33f3bad35e
Sponsored by: Netflix Differential Revision: https://reviews.freebsd.org/D24545
2298 lines
58 KiB
C
2298 lines
58 KiB
C
/*-
|
|
* Copyright (c) 2002-2006 Sam Leffler. All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
|
|
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
|
|
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
|
|
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
|
|
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
|
|
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
|
|
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
#include <sys/cdefs.h>
|
|
__FBSDID("$FreeBSD$");
|
|
|
|
/*
|
|
* Cryptographic Subsystem.
|
|
*
|
|
* This code is derived from the Openbsd Cryptographic Framework (OCF)
|
|
* that has the copyright shown below. Very little of the original
|
|
* code remains.
|
|
*/
|
|
|
|
/*-
|
|
* The author of this code is Angelos D. Keromytis (angelos@cis.upenn.edu)
|
|
*
|
|
* This code was written by Angelos D. Keromytis in Athens, Greece, in
|
|
* February 2000. Network Security Technologies Inc. (NSTI) kindly
|
|
* supported the development of this code.
|
|
*
|
|
* Copyright (c) 2000, 2001 Angelos D. Keromytis
|
|
*
|
|
* Permission to use, copy, and modify this software with or without fee
|
|
* is hereby granted, provided that this entire notice is included in
|
|
* all source code copies of any software which is or includes a copy or
|
|
* modification of this software.
|
|
*
|
|
* THIS SOFTWARE IS BEING PROVIDED "AS IS", WITHOUT ANY EXPRESS OR
|
|
* IMPLIED WARRANTY. IN PARTICULAR, NONE OF THE AUTHORS MAKES ANY
|
|
* REPRESENTATION OR WARRANTY OF ANY KIND CONCERNING THE
|
|
* MERCHANTABILITY OF THIS SOFTWARE OR ITS FITNESS FOR ANY PARTICULAR
|
|
* PURPOSE.
|
|
*/
|
|
|
|
#define CRYPTO_TIMING /* enable timing support */
|
|
|
|
#include "opt_compat.h"
|
|
#include "opt_ddb.h"
|
|
|
|
#include <sys/param.h>
|
|
#include <sys/systm.h>
|
|
#include <sys/eventhandler.h>
|
|
#include <sys/kernel.h>
|
|
#include <sys/kthread.h>
|
|
#include <sys/linker.h>
|
|
#include <sys/lock.h>
|
|
#include <sys/module.h>
|
|
#include <sys/mutex.h>
|
|
#include <sys/malloc.h>
|
|
#include <sys/mbuf.h>
|
|
#include <sys/proc.h>
|
|
#include <sys/refcount.h>
|
|
#include <sys/sdt.h>
|
|
#include <sys/smp.h>
|
|
#include <sys/sysctl.h>
|
|
#include <sys/taskqueue.h>
|
|
#include <sys/uio.h>
|
|
|
|
#include <ddb/ddb.h>
|
|
|
|
#include <vm/uma.h>
|
|
#include <crypto/intake.h>
|
|
#include <opencrypto/cryptodev.h>
|
|
#include <opencrypto/xform_auth.h>
|
|
#include <opencrypto/xform_enc.h>
|
|
|
|
#include <sys/kobj.h>
|
|
#include <sys/bus.h>
|
|
#include "cryptodev_if.h"
|
|
|
|
#if defined(__i386__) || defined(__amd64__) || defined(__aarch64__)
|
|
#include <machine/pcb.h>
|
|
#endif
|
|
|
|
SDT_PROVIDER_DEFINE(opencrypto);
|
|
|
|
/*
|
|
* Crypto drivers register themselves by allocating a slot in the
|
|
* crypto_drivers table with crypto_get_driverid() and then registering
|
|
* each asym algorithm they support with crypto_kregister().
|
|
*/
|
|
static struct mtx crypto_drivers_mtx; /* lock on driver table */
|
|
#define CRYPTO_DRIVER_LOCK() mtx_lock(&crypto_drivers_mtx)
|
|
#define CRYPTO_DRIVER_UNLOCK() mtx_unlock(&crypto_drivers_mtx)
|
|
#define CRYPTO_DRIVER_ASSERT() mtx_assert(&crypto_drivers_mtx, MA_OWNED)
|
|
|
|
/*
|
|
* Crypto device/driver capabilities structure.
|
|
*
|
|
* Synchronization:
|
|
* (d) - protected by CRYPTO_DRIVER_LOCK()
|
|
* (q) - protected by CRYPTO_Q_LOCK()
|
|
* Not tagged fields are read-only.
|
|
*/
|
|
struct cryptocap {
|
|
device_t cc_dev;
|
|
uint32_t cc_hid;
|
|
u_int32_t cc_sessions; /* (d) # of sessions */
|
|
u_int32_t cc_koperations; /* (d) # os asym operations */
|
|
u_int8_t cc_kalg[CRK_ALGORITHM_MAX + 1];
|
|
|
|
int cc_flags; /* (d) flags */
|
|
#define CRYPTOCAP_F_CLEANUP 0x80000000 /* needs resource cleanup */
|
|
int cc_qblocked; /* (q) symmetric q blocked */
|
|
int cc_kqblocked; /* (q) asymmetric q blocked */
|
|
size_t cc_session_size;
|
|
volatile int cc_refs;
|
|
};
|
|
|
|
static struct cryptocap **crypto_drivers = NULL;
|
|
static int crypto_drivers_size = 0;
|
|
|
|
struct crypto_session {
|
|
struct cryptocap *cap;
|
|
void *softc;
|
|
struct crypto_session_params csp;
|
|
};
|
|
|
|
/*
|
|
* There are two queues for crypto requests; one for symmetric (e.g.
|
|
* cipher) operations and one for asymmetric (e.g. MOD)operations.
|
|
* A single mutex is used to lock access to both queues. We could
|
|
* have one per-queue but having one simplifies handling of block/unblock
|
|
* operations.
|
|
*/
|
|
static int crp_sleep = 0;
|
|
static TAILQ_HEAD(cryptop_q ,cryptop) crp_q; /* request queues */
|
|
static TAILQ_HEAD(,cryptkop) crp_kq;
|
|
static struct mtx crypto_q_mtx;
|
|
#define CRYPTO_Q_LOCK() mtx_lock(&crypto_q_mtx)
|
|
#define CRYPTO_Q_UNLOCK() mtx_unlock(&crypto_q_mtx)
|
|
|
|
SYSCTL_NODE(_kern, OID_AUTO, crypto, CTLFLAG_RW, 0,
|
|
"In-kernel cryptography");
|
|
|
|
/*
|
|
* Taskqueue used to dispatch the crypto requests
|
|
* that have the CRYPTO_F_ASYNC flag
|
|
*/
|
|
static struct taskqueue *crypto_tq;
|
|
|
|
/*
|
|
* Crypto seq numbers are operated on with modular arithmetic
|
|
*/
|
|
#define CRYPTO_SEQ_GT(a,b) ((int)((a)-(b)) > 0)
|
|
|
|
struct crypto_ret_worker {
|
|
struct mtx crypto_ret_mtx;
|
|
|
|
TAILQ_HEAD(,cryptop) crp_ordered_ret_q; /* ordered callback queue for symetric jobs */
|
|
TAILQ_HEAD(,cryptop) crp_ret_q; /* callback queue for symetric jobs */
|
|
TAILQ_HEAD(,cryptkop) crp_ret_kq; /* callback queue for asym jobs */
|
|
|
|
u_int32_t reorder_ops; /* total ordered sym jobs received */
|
|
u_int32_t reorder_cur_seq; /* current sym job dispatched */
|
|
|
|
struct proc *cryptoretproc;
|
|
};
|
|
static struct crypto_ret_worker *crypto_ret_workers = NULL;
|
|
|
|
#define CRYPTO_RETW(i) (&crypto_ret_workers[i])
|
|
#define CRYPTO_RETW_ID(w) ((w) - crypto_ret_workers)
|
|
#define FOREACH_CRYPTO_RETW(w) \
|
|
for (w = crypto_ret_workers; w < crypto_ret_workers + crypto_workers_num; ++w)
|
|
|
|
#define CRYPTO_RETW_LOCK(w) mtx_lock(&w->crypto_ret_mtx)
|
|
#define CRYPTO_RETW_UNLOCK(w) mtx_unlock(&w->crypto_ret_mtx)
|
|
#define CRYPTO_RETW_EMPTY(w) \
|
|
(TAILQ_EMPTY(&w->crp_ret_q) && TAILQ_EMPTY(&w->crp_ret_kq) && TAILQ_EMPTY(&w->crp_ordered_ret_q))
|
|
|
|
static int crypto_workers_num = 0;
|
|
SYSCTL_INT(_kern_crypto, OID_AUTO, num_workers, CTLFLAG_RDTUN,
|
|
&crypto_workers_num, 0,
|
|
"Number of crypto workers used to dispatch crypto jobs");
|
|
#ifdef COMPAT_FREEBSD12
|
|
SYSCTL_INT(_kern, OID_AUTO, crypto_workers_num, CTLFLAG_RDTUN,
|
|
&crypto_workers_num, 0,
|
|
"Number of crypto workers used to dispatch crypto jobs");
|
|
#endif
|
|
|
|
static uma_zone_t cryptop_zone;
|
|
static uma_zone_t cryptoses_zone;
|
|
|
|
int crypto_userasymcrypto = 1;
|
|
SYSCTL_INT(_kern_crypto, OID_AUTO, asym_enable, CTLFLAG_RW,
|
|
&crypto_userasymcrypto, 0,
|
|
"Enable user-mode access to asymmetric crypto support");
|
|
#ifdef COMPAT_FREEBSD12
|
|
SYSCTL_INT(_kern, OID_AUTO, userasymcrypto, CTLFLAG_RW,
|
|
&crypto_userasymcrypto, 0,
|
|
"Enable/disable user-mode access to asymmetric crypto support");
|
|
#endif
|
|
|
|
int crypto_devallowsoft = 0;
|
|
SYSCTL_INT(_kern_crypto, OID_AUTO, allow_soft, CTLFLAG_RW,
|
|
&crypto_devallowsoft, 0,
|
|
"Enable use of software crypto by /dev/crypto");
|
|
#ifdef COMPAT_FREEBSD12
|
|
