freebsd-skq/usr.sbin/nscd/query.c
bushman 134f3ad3d3 - Renaming repocopied cached to nscd
Approved by:	re (kensmith), brooks (mentor)
2007-08-09 13:06:12 +00:00

1281 lines
36 KiB
C

/*-
* Copyright (c) 2005 Michael Bushkov <bushman@rsu.ru>
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include <sys/types.h>
#include <sys/socket.h>
#include <sys/time.h>
#include <sys/event.h>
#include <assert.h>
#include <errno.h>
#include <nsswitch.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "config.h"
#include "debug.h"
#include "query.h"
#include "log.h"
#include "mp_ws_query.h"
#include "mp_rs_query.h"
#include "singletons.h"
static const char negative_data[1] = { 0 };
extern void get_time_func(struct timeval *);
static void clear_config_entry(struct configuration_entry *);
static void clear_config_entry_part(struct configuration_entry *,
const char *, size_t);
static int on_query_startup(struct query_state *);
static void on_query_destroy(struct query_state *);
static int on_read_request_read1(struct query_state *);
static int on_read_request_read2(struct query_state *);
static int on_read_request_process(struct query_state *);
static int on_read_response_write1(struct query_state *);
static int on_read_response_write2(struct query_state *);
static int on_rw_mapper(struct query_state *);
static int on_transform_request_read1(struct query_state *);
static int on_transform_request_read2(struct query_state *);
static int on_transform_request_process(struct query_state *);
static int on_transform_response_write1(struct query_state *);
static int on_write_request_read1(struct query_state *);
static int on_write_request_read2(struct query_state *);
static int on_negative_write_request_process(struct query_state *);
static int on_write_request_process(struct query_state *);
static int on_write_response_write1(struct query_state *);
/*
* Clears the specified configuration entry (clears the cache for positive and
* and negative entries) and also for all multipart entries.
*/
static void
clear_config_entry(struct configuration_entry *config_entry)
{
size_t i;
TRACE_IN(clear_config_entry);
configuration_lock_entry(config_entry, CELT_POSITIVE);
if (config_entry->positive_cache_entry != NULL)
transform_cache_entry(
config_entry->positive_cache_entry,
CTT_CLEAR);
configuration_unlock_entry(config_entry, CELT_POSITIVE);
configuration_lock_entry(config_entry, CELT_NEGATIVE);
if (config_entry->negative_cache_entry != NULL)
transform_cache_entry(
config_entry->negative_cache_entry,
CTT_CLEAR);
configuration_unlock_entry(config_entry, CELT_NEGATIVE);
configuration_lock_entry(config_entry, CELT_MULTIPART);
for (i = 0; i < config_entry->mp_cache_entries_size; ++i)
transform_cache_entry(
config_entry->mp_cache_entries[i],
CTT_CLEAR);
configuration_unlock_entry(config_entry, CELT_MULTIPART);
TRACE_OUT(clear_config_entry);
}
/*
* Clears the specified configuration entry by deleting only the elements,
* that are owned by the user with specified eid_str.
*/
static void
clear_config_entry_part(struct configuration_entry *config_entry,
const char *eid_str, size_t eid_str_length)
{
cache_entry *start, *finish, *mp_entry;
TRACE_IN(clear_config_entry_part);
configuration_lock_entry(config_entry, CELT_POSITIVE);
if (config_entry->positive_cache_entry != NULL)
transform_cache_entry_part(
config_entry->positive_cache_entry,
CTT_CLEAR, eid_str, eid_str_length, KPPT_LEFT);
configuration_unlock_entry(config_entry, CELT_POSITIVE);
configuration_lock_entry(config_entry, CELT_NEGATIVE);
if (config_entry->negative_cache_entry != NULL)
transform_cache_entry_part(
config_entry->negative_cache_entry,
CTT_CLEAR, eid_str, eid_str_length, KPPT_LEFT);
configuration_unlock_entry(config_entry, CELT_NEGATIVE);
configuration_lock_entry(config_entry, CELT_MULTIPART);
if (configuration_entry_find_mp_cache_entries(config_entry,
eid_str, &start, &finish) == 0) {
for (mp_entry = start; mp_entry != finish; ++mp_entry)
transform_cache_entry(*mp_entry, CTT_CLEAR);
}
configuration_unlock_entry(config_entry, CELT_MULTIPART);
TRACE_OUT(clear_config_entry_part);
}
/*
* This function is assigned to the query_state structue on its creation.
* It's main purpose is to receive credentials from the client.
