43963c5cfa
vm_object_reference(). This is intended to get rid of vget() consumers who don't wish to acquire a lock. This is functionally the same as calling vref(). vm_object_reference_locked() already uses vref. Discussed with: alc
2267 lines
58 KiB
C
2267 lines
58 KiB
C
/*-
|
|
* Copyright (c) 1991, 1993
|
|
* The Regents of the University of California. All rights reserved.
|
|
*
|
|
* This code is derived from software contributed to Berkeley by
|
|
* The Mach Operating System project at Carnegie-Mellon University.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 4. Neither the name of the University nor the names of its contributors
|
|
* may be used to endorse or promote products derived from this software
|
|
* without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*
|
|
* from: @(#)vm_object.c 8.5 (Berkeley) 3/22/94
|
|
*
|
|
*
|
|
* Copyright (c) 1987, 1990 Carnegie-Mellon University.
|
|
* All rights reserved.
|
|
*
|
|
* Authors: Avadis Tevanian, Jr., Michael Wayne Young
|
|
*
|
|
* Permission to use, copy, modify and distribute this software and
|
|
* its documentation is hereby granted, provided that both the copyright
|
|
* notice and this permission notice appear in all copies of the
|
|
* software, derivative works or modified versions, and any portions
|
|
* thereof, and that both notices appear in supporting documentation.
|
|
*
|
|
* CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
|
|
* CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
|
|
* FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
|
|
*
|
|
* Carnegie Mellon requests users of this software to return to
|
|
*
|
|
* Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
|
|
* School of Computer Science
|
|
* Carnegie Mellon University
|
|
* Pittsburgh PA 15213-3890
|
|
*
|
|
* any improvements or extensions that they make and grant Carnegie the
|
|
* rights to redistribute these changes.
|
|
*/
|
|
|
|
/*
|
|
* Virtual memory object module.
|
|
*/
|
|
|
|
#include <sys/cdefs.h>
|
|
__FBSDID("$FreeBSD$");
|
|
|
|
#include "opt_vm.h"
|
|
|
|
#include <sys/param.h>
|
|
#include <sys/systm.h>
|
|
#include <sys/lock.h>
|
|
#include <sys/mman.h>
|
|
#include <sys/mount.h>
|
|
#include <sys/kernel.h>
|
|
#include <sys/sysctl.h>
|
|
#include <sys/mutex.h>
|
|
#include <sys/proc.h> /* for curproc, pageproc */
|
|
#include <sys/socket.h>
|
|
#include <sys/vnode.h>
|
|
#include <sys/vmmeter.h>
|
|
#include <sys/sx.h>
|
|
|
|
#include <vm/vm.h>
|
|
#include <vm/vm_param.h>
|
|
#include <vm/pmap.h>
|
|
#include <vm/vm_map.h>
|
|
#include <vm/vm_object.h>
|
|
#include <vm/vm_page.h>
|
|
#include <vm/vm_pageout.h>
|
|
#include <vm/vm_pager.h>
|
|
#include <vm/swap_pager.h>
|
|
#include <vm/vm_kern.h>
|
|
#include <vm/vm_extern.h>
|
|
#include <vm/vm_reserv.h>
|
|
#include <vm/uma.h>
|
|
|
|
#define EASY_SCAN_FACTOR 8
|
|
|
|
#define MSYNC_FLUSH_HARDSEQ 0x01
|
|
#define MSYNC_FLUSH_SOFTSEQ 0x02
|
|
|
|
/*
|
|
* msync / VM object flushing optimizations
|
|
*/
|
|
static int msync_flush_flags = MSYNC_FLUSH_HARDSEQ | MSYNC_FLUSH_SOFTSEQ;
|
|
SYSCTL_INT(_vm, OID_AUTO, msync_flush_flags,
|
|
CTLFLAG_RW, &msync_flush_flags, 0, "");
|
|
|
|
static int old_msync;
|
|
SYSCTL_INT(_vm, OID_AUTO, old_msync, CTLFLAG_RW, &old_msync, 0,
|
|
"Use old (insecure) msync behavior");
|
|
|
|
static void vm_object_qcollapse(vm_object_t object);
|
|
static int vm_object_page_collect_flush(vm_object_t object, vm_page_t p, int curgeneration, int pagerflags);
|
|
static void vm_object_vndeallocate(vm_object_t object);
|
|
|
|
/*
|
|
* Virtual memory objects maintain the actual data
|
|
* associated with allocated virtual memory. A given
|
|
* page of memory exists within exactly one object.
|
|
*
|
|
* An object is only deallocated when all "references"
|
|
* are given up. Only one "reference" to a given
|
|
* region of an object should be writeable.