SYSCTL_INT(_kern, OID_AUTO, cryptodevallowsoft, CTLFLAG_RW,
|
|
&crypto_devallowsoft, 0,
|
|
"Enable/disable use of software crypto by /dev/crypto");
|
|
#endif
|
|
|
|
MALLOC_DEFINE(M_CRYPTO_DATA, "crypto", "crypto session records");
|
|
|
|
static void crypto_proc(void);
|
|
static struct proc *cryptoproc;
|
|
static void crypto_ret_proc(struct crypto_ret_worker *ret_worker);
|
|
static void crypto_destroy(void);
|
|
static int crypto_invoke(struct cryptocap *cap, struct cryptop *crp, int hint);
|
|
static int crypto_kinvoke(struct cryptkop *krp);
|
|
static void crypto_task_invoke(void *ctx, int pending);
|
|
static void crypto_batch_enqueue(struct cryptop *crp);
|
|
|
|
static struct cryptostats cryptostats;
|
|
SYSCTL_STRUCT(_kern_crypto, OID_AUTO, stats, CTLFLAG_RW, &cryptostats,
|
|
cryptostats, "Crypto system statistics");
|
|
|
|
#ifdef CRYPTO_TIMING
|
|
static int crypto_timing = 0;
|
|
SYSCTL_INT(_debug, OID_AUTO, crypto_timing, CTLFLAG_RW,
|
|
&crypto_timing, 0, "Enable/disable crypto timing support");
|
|
#endif
|
|
|
|
/* Try to avoid directly exposing the key buffer as a symbol */
|
|
static struct keybuf *keybuf;
|
|
|
|
static struct keybuf empty_keybuf = {
|
|
.kb_nents = 0
|
|
};
|
|
|
|
/* Obtain the key buffer from boot metadata */
|
|
static void
|
|
keybuf_init(void)
|
|
{
|
|
caddr_t kmdp;
|
|
|
|
kmdp = preload_search_by_type("elf kernel");
|
|
|
|
if (kmdp == NULL)
|
|
kmdp = preload_search_by_type("elf64 kernel");
|
|
|
|
keybuf = (struct keybuf *)preload_search_info(kmdp,
|
|
MODINFO_METADATA | MODINFOMD_KEYBUF);
|
|
|
|
if (keybuf == NULL)
|
|
keybuf = &empty_keybuf;
|
|
}
|
|
|
|
/* It'd be nice if we could store these in some kind of secure memory... */
|
|
struct keybuf * get_keybuf(void) {
|
|
|
|
return (keybuf);
|
|
}
|
|
|
|
static struct cryptocap *
|
|
cap_ref(struct cryptocap *cap)
|
|
{
|
|
|
|
refcount_acquire(&cap->cc_refs);
|
|
return (cap);
|
|
}
|
|
|
|
static void
|
|
cap_rele(struct cryptocap *cap)
|
|
{
|
|
|
|
if (refcount_release(&cap->cc_refs) == 0)
|
|
return;
|
|
|
|
KASSERT(cap->cc_sessions == 0,
|
|
("freeing crypto driver with active sessions"));
|
|
KASSERT(cap->cc_koperations == 0,
|
|
("freeing crypto driver with active key operations"));
|
|
|
|
free(cap, M_CRYPTO_DATA);
|
|
}
|
|
|
|
static int
|
|
crypto_init(void)
|
|
{
|
|
struct crypto_ret_worker *ret_worker;
|
|
int error;
|
|
|
|
mtx_init(&crypto_drivers_mtx, "crypto", "crypto driver table",
|
|
MTX_DEF|MTX_QUIET);
|
|
|
|
TAILQ_INIT(&crp_q);
|
|
TAILQ_INIT(&crp_kq);
|
|
mtx_init(&crypto_q_mtx, "crypto", "crypto op queues", MTX_DEF);
|
|
|
|
cryptop_zone = uma_zcreate("cryptop", sizeof (struct cryptop),
|
|
0, 0, 0, 0,
|
|
UMA_ALIGN_PTR, UMA_ZONE_ZINIT);
|
|
cryptoses_zone = uma_zcreate("crypto_session",
|
|
sizeof(struct crypto_session), NULL, NULL, NULL, NULL,
|
|
UMA_ALIGN_PTR, UMA_ZONE_ZINIT);
|
|
|
|
if (cryptop_zone == NULL || cryptoses_zone == NULL) {
|
|
printf("crypto_init: cannot setup crypto zones\n");
|
|
error = ENOMEM;
|
|
goto bad;
|
|
}
|
|
|
|
crypto_drivers_size = CRYPTO_DRIVERS_INITIAL;
|
|
crypto_drivers = malloc(crypto_drivers_size *
|
|
sizeof(struct cryptocap), M_CRYPTO_DATA, M_NOWAIT | M_ZERO);
|
|
if (crypto_drivers == NULL) {
|
|
printf("crypto_init: cannot setup crypto drivers\n");
|
|
error = ENOMEM;
|
|
goto bad;
|
|
}
|
|
|
|
if (crypto_workers_num < 1 || crypto_workers_num > mp_ncpus)
|
|
crypto_workers_num = mp_ncpus;
|
|
|
|
crypto_tq = taskqueue_create("crypto", M_WAITOK|M_ZERO,
|
|
taskqueue_thread_enqueue, &crypto_tq);
|
|
if (crypto_tq == NULL) {
|
|
printf("crypto init: cannot setup crypto taskqueue\n");
|
|
error = ENOMEM;
|
|
goto bad;
|
|
}
|
|
|
|
taskqueue_start_threads(&crypto_tq, crypto_workers_num, PRI_MIN_KERN,
|
|
"crypto");
|
|
|
|
error = kproc_create((void (*)(void *)) crypto_proc, NULL,
|
|
&cryptoproc, 0, 0, "crypto");
|
|
if (error) {
|
|
printf("crypto_init: cannot start crypto thread; error %d",
|
|
error);
|
|
goto bad;
|
|
}
|
|
|
|
crypto_ret_workers = malloc(crypto_workers_num * sizeof(struct crypto_ret_worker),
|
|
M_CRYPTO_DATA, M_NOWAIT|M_ZERO);
|
|
if (crypto_ret_workers == NULL) {
|
|
error = ENOMEM;
|
|
printf("crypto_init: cannot allocate ret workers\n");
|
|
goto bad;
|
|
}
|
|
|
|
|
|
FOREACH_CRYPTO_RETW(ret_worker) {
|
|
TAILQ_INIT(&ret_worker->crp_ordered_ret_q);
|
|
TAILQ_INIT(&ret_worker->crp_ret_q);
|
|
TAILQ_INIT(&ret_worker->crp_ret_kq);
|
|
|
|
ret_worker->reorder_ops = 0;
|
|
ret_worker->reorder_cur_seq = 0;
|
|
|
|
mtx_init(&ret_worker->crypto_ret_mtx, "crypto", "crypto return queues", MTX_DEF);
|
|
|
|
error = kproc_create((void (*)(void *)) crypto_ret_proc, ret_worker,
|
|
&ret_worker->cryptoretproc, 0, 0, "crypto returns %td", CRYPTO_RETW_ID(ret_worker));
|
|
if (error) {
|
|
printf("crypto_init: cannot start cryptoret thread; error %d",
|
|
error);
|
|
goto bad;
|
|
}
|
|
}
|
|
|
|
keybuf_init();
|
|
|
|
return 0;
|
|
bad:
|
|
crypto_destroy();
|
|
return error;
|
|
}
|
|
|
|
/*
|
|
* Signal a crypto thread to terminate. We use the driver
|
|
* table lock to synchronize the sleep/wakeups so that we
|
|
* are sure the threads have terminated before we release
|
|
* the data structures they use. See crypto_finis below
|
|
* for the other half of this song-and-dance.
|
|
*/
|
|
static void
|
|
crypto_terminate(struct proc **pp, void *q)
|
|
{
|
|
struct proc *p;
|
|
|
|
mtx_assert(&crypto_drivers_mtx, MA_OWNED);
|
|
p = *pp;
|
|
*pp = NULL;
|
|
if (p) {
|
|
wakeup_one(q);
|
|
PROC_LOCK(p); /* NB: insure we don't miss wakeup */
|
|
CRYPTO_DRIVER_UNLOCK(); /* let crypto_finis progress */
|
|
msleep(p, &p->p_mtx, PWAIT, "crypto_destroy", 0);
|
|
PROC_UNLOCK(p);
|
|
CRYPTO_DRIVER_LOCK();
|
|
}
|
|
}
|
|
|
|
static void
|
|
hmac_init_pad(struct auth_hash *axf, const char *key, int klen, void *auth_ctx,
|
|
uint8_t padval)
|
|
{
|
|
uint8_t hmac_key[HMAC_MAX_BLOCK_LEN];
|
|
u_int i;
|
|
|
|
KASSERT(axf->blocksize <= sizeof(hmac_key),
|
|
("Invalid HMAC block size %d", axf->blocksize));
|
|
|
|
/*
|
|
* If the key is larger than the block size, use the digest of
|
|
* the key as the key instead.
|
|
*/
|
|
memset(hmac_key, 0, sizeof(hmac_key));
|
|
if (klen > axf->blocksize) {
|
|
axf->Init(auth_ctx);
|
|
axf->Update(auth_ctx, key, klen);
|
|
axf->Final(hmac_key, auth_ctx);
|
|
klen = axf->hashsize;
|
|
} else
|
|
memcpy(hmac_key, key, klen);
|
|
|
|
for (i = 0; i < axf->blocksize; i++)
|
|
hmac_key[i] ^= padval;
|
|
|
|
axf->Init(auth_ctx);
|
|
axf->Update(auth_ctx, hmac_key, axf->blocksize);
|
|
}
|
|
|
|
void
|
|
hmac_init_ipad(struct auth_hash *axf, const char *key, int klen,
|
|
void *auth_ctx)
|
|
{
|
|
|
|
hmac_init_pad(axf, key, klen, auth_ctx, HMAC_IPAD_VAL);
|
|
}
|
|
|
|
void
|
|
hmac_init_opad(struct auth_hash *axf, const char *key, int klen,
|
|
void *auth_ctx)
|
|
{
|
|
|
|
hmac_init_pad(axf, key, klen, auth_ctx, HMAC_OPAD_VAL);
|
|
}
|
|
|
|
static void
|
|
crypto_destroy(void)
|
|
{
|
|
struct crypto_ret_worker *ret_worker;
|
|
int i;
|
|
|
|
/*
|
|
* Terminate any crypto threads.
|
|
*/
|
|
if (crypto_tq != NULL)
|
|
taskqueue_drain_all(crypto_tq);
|
|
CRYPTO_DRIVER_LOCK();
|
|
crypto_terminate(&cryptoproc, &crp_q);
|
|
FOREACH_CRYPTO_RETW(ret_worker)
|
|
crypto_terminate(&ret_worker->cryptoretproc, &ret_worker->crp_ret_q);
|
|
CRYPTO_DRIVER_UNLOCK();
|
|
|
|
/* XXX flush queues??? */
|
|
|
|
/*
|
|
* Reclaim dynamically allocated resources.
