys_avail:\n");
for (i = 0, j = 0; i < availmem_regions_sz; i++, j += 2) {
debugf(" region: 0x%08x - 0x%08x (0x%08x)\n",
availmem_regions[i].mr_start,
availmem_regions[i].mr_start + availmem_regions[i].mr_size,
availmem_regions[i].mr_size);
phys_avail[j] = availmem_regions[i].mr_start;
phys_avail[j + 1] = availmem_regions[i].mr_start +
availmem_regions[i].mr_size;
}
phys_avail[j] = 0;
phys_avail[j + 1] = 0;
}
void *
initarm(struct arm_boot_params *abp)
{
struct pv_addr kernel_l1pt;
struct pv_addr dpcpu;
vm_offset_t dtbp, freemempos, l2_start, lastaddr;
uint32_t memsize, l2size;
void *kmdp;
u_int l1pagetable;
int i = 0, j = 0;
lastaddr = fake_preload_metadata(abp);
memsize = 0;
set_cpufuncs();
/*
* Find the dtb passed in by the boot loader.
*/
kmdp = preload_search_by_type("elf kernel");
if (kmdp != NULL)
dtbp = MD_FETCH(kmdp, MODINFOMD_DTBP, vm_offset_t);
else
dtbp = (vm_offset_t)NULL;
#if defined(FDT_DTB_STATIC)
/*
* In case the device tree blob was not retrieved (from metadata) try
* to use the statically embedded one.
*/
if (dtbp == (vm_offset_t)NULL)
dtbp = (vm_offset_t)&fdt_static_dtb;
#endif
if (OF_install(OFW_FDT, 0) == FALSE)
while (1);
if (OF_init((void *)dtbp) != 0)
while (1);
/* Grab physical memory regions information from device tree. */
if (fdt_get_mem_regions(availmem_regions, &availmem_regions_sz,
&memsize) != 0)
while(1);
/* Platform-specific initialisation */
pmap_bootstrap_lastaddr = DEVMAP_BOOTSTRAP_MAP_START - ARM_NOCACHE_KVA_SIZE;
pcpu0_init();
/* Calculate number of L2 tables needed for mapping vm_page_array */
l2size = (memsize / PAGE_SIZE) * sizeof(struct vm_page);
l2size = (l2size >> L1_S_SHIFT) + 1;
/*
* Add one table for end of kernel map, one for stacks, msgbuf and
* L1 and L2 tables map and one for vectors map.
*/
l2size += 3;
/* Make it divisible by 4 */
l2size = (l2size + 3) & ~3;
#define KERNEL_TEXT_BASE (KERNBASE)
freemempos = (lastaddr + PAGE_MASK) & ~PAGE_MASK;
/* Define a macro to simplify memory allocation */
#define valloc_pages(var, np) \
alloc_pages((var).pv_va, (np)); \
(var).pv_pa = (var).pv_va + (KERNPHYSADDR - KERNVIRTADDR);
#define alloc_pages(var, np) \
(var) = freemempos; \
freemempos += (np * PAGE_SIZE); \
memset((char *)(var), 0, ((np) * PAGE_SIZE));
while (((freemempos - L1_TABLE_SIZE) & (L1_TABLE_SIZE - 1)) != 0)
freemempos += PAGE_SIZE;
valloc_pages(kernel_l1pt, L1_TABLE_SIZE / PAGE_SIZE);
for (i = 0; i < l2size; ++i) {
if (!(i % (PAGE_SIZE / L2_TABLE_SIZE_REAL))) {
valloc_pages(kernel_pt_table[i],
L2_TABLE_SIZE / PAGE_SIZE);
j = i;
} else {
kernel_pt_table[i].pv_va = kernel_pt_table[j].pv_va +
L2_TABLE_SIZE_REAL * (i - j);
kernel_pt_table[i].pv_pa =
kernel_pt_table[i].pv_va - KERNVIRTADDR +
KERNPHYSADDR;
}
}
/*
* Allocate a page for the system page mapped to 0x00000000
* or 0xffff0000. This page will just contain the system vectors
* and can be shared by all processes.
*/
valloc_pages(systempage, 1);
/* Allocate dynamic per-cpu area. */
valloc_pages(dpcpu, DPCPU_SIZE / PAGE_SIZE);
dpcpu_init((void *)dpcpu.pv_va, 0);
/* Allocate stacks for all modes */
valloc_pages(irqstack, (IRQ_STACK_SIZE * MAXCPU));
valloc_pages(abtstack, (ABT_STACK_SIZE * MAXCPU));
valloc_pages(undstack, (UND_STACK_SIZE * MAXCPU));
valloc_pages(kernelstack, (KSTACK_PAGES * MAXCPU));
init_param1();
valloc_pages(msgbufpv, round_page(msgbufsize) / PAGE_SIZE);
/*
* Now we start construction of the L1 page table
* We start by mapping the L2 page tables into the L1.
* This means that we can replace L1 mappings later on if necessary
*/
l1pagetable = kernel_l1pt.pv_va;
/*
* Try to map as much as possible of kernel text and data using
* 1MB section mapping and for the rest of initial kernel address
* space use L2 coarse tables.