|
|
*
|
|
* Associated with each object is a list of all resident
|
|
* memory pages belonging to that object; this list is
|
|
* maintained by the "vm_page" module, and locked by the object's
|
|
* lock.
|
|
*
|
|
* Each object also records a "pager" routine which is
|
|
* used to retrieve (and store) pages to the proper backing
|
|
* storage. In addition, objects may be backed by other
|
|
* objects from which they were virtual-copied.
|
|
*
|
|
* The only items within the object structure which are
|
|
* modified after time of creation are:
|
|
* reference count locked by object's lock
|
|
* pager routine locked by object's lock
|
|
*
|
|
*/
|
|
|
|
struct object_q vm_object_list;
|
|
struct mtx vm_object_list_mtx; /* lock for object list and count */
|
|
|
|
struct vm_object kernel_object_store;
|
|
struct vm_object kmem_object_store;
|
|
|
|
SYSCTL_NODE(_vm_stats, OID_AUTO, object, CTLFLAG_RD, 0, "VM object stats");
|
|
|
|
static long object_collapses;
|
|
SYSCTL_LONG(_vm_stats_object, OID_AUTO, collapses, CTLFLAG_RD,
|
|
&object_collapses, 0, "VM object collapses");
|
|
|
|
static long object_bypasses;
|
|
SYSCTL_LONG(_vm_stats_object, OID_AUTO, bypasses, CTLFLAG_RD,
|
|
&object_bypasses, 0, "VM object bypasses");
|
|
|
|
static uma_zone_t obj_zone;
|
|
|
|
static int vm_object_zinit(void *mem, int size, int flags);
|
|
|
|
#ifdef INVARIANTS
|
|
static void vm_object_zdtor(void *mem, int size, void *arg);
|
|
|
|
static void
|
|
vm_object_zdtor(void *mem, int size, void *arg)
|
|
{
|
|
vm_object_t object;
|
|
|
|
object = (vm_object_t)mem;
|
|
KASSERT(TAILQ_EMPTY(&object->memq),
|
|
("object %p has resident pages",
|
|
object));
|
|
#if VM_NRESERVLEVEL > 0
|
|
KASSERT(LIST_EMPTY(&object->rvq),
|
|
("object %p has reservations",
|
|
object));
|
|
#endif
|
|
KASSERT(object->cache == NULL,
|
|
("object %p has cached pages",
|
|
object));
|
|
KASSERT(object->paging_in_progress == 0,
|
|
("object %p paging_in_progress = %d",
|
|
object, object->paging_in_progress));
|
|
KASSERT(object->resident_page_count == 0,
|
|
("object %p resident_page_count = %d",
|
|
object, object->resident_page_count));
|
|
KASSERT(object->shadow_count == 0,
|
|
("object %p shadow_count = %d",
|
|
object, object->shadow_count));
|
|
}
|
|
#endif
|
|
|
|
static int
|
|
vm_object_zinit(void *mem, int size, int flags)
|
|
{
|
|
vm_object_t object;
|
|
|
|
object = (vm_object_t)mem;
|
|
bzero(&object->mtx, sizeof(object->mtx));
|
|
VM_OBJECT_LOCK_INIT(object, "standard object");
|
|
|
|
/* These are true for any object that has been freed */
|
|
object->paging_in_progress = 0;
|
|
object->resident_page_count = 0;
|
|
object->shadow_count = 0;
|
|
return (0);
|
|
}
|
|
|
|
void
|
|
_vm_object_allocate(objtype_t type, vm_pindex_t size, vm_object_t object)
|
|
{
|
|
|
|
TAILQ_INIT(&object->memq);
|
|
LIST_INIT(&object->shadow_head);
|
|
|
|
object->root = NULL;
|
|
object->type = type;
|
|
object->size = size;
|
|
object->generation = 1;
|
|
object->ref_count = 1;
|
|
object->flags = 0;
|
|
if ((object->type == OBJT_DEFAULT) || (object->type == OBJT_SWAP))
|
|
object->flags = OBJ_ONEMAPPING;
|
|
object->pg_color = 0;
|
|
object->handle = NULL;
|
|
object->backing_object = NULL;
|
|
object->backing_object_offset = (vm_ooffset_t) 0;
|
|
#if VM_NRESERVLEVEL > 0
|
|
LIST_INIT(&object->rvq);
|
|
#endif
|
|
object->cache = NULL;
|
|
|
|
mtx_lock(&vm_object_list_mtx);
|
|
TAILQ_INSERT_TAIL(&vm_object_list, object, object_list);
|
|
mtx_unlock(&vm_object_list_mtx);
|
|
}
|
|
|
|
/*
|
|
* vm_object_init:
|
|
*
|
|
* Initialize the VM objects module.