|
|
*/
|
|
for (i = 0; i < crypto_drivers_size; i++) {
|
|
if (crypto_drivers[i] != NULL)
|
|
cap_rele(crypto_drivers[i]);
|
|
}
|
|
free(crypto_drivers, M_CRYPTO_DATA);
|
|
|
|
if (cryptoses_zone != NULL)
|
|
uma_zdestroy(cryptoses_zone);
|
|
if (cryptop_zone != NULL)
|
|
uma_zdestroy(cryptop_zone);
|
|
mtx_destroy(&crypto_q_mtx);
|
|
FOREACH_CRYPTO_RETW(ret_worker)
|
|
mtx_destroy(&ret_worker->crypto_ret_mtx);
|
|
free(crypto_ret_workers, M_CRYPTO_DATA);
|
|
if (crypto_tq != NULL)
|
|
taskqueue_free(crypto_tq);
|
|
mtx_destroy(&crypto_drivers_mtx);
|
|
}
|
|
|
|
uint32_t
|
|
crypto_ses2hid(crypto_session_t crypto_session)
|
|
{
|
|
return (crypto_session->cap->cc_hid);
|
|
}
|
|
|
|
uint32_t
|
|
crypto_ses2caps(crypto_session_t crypto_session)
|
|
{
|
|
return (crypto_session->cap->cc_flags & 0xff000000);
|
|
}
|
|
|
|
void *
|
|
crypto_get_driver_session(crypto_session_t crypto_session)
|
|
{
|
|
return (crypto_session->softc);
|
|
}
|
|
|
|
const struct crypto_session_params *
|
|
crypto_get_params(crypto_session_t crypto_session)
|
|
{
|
|
return (&crypto_session->csp);
|
|
}
|
|
|
|
struct auth_hash *
|
|
crypto_auth_hash(const struct crypto_session_params *csp)
|
|
{
|
|
|
|
switch (csp->csp_auth_alg) {
|
|
case CRYPTO_SHA1_HMAC:
|
|
return (&auth_hash_hmac_sha1);
|
|
case CRYPTO_SHA2_224_HMAC:
|
|
return (&auth_hash_hmac_sha2_224);
|
|
case CRYPTO_SHA2_256_HMAC:
|
|
return (&auth_hash_hmac_sha2_256);
|
|
case CRYPTO_SHA2_384_HMAC:
|
|
return (&auth_hash_hmac_sha2_384);
|
|
case CRYPTO_SHA2_512_HMAC:
|
|
return (&auth_hash_hmac_sha2_512);
|
|
case CRYPTO_NULL_HMAC:
|
|
return (&auth_hash_null);
|
|
case CRYPTO_RIPEMD160_HMAC:
|
|
return (&auth_hash_hmac_ripemd_160);
|
|
case CRYPTO_SHA1:
|
|
return (&auth_hash_sha1);
|
|
case CRYPTO_SHA2_224:
|
|
return (&auth_hash_sha2_224);
|
|
case CRYPTO_SHA2_256:
|
|
return (&auth_hash_sha2_256);
|
|
case CRYPTO_SHA2_384:
|
|
return (&auth_hash_sha2_384);
|
|
case CRYPTO_SHA2_512:
|
|
return (&auth_hash_sha2_512);
|
|
case CRYPTO_AES_NIST_GMAC:
|
|
switch (csp->csp_auth_klen) {
|
|
case 128 / 8:
|
|
return (&auth_hash_nist_gmac_aes_128);
|
|
case 192 / 8:
|
|
return (&auth_hash_nist_gmac_aes_192);
|
|
case 256 / 8:
|
|
return (&auth_hash_nist_gmac_aes_256);
|
|
default:
|
|
return (NULL);
|
|
}
|
|
case CRYPTO_BLAKE2B:
|
|
return (&auth_hash_blake2b);
|
|
case CRYPTO_BLAKE2S:
|
|
return (&auth_hash_blake2s);
|
|
case CRYPTO_POLY1305:
|
|
return (&auth_hash_poly1305);
|
|
case CRYPTO_AES_CCM_CBC_MAC:
|
|
switch (csp->csp_auth_klen) {
|
|
case 128 / 8:
|
|
return (&auth_hash_ccm_cbc_mac_128);
|
|
case 192 / 8:
|
|
return (&auth_hash_ccm_cbc_mac_192);
|
|
case 256 / 8:
|
|
return (&auth_hash_ccm_cbc_mac_256);
|
|
default:
|
|
return (NULL);
|
|
}
|
|
default:
|
|
return (NULL);
|
|
}
|
|
}
|
|
|
|
struct enc_xform *
|
|
crypto_cipher(const struct crypto_session_params *csp)
|
|
{
|
|
|
|
switch (csp->csp_cipher_alg) {
|
|
case CRYPTO_RIJNDAEL128_CBC:
|
|
return (&enc_xform_rijndael128);
|
|
case CRYPTO_AES_XTS:
|
|
return (&enc_xform_aes_xts);
|
|
case CRYPTO_AES_ICM:
|
|
return (&enc_xform_aes_icm);
|
|
case CRYPTO_AES_NIST_GCM_16:
|
|
return (&enc_xform_aes_nist_gcm);
|
|
case CRYPTO_CAMELLIA_CBC:
|
|
return (&enc_xform_camellia);
|
|
case CRYPTO_NULL_CBC:
|
|
return (&enc_xform_null);
|
|
case CRYPTO_CHACHA20:
|
|
return (&enc_xform_chacha20);
|
|
case CRYPTO_AES_CCM_16:
|
|
return (&enc_xform_ccm);
|
|
default:
|
|
return (NULL);
|
|
}
|
|
}
|
|
|
|
static struct cryptocap *
|
|
crypto_checkdriver(u_int32_t hid)
|
|
{
|
|
|
|
return (hid >= crypto_drivers_size ? NULL : crypto_drivers[hid]);
|
|
}
|
|
|
|
/*
|
|
* Select a driver for a new session that supports the specified
|
|
* algorithms and, optionally, is constrained according to the flags.
|
|
*/
|
|
static struct cryptocap *
|
|
crypto_select_driver(const struct crypto_session_params *csp, int flags)
|
|
{
|
|
struct cryptocap *cap, *best;
|
|
int best_match, error, hid;
|
|
|
|
CRYPTO_DRIVER_ASSERT();
|
|
|
|
best = NULL;
|
|
for (hid = 0; hid < crypto_drivers_size; hid++) {
|
|
/*
|
|
* If there is no driver for this slot, or the driver
|
|
* is not appropriate (hardware or software based on
|
|
* match), then skip.
|
|
*/
|
|
cap = crypto_drivers[hid];
|
|
if (cap == NULL ||
|
|
(cap->cc_flags & flags) == 0)
|
|
continue;
|
|
|
|
error = CRYPTODEV_PROBESESSION(cap->cc_dev, csp);
|
|
if (error >= 0)
|
|
continue;
|
|
|
|
/*
|
|
* Use the driver with the highest probe value.
|
|
* Hardware drivers use a higher probe value than
|
|
* software. In case of a tie, prefer the driver with
|
|
* the fewest active sessions.
|
|
*/
|
|
if (best == NULL || error > best_match ||
|
|
(error == best_match &&
|
|
cap->cc_sessions < best->cc_sessions)) {
|
|
best = cap;
|
|
best_match = error;
|
|
}
|
|
}
|
|
return best;
|
|
}
|
|
|
|
static enum alg_type {
|
|
ALG_NONE = 0,
|
|
ALG_CIPHER,
|
|
ALG_DIGEST,
|
|
ALG_KEYED_DIGEST,
|
|
ALG_COMPRESSION,
|
|
ALG_AEAD
|
|
} alg_types[] = {
|
|
[CRYPTO_SHA1_HMAC] = ALG_KEYED_DIGEST,
|
|
[CRYPTO_RIPEMD160_HMAC] = ALG_KEYED_DIGEST,
|
|
[CRYPTO_AES_CBC] = ALG_CIPHER,
|
|
[CRYPTO_SHA1] = ALG_DIGEST,
|
|
[CRYPTO_NULL_HMAC] = ALG_DIGEST,
|
|
[CRYPTO_NULL_CBC] = ALG_CIPHER,
|
|
[CRYPTO_DEFLATE_COMP] = ALG_COMPRESSION,
|
|
[CRYPTO_SHA2_256_HMAC] = ALG_KEYED_DIGEST,
|
|
[CRYPTO_SHA2_384_HMAC] = ALG_KEYED_DIGEST,
|
|
[CRYPTO_SHA2_512_HMAC] = ALG_KEYED_DIGEST,
|
|
[CRYPTO_CAMELLIA_CBC] = ALG_CIPHER,
|
|
[CRYPTO_AES_XTS] = ALG_CIPHER,
|
|
[CRYPTO_AES_ICM] = ALG_CIPHER,
|
|
[CRYPTO_AES_NIST_GMAC] = ALG_KEYED_DIGEST,
|
|
[CRYPTO_AES_NIST_GCM_16] = ALG_AEAD,
|
|
[CRYPTO_BLAKE2B] = ALG_KEYED_DIGEST,
|
|
[CRYPTO_BLAKE2S] = ALG_KEYED_DIGEST,
|
|
[CRYPTO_CHACHA20] = ALG_CIPHER,
|
|
[CRYPTO_SHA2_224_HMAC] = ALG_KEYED_DIGEST,
|
|
[CRYPTO_RIPEMD160] = ALG_DIGEST,
|
|
[CRYPTO_SHA2_224] = ALG_DIGEST,
|
|
[CRYPTO_SHA2_256] = ALG_DIGEST,
|
|
[CRYPTO_SHA2_384] = ALG_DIGEST,
|
|
[CRYPTO_SHA2_512] = ALG_DIGEST,
|
|
[CRYPTO_POLY1305] = ALG_KEYED_DIGEST,
|
|
[CRYPTO_AES_CCM_CBC_MAC] = ALG_KEYED_DIGEST,
|
|
[CRYPTO_AES_CCM_16] = ALG_AEAD,
|
|
};
|
|
|
|
static enum alg_type
|
|
alg_type(int alg)
|
|
{
|
|
|
|
if (alg < nitems(alg_types))
|
|
return (alg_types[alg]);
|
|
return (ALG_NONE);
|
|
}
|
|
|
|
static bool
|
|
alg_is_compression(int alg)
|
|
{
|
|
|
|
return (alg_type(alg) == ALG_COMPRESSION);
|
|
}
|
|
|
|
static bool
|
|
alg_is_cipher(int alg)
|
|
{
|
|
|
|
return (alg_type(alg) == ALG_CIPHER);
|
|
}
|
|
|
|
static bool
|
|
alg_is_digest(int alg)
|
|
{
|
|
|
|
return (alg_type(alg) == ALG_DIGEST ||
|
|
alg_type(alg) == ALG_KEYED_DIGEST);
|
|
}
|
|
|
|
static bool
|
|
alg_is_keyed_digest(int alg)
|
|
{
|
|
|
|
return (alg_type(alg) == ALG_KEYED_DIGEST);
|
|
}
|
|
|
|
static bool
|
|
alg_is_aead(int alg)
|
|
{
|
|
|
|
return (alg_type(alg) == ALG_AEAD);
|
|
}
|
|
|
|
/* Various sanity checks on crypto session parameters. */
|
|
static bool
|
|
check_csp(const struct crypto_session_params *csp)
|
|
{
|
|
struct auth_hash *axf;
|
|
|
|
/* Mode-independent checks. */
|
|
if ((csp->csp_flags & ~CSP_F_SEPARATE_OUTPUT) != 0)
|
|
return (false);
|
|
if (csp->csp_ivlen < 0 || csp->csp_cipher_klen < 0 ||
|
|
csp->csp_auth_klen < 0 || csp->csp_auth_mlen < 0)
|
|
return (false);
|
|
if (csp->csp_auth_key != NULL && csp->csp_auth_klen == 0)
|
|
return (false);
|
|
if (csp->csp_cipher_key != NULL && csp->csp_cipher_klen == 0)
|
|
return (false);
|
|
|
|
switch (csp->csp_mode) {
|
|
case CSP_MODE_COMPRESS:
|
|
if (!alg_is_compression(csp->csp_cipher_alg))
|
|
return (false);
|
|
if (csp->csp_flags & CSP_F_SEPARATE_OUTPUT)
|
|
return (false);
|
|
if (csp->csp_cipher_klen != 0 || csp->csp_ivlen != 0 ||
|
|
csp->csp_auth_alg != 0 || csp->csp_auth_klen != 0 ||
|
|
csp->csp_auth_mlen != 0)
|
|
return (false);
|
|
break;
|
|
case CSP_MODE_CIPHER:
|
|
if (!alg_is_cipher(csp->csp_cipher_alg))
|
|
return (false);
|
|
if (csp->csp_cipher_alg != CRYPTO_NULL_CBC) {
|
|
if (csp->csp_cipher_klen == 0)
|
|
return (false);
|
|
if (csp->csp_ivlen == 0)
|
|
return (false);
|
|
}
|
|
if (csp->csp_ivlen >= EALG_MAX_BLOCK_LEN)
|
|
return (false);
|
|
if (csp->csp_auth_alg != 0 || csp->csp_auth_klen != 0 ||
|
|
csp->csp_auth_mlen != 0)
|
|
return (false);
|
|
break;
|
|
case CSP_MODE_DIGEST:
|
|
if (csp->csp_cipher_alg != 0 || csp->csp_cipher_klen != 0)
|
|
return (false);
|
|
|
|
/* IV is optional for digests (e.g. GMAC). */
|
|
if (csp->csp_ivlen >= EALG_MAX_BLOCK_LEN)
|
|
return (false);
|
|
if (!alg_is_digest(csp->csp_auth_alg))
|
|
return (false);
|
|
|
|
/* Key is optional for BLAKE2 digests. */
|
|
if (csp->csp_auth_alg == CRYPTO_BLAKE2B ||
|
|
csp->csp_auth_alg == CRYPTO_BLAKE2S)
|
|
;
|
|
else if (alg_is_keyed_digest(csp->csp_auth_alg)) {
|
|
if (csp->csp_auth_klen == 0)
|
|
return (false);
|
|
} else {
|
|
if (csp->csp_auth_klen != 0)
|
|
return (false);
|
|
}
|
|
if (csp->csp_auth_mlen != 0) {
|
|
axf = crypto_auth_hash(csp);
|
|
if (axf == NULL || csp->csp_auth_mlen > axf->hashsize)
|
|
return (false);
|
|
}
|
|
break;
|
|
case CSP_MODE_AEAD:
|
|
if (!alg_is_aead(csp->csp_cipher_alg))
|
|
return (false);
|
|
if (csp->csp_cipher_klen == 0)
|
|
return (false);
|
|
if (csp->csp_ivlen == 0 ||
|
|
csp->csp_ivlen >= EALG_MAX_BLOCK_LEN)
|
|
return (false);
|
|
if (csp->csp_auth_alg != 0 || csp->csp_auth_klen != 0)
|
|
return (false);
|
|
|
|
/*
|
|
* XXX: Would be nice to have a better way to get this
|
|
* value.