*/
static int
on_query_startup(struct query_state *qstate)
{
struct msghdr cred_hdr;
struct iovec iov;
struct cmsgcred *cred;
int elem_type;
struct {
struct cmsghdr hdr;
char cred[CMSG_SPACE(sizeof(struct cmsgcred))];
} cmsg;
TRACE_IN(on_query_startup);
assert(qstate != NULL);
memset(&cred_hdr, 0, sizeof(struct msghdr));
cred_hdr.msg_iov = &iov;
cred_hdr.msg_iovlen = 1;
cred_hdr.msg_control = (caddr_t)&cmsg;
cred_hdr.msg_controllen = CMSG_LEN(sizeof(struct cmsgcred));
memset(&iov, 0, sizeof(struct iovec));
iov.iov_base = &elem_type;
iov.iov_len = sizeof(int);
if (recvmsg(qstate->sockfd, &cred_hdr, 0) == -1) {
TRACE_OUT(on_query_startup);
return (-1);
}
if (cmsg.hdr.cmsg_len < CMSG_LEN(sizeof(struct cmsgcred))
|| cmsg.hdr.cmsg_level != SOL_SOCKET
|| cmsg.hdr.cmsg_type != SCM_CREDS) {
TRACE_OUT(on_query_startup);
return (-1);
}
cred = (struct cmsgcred *)CMSG_DATA(&cmsg);
qstate->uid = cred->cmcred_uid;
qstate->gid = cred->cmcred_gid;
#if defined(NS_NSCD_EID_CHECKING) || defined(NS_STRICT_NSCD_EID_CHECKING)
/*
* This check is probably a bit redundant - per-user cache is always separated
* by the euid/egid pair
*/
if (check_query_eids(qstate) != 0) {
#ifdef NS_STRICT_NSCD_EID_CHECKING
TRACE_OUT(on_query_startup);
return (-1);
#else
if ((elem_type != CET_READ_REQUEST) &&
(elem_type != CET_MP_READ_SESSION_REQUEST) &&
(elem_type != CET_WRITE_REQUEST) &&
(elem_type != CET_MP_WRITE_SESSION_REQUEST)) {
TRACE_OUT(on_query_startup);
return (-1);
}
#endif
}
#endif
switch (elem_type) {
case CET_WRITE_REQUEST:
qstate->process_func = on_write_request_read1;
break;
case CET_READ_REQUEST:
qstate->process_func = on_read_request_read1;
break;
case CET_TRANSFORM_REQUEST:
qstate->process_func = on_transform_request_read1;
break;
case CET_MP_WRITE_SESSION_REQUEST:
qstate->process_func = on_mp_write_session_request_read1;
break;
case CET_MP_READ_SESSION_REQUEST:
qstate->process_func = on_mp_read_session_request_read1;
break;
default:
TRACE_OUT(on_query_startup);
return (-1);
}
qstate->kevent_watermark = 0;
TRACE_OUT(on_query_startup);
return (0);
}
/*
* on_rw_mapper is used to process multiple read/write requests during
* one connection session. It's never called in the beginning (on query_state
* creation) as it does not process the multipart requests and does not
* receive credentials
*/
static int
on_rw_mapper(struct query_state *qstate)
{
ssize_t result;
int elem_type;
TRACE_IN(on_rw_mapper);
if (qstate->kevent_watermark == 0) {
qstate->kevent_watermark = sizeof(int);
} else {
result = qstate->read_func(qstate, &elem_type, sizeof(int));
if (result != sizeof(int)) {
TRACE_OUT(on_rw_mapper);
return (-1);
}
switch (elem_type) {
case CET_WRITE_REQUEST:
qstate->kevent_watermark = sizeof(size_t);
qstate->process_func = on_write_request_read1;
break;
case CET_READ_REQUEST:
qstate->kevent_watermark = sizeof(size_t);
qstate->process_func = on_read_request_read1;
break;
default:
TRACE_OUT(on_rw_mapper);
return (-1);
break;
}
}
TRACE_OUT(on_rw_mapper);
return (0);
}
/*
* The default query_destroy function
*/
static void
on_query_destroy(struct query_state *qstate)
{
TRACE_IN(on_query_destroy);
finalize_comm_element(&qstate->response);
finalize_comm_element(&qstate->request);
TRACE_OUT(on_query_destroy);
}
/*
* The functions below are used to process write requests.