|
|
*/
|
|
void
|
|
vm_object_init(void)
|
|
{
|
|
TAILQ_INIT(&vm_object_list);
|
|
mtx_init(&vm_object_list_mtx, "vm object_list", NULL, MTX_DEF);
|
|
|
|
VM_OBJECT_LOCK_INIT(&kernel_object_store, "kernel object");
|
|
_vm_object_allocate(OBJT_PHYS, OFF_TO_IDX(VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS),
|
|
kernel_object);
|
|
#if VM_NRESERVLEVEL > 0
|
|
kernel_object->flags |= OBJ_COLORED;
|
|
kernel_object->pg_color = (u_short)atop(VM_MIN_KERNEL_ADDRESS);
|
|
#endif
|
|
|
|
VM_OBJECT_LOCK_INIT(&kmem_object_store, "kmem object");
|
|
_vm_object_allocate(OBJT_PHYS, OFF_TO_IDX(VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS),
|
|
kmem_object);
|
|
#if VM_NRESERVLEVEL > 0
|
|
kmem_object->flags |= OBJ_COLORED;
|
|
kmem_object->pg_color = (u_short)atop(VM_MIN_KERNEL_ADDRESS);
|
|
#endif
|
|
|
|
/*
|
|
* The lock portion of struct vm_object must be type stable due
|
|
* to vm_pageout_fallback_object_lock locking a vm object
|
|
* without holding any references to it.
|
|
*/
|
|
obj_zone = uma_zcreate("VM OBJECT", sizeof (struct vm_object), NULL,
|
|
#ifdef INVARIANTS
|
|
vm_object_zdtor,
|
|
#else
|
|
NULL,
|
|
#endif
|
|
vm_object_zinit, NULL, UMA_ALIGN_PTR, UMA_ZONE_VM|UMA_ZONE_NOFREE);
|
|
}
|
|
|
|
void
|
|
vm_object_clear_flag(vm_object_t object, u_short bits)
|
|
{
|
|
|
|
VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
|
|
object->flags &= ~bits;
|
|
}
|
|
|
|
void
|
|
vm_object_pip_add(vm_object_t object, short i)
|
|
{
|
|
|
|
VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
|
|
object->paging_in_progress += i;
|
|
}
|
|
|
|
void
|
|
vm_object_pip_subtract(vm_object_t object, short i)
|
|
{
|
|
|
|
VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
|
|
object->paging_in_progress -= i;
|
|
}
|
|
|
|
void
|
|
vm_object_pip_wakeup(vm_object_t object)
|
|
{
|
|
|
|
VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
|
|
object->paging_in_progress--;
|
|
if ((object->flags & OBJ_PIPWNT) && object->paging_in_progress == 0) {
|
|
vm_object_clear_flag(object, OBJ_PIPWNT);
|
|
wakeup(object);
|
|
}
|
|
}
|
|
|
|
void
|
|
vm_object_pip_wakeupn(vm_object_t object, short i)
|
|
{
|
|
|
|
VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
|
|
if (i)
|
|
object->paging_in_progress -= i;
|
|
if ((object->flags & OBJ_PIPWNT) && object->paging_in_progress == 0) {
|
|
vm_object_clear_flag(object, OBJ_PIPWNT);
|
|
wakeup(object);
|
|
}
|
|
}
|
|
|
|
void
|
|
vm_object_pip_wait(vm_object_t object, char *waitid)
|
|
{
|
|
|
|
VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
|
|
while (object->paging_in_progress) {
|
|
object->flags |= OBJ_PIPWNT;
|
|
msleep(object, VM_OBJECT_MTX(object), PVM, waitid, 0);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* vm_object_allocate:
|
|
*
|
|
* Returns a new object with the given size.
|
|
*/
|
|
vm_object_t
|
|
vm_object_allocate(objtype_t type, vm_pindex_t size)
|
|
{
|
|
vm_object_t object;
|
|
|
|
object = (vm_object_t)uma_zalloc(obj_zone, M_WAITOK);
|
|
_vm_object_allocate(type, size, object);
|
|
return (object);
|
|
}
|
|
|
|
|
|
/*
|
|
* vm_object_reference:
|
|
*
|
|
* Gets another reference to the given object. Note: OBJ_DEAD
|
|
* objects can be referenced during final cleaning.
|
|
*/
|
|
void
|
|
vm_object_reference(vm_object_t object)
|
|
{
|
|
if (object == NULL)
|
|
return;
|
|
VM_OBJECT_LOCK(object);
|
|
vm_object_reference_locked(object);
|
|
VM_OBJECT_UNLOCK(object);
|
|
}
|
|
|
|
/*
|
|
* vm_object_reference_locked:
|
|
*
|
|
* Gets another reference to the given object.