|
|
*/
|
|
switch (csp->csp_cipher_alg) {
|
|
case CRYPTO_AES_NIST_GCM_16:
|
|
case CRYPTO_AES_CCM_16:
|
|
if (csp->csp_auth_mlen > 16)
|
|
return (false);
|
|
break;
|
|
}
|
|
break;
|
|
case CSP_MODE_ETA:
|
|
if (!alg_is_cipher(csp->csp_cipher_alg))
|
|
return (false);
|
|
if (csp->csp_cipher_alg != CRYPTO_NULL_CBC) {
|
|
if (csp->csp_cipher_klen == 0)
|
|
return (false);
|
|
if (csp->csp_ivlen == 0)
|
|
return (false);
|
|
}
|
|
if (csp->csp_ivlen >= EALG_MAX_BLOCK_LEN)
|
|
return (false);
|
|
if (!alg_is_digest(csp->csp_auth_alg))
|
|
return (false);
|
|
|
|
/* Key is optional for BLAKE2 digests. */
|
|
if (csp->csp_auth_alg == CRYPTO_BLAKE2B ||
|
|
csp->csp_auth_alg == CRYPTO_BLAKE2S)
|
|
;
|
|
else if (alg_is_keyed_digest(csp->csp_auth_alg)) {
|
|
if (csp->csp_auth_klen == 0)
|
|
return (false);
|
|
} else {
|
|
if (csp->csp_auth_klen != 0)
|
|
return (false);
|
|
}
|
|
if (csp->csp_auth_mlen != 0) {
|
|
axf = crypto_auth_hash(csp);
|
|
if (axf == NULL || csp->csp_auth_mlen > axf->hashsize)
|
|
return (false);
|
|
}
|
|
break;
|
|
default:
|
|
return (false);
|
|
}
|
|
|
|
return (true);
|
|
}
|
|
|
|
/*
|
|
* Delete a session after it has been detached from its driver.
|
|
*/
|
|
static void
|
|
crypto_deletesession(crypto_session_t cses)
|
|
{
|
|
struct cryptocap *cap;
|
|
|
|
cap = cses->cap;
|
|
|
|
explicit_bzero(cses->softc, cap->cc_session_size);
|
|
free(cses->softc, M_CRYPTO_DATA);
|
|
uma_zfree(cryptoses_zone, cses);
|
|
|
|
CRYPTO_DRIVER_LOCK();
|
|
cap->cc_sessions--;
|
|
if (cap->cc_sessions == 0 && cap->cc_flags & CRYPTOCAP_F_CLEANUP)
|
|
wakeup(cap);
|
|
CRYPTO_DRIVER_UNLOCK();
|
|
cap_rele(cap);
|
|
}
|
|
|
|
/*
|
|
* Create a new session. The crid argument specifies a crypto
|
|
* driver to use or constraints on a driver to select (hardware
|
|
* only, software only, either). Whatever driver is selected
|
|
* must be capable of the requested crypto algorithms.
|
|
*/
|
|
int
|
|
crypto_newsession(crypto_session_t *cses,
|
|
const struct crypto_session_params *csp, int crid)
|
|
{
|
|
crypto_session_t res;
|
|
struct cryptocap *cap;
|
|
int err;
|
|
|
|
if (!check_csp(csp))
|
|
return (EINVAL);
|
|
|
|
res = NULL;
|
|
|
|
CRYPTO_DRIVER_LOCK();
|
|
if ((crid & (CRYPTOCAP_F_HARDWARE | CRYPTOCAP_F_SOFTWARE)) == 0) {
|
|
/*
|
|
* Use specified driver; verify it is capable.
|
|
*/
|
|
cap = crypto_checkdriver(crid);
|
|
if (cap != NULL && CRYPTODEV_PROBESESSION(cap->cc_dev, csp) > 0)
|
|
cap = NULL;
|
|
} else {
|
|
/*
|
|
* No requested driver; select based on crid flags.
|
|
*/
|
|
cap = crypto_select_driver(csp, crid);
|
|
}
|
|
if (cap == NULL) {
|
|
CRYPTO_DRIVER_UNLOCK();
|
|
CRYPTDEB("no driver");
|
|
return (EOPNOTSUPP);
|
|
}
|
|
cap_ref(cap);
|
|
cap->cc_sessions++;
|
|
CRYPTO_DRIVER_UNLOCK();
|
|
|
|
res = uma_zalloc(cryptoses_zone, M_WAITOK | M_ZERO);
|
|
res->cap = cap;
|
|
res->softc = malloc(cap->cc_session_size, M_CRYPTO_DATA, M_WAITOK |
|
|
M_ZERO);
|
|
res->csp = *csp;
|
|
|
|
/* Call the driver initialization routine. */
|
|
err = CRYPTODEV_NEWSESSION(cap->cc_dev, res, csp);
|
|
if (err != 0) {
|
|
CRYPTDEB("dev newsession failed: %d", err);
|
|
crypto_deletesession(res);
|
|
return (err);
|
|
}
|
|
|
|
*cses = res;
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Delete an existing session (or a reserved session on an unregistered
|
|
* driver).
|
|
*/
|
|
void
|
|
crypto_freesession(crypto_session_t cses)
|
|
{
|
|
struct cryptocap *cap;
|
|
|
|
if (cses == NULL)
|
|
return;
|
|
|
|
cap = cses->cap;
|
|
|
|
/* Call the driver cleanup routine, if available. */
|
|
CRYPTODEV_FREESESSION(cap->cc_dev, cses);
|
|
|
|
crypto_deletesession(cses);
|
|
}
|
|
|
|
/*
|
|
* Return a new driver id. Registers a driver with the system so that
|
|
* it can be probed by subsequent sessions.
|
|
*/
|
|
int32_t
|
|
crypto_get_driverid(device_t dev, size_t sessionsize, int flags)
|
|
{
|
|
struct cryptocap *cap, **newdrv;
|
|
int i;
|
|
|
|
if ((flags & (CRYPTOCAP_F_HARDWARE | CRYPTOCAP_F_SOFTWARE)) == 0) {
|
|
device_printf(dev,
|
|
"no flags specified when registering driver\n");
|
|
return -1;
|
|
}
|
|
|
|
cap = malloc(sizeof(*cap), M_CRYPTO_DATA, M_WAITOK | M_ZERO);
|
|
cap->cc_dev = dev;
|
|
cap->cc_session_size = sessionsize;
|
|
cap->cc_flags = flags;
|
|
refcount_init(&cap->cc_refs, 1);
|
|
|
|
CRYPTO_DRIVER_LOCK();
|
|
for (;;) {
|
|
for (i = 0; i < crypto_drivers_size; i++) {
|
|
if (crypto_drivers[i] == NULL)
|
|
break;
|
|
}
|
|
|
|
if (i < crypto_drivers_size)
|
|
break;
|
|
|
|
/* Out of entries, allocate some more. */
|
|
|
|
if (2 * crypto_drivers_size <= crypto_drivers_size) {
|
|
CRYPTO_DRIVER_UNLOCK();
|
|
printf("crypto: driver count wraparound!\n");
|
|
cap_rele(cap);
|
|
return (-1);
|
|
}
|
|
CRYPTO_DRIVER_UNLOCK();
|
|
|
|
newdrv = malloc(2 * crypto_drivers_size *
|
|
sizeof(*crypto_drivers), M_CRYPTO_DATA, M_WAITOK | M_ZERO);
|
|
|
|
CRYPTO_DRIVER_LOCK();
|
|
memcpy(newdrv, crypto_drivers,
|
|
crypto_drivers_size * sizeof(*crypto_drivers));
|
|
|
|
crypto_drivers_size *= 2;
|
|
|
|
free(crypto_drivers, M_CRYPTO_DATA);
|
|
crypto_drivers = newdrv;
|
|
}
|
|
|
|
cap->cc_hid = i;
|
|
crypto_drivers[i] = cap;
|
|
CRYPTO_DRIVER_UNLOCK();
|
|
|
|
if (bootverbose)
|
|
printf("crypto: assign %s driver id %u, flags 0x%x\n",
|
|
device_get_nameunit(dev), i, flags);
|
|
|
|
return i;
|
|
}
|
|
|
|
/*
|
|
* Lookup a driver by name. We match against the full device
|
|
* name and unit, and against just the name. The latter gives
|
|
* us a simple widlcarding by device name. On success return the
|
|
* driver/hardware identifier; otherwise return -1.
|
|
*/
|
|
int
|
|
crypto_find_driver(const char *match)
|
|
{
|
|
struct cryptocap *cap;
|
|
int i, len = strlen(match);
|
|
|
|
CRYPTO_DRIVER_LOCK();
|
|
for (i = 0; i < crypto_drivers_size; i++) {
|
|
if (crypto_drivers[i] == NULL)
|
|
continue;
|
|
cap = crypto_drivers[i];
|
|
if (strncmp(match, device_get_nameunit(cap->cc_dev), len) == 0 ||
|
|
strncmp(match, device_get_name(cap->cc_dev), len) == 0) {
|
|
CRYPTO_DRIVER_UNLOCK();
|
|
return (i);
|
|
}
|
|
}
|
|
CRYPTO_DRIVER_UNLOCK();
|
|
return (-1);
|
|
}
|
|
|
|
/*
|
|
* Return the device_t for the specified driver or NULL
|
|
* if the driver identifier is invalid.
|
|
*/
|
|
device_t
|
|
crypto_find_device_byhid(int hid)
|
|
{
|
|
struct cryptocap *cap;
|
|
device_t dev;
|
|
|
|
dev = NULL;
|
|
CRYPTO_DRIVER_LOCK();
|
|
cap = crypto_checkdriver(hid);
|
|
if (cap != NULL)
|
|
dev = cap->cc_dev;
|
|
CRYPTO_DRIVER_UNLOCK();
|
|
return (dev);
|
|
}
|
|
|
|
/*
|
|
* Return the device/driver capabilities.
|
|
*/
|
|
int
|
|
crypto_getcaps(int hid)
|
|
{
|
|
struct cryptocap *cap;
|
|
int flags;
|
|
|
|
flags = 0;
|
|
CRYPTO_DRIVER_LOCK();
|
|
cap = crypto_checkdriver(hid);
|
|
if (cap != NULL)
|
|
flags = cap->cc_flags;
|
|
CRYPTO_DRIVER_UNLOCK();
|
|
return (flags);
|
|
}
|
|
|
|
/*
|
|
* Register support for a key-related algorithm. This routine
|
|
* is called once for each algorithm supported a driver.
|
|
*/
|
|
int
|
|
crypto_kregister(u_int32_t driverid, int kalg, u_int32_t flags)
|
|
{
|
|
struct cryptocap *cap;
|
|
int err;
|
|
|
|
CRYPTO_DRIVER_LOCK();
|
|
|
|
cap = crypto_checkdriver(driverid);
|
|
if (cap != NULL &&
|
|
(CRK_ALGORITM_MIN <= kalg && kalg <= CRK_ALGORITHM_MAX)) {
|
|
/*
|
|
* XXX Do some performance testing to determine placing.
|
|
* XXX We probably need an auxiliary data structure that
|
|
* XXX describes relative performances.