* - on_write_request_read1 and on_write_request_read2 read the request itself
* - on_write_request_process processes it (if the client requests to
* cache the negative result, the on_negative_write_request_process is used)
* - on_write_response_write1 sends the response
*/
static int
on_write_request_read1(struct query_state *qstate)
{
struct cache_write_request *write_request;
ssize_t result;
TRACE_IN(on_write_request_read1);
if (qstate->kevent_watermark == 0)
qstate->kevent_watermark = sizeof(size_t) * 3;
else {
init_comm_element(&qstate->request, CET_WRITE_REQUEST);
write_request = get_cache_write_request(&qstate->request);
result = qstate->read_func(qstate, &write_request->entry_length,
sizeof(size_t));
result += qstate->read_func(qstate,
&write_request->cache_key_size, sizeof(size_t));
result += qstate->read_func(qstate,
&write_request->data_size, sizeof(size_t));
if (result != sizeof(size_t) * 3) {
TRACE_OUT(on_write_request_read1);
return (-1);
}
if (BUFSIZE_INVALID(write_request->entry_length) ||
BUFSIZE_INVALID(write_request->cache_key_size) ||
(BUFSIZE_INVALID(write_request->data_size) &&
(write_request->data_size != 0))) {
TRACE_OUT(on_write_request_read1);
return (-1);
}
write_request->entry = (char *)malloc(
write_request->entry_length + 1);
assert(write_request->entry != NULL);
memset(write_request->entry, 0,
write_request->entry_length + 1);
write_request->cache_key = (char *)malloc(
write_request->cache_key_size +
qstate->eid_str_length);
assert(write_request->cache_key != NULL);
memcpy(write_request->cache_key, qstate->eid_str,
qstate->eid_str_length);
memset(write_request->cache_key + qstate->eid_str_length, 0,
write_request->cache_key_size);
if (write_request->data_size != 0) {
write_request->data = (char *)malloc(
write_request->data_size);
assert(write_request->data != NULL);
memset(write_request->data, 0,
write_request->data_size);
}
qstate->kevent_watermark = write_request->entry_length +
write_request->cache_key_size +
write_request->data_size;
qstate->process_func = on_write_request_read2;
}
TRACE_OUT(on_write_request_read1);
return (0);
}
static int
on_write_request_read2(struct query_state *qstate)
{
struct cache_write_request *write_request;
ssize_t result;
TRACE_IN(on_write_request_read2);
write_request = get_cache_write_request(&qstate->request);
result = qstate->read_func(qstate, write_request->entry,
write_request->entry_length);
result += qstate->read_func(qstate, write_request->cache_key +
qstate->eid_str_length, write_request->cache_key_size);
if (write_request->data_size != 0)
result += qstate->read_func(qstate, write_request->data,
write_request->data_size);
if (result != qstate->kevent_watermark) {
TRACE_OUT(on_write_request_read2);
return (-1);
}
write_request->cache_key_size += qstate->eid_str_length;
qstate->kevent_watermark = 0;
if (write_request->data_size != 0)
qstate->process_func = on_write_request_process;
else
qstate->process_func = on_negative_write_request_process;
TRACE_OUT(on_write_request_read2);
return (0);
}
static int
on_write_request_process(struct query_state *qstate)
{
struct cache_write_request *write_request;
struct cache_write_response *write_response;
cache_entry c_entry;
TRACE_IN(on_write_request_process);
init_comm_element(&qstate->response, CET_WRITE_RESPONSE);
write_response = get_cache_write_response(&qstate->response);
write_request = get_cache_write_request(&qstate->request);
qstate->config_entry = configuration_find_entry(
s_configuration, write_request->entry);
if (qstate->config_entry == NULL) {
write_response->error_code = ENOENT;
LOG_ERR_2("write_request", "can't find configuration"
" entry '%s'. aborting request", write_request->entry);
goto fin;
}
if (qstate->config_entry->enabled == 0) {
write_response->error_code = EACCES;
LOG_ERR_2("write_request",
"configuration entry '%s' is disabled",
write_request->entry);
goto fin;
}
if (qstate->config_entry->perform_actual_lookups != 0) {
write_response->error_code = EOPNOTSUPP;
LOG_ERR_2("write_request",