*
* Link L2 tables for mapping remainder of kernel (modulo 1MB)
* and kernel structures
*/
l2_start = lastaddr & ~(L1_S_OFFSET);
for (i = 0 ; i < l2size - 1; i++)
pmap_link_l2pt(l1pagetable, l2_start + i * L1_S_SIZE,
&kernel_pt_table[i]);
pmap_curmaxkvaddr = l2_start + (l2size - 1) * L1_S_SIZE;
/* Map kernel code and data */
pmap_map_chunk(l1pagetable, KERNVIRTADDR, KERNPHYSADDR,
(((uint32_t)(lastaddr) - KERNVIRTADDR) + PAGE_MASK) & ~PAGE_MASK,
VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
/* Map L1 directory and allocated L2 page tables */
pmap_map_chunk(l1pagetable, kernel_l1pt.pv_va, kernel_l1pt.pv_pa,
L1_TABLE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE);
pmap_map_chunk(l1pagetable, kernel_pt_table[0].pv_va,
kernel_pt_table[0].pv_pa,
L2_TABLE_SIZE_REAL * l2size,
VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE);
/* Map allocated DPCPU, stacks and msgbuf */
pmap_map_chunk(l1pagetable, dpcpu.pv_va, dpcpu.pv_pa,
freemempos - dpcpu.pv_va,
VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
/* Map allocated DPCPU, stacks and msgbuf */
pmap_map_chunk(l1pagetable, 0xf2200000, 0x20200000,
0x00100000,
VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
/* Link and map the vector page */
pmap_link_l2pt(l1pagetable, ARM_VECTORS_HIGH,
&kernel_pt_table[l2size - 1]);
pmap_map_entry(l1pagetable, ARM_VECTORS_HIGH, systempage.pv_pa,
VM_PROT_READ|VM_PROT_WRITE|VM_PROT_EXECUTE, PTE_CACHE);
/* Map pmap_devmap[] entries */
if (platform_devmap_init() != 0)
while (1);
pmap_devmap_bootstrap(l1pagetable, pmap_devmap_bootstrap_table);
cpu_domains((DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL * 2)) |
DOMAIN_CLIENT);
pmap_pa = kernel_l1pt.pv_pa;
setttb(kernel_l1pt.pv_pa);
cpu_tlb_flushID();
cpu_domains(DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL * 2));
/*
* Only after the SOC registers block is mapped we can perform device
* tree fixups, as they may attempt to read parameters from hardware.
*/
OF_interpret("perform-fixup", 0);
cninit();
physmem = memsize / PAGE_SIZE;
debugf("initarm: console initialized\n");
debugf(" arg1 mmdp = 0x%08x\n", (uint32_t)kmdp);
debugf(" boothowto = 0x%08x\n", boothowto);
debugf(" dtbp = 0x%08x\n", (uint32_t)dtbp);
print_kernel_section_addr();
print_kenv();
/*
* Pages were allocated during the secondary bootstrap for the
* stacks for different CPU modes.
* We must now set the r13 registers in the different CPU modes to
* point to these stacks.
* Since the ARM stacks use STMFD etc. we must set r13 to the top end
* of the stack memory.
*/
cpu_control(CPU_CONTROL_MMU_ENABLE, CPU_CONTROL_MMU_ENABLE);
set_stackptrs(0);
/*
* We must now clean the cache again....
* Cleaning may be done by reading new data to displace any
* dirty data in the cache. This will have happened in setttb()
* but since we are boot strapping the addresses used for the read
* may have just been remapped and thus the cache could be out
* of sync. A re-clean after the switch will cure this.
* After booting there are no gross relocations of the kernel thus
* this problem will not occur after initarm().
*/
cpu_idcache_wbinv_all();
/* Set stack for exception handlers */
data_abort_handler_address = (u_int)data_abort_handler;
prefetch_abort_handler_address = (u_int)prefetch_abort_handler;
undefined_handler_address = (u_int)undefinedinstruction_bounce;
undefined_init();
init_proc0(kernelstack.pv_va);
arm_vector_init(ARM_VECTORS_HIGH, ARM_VEC_ALL);
arm_dump_avail_init(memsize, sizeof(dump_avail) / sizeof(dump_avail[0]));
pmap_bootstrap(freemempos, pmap_bootstrap_lastaddr, &kernel_l1pt);
msgbufp = (void *)msgbufpv.pv_va;
msgbufinit(msgbufp, msgbufsize);
mutex_init();
/*
* Prepare map of physical memory regions available to vm subsystem.
*/
physmap_init();
/* Do basic tuning, hz etc */
init_param2(physmem);
kdb_init();
return ((void *)(kernelstack.pv_va + USPACE_SVC_STACK_TOP -
sizeof(struct pcb)));
}
#define FDT_DEVMAP_MAX (2) // FIXME
static struct pmap_devmap fdt_devmap[FDT_DEVMAP_MAX] = {
{ 0, 0, 0, 0, 0, }
};
/*
* Construct pmap_devmap[] with DT-derived config data.
*/
static int
platform_devmap_init(void)
{
int i = 0;
fdt_devmap[i].pd_va = 0xf2000000;
fdt_devmap[i].pd_pa = 0x20000000;
fdt_devmap[i].pd_size = 0x01000000; /* 1 MB */
fdt_devmap[i].pd_prot = VM_PROT_READ | VM_PROT_WRITE;
fdt_devmap[i].pd_cache = PTE_DEVICE;
i++;
pmap_devmap_bootstrap_table = &fdt_devmap[0];
return (0);
}
struct arm32_dma_range *
bus_dma_get_range(void)
{
return (NULL);
}
int
bus_dma_get_range_nb(void)
{
return (0);
}
void
cpu_reset()
{
bcmwd_watchdog_reset();
while (1);
}