|
|
*/
|
|
|
|
cap->cc_kalg[kalg] = flags | CRYPTO_ALG_FLAG_SUPPORTED;
|
|
if (bootverbose)
|
|
printf("crypto: %s registers key alg %u flags %u\n"
|
|
, device_get_nameunit(cap->cc_dev)
|
|
, kalg
|
|
, flags
|
|
);
|
|
err = 0;
|
|
} else
|
|
err = EINVAL;
|
|
|
|
CRYPTO_DRIVER_UNLOCK();
|
|
return err;
|
|
}
|
|
|
|
/*
|
|
* Unregister all algorithms associated with a crypto driver.
|
|
* If there are pending sessions using it, leave enough information
|
|
* around so that subsequent calls using those sessions will
|
|
* correctly detect the driver has been unregistered and reroute
|
|
* requests.
|
|
*/
|
|
int
|
|
crypto_unregister_all(u_int32_t driverid)
|
|
{
|
|
struct cryptocap *cap;
|
|
|
|
CRYPTO_DRIVER_LOCK();
|
|
cap = crypto_checkdriver(driverid);
|
|
if (cap == NULL) {
|
|
CRYPTO_DRIVER_UNLOCK();
|
|
return (EINVAL);
|
|
}
|
|
|
|
cap->cc_flags |= CRYPTOCAP_F_CLEANUP;
|
|
crypto_drivers[driverid] = NULL;
|
|
|
|
/*
|
|
* XXX: This doesn't do anything to kick sessions that
|
|
* have no pending operations.
|
|
*/
|
|
while (cap->cc_sessions != 0 || cap->cc_koperations != 0)
|
|
mtx_sleep(cap, &crypto_drivers_mtx, 0, "cryunreg", 0);
|
|
CRYPTO_DRIVER_UNLOCK();
|
|
cap_rele(cap);
|
|
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Clear blockage on a driver. The what parameter indicates whether
|
|
* the driver is now ready for cryptop's and/or cryptokop's.
|
|
*/
|
|
int
|
|
crypto_unblock(u_int32_t driverid, int what)
|
|
{
|
|
struct cryptocap *cap;
|
|
int err;
|
|
|
|
CRYPTO_Q_LOCK();
|
|
cap = crypto_checkdriver(driverid);
|
|
if (cap != NULL) {
|
|
if (what & CRYPTO_SYMQ)
|
|
cap->cc_qblocked = 0;
|
|
if (what & CRYPTO_ASYMQ)
|
|
cap->cc_kqblocked = 0;
|
|
if (crp_sleep)
|
|
wakeup_one(&crp_q);
|
|
err = 0;
|
|
} else
|
|
err = EINVAL;
|
|
CRYPTO_Q_UNLOCK();
|
|
|
|
return err;
|
|
}
|
|
|
|
size_t
|
|
crypto_buffer_len(struct crypto_buffer *cb)
|
|
{
|
|
switch (cb->cb_type) {
|
|
case CRYPTO_BUF_CONTIG:
|
|
return (cb->cb_buf_len);
|
|
case CRYPTO_BUF_MBUF:
|
|
if (cb->cb_mbuf->m_flags & M_PKTHDR)
|
|
return (cb->cb_mbuf->m_pkthdr.len);
|
|
return (m_length(cb->cb_mbuf, NULL));
|
|
case CRYPTO_BUF_UIO:
|
|
return (cb->cb_uio->uio_resid);
|
|
default:
|
|
return (0);
|
|
}
|
|
}
|
|
|
|
#ifdef INVARIANTS
|
|
/* Various sanity checks on crypto requests. */
|
|
static void
|
|
cb_sanity(struct crypto_buffer *cb, const char *name)
|
|
{
|
|
KASSERT(cb->cb_type > CRYPTO_BUF_NONE && cb->cb_type <= CRYPTO_BUF_LAST,
|
|
("incoming crp with invalid %s buffer type", name));
|
|
if (cb->cb_type == CRYPTO_BUF_CONTIG)
|
|
KASSERT(cb->cb_buf_len >= 0,
|
|
("incoming crp with -ve %s buffer length", name));
|
|
}
|
|
|
|
static void
|
|
crp_sanity(struct cryptop *crp)
|
|
{
|
|
struct crypto_session_params *csp;
|
|
struct crypto_buffer *out;
|
|
size_t ilen, len, olen;
|
|
|
|
KASSERT(crp->crp_session != NULL, ("incoming crp without a session"));
|
|
KASSERT(crp->crp_obuf.cb_type >= CRYPTO_BUF_NONE &&
|
|
crp->crp_obuf.cb_type <= CRYPTO_BUF_LAST,
|
|
("incoming crp with invalid output buffer type"));
|
|
KASSERT(crp->crp_etype == 0, ("incoming crp with error"));
|
|
KASSERT(!(crp->crp_flags & CRYPTO_F_DONE),
|
|
("incoming crp already done"));
|
|
|
|
csp = &crp->crp_session->csp;
|
|
cb_sanity(&crp->crp_buf, "input");
|
|
ilen = crypto_buffer_len(&crp->crp_buf);
|
|
olen = ilen;
|
|
out = NULL;
|
|
if (csp->csp_flags & CSP_F_SEPARATE_OUTPUT) {
|
|
if (crp->crp_obuf.cb_type != CRYPTO_BUF_NONE) {
|
|
cb_sanity(&crp->crp_obuf, "output");
|
|
out = &crp->crp_obuf;
|
|
olen = crypto_buffer_len(out);
|
|
}
|
|
} else
|
|
KASSERT(crp->crp_obuf.cb_type == CRYPTO_BUF_NONE,
|
|
("incoming crp with separate output buffer "
|
|
"but no session support"));
|
|
|
|
switch (csp->csp_mode) {
|
|
case CSP_MODE_COMPRESS:
|
|
KASSERT(crp->crp_op == CRYPTO_OP_COMPRESS ||
|
|
crp->crp_op == CRYPTO_OP_DECOMPRESS,
|
|
("invalid compression op %x", crp->crp_op));
|
|
break;
|
|
case CSP_MODE_CIPHER:
|
|
KASSERT(crp->crp_op == CRYPTO_OP_ENCRYPT ||
|
|
crp->crp_op == CRYPTO_OP_DECRYPT,
|
|
("invalid cipher op %x", crp->crp_op));
|
|
break;
|
|
case CSP_MODE_DIGEST:
|
|
KASSERT(crp->crp_op == CRYPTO_OP_COMPUTE_DIGEST ||
|
|
crp->crp_op == CRYPTO_OP_VERIFY_DIGEST,
|
|
("invalid digest op %x", crp->crp_op));
|
|
break;
|
|
case CSP_MODE_AEAD:
|
|
KASSERT(crp->crp_op ==
|
|
(CRYPTO_OP_ENCRYPT | CRYPTO_OP_COMPUTE_DIGEST) ||
|
|
crp->crp_op ==
|
|
(CRYPTO_OP_DECRYPT | CRYPTO_OP_VERIFY_DIGEST),
|
|
("invalid AEAD op %x", crp->crp_op));
|
|
if (csp->csp_cipher_alg == CRYPTO_AES_NIST_GCM_16)
|
|
KASSERT(crp->crp_flags & CRYPTO_F_IV_SEPARATE,
|
|
("GCM without a separate IV"));
|
|
if (csp->csp_cipher_alg == CRYPTO_AES_CCM_16)
|
|
KASSERT(crp->crp_flags & CRYPTO_F_IV_SEPARATE,
|
|
("CCM without a separate IV"));
|
|
break;
|
|
case CSP_MODE_ETA:
|
|
KASSERT(crp->crp_op ==
|
|
(CRYPTO_OP_ENCRYPT | CRYPTO_OP_COMPUTE_DIGEST) ||
|
|
crp->crp_op ==
|
|
(CRYPTO_OP_DECRYPT | CRYPTO_OP_VERIFY_DIGEST),
|
|
("invalid ETA op %x", crp->crp_op));
|
|
break;
|
|
}
|
|
if (csp->csp_mode == CSP_MODE_AEAD || csp->csp_mode == CSP_MODE_ETA) {
|
|
KASSERT(crp->crp_aad_start == 0 ||
|
|
crp->crp_aad_start < ilen,
|
|
("invalid AAD start"));
|
|
KASSERT(crp->crp_aad_length != 0 || crp->crp_aad_start == 0,
|
|
("AAD with zero length and non-zero start"));
|
|
KASSERT(crp->crp_aad_length == 0 ||
|
|
crp->crp_aad_start + crp->crp_aad_length <= ilen,
|
|
("AAD outside input length"));
|
|
} else {
|
|
KASSERT(crp->crp_aad_start == 0 && crp->crp_aad_length == 0,
|
|
("AAD region in request not supporting AAD"));
|
|
}
|
|
if (csp->csp_ivlen == 0) {
|
|
KASSERT((crp->crp_flags & CRYPTO_F_IV_SEPARATE) == 0,
|
|
("IV_SEPARATE set when IV isn't used"));
|
|
KASSERT(crp->crp_iv_start == 0,
|
|
("crp_iv_start set when IV isn't used"));
|
|
} else if (crp->crp_flags & CRYPTO_F_IV_SEPARATE) {
|
|
KASSERT(crp->crp_iv_start == 0,
|
|
("IV_SEPARATE used with non-zero IV start"));
|
|
} else {
|
|
KASSERT(crp->crp_iv_start < ilen,
|
|
("invalid IV start"));
|
|
KASSERT(crp->crp_iv_start + csp->csp_ivlen <= ilen,
|
|
("IV outside buffer length"));
|
|
}
|
|
/* XXX: payload_start of 0 should always be < ilen? */
|
|
KASSERT(crp->crp_payload_start == 0 ||
|
|
crp->crp_payload_start < ilen,
|
|
("invalid payload start"));
|
|
KASSERT(crp->crp_payload_start + crp->crp_payload_length <=
|
|
ilen, ("payload outside input buffer"));
|
|
if (out == NULL) {
|
|
KASSERT(crp->crp_payload_output_start == 0,
|
|
("payload output start non-zero without output buffer"));
|
|
} else {
|
|
KASSERT(crp->crp_payload_output_start < olen,
|
|
("invalid payload output start"));
|
|
KASSERT(crp->crp_payload_output_start +
|
|
crp->crp_payload_length <= olen,
|
|
("payload outside output buffer"));
|
|
}
|
|
if (csp->csp_mode == CSP_MODE_DIGEST ||
|
|
csp->csp_mode == CSP_MODE_AEAD || csp->csp_mode == CSP_MODE_ETA) {
|
|
if (crp->crp_op & CRYPTO_OP_VERIFY_DIGEST)
|
|
len = ilen;
|
|
else
|
|
len = olen;
|
|
KASSERT(crp->crp_digest_start == 0 ||
|
|
crp->crp_digest_start < len,
|
|
("invalid digest start"));
|
|
/* XXX: For the mlen == 0 case this check isn't perfect. */
|
|
KASSERT(crp->crp_digest_start + csp->csp_auth_mlen <= len,
|
|
("digest outside buffer"));
|
|
} else {
|
|
KASSERT(crp->crp_digest_start == 0,
|
|
("non-zero digest start for request without a digest"));
|
|
}
|
|
if (csp->csp_cipher_klen != 0)
|
|
KASSERT(csp->csp_cipher_key != NULL ||
|
|
crp->crp_cipher_key != NULL,
|
|
("cipher request without a key"));
|
|
if (csp->csp_auth_klen != 0)
|
|
KASSERT(csp->csp_auth_key != NULL || crp->crp_auth_key != NULL,
|
|
("auth request without a key"));
|
|
KASSERT(crp->crp_callback != NULL, ("incoming crp without callback"));
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* Add a crypto request to a queue, to be processed by the kernel thread.