"entry '%s' performs lookups by itself: "
"can't write to it", write_request->entry);
goto fin;
}
configuration_lock_rdlock(s_configuration);
c_entry = find_cache_entry(s_cache,
qstate->config_entry->positive_cache_params.entry_name);
configuration_unlock(s_configuration);
if (c_entry != NULL) {
configuration_lock_entry(qstate->config_entry, CELT_POSITIVE);
qstate->config_entry->positive_cache_entry = c_entry;
write_response->error_code = cache_write(c_entry,
write_request->cache_key,
write_request->cache_key_size,
write_request->data,
write_request->data_size);
configuration_unlock_entry(qstate->config_entry, CELT_POSITIVE);
if ((qstate->config_entry->common_query_timeout.tv_sec != 0) ||
(qstate->config_entry->common_query_timeout.tv_usec != 0))
memcpy(&qstate->timeout,
&qstate->config_entry->common_query_timeout,
sizeof(struct timeval));
} else
write_response->error_code = -1;
fin:
qstate->kevent_filter = EVFILT_WRITE;
qstate->kevent_watermark = sizeof(int);
qstate->process_func = on_write_response_write1;
TRACE_OUT(on_write_request_process);
return (0);
}
static int
on_negative_write_request_process(struct query_state *qstate)
{
struct cache_write_request *write_request;
struct cache_write_response *write_response;
cache_entry c_entry;
TRACE_IN(on_negative_write_request_process);
init_comm_element(&qstate->response, CET_WRITE_RESPONSE);
write_response = get_cache_write_response(&qstate->response);
write_request = get_cache_write_request(&qstate->request);
qstate->config_entry = configuration_find_entry (
s_configuration, write_request->entry);
if (qstate->config_entry == NULL) {
write_response->error_code = ENOENT;
LOG_ERR_2("negative_write_request",
"can't find configuration"
" entry '%s'. aborting request", write_request->entry);
goto fin;
}
if (qstate->config_entry->enabled == 0) {
write_response->error_code = EACCES;
LOG_ERR_2("negative_write_request",
"configuration entry '%s' is disabled",
write_request->entry);
goto fin;
}
if (qstate->config_entry->perform_actual_lookups != 0) {
write_response->error_code = EOPNOTSUPP;
LOG_ERR_2("negative_write_request",
"entry '%s' performs lookups by itself: "
"can't write to it", write_request->entry);
goto fin;
} else {
#ifdef NS_NSCD_EID_CHECKING
if (check_query_eids(qstate) != 0) {
write_response->error_code = EPERM;
goto fin;
}
#endif
}
configuration_lock_rdlock(s_configuration);
c_entry = find_cache_entry(s_cache,
qstate->config_entry->negative_cache_params.entry_name);
configuration_unlock(s_configuration);
if (c_entry != NULL) {
configuration_lock_entry(qstate->config_entry, CELT_NEGATIVE);
qstate->config_entry->negative_cache_entry = c_entry;
write_response->error_code = cache_write(c_entry,
write_request->cache_key,
write_request->cache_key_size,
negative_data,
sizeof(negative_data));
configuration_unlock_entry(qstate->config_entry, CELT_NEGATIVE);
if ((qstate->config_entry->common_query_timeout.tv_sec != 0) ||
(qstate->config_entry->common_query_timeout.tv_usec != 0))
memcpy(&qstate->timeout,
&qstate->config_entry->common_query_timeout,
sizeof(struct timeval));
} else
write_response->error_code = -1;
fin:
qstate->kevent_filter = EVFILT_WRITE;
qstate->kevent_watermark = sizeof(int);
qstate->process_func = on_write_response_write1;
TRACE_OUT(on_negative_write_request_process);
return (0);
}
static int
on_write_response_write1(struct query_state *qstate)
{
struct cache_write_response *write_response;
ssize_t result;
TRACE_IN(on_write_response_write1);
write_response = get_cache_write_response(&qstate->response);
result = qstate->write_func(qstate, &write_response->error_code,
sizeof(int));
if (result != sizeof(int)) {
TRACE_OUT(on_write_response_write1);
return (-1);
}
finalize_comm_element(&qstate->request);
finalize_comm_element(&qstate->response);
qstate->kevent_watermark = sizeof(int);
qstate->kevent_filter = EVFILT_READ;
qstate->process_func = on_rw_mapper;
TRACE_OUT(on_write_response_write1);
return (0);
}
/*
* The functions below are used to process read requests.
* - on_read_request_read1 and on_read_request_read2 read the request itself
* - on_read_request_process processes it
* - on_read_response_write1 and on_read_response_write2 send the response
*/
static int
on_read_request_read1(struct query_state *qstate)
{
struct cache_read_request *read_request;
ssize_t result;
TRACE_IN(on_read_request_read1);
if (qstate->kevent_watermark == 0)
qstate->kevent_watermark = sizeof(size_t) * 2;
else {
init_comm_element(&qstate->request, CET_READ_REQUEST);
read_request = get_cache_read_request(&qstate->request);
result = qstate->read_func(qstate,
&read_request->entry_length, sizeof(size_t));
result += qstate->read_func(qstate,
&read_request->cache_key_size, sizeof(size_t));
if (result != sizeof(size_t) * 2) {
TRACE_OUT(on_read_request_read1);
return (-1);
}
if (BUFSIZE_INVALID(read_request->entry_length) ||
BUFSIZE_INVALID(read_request->cache_key_size)) {
TRACE_OUT(on_read_request_read1);
return (-1);
}
read_request->entry = (char *)malloc(
read_request->entry_length + 1);
assert(read_request->entry != NULL);
memset(read_request->entry, 0, read_request->entry_length + 1);
read_request->cache_key = (char *)malloc(
read_request->cache_key_size +
qstate->eid_str_length);
assert(read_request->cache_key != NULL);
memcpy(read_request->cache_key, qstate->eid_str,
qstate->eid_str_length);
memset(read_request->cache_key + qstate->eid_str_length, 0,
read_request->cache_key_size);
qstate->kevent_watermark = read_request->entry_length +
read_request->cache_key_size;
qstate->process_func = on_read_request_read2;
}
TRACE_OUT(on_read_request_read1);
return (0);
}
static int
on_read_request_read2(struct query_state *qstate)
{
struct cache_read_request *read_request;
ssize_t result;
TRACE_IN(on_read_request_read2);
read_request = get_cache_read_request(&qstate->request);
result = qstate->read_func(qstate, read_request->entry,
read_request->entry_length);
result += qstate->read_func(qstate,
read_request->cache_key + qstate->eid_str_length,
read_request->cache_key_size);
if (result != qstate->kevent_watermark) {
TRACE_OUT(on_read_request_read2);
return (-1);
}
read_request->cache_key_size += qstate->eid_str_length;
qstate->kevent_watermark = 0;
qstate->process_func = on_read_request_process;
TRACE_OUT(on_read_request_read2);
return (0);
}
static int
on_read_request_process(struct query_state *qstate)
{
struct cache_read_request *read_request;
struct cache_read_response *read_response;
cache_entry c_entry, neg_c_entry;
struct agent *lookup_agent;
struct common_agent *c_agent;
int res;
TRACE_IN(on_read_request_process);
init_comm_element(&qstate->response, CET_READ_RESPONSE);
read_response = get_cache_read_response(&qstate->response);
read_request = get_cache_read_request(&qstate->request);
qstate->config_entry = configuration_find_entry(
s_configuration, read_request->entry);
if (qstate->config_entry == NULL) {
read_response->error_code = ENOENT;
LOG_ERR_2("read_request",
"can't find configuration "
"entry '%s'. aborting request", read_request->entry);
goto fin;
}
if (qstate->config_entry->enabled == 0) {
read_response->error_code = EACCES;
LOG_ERR_2("read_request",
"configuration entry '%s' is disabled",
read_request->entry);
goto fin;
}
/*
* if we perform lookups by ourselves, then we don't need to separate
* cache entries by euid and egid
*/
if (qstate->config_entry->perform_actual_lookups != 0)
memset(read_request->cache_key, 0, qstate->eid_str_length);
else {
#ifdef NS_NSCD_EID_CHECKING
if (check_query_eids(qstate) != 0) {
/* if the lookup is not self-performing, we check for clients euid/egid */
read_response->error_code = EPERM;
goto fin;
}
#endif
}
configuration_lock_rdlock(s_configuration);
c_entry = find_cache_entry(s_cache,
qstate->config_entry->positive_cache_params.entry_name);
neg_c_entry = find_cache_entry(s_cache,
qstate->config_entry->negative_cache_params.entry_name);
configuration_unlock(s_configuration);
if ((c_entry != NULL) && (neg_c_entry != NULL)) {
configuration_lock_entry(qstate->config_entry, CELT_POSITIVE);
qstate->config_entry->positive_cache_entry = c_entry;
read_response->error_code = cache_read(c_entry,
read_request->cache_key,
read_request->cache_key_size, NULL,
&read_response->data_size);