|
|
*/
|
|
int
|
|
crypto_dispatch(struct cryptop *crp)
|
|
{
|
|
struct cryptocap *cap;
|
|
int result;
|
|
|
|
#ifdef INVARIANTS
|
|
crp_sanity(crp);
|
|
#endif
|
|
|
|
cryptostats.cs_ops++;
|
|
|
|
#ifdef CRYPTO_TIMING
|
|
if (crypto_timing)
|
|
binuptime(&crp->crp_tstamp);
|
|
#endif
|
|
|
|
crp->crp_retw_id = ((uintptr_t)crp->crp_session) % crypto_workers_num;
|
|
|
|
if (CRYPTOP_ASYNC(crp)) {
|
|
if (crp->crp_flags & CRYPTO_F_ASYNC_KEEPORDER) {
|
|
struct crypto_ret_worker *ret_worker;
|
|
|
|
ret_worker = CRYPTO_RETW(crp->crp_retw_id);
|
|
|
|
CRYPTO_RETW_LOCK(ret_worker);
|
|
crp->crp_seq = ret_worker->reorder_ops++;
|
|
CRYPTO_RETW_UNLOCK(ret_worker);
|
|
}
|
|
|
|
TASK_INIT(&crp->crp_task, 0, crypto_task_invoke, crp);
|
|
taskqueue_enqueue(crypto_tq, &crp->crp_task);
|
|
return (0);
|
|
}
|
|
|
|
if ((crp->crp_flags & CRYPTO_F_BATCH) == 0) {
|
|
/*
|
|
* Caller marked the request to be processed
|
|
* immediately; dispatch it directly to the
|
|
* driver unless the driver is currently blocked.
|
|
*/
|
|
cap = crp->crp_session->cap;
|
|
if (!cap->cc_qblocked) {
|
|
result = crypto_invoke(cap, crp, 0);
|
|
if (result != ERESTART)
|
|
return (result);
|
|
/*
|
|
* The driver ran out of resources, put the request on
|
|
* the queue.
|
|
*/
|
|
}
|
|
}
|
|
crypto_batch_enqueue(crp);
|
|
return 0;
|
|
}
|
|
|
|
void
|
|
crypto_batch_enqueue(struct cryptop *crp)
|
|
{
|
|
|
|
CRYPTO_Q_LOCK();
|
|
TAILQ_INSERT_TAIL(&crp_q, crp, crp_next);
|
|
if (crp_sleep)
|
|
wakeup_one(&crp_q);
|
|
CRYPTO_Q_UNLOCK();
|
|
}
|
|
|
|
/*
|
|
* Add an asymetric crypto request to a queue,
|
|
* to be processed by the kernel thread.
|
|
*/
|
|
int
|
|
crypto_kdispatch(struct cryptkop *krp)
|
|
{
|
|
int error;
|
|
|
|
cryptostats.cs_kops++;
|
|
|
|
krp->krp_cap = NULL;
|
|
error = crypto_kinvoke(krp);
|
|
if (error == ERESTART) {
|
|
CRYPTO_Q_LOCK();
|
|
TAILQ_INSERT_TAIL(&crp_kq, krp, krp_next);
|
|
if (crp_sleep)
|
|
wakeup_one(&crp_q);
|
|
CRYPTO_Q_UNLOCK();
|
|
error = 0;
|
|
}
|
|
return error;
|
|
}
|
|
|
|
/*
|
|
* Verify a driver is suitable for the specified operation.
|
|
*/
|
|
static __inline int
|
|
kdriver_suitable(const struct cryptocap *cap, const struct cryptkop *krp)
|
|
{
|
|
return (cap->cc_kalg[krp->krp_op] & CRYPTO_ALG_FLAG_SUPPORTED) != 0;
|
|
}
|
|
|
|
/*
|
|
* Select a driver for an asym operation. The driver must
|
|
* support the necessary algorithm. The caller can constrain
|
|
* which device is selected with the flags parameter. The
|
|
* algorithm we use here is pretty stupid; just use the first
|
|
* driver that supports the algorithms we need. If there are
|
|
* multiple suitable drivers we choose the driver with the
|
|
* fewest active operations. We prefer hardware-backed
|
|
* drivers to software ones when either may be used.
|
|
*/
|
|
static struct cryptocap *
|
|
crypto_select_kdriver(const struct cryptkop *krp, int flags)
|
|
{
|
|
struct cryptocap *cap, *best;
|
|
int match, hid;
|
|
|
|
CRYPTO_DRIVER_ASSERT();
|
|
|
|
/*
|
|
* Look first for hardware crypto devices if permitted.
|
|
*/
|
|
if (flags & CRYPTOCAP_F_HARDWARE)
|
|
match = CRYPTOCAP_F_HARDWARE;
|
|
else
|
|
match = CRYPTOCAP_F_SOFTWARE;
|
|
best = NULL;
|
|
again:
|
|
for (hid = 0; hid < crypto_drivers_size; hid++) {
|
|
/*
|
|
* If there is no driver for this slot, or the driver
|
|
* is not appropriate (hardware or software based on
|
|
* match), then skip.
|
|
*/
|
|
cap = crypto_drivers[hid];
|
|
if (cap->cc_dev == NULL ||
|
|
(cap->cc_flags & match) == 0)
|
|
continue;
|
|
|
|
/* verify all the algorithms are supported. */
|
|
if (kdriver_suitable(cap, krp)) {
|
|
if (best == NULL ||
|
|
cap->cc_koperations < best->cc_koperations)
|
|
best = cap;
|
|
}
|
|
}
|
|
if (best != NULL)
|
|
return best;
|
|
if (match == CRYPTOCAP_F_HARDWARE && (flags & CRYPTOCAP_F_SOFTWARE)) {
|
|
/* sort of an Algol 68-style for loop */
|
|
match = CRYPTOCAP_F_SOFTWARE;
|
|
goto again;
|
|
}
|
|
return best;
|
|
}
|
|
|
|
/*
|
|
* Choose a driver for an asymmetric crypto request.
|
|
*/
|
|
static struct cryptocap *
|
|
crypto_lookup_kdriver(struct cryptkop *krp)
|
|
{
|
|
struct cryptocap *cap;
|
|
uint32_t crid;
|
|
|
|
/* If this request is requeued, it might already have a driver. */
|
|
cap = krp->krp_cap;
|
|
if (cap != NULL)
|
|
return (cap);
|
|
|
|
/* Use krp_crid to choose a driver. */
|
|
crid = krp->krp_crid;
|
|
if ((crid & (CRYPTOCAP_F_HARDWARE | CRYPTOCAP_F_SOFTWARE)) == 0) {
|
|
cap = crypto_checkdriver(crid);
|
|
if (cap != NULL) {
|
|
/*
|
|
* Driver present, it must support the
|
|
* necessary algorithm and, if s/w drivers are
|
|
* excluded, it must be registered as
|
|
* hardware-backed.
|
|
*/
|
|
if (!kdriver_suitable(cap, krp) ||
|
|
(!crypto_devallowsoft &&
|
|
(cap->cc_flags & CRYPTOCAP_F_HARDWARE) == 0))
|
|
cap = NULL;
|
|
}
|
|
} else {
|
|
/*
|
|
* No requested driver; select based on crid flags.
|
|
*/
|
|
if (!crypto_devallowsoft) /* NB: disallow s/w drivers */
|
|
crid &= ~CRYPTOCAP_F_SOFTWARE;
|
|
cap = crypto_select_kdriver(krp, crid);
|
|
}
|
|
|
|
if (cap != NULL) {
|
|
krp->krp_cap = cap_ref(cap);
|
|
krp->krp_hid = cap->cc_hid;
|
|
}
|
|
return (cap);
|
|
}
|
|
|
|
/*
|
|
* Dispatch an asymmetric crypto request.
|
|
*/
|
|
static int
|
|
crypto_kinvoke(struct cryptkop *krp)
|
|
{
|
|
struct cryptocap *cap = NULL;
|
|
int error;
|
|
|
|
KASSERT(krp != NULL, ("%s: krp == NULL", __func__));
|
|
KASSERT(krp->krp_callback != NULL,
|
|
("%s: krp->crp_callback == NULL", __func__));
|
|
|
|
CRYPTO_DRIVER_LOCK();
|
|
cap = crypto_lookup_kdriver(krp);
|
|
if (cap == NULL) {
|
|
CRYPTO_DRIVER_UNLOCK();
|
|
krp->krp_status = ENODEV;
|
|
crypto_kdone(krp);
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* If the device is blocked, return ERESTART to requeue it.
|
|
*/
|
|
if (cap->cc_kqblocked) {
|
|
/*
|
|
* XXX: Previously this set krp_status to ERESTART and
|
|
* invoked crypto_kdone but the caller would still
|
|
* requeue it.
|
|
*/
|
|
CRYPTO_DRIVER_UNLOCK();
|
|
return (ERESTART);
|
|
}
|
|
|
|
cap->cc_koperations++;
|
|
CRYPTO_DRIVER_UNLOCK();
|
|
error = CRYPTODEV_KPROCESS(cap->cc_dev, krp, 0);
|
|
if (error == ERESTART) {
|
|
CRYPTO_DRIVER_LOCK();
|
|
cap->cc_koperations--;
|
|
CRYPTO_DRIVER_UNLOCK();
|
|
return (error);
|
|
}
|
|
|
|
KASSERT(error == 0, ("error %d returned from crypto_kprocess", error));
|
|
return (0);
|
|
}
|
|
|
|
#ifdef CRYPTO_TIMING
|
|
static void
|
|
crypto_tstat(struct cryptotstat *ts, struct bintime *bt)
|
|
{
|
|
struct bintime now, delta;
|
|
struct timespec t;
|
|
uint64_t u;
|
|
|
|
binuptime(&now);
|
|
u = now.frac;
|
|
delta.frac = now.frac - bt->frac;
|
|
delta.sec = now.sec - bt->sec;
|
|
if (u < delta.frac)
|
|
delta.sec--;
|
|
bintime2timespec(&delta, &t);
|
|
timespecadd(&ts->acc, &t, &ts->acc);
|
|
if (timespeccmp(&t, &ts->min, <))
|
|
ts->min = t;
|
|
if (timespeccmp(&t, &ts->max, >))
|
|
ts->max = t;
|
|
ts->count++;
|
|
|
|
*bt = now;
|
|
}
|
|
#endif
|
|
|
|
static void
|
|
crypto_task_invoke(void *ctx, int pending)
|
|
{
|
|
struct cryptocap *cap;
|
|
struct cryptop *crp;
|
|
int result;
|
|
|
|
crp = (struct cryptop *)ctx;
|
|
cap = crp->crp_session->cap;
|
|
result = crypto_invoke(cap, crp, 0);
|
|
if (result == ERESTART)
|
|
crypto_batch_enqueue(crp);
|
|
}
|
|
|
|
/*
|
|
* Dispatch a crypto request to the appropriate crypto devices.
|
|
*/
|
|
static int
|
|
crypto_invoke(struct cryptocap *cap, struct cryptop *crp, int hint)
|
|
{
|
|
|
|
KASSERT(crp != NULL, ("%s: crp == NULL", __func__));
|
|
KASSERT(crp->crp_callback != NULL,
|
|
("%s: crp->crp_callback == NULL", __func__));
|
|
KASSERT(crp->crp_session != NULL,
|
|
("%s: crp->crp_session == NULL", __func__));
|
|
|
|
#ifdef CRYPTO_TIMING
|
|
if (crypto_timing)
|
|
crypto_tstat(&cryptostats.cs_invoke, &crp->crp_tstamp);
|
|
#endif
|
|
if (cap->cc_flags & CRYPTOCAP_F_CLEANUP) {
|
|
struct crypto_session_params csp;
|
|
crypto_session_t nses;
|
|
|
|
/*
|
|
* Driver has unregistered; migrate the session and return
|
|
* an error to the caller so they'll resubmit the op.
|
|
*
|
|
* XXX: What if there are more already queued requests for this
|
|
* session?
|
|
*
|
|
* XXX: Real solution is to make sessions refcounted
|
|
* and force callers to hold a reference when
|
|
* assigning to crp_session. Could maybe change
|
|
* crypto_getreq to accept a session pointer to make
|
|
* that work. Alternatively, we could abandon the
|
|
* notion of rewriting crp_session in requests forcing
|
|
* the caller to deal with allocating a new session.