if (read_response->error_code == -2) {
read_response->data = (char *)malloc(
read_response->data_size);
assert(read_response != NULL);
read_response->error_code = cache_read(c_entry,
read_request->cache_key,
read_request->cache_key_size,
read_response->data,
&read_response->data_size);
}
configuration_unlock_entry(qstate->config_entry, CELT_POSITIVE);
configuration_lock_entry(qstate->config_entry, CELT_NEGATIVE);
qstate->config_entry->negative_cache_entry = neg_c_entry;
if (read_response->error_code == -1) {
read_response->error_code = cache_read(neg_c_entry,
read_request->cache_key,
read_request->cache_key_size, NULL,
&read_response->data_size);
if (read_response->error_code == -2) {
read_response->error_code = 0;
read_response->data = NULL;
read_response->data_size = 0;
}
}
configuration_unlock_entry(qstate->config_entry, CELT_NEGATIVE);
if ((read_response->error_code == -1) &&
(qstate->config_entry->perform_actual_lookups != 0)) {
free(read_response->data);
read_response->data = NULL;
read_response->data_size = 0;
lookup_agent = find_agent(s_agent_table,
read_request->entry, COMMON_AGENT);
if ((lookup_agent != NULL) &&
(lookup_agent->type == COMMON_AGENT)) {
c_agent = (struct common_agent *)lookup_agent;
res = c_agent->lookup_func(
read_request->cache_key +
qstate->eid_str_length,
read_request->cache_key_size -
qstate->eid_str_length,
&read_response->data,
&read_response->data_size);
if (res == NS_SUCCESS) {
read_response->error_code = 0;
configuration_lock_entry(
qstate->config_entry,
CELT_POSITIVE);
cache_write(c_entry,
read_request->cache_key,
read_request->cache_key_size,
read_response->data,
read_response->data_size);
configuration_unlock_entry(
qstate->config_entry,
CELT_POSITIVE);
} else if ((res == NS_NOTFOUND) ||
(res == NS_RETURN)) {
configuration_lock_entry(
qstate->config_entry,
CELT_NEGATIVE);
cache_write(neg_c_entry,
read_request->cache_key,
read_request->cache_key_size,
negative_data,
sizeof(negative_data));
configuration_unlock_entry(
qstate->config_entry,
CELT_NEGATIVE);
read_response->error_code = 0;
read_response->data = NULL;
read_response->data_size = 0;
}
}
}
if ((qstate->config_entry->common_query_timeout.tv_sec != 0) ||
(qstate->config_entry->common_query_timeout.tv_usec != 0))
memcpy(&qstate->timeout,
&qstate->config_entry->common_query_timeout,
sizeof(struct timeval));
} else
read_response->error_code = -1;
fin:
qstate->kevent_filter = EVFILT_WRITE;
if (read_response->error_code == 0)
qstate->kevent_watermark = sizeof(int) + sizeof(size_t);
else
qstate->kevent_watermark = sizeof(int);
qstate->process_func = on_read_response_write1;
TRACE_OUT(on_read_request_process);
return (0);
}
static int
on_read_response_write1(struct query_state *qstate)
{
struct cache_read_response *read_response;
ssize_t result;
TRACE_IN(on_read_response_write1);
read_response = get_cache_read_response(&qstate->response);
result = qstate->write_func(qstate, &read_response->error_code,
sizeof(int));
if (read_response->error_code == 0) {
result += qstate->write_func(qstate, &read_response->data_size,
sizeof(size_t));
if (result != qstate->kevent_watermark) {
TRACE_OUT(on_read_response_write1);
return (-1);
}
qstate->kevent_watermark = read_response->data_size;
qstate->process_func = on_read_response_write2;
} else {
if (result != qstate->kevent_watermark) {
TRACE_OUT(on_read_response_write1);
return (-1);
}
qstate->kevent_watermark = 0;
qstate->process_func = NULL;
}
TRACE_OUT(on_read_response_write1);
return (0);
}
static int
on_read_response_write2(struct query_state *qstate)
{
struct cache_read_response *read_response;
ssize_t result;
TRACE_IN(on_read_response_write2);
read_response = get_cache_read_response(&qstate->response);
if (read_response->data_size > 0) {
result = qstate->write_func(qstate, read_response->data,
read_response->data_size);
if (result != qstate->kevent_watermark) {
TRACE_OUT(on_read_response_write2);
return (-1);
}
}
finalize_comm_element(&qstate->request);
finalize_comm_element(&qstate->response);
qstate->kevent_watermark = sizeof(int);
qstate->kevent_filter = EVFILT_READ;
qstate->process_func = on_rw_mapper;
TRACE_OUT(on_read_response_write2);
return (0);
}
/*
* The functions below are used to process write requests.
* - on_transform_request_read1 and on_transform_request_read2 read the
* request itself
* - on_transform_request_process processes it
* - on_transform_response_write1 sends the response
*/
static int
on_transform_request_read1(struct query_state *qstate)
{
struct cache_transform_request *transform_request;
ssize_t result;
TRACE_IN(on_transform_request_read1);
if (qstate->kevent_watermark == 0)
qstate->kevent_watermark = sizeof(size_t) + sizeof(int);
else {
init_comm_element(&qstate->request, CET_TRANSFORM_REQUEST);
transform_request =
get_cache_transform_request(&qstate->request);
result = qstate->read_func(qstate,
&transform_request->entry_length, sizeof(size_t));
result += qstate->read_func(qstate,
&transform_request->transformation_type, sizeof(int));
if (result != sizeof(size_t) + sizeof(int)) {
TRACE_OUT(on_transform_request_read1);
return (-1);
}
if ((transform_request->transformation_type != TT_USER) &&
(transform_request->transformation_type != TT_ALL)) {
TRACE_OUT(on_transform_request_read1);
return (-1);
}
if (transform_request->entry_length != 0) {
if (BUFSIZE_INVALID(transform_request->entry_length)) {
TRACE_OUT(on_transform_request_read1);
return (-1);
}
transform_request->entry = (char *)malloc(
transform_request->entry_length + 1);
assert(transform_request->entry != NULL);
memset(transform_request->entry, 0,
transform_request->entry_length + 1);
qstate->process_func = on_transform_request_read2;
} else
qstate->process_func = on_transform_request_process;
qstate->kevent_watermark = transform_request->entry_length;
}
TRACE_OUT(on_transform_request_read1);
return (0);
}
static int
on_transform_request_read2(struct query_state *qstate)
{
struct cache_transform_request *transform_request;
ssize_t result;
TRACE_IN(on_transform_request_read2);
transform_request = get_cache_transform_request(&qstate->request);
result = qstate->read_func(qstate, transform_request->entry,
transform_request->entry_length);
if (result != qstate->kevent_watermark) {
TRACE_OUT(on_transform_request_read2);
return (-1);
}
qstate->kevent_watermark = 0;
qstate->process_func = on_transform_request_process;
TRACE_OUT(on_transform_request_read2);
return (0);
}
static int
on_transform_request_process(struct query_state *qstate)
{
struct cache_transform_request *transform_request;
struct cache_transform_response *transform_response;
struct configuration_entry *config_entry;
size_t i, size;
TRACE_IN(on_transform_request_process);
init_comm_element(&qstate->response, CET_TRANSFORM_RESPONSE);
transform_response = get_cache_transform_response(&qstate->response);
transform_request = get_cache_transform_request(&qstate->request);
switch (transform_request->transformation_type) {
case TT_USER:
if (transform_request->entry == NULL) {
size = configuration_get_entries_size(s_configuration);
for (i = 0; i < size; ++i) {
config_entry = configuration_get_entry(
s_configuration, i);
if (config_entry->perform_actual_lookups == 0)
clear_config_entry_part(config_entry,
qstate->eid_str, qstate->eid_str_length);
}
} else {
qstate->config_entry = configuration_find_entry(
s_configuration, transform_request->entry);
if (qstate->config_entry == NULL) {
LOG_ERR_2("transform_request",
"can't find configuration"
" entry '%s'. aborting request",
transform_request->entry);
transform_response->error_code = -1;
goto fin;
}
if (qstate->config_entry->perform_actual_lookups != 0) {
LOG_ERR_2("transform_request",
"can't transform the cache entry %s"
", because it ised for actual lookups",
transform_request->entry);
transform_response->error_code = -1;
goto fin;
}
clear_config_entry_part(qstate->config_entry,
qstate->eid_str, qstate->eid_str_length);
}
break;
case TT_ALL:
if (qstate->euid != 0)
transform_response->error_code = -1;
else {
if (transform_request->entry == NULL) {
size = configuration_get_entries_size(
s_configuration);
for (i = 0; i < size; ++i) {
clear_config_entry(
configuration_get_entry(
s_configuration, i));
}
} else {
qstate->config_entry = configuration_find_entry(
s_configuration,
transform_request->entry);
if (qstate->config_entry == NULL) {
LOG_ERR_2("transform_request",
"can't find configuration"
" entry '%s'. aborting request",
transform_request->entry);
transform_response->error_code = -1;
goto fin;
}
clear_config_entry(qstate->config_entry);
}
}
break;
default:
transform_response->error_code = -1;
}
fin:
qstate->kevent_watermark = 0;
qstate->process_func = on_transform_response_write1;
TRACE_OUT(on_transform_request_process);
return (0);
}
static int
on_transform_response_write1(struct query_state *qstate)
{
struct cache_transform_response *transform_response;
ssize_t result;
TRACE_IN(on_transform_response_write1);
transform_response = get_cache_transform_response(&qstate->response);
result = qstate->write_func(qstate, &transform_response->error_code,
sizeof(int));
if (result != sizeof(int)) {
TRACE_OUT(on_transform_response_write1);
return (-1);
}
finalize_comm_element(&qstate->request);
finalize_comm_element(&qstate->response);
qstate->kevent_watermark = 0;
qstate->process_func = NULL;
TRACE_OUT(on_transform_response_write1);
return (0);
}
/*
* Checks if the client's euid and egid do not differ from its uid and gid.
* Returns 0 on success.