|
|
* Perhaps provide a method to allow a crp's session to
|
|
* be swapped that callers could use.
|
|
*/
|
|
csp = crp->crp_session->csp;
|
|
crypto_freesession(crp->crp_session);
|
|
|
|
/*
|
|
* XXX: Key pointers may no longer be valid. If we
|
|
* really want to support this we need to define the
|
|
* KPI such that 'csp' is required to be valid for the
|
|
* duration of a session by the caller perhaps.
|
|
*
|
|
* XXX: If the keys have been changed this will reuse
|
|
* the old keys. This probably suggests making
|
|
* rekeying more explicit and updating the key
|
|
* pointers in 'csp' when the keys change.
|
|
*/
|
|
if (crypto_newsession(&nses, &csp,
|
|
CRYPTOCAP_F_HARDWARE | CRYPTOCAP_F_SOFTWARE) == 0)
|
|
crp->crp_session = nses;
|
|
|
|
crp->crp_etype = EAGAIN;
|
|
crypto_done(crp);
|
|
return 0;
|
|
} else {
|
|
/*
|
|
* Invoke the driver to process the request.
|
|
*/
|
|
return CRYPTODEV_PROCESS(cap->cc_dev, crp, hint);
|
|
}
|
|
}
|
|
|
|
void
|
|
crypto_freereq(struct cryptop *crp)
|
|
{
|
|
|
|
if (crp == NULL)
|
|
return;
|
|
|
|
#ifdef DIAGNOSTIC
|
|
{
|
|
struct cryptop *crp2;
|
|
struct crypto_ret_worker *ret_worker;
|
|
|
|
CRYPTO_Q_LOCK();
|
|
TAILQ_FOREACH(crp2, &crp_q, crp_next) {
|
|
KASSERT(crp2 != crp,
|
|
("Freeing cryptop from the crypto queue (%p).",
|
|
crp));
|
|
}
|
|
CRYPTO_Q_UNLOCK();
|
|
|
|
FOREACH_CRYPTO_RETW(ret_worker) {
|
|
CRYPTO_RETW_LOCK(ret_worker);
|
|
TAILQ_FOREACH(crp2, &ret_worker->crp_ret_q, crp_next) {
|
|
KASSERT(crp2 != crp,
|
|
("Freeing cryptop from the return queue (%p).",
|
|
crp));
|
|
}
|
|
CRYPTO_RETW_UNLOCK(ret_worker);
|
|
}
|
|
}
|
|
#endif
|
|
|
|
uma_zfree(cryptop_zone, crp);
|
|
}
|
|
|
|
struct cryptop *
|
|
crypto_getreq(crypto_session_t cses, int how)
|
|
{
|
|
struct cryptop *crp;
|
|
|
|
MPASS(how == M_WAITOK || how == M_NOWAIT);
|
|
crp = uma_zalloc(cryptop_zone, how | M_ZERO);
|
|
crp->crp_session = cses;
|
|
return (crp);
|
|
}
|
|
|
|
/*
|
|
* Invoke the callback on behalf of the driver.
|
|
*/
|
|
void
|
|
crypto_done(struct cryptop *crp)
|
|
{
|
|
KASSERT((crp->crp_flags & CRYPTO_F_DONE) == 0,
|
|
("crypto_done: op already done, flags 0x%x", crp->crp_flags));
|
|
crp->crp_flags |= CRYPTO_F_DONE;
|
|
if (crp->crp_etype != 0)
|
|
cryptostats.cs_errs++;
|
|
#ifdef CRYPTO_TIMING
|
|
if (crypto_timing)
|
|
crypto_tstat(&cryptostats.cs_done, &crp->crp_tstamp);
|
|
#endif
|
|
/*
|
|
* CBIMM means unconditionally do the callback immediately;
|
|
* CBIFSYNC means do the callback immediately only if the
|
|
* operation was done synchronously. Both are used to avoid
|
|
* doing extraneous context switches; the latter is mostly
|
|
* used with the software crypto driver.
|
|
*/
|
|
if (!CRYPTOP_ASYNC_KEEPORDER(crp) &&
|
|
((crp->crp_flags & CRYPTO_F_CBIMM) ||
|
|
((crp->crp_flags & CRYPTO_F_CBIFSYNC) &&
|
|
(crypto_ses2caps(crp->crp_session) & CRYPTOCAP_F_SYNC)))) {
|
|
/*
|
|
* Do the callback directly. This is ok when the
|
|
* callback routine does very little (e.g. the
|
|
* /dev/crypto callback method just does a wakeup).
|
|
*/
|
|
#ifdef CRYPTO_TIMING
|
|
if (crypto_timing) {
|
|
/*
|
|
* NB: We must copy the timestamp before
|
|
* doing the callback as the cryptop is
|
|
* likely to be reclaimed.
|
|
*/
|
|
struct bintime t = crp->crp_tstamp;
|
|
crypto_tstat(&cryptostats.cs_cb, &t);
|
|
crp->crp_callback(crp);
|
|
crypto_tstat(&cryptostats.cs_finis, &t);
|
|
} else
|
|
#endif
|
|
crp->crp_callback(crp);
|
|
} else {
|
|
struct crypto_ret_worker *ret_worker;
|
|
bool wake;
|
|
|
|
ret_worker = CRYPTO_RETW(crp->crp_retw_id);
|
|
wake = false;
|
|
|
|
/*
|
|
* Normal case; queue the callback for the thread.
|
|
*/
|
|
CRYPTO_RETW_LOCK(ret_worker);
|
|
if (CRYPTOP_ASYNC_KEEPORDER(crp)) {
|
|
struct cryptop *tmp;
|
|
|
|
TAILQ_FOREACH_REVERSE(tmp, &ret_worker->crp_ordered_ret_q,
|
|
cryptop_q, crp_next) {
|
|
if (CRYPTO_SEQ_GT(crp->crp_seq, tmp->crp_seq)) {
|
|
TAILQ_INSERT_AFTER(&ret_worker->crp_ordered_ret_q,
|
|
tmp, crp, crp_next);
|
|
break;
|
|
}
|
|
}
|
|
if (tmp == NULL) {
|
|
TAILQ_INSERT_HEAD(&ret_worker->crp_ordered_ret_q,
|
|
crp, crp_next);
|
|
}
|
|
|
|
if (crp->crp_seq == ret_worker->reorder_cur_seq)
|
|
wake = true;
|
|
}
|
|
else {
|
|
if (CRYPTO_RETW_EMPTY(ret_worker))
|
|
wake = true;
|
|
|
|
TAILQ_INSERT_TAIL(&ret_worker->crp_ret_q, crp, crp_next);
|
|
}
|
|
|
|
if (wake)
|
|
wakeup_one(&ret_worker->crp_ret_q); /* shared wait channel */
|
|
CRYPTO_RETW_UNLOCK(ret_worker);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Invoke the callback on behalf of the driver.
|
|
*/
|
|
void
|
|
crypto_kdone(struct cryptkop *krp)
|
|
{
|
|
struct crypto_ret_worker *ret_worker;
|
|
struct cryptocap *cap;
|
|
|
|
if (krp->krp_status != 0)
|
|
cryptostats.cs_kerrs++;
|
|
CRYPTO_DRIVER_LOCK();
|
|
cap = krp->krp_cap;
|
|
KASSERT(cap->cc_koperations > 0, ("cc_koperations == 0"));
|
|
cap->cc_koperations--;
|
|
if (cap->cc_koperations == 0 && cap->cc_flags & CRYPTOCAP_F_CLEANUP)
|
|
wakeup(cap);
|
|
CRYPTO_DRIVER_UNLOCK();
|
|
krp->krp_cap = NULL;
|
|
cap_rele(cap);
|
|
|
|
ret_worker = CRYPTO_RETW(0);
|
|
|
|
CRYPTO_RETW_LOCK(ret_worker);
|
|
if (CRYPTO_RETW_EMPTY(ret_worker))
|
|
wakeup_one(&ret_worker->crp_ret_q); /* shared wait channel */
|
|
TAILQ_INSERT_TAIL(&ret_worker->crp_ret_kq, krp, krp_next);
|
|
CRYPTO_RETW_UNLOCK(ret_worker);
|
|
}
|
|
|
|
int
|
|
crypto_getfeat(int *featp)
|
|
{
|
|
int hid, kalg, feat = 0;
|
|
|
|
CRYPTO_DRIVER_LOCK();
|
|
for (hid = 0; hid < crypto_drivers_size; hid++) {
|
|
const struct cryptocap *cap = crypto_drivers[hid];
|
|
|
|
if (cap == NULL ||
|
|
((cap->cc_flags & CRYPTOCAP_F_SOFTWARE) &&
|
|
!crypto_devallowsoft)) {
|
|
continue;
|
|
}
|
|
for (kalg = 0; kalg < CRK_ALGORITHM_MAX; kalg++)
|
|
if (cap->cc_kalg[kalg] & CRYPTO_ALG_FLAG_SUPPORTED)
|
|
feat |= 1 << kalg;
|
|
}
|
|
CRYPTO_DRIVER_UNLOCK();
|
|
*featp = feat;
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Terminate a thread at module unload. The process that
|
|
* initiated this is waiting for us to signal that we're gone;
|
|
* wake it up and exit. We use the driver table lock to insure
|
|
* we don't do the wakeup before they're waiting. There is no
|
|
* race here because the waiter sleeps on the proc lock for the
|
|
* thread so it gets notified at the right time because of an
|
|
* extra wakeup that's done in exit1().
|
|
*/
|
|
static void
|
|
crypto_finis(void *chan)
|
|
{
|
|
CRYPTO_DRIVER_LOCK();
|
|
wakeup_one(chan);
|
|
CRYPTO_DRIVER_UNLOCK();
|
|
kproc_exit(0);
|
|
}
|
|
|
|
/*
|
|
* Crypto thread, dispatches crypto requests.
|
|
*/
|
|
static void
|
|
crypto_proc(void)
|
|
{
|
|
struct cryptop *crp, *submit;
|
|
struct cryptkop *krp;
|
|
struct cryptocap *cap;
|
|
int result, hint;
|
|
|
|
#if defined(__i386__) || defined(__amd64__) || defined(__aarch64__)
|
|
fpu_kern_thread(FPU_KERN_NORMAL);
|
|
#endif
|
|
|
|
CRYPTO_Q_LOCK();
|
|
for (;;) {
|
|
/*
|
|
* Find the first element in the queue that can be
|
|
* processed and look-ahead to see if multiple ops
|
|
* are ready for the same driver.
|
|
*/
|
|
submit = NULL;
|
|
hint = 0;
|
|
TAILQ_FOREACH(crp, &crp_q, crp_next) {
|
|
cap = crp->crp_session->cap;
|
|
/*
|
|
* Driver cannot disappeared when there is an active
|
|
* session.
|
|
*/
|
|
KASSERT(cap != NULL, ("%s:%u Driver disappeared.",
|
|
__func__, __LINE__));
|
|
if (cap->cc_flags & CRYPTOCAP_F_CLEANUP) {
|
|
/* Op needs to be migrated, process it. */
|
|
if (submit == NULL)
|
|
submit = crp;
|
|
break;
|
|
}
|
|
if (!cap->cc_qblocked) {
|
|
if (submit != NULL) {
|
|
/*
|
|
* We stop on finding another op,
|
|
* regardless whether its for the same
|
|
* driver or not. We could keep
|
|
* searching the queue but it might be
|
|
* better to just use a per-driver
|
|
* queue instead.