*/
int
check_query_eids(struct query_state *qstate)
{
return ((qstate->uid != qstate->euid) || (qstate->gid != qstate->egid) ? -1 : 0);
}
/*
* Uses the qstate fields to process an "alternate" read - when the buffer is
* too large to be received during one socket read operation
*/
ssize_t
query_io_buffer_read(struct query_state *qstate, void *buf, size_t nbytes)
{
ssize_t result;
TRACE_IN(query_io_buffer_read);
if ((qstate->io_buffer_size == 0) || (qstate->io_buffer == NULL))
return (-1);
if (nbytes < qstate->io_buffer + qstate->io_buffer_size -
qstate->io_buffer_p)
result = nbytes;
else
result = qstate->io_buffer + qstate->io_buffer_size -
qstate->io_buffer_p;
memcpy(buf, qstate->io_buffer_p, result);
qstate->io_buffer_p += result;
if (qstate->io_buffer_p == qstate->io_buffer + qstate->io_buffer_size) {
free(qstate->io_buffer);
qstate->io_buffer = NULL;
qstate->write_func = query_socket_write;
qstate->read_func = query_socket_read;
}
TRACE_OUT(query_io_buffer_read);
return (result);
}
/*
* Uses the qstate fields to process an "alternate" write - when the buffer is
* too large to be sent during one socket write operation
*/
ssize_t
query_io_buffer_write(struct query_state *qstate, const void *buf,
size_t nbytes)
{
ssize_t result;
TRACE_IN(query_io_buffer_write);
if ((qstate->io_buffer_size == 0) || (qstate->io_buffer == NULL))
return (-1);
if (nbytes < qstate->io_buffer + qstate->io_buffer_size -
qstate->io_buffer_p)
result = nbytes;
else
result = qstate->io_buffer + qstate->io_buffer_size -
qstate->io_buffer_p;
memcpy(qstate->io_buffer_p, buf, result);
qstate->io_buffer_p += result;
if (qstate->io_buffer_p == qstate->io_buffer + qstate->io_buffer_size) {
qstate->use_alternate_io = 1;
qstate->io_buffer_p = qstate->io_buffer;
qstate->write_func = query_socket_write;
qstate->read_func = query_socket_read;
}
TRACE_OUT(query_io_buffer_write);
return (result);
}
/*
* The default "read" function, which reads data directly from socket
*/
ssize_t
query_socket_read(struct query_state *qstate, void *buf, size_t nbytes)
{
ssize_t result;
TRACE_IN(query_socket_read);
if (qstate->socket_failed != 0) {
TRACE_OUT(query_socket_read);
return (-1);
}
result = read(qstate->sockfd, buf, nbytes);
if ((result == -1) || (result < nbytes))
qstate->socket_failed = 1;
TRACE_OUT(query_socket_read);
return (result);
}
/*
* The default "write" function, which writes data directly to socket
*/
ssize_t
query_socket_write(struct query_state *qstate, const void *buf, size_t nbytes)
{
ssize_t result;
TRACE_IN(query_socket_write);
if (qstate->socket_failed != 0) {
TRACE_OUT(query_socket_write);
return (-1);
}
result = write(qstate->sockfd, buf, nbytes);
if ((result == -1) || (result < nbytes))
qstate->socket_failed = 1;
TRACE_OUT(query_socket_write);
return (result);
}
/*
* Initializes the query_state structure by filling it with the default values.
*/
struct query_state *
init_query_state(int sockfd, size_t kevent_watermark, uid_t euid, gid_t egid)
{
struct query_state *retval;
TRACE_IN(init_query_state);
retval = (struct query_state *)malloc(sizeof(struct query_state));
assert(retval != NULL);
memset(retval, 0, sizeof(struct query_state));
retval->sockfd = sockfd;
retval->kevent_filter = EVFILT_READ;
retval->kevent_watermark = kevent_watermark;
retval->euid = euid;
retval->egid = egid;
retval->uid = retval->gid = -1;
if (asprintf(&retval->eid_str, "%d_%d_", retval->euid,
retval->egid) == -1) {
free(retval);
return (NULL);
}
retval->eid_str_length = strlen(retval->eid_str);
init_comm_element(&retval->request, CET_UNDEFINED);
init_comm_element(&retval->response, CET_UNDEFINED);
retval->process_func = on_query_startup;
retval->destroy_func = on_query_destroy;
retval->write_func = query_socket_write;
retval->read_func = query_socket_read;
get_time_func(&retval->creation_time);
memcpy(&retval->timeout, &s_configuration->query_timeout,
sizeof(struct timeval));
TRACE_OUT(init_query_state);
return (retval);
}
void
destroy_query_state(struct query_state *qstate)
{
TRACE_IN(destroy_query_state);
if (qstate->eid_str != NULL)
free(qstate->eid_str);
if (qstate->io_buffer != NULL)
free(qstate->io_buffer);
qstate->destroy_func(qstate);
free(qstate);
TRACE_OUT(destroy_query_state);
}