|
|
*/
|
|
if (submit->crp_session->cap == cap)
|
|
hint = CRYPTO_HINT_MORE;
|
|
break;
|
|
} else {
|
|
submit = crp;
|
|
if ((submit->crp_flags & CRYPTO_F_BATCH) == 0)
|
|
break;
|
|
/* keep scanning for more are q'd */
|
|
}
|
|
}
|
|
}
|
|
if (submit != NULL) {
|
|
TAILQ_REMOVE(&crp_q, submit, crp_next);
|
|
cap = submit->crp_session->cap;
|
|
KASSERT(cap != NULL, ("%s:%u Driver disappeared.",
|
|
__func__, __LINE__));
|
|
CRYPTO_Q_UNLOCK();
|
|
result = crypto_invoke(cap, submit, hint);
|
|
CRYPTO_Q_LOCK();
|
|
if (result == ERESTART) {
|
|
/*
|
|
* The driver ran out of resources, mark the
|
|
* driver ``blocked'' for cryptop's and put
|
|
* the request back in the queue. It would
|
|
* best to put the request back where we got
|
|
* it but that's hard so for now we put it
|
|
* at the front. This should be ok; putting
|
|
* it at the end does not work.
|
|
*/
|
|
cap->cc_qblocked = 1;
|
|
TAILQ_INSERT_HEAD(&crp_q, submit, crp_next);
|
|
cryptostats.cs_blocks++;
|
|
}
|
|
}
|
|
|
|
/* As above, but for key ops */
|
|
TAILQ_FOREACH(krp, &crp_kq, krp_next) {
|
|
cap = krp->krp_cap;
|
|
if (cap->cc_flags & CRYPTOCAP_F_CLEANUP) {
|
|
/*
|
|
* Operation needs to be migrated,
|
|
* clear krp_cap so a new driver is
|
|
* selected.
|
|
*/
|
|
krp->krp_cap = NULL;
|
|
cap_rele(cap);
|
|
break;
|
|
}
|
|
if (!cap->cc_kqblocked)
|
|
break;
|
|
}
|
|
if (krp != NULL) {
|
|
TAILQ_REMOVE(&crp_kq, krp, krp_next);
|
|
CRYPTO_Q_UNLOCK();
|
|
result = crypto_kinvoke(krp);
|
|
CRYPTO_Q_LOCK();
|
|
if (result == ERESTART) {
|
|
/*
|
|
* The driver ran out of resources, mark the
|
|
* driver ``blocked'' for cryptkop's and put
|
|
* the request back in the queue. It would
|
|
* best to put the request back where we got
|
|
* it but that's hard so for now we put it
|
|
* at the front. This should be ok; putting
|
|
* it at the end does not work.
|
|
*/
|
|
krp->krp_cap->cc_kqblocked = 1;
|
|
TAILQ_INSERT_HEAD(&crp_kq, krp, krp_next);
|
|
cryptostats.cs_kblocks++;
|
|
}
|
|
}
|
|
|
|
if (submit == NULL && krp == NULL) {
|
|
/*
|
|
* Nothing more to be processed. Sleep until we're
|
|
* woken because there are more ops to process.
|
|
* This happens either by submission or by a driver
|
|
* becoming unblocked and notifying us through
|
|
* crypto_unblock. Note that when we wakeup we
|
|
* start processing each queue again from the
|
|
* front. It's not clear that it's important to
|
|
* preserve this ordering since ops may finish
|
|
* out of order if dispatched to different devices
|
|
* and some become blocked while others do not.
|
|
*/
|
|
crp_sleep = 1;
|
|
msleep(&crp_q, &crypto_q_mtx, PWAIT, "crypto_wait", 0);
|
|
crp_sleep = 0;
|
|
if (cryptoproc == NULL)
|
|
break;
|
|
cryptostats.cs_intrs++;
|
|
}
|
|
}
|
|
CRYPTO_Q_UNLOCK();
|
|
|
|
crypto_finis(&crp_q);
|
|
}
|
|
|
|
/*
|
|
* Crypto returns thread, does callbacks for processed crypto requests.
|
|
* Callbacks are done here, rather than in the crypto drivers, because
|
|
* callbacks typically are expensive and would slow interrupt handling.
|
|
*/
|
|
static void
|
|
crypto_ret_proc(struct crypto_ret_worker *ret_worker)
|
|
{
|
|
struct cryptop *crpt;
|
|
struct cryptkop *krpt;
|
|
|
|
CRYPTO_RETW_LOCK(ret_worker);
|
|
for (;;) {
|
|
/* Harvest return q's for completed ops */
|
|
crpt = TAILQ_FIRST(&ret_worker->crp_ordered_ret_q);
|
|
if (crpt != NULL) {
|
|
if (crpt->crp_seq == ret_worker->reorder_cur_seq) {
|
|
TAILQ_REMOVE(&ret_worker->crp_ordered_ret_q, crpt, crp_next);
|
|
ret_worker->reorder_cur_seq++;
|
|
} else {
|
|
crpt = NULL;
|
|
}
|
|
}
|
|
|
|
if (crpt == NULL) {
|
|
crpt = TAILQ_FIRST(&ret_worker->crp_ret_q);
|
|
if (crpt != NULL)
|
|
TAILQ_REMOVE(&ret_worker->crp_ret_q, crpt, crp_next);
|
|
}
|
|
|
|
krpt = TAILQ_FIRST(&ret_worker->crp_ret_kq);
|
|
if (krpt != NULL)
|
|
TAILQ_REMOVE(&ret_worker->crp_ret_kq, krpt, krp_next);
|
|
|
|
if (crpt != NULL || krpt != NULL) {
|
|
CRYPTO_RETW_UNLOCK(ret_worker);
|
|
/*
|
|
* Run callbacks unlocked.
|
|
*/
|
|
if (crpt != NULL) {
|
|
#ifdef CRYPTO_TIMING
|
|
if (crypto_timing) {
|
|
/*
|
|
* NB: We must copy the timestamp before
|
|
* doing the callback as the cryptop is
|
|
* likely to be reclaimed.
|
|
*/
|
|
struct bintime t = crpt->crp_tstamp;
|
|
crypto_tstat(&cryptostats.cs_cb, &t);
|
|
crpt->crp_callback(crpt);
|
|
crypto_tstat(&cryptostats.cs_finis, &t);
|
|
} else
|
|
#endif
|
|
crpt->crp_callback(crpt);
|
|
}
|
|
if (krpt != NULL)
|
|
krpt->krp_callback(krpt);
|
|
CRYPTO_RETW_LOCK(ret_worker);
|
|
} else {
|
|
/*
|
|
* Nothing more to be processed. Sleep until we're
|
|
* woken because there are more returns to process.
|
|
*/
|
|
msleep(&ret_worker->crp_ret_q, &ret_worker->crypto_ret_mtx, PWAIT,
|
|
"crypto_ret_wait", 0);
|
|
if (ret_worker->cryptoretproc == NULL)
|
|
break;
|
|
cryptostats.cs_rets++;
|
|
}
|
|
}
|
|
CRYPTO_RETW_UNLOCK(ret_worker);
|
|
|
|
crypto_finis(&ret_worker->crp_ret_q);
|
|
}
|
|
|
|
#ifdef DDB
|
|
static void
|
|
db_show_drivers(void)
|
|
{
|
|
int hid;
|
|
|
|
db_printf("%12s %4s %4s %8s %2s %2s\n"
|
|
, "Device"
|
|
, "Ses"
|
|
, "Kops"
|
|
, "Flags"
|
|
, "QB"
|
|
, "KB"
|
|
);
|
|
for (hid = 0; hid < crypto_drivers_size; hid++) {
|
|
const struct cryptocap *cap = crypto_drivers[hid];
|
|
if (cap == NULL)
|
|
continue;
|
|
db_printf("%-12s %4u %4u %08x %2u %2u\n"
|
|
, device_get_nameunit(cap->cc_dev)
|
|
, cap->cc_sessions
|
|
, cap->cc_koperations
|
|
, cap->cc_flags
|
|
, cap->cc_qblocked
|
|
, cap->cc_kqblocked
|
|
);
|
|
}
|
|
}
|
|
|
|
DB_SHOW_COMMAND(crypto, db_show_crypto)
|
|
{
|
|
struct cryptop *crp;
|
|
struct crypto_ret_worker *ret_worker;
|
|
|
|
db_show_drivers();
|
|
db_printf("\n");
|
|
|
|
db_printf("%4s %8s %4s %4s %4s %4s %8s %8s\n",
|
|
"HID", "Caps", "Ilen", "Olen", "Etype", "Flags",
|
|
"Device", "Callback");
|
|
TAILQ_FOREACH(crp, &crp_q, crp_next) {
|
|
db_printf("%4u %08x %4u %4u %04x %8p %8p\n"
|
|
, crp->crp_session->cap->cc_hid
|
|
, (int) crypto_ses2caps(crp->crp_session)
|
|
, crp->crp_olen
|
|
, crp->crp_etype
|
|
, crp->crp_flags
|
|
, device_get_nameunit(crp->crp_session->cap->cc_dev)
|
|
, crp->crp_callback
|
|
);
|
|
}
|
|
FOREACH_CRYPTO_RETW(ret_worker) {
|
|
db_printf("\n%8s %4s %4s %4s %8s\n",
|
|
"ret_worker", "HID", "Etype", "Flags", "Callback");
|
|
if (!TAILQ_EMPTY(&ret_worker->crp_ret_q)) {
|
|
TAILQ_FOREACH(crp, &ret_worker->crp_ret_q, crp_next) {
|
|
db_printf("%8td %4u %4u %04x %8p\n"
|
|
, CRYPTO_RETW_ID(ret_worker)
|
|
, crp->crp_session->cap->cc_hid
|
|
, crp->crp_etype
|
|
, crp->crp_flags
|
|
, crp->crp_callback
|
|
);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
DB_SHOW_COMMAND(kcrypto, db_show_kcrypto)
|
|
{
|
|
struct cryptkop *krp;
|
|
struct crypto_ret_worker *ret_worker;
|
|
|
|
db_show_drivers();
|
|
db_printf("\n");
|
|
|
|
db_printf("%4s %5s %4s %4s %8s %4s %8s\n",
|
|
"Op", "Status", "#IP", "#OP", "CRID", "HID", "Callback");
|
|
TAILQ_FOREACH(krp, &crp_kq, krp_next) {
|
|
db_printf("%4u %5u %4u %4u %08x %4u %8p\n"
|
|
, krp->krp_op
|
|
, krp->krp_status
|
|
, krp->krp_iparams, krp->krp_oparams
|
|
, krp->krp_crid, krp->krp_hid
|
|
, krp->krp_callback
|
|
);
|
|
}
|
|
|
|
ret_worker = CRYPTO_RETW(0);
|
|
if (!TAILQ_EMPTY(&ret_worker->crp_ret_q)) {
|
|
db_printf("%4s %5s %8s %4s %8s\n",
|
|
"Op", "Status", "CRID", "HID", "Callback");
|
|
TAILQ_FOREACH(krp, &ret_worker->crp_ret_kq, krp_next) {
|
|
db_printf("%4u %5u %08x %4u %8p\n"
|
|
, krp->krp_op
|
|
, krp->krp_status
|
|
, krp->krp_crid, krp->krp_hid
|
|
, krp->krp_callback
|
|
);
|
|
}
|
|
}
|
|
}
|
|
#endif
|
|
|
|
int crypto_modevent(module_t mod, int type, void *unused);
|
|
|
|
/*
|
|
* Initialization code, both for static and dynamic loading.
|
|
* Note this is not invoked with the usual MODULE_DECLARE
|
|
* mechanism but instead is listed as a dependency by the
|
|
* cryptosoft driver. This guarantees proper ordering of
|
|
* calls on module load/unload.
|
|
*/
|
|
int
|
|
crypto_modevent(module_t mod, int type, void *unused)
|
|
{
|
|
int error = EINVAL;
|
|
|
|
switch (type) {
|
|
case MOD_LOAD:
|
|
error = crypto_init();
|
|
if (error == 0 && bootverbose)
|
|
printf("crypto: <crypto core>\n");
|
|
break;
|
|
case MOD_UNLOAD:
|
|
/*XXX disallow if active sessions */
|
|
error = 0;
|
|
crypto_destroy();
|
|
return 0;
|
|
}
|
|
return error;
|
|
}
|
|
MODULE_VERSION(crypto, 1);
|
|
MODULE_DEPEND(crypto, zlib, 1, 1, 1);
|