|
|
*
|
|
* The object must be locked.
|
|
*/
|
|
void
|
|
vm_object_reference_locked(vm_object_t object)
|
|
{
|
|
struct vnode *vp;
|
|
|
|
VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
|
|
object->ref_count++;
|
|
if (object->type == OBJT_VNODE) {
|
|
vp = object->handle;
|
|
vref(vp);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Handle deallocating an object of type OBJT_VNODE.
|
|
*/
|
|
static void
|
|
vm_object_vndeallocate(vm_object_t object)
|
|
{
|
|
struct vnode *vp = (struct vnode *) object->handle;
|
|
|
|
VFS_ASSERT_GIANT(vp->v_mount);
|
|
VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
|
|
KASSERT(object->type == OBJT_VNODE,
|
|
("vm_object_vndeallocate: not a vnode object"));
|
|
KASSERT(vp != NULL, ("vm_object_vndeallocate: missing vp"));
|
|
#ifdef INVARIANTS
|
|
if (object->ref_count == 0) {
|
|
vprint("vm_object_vndeallocate", vp);
|
|
panic("vm_object_vndeallocate: bad object reference count");
|
|
}
|
|
#endif
|
|
|
|
object->ref_count--;
|
|
if (object->ref_count == 0) {
|
|
mp_fixme("Unlocked vflag access.");
|
|
vp->v_vflag &= ~VV_TEXT;
|
|
}
|
|
VM_OBJECT_UNLOCK(object);
|
|
/*
|
|
* vrele may need a vop lock
|
|
*/
|
|
vrele(vp);
|
|
}
|
|
|
|
/*
|
|
* vm_object_deallocate:
|
|
*
|
|
* Release a reference to the specified object,
|
|
* gained either through a vm_object_allocate
|
|
* or a vm_object_reference call. When all references
|
|
* are gone, storage associated with this object
|
|
* may be relinquished.
|
|
*
|
|
* No object may be locked.
|
|
*/
|
|
void
|
|
vm_object_deallocate(vm_object_t object)
|
|
{
|
|
vm_object_t temp;
|
|
|
|
while (object != NULL) {
|
|
int vfslocked;
|
|
|
|
vfslocked = 0;
|
|
restart:
|
|
VM_OBJECT_LOCK(object);
|
|
if (object->type == OBJT_VNODE) {
|
|
struct vnode *vp = (struct vnode *) object->handle;
|
|
|
|
/*
|
|
* Conditionally acquire Giant for a vnode-backed
|
|
* object. We have to be careful since the type of
|
|
* a vnode object can change while the object is
|
|
* unlocked.
|
|
*/
|
|
if (VFS_NEEDSGIANT(vp->v_mount) && !vfslocked) {
|
|
vfslocked = 1;
|
|
if (!mtx_trylock(&Giant)) {
|
|
VM_OBJECT_UNLOCK(object);
|
|
mtx_lock(&Giant);
|
|
goto restart;
|
|
}
|
|
}
|
|
vm_object_vndeallocate(object);
|
|
VFS_UNLOCK_GIANT(vfslocked);
|
|
return;
|
|
} else
|
|
/*
|
|
* This is to handle the case that the object
|
|
* changed type while we dropped its lock to
|
|
* obtain Giant.
|
|
*/
|
|
VFS_UNLOCK_GIANT(vfslocked);
|
|
|
|
KASSERT(object->ref_count != 0,
|
|
("vm_object_deallocate: object deallocated too many times: %d", object->type));
|
|
|
|
/*
|
|
* If the reference count goes to 0 we start calling
|
|
* vm_object_terminate() on the object chain.
|
|
* A ref count of 1 may be a special case depending on the
|
|
* shadow count being 0 or 1.
|
|
*/
|
|
object->ref_count--;
|
|
if (object->ref_count > 1) {
|
|
VM_OBJECT_UNLOCK(object);
|
|
return;
|
|
} else if (object->ref_count == 1) {
|
|
if (object->shadow_count == 0 &&
|
|
object->handle == NULL &&
|
|
(object->type == OBJT_DEFAULT ||
|
|
object->type == OBJT_SWAP)) {
|
|
vm_object_set_flag(object, OBJ_ONEMAPPING);
|
|
} else if ((object->shadow_count == 1) &&
|
|
(object->handle == NULL) &&
|
|
(object->type == OBJT_DEFAULT ||
|
|
object->type == OBJT_SWAP)) {
|
|
vm_object_t robject;
|
|
|
|
robject = LIST_FIRST(&object->shadow_head);
|
|
KASSERT(robject != NULL,
|
|
("vm_object_deallocate: ref_count: %d, shadow_count: %d",
|
|
object->ref_count,
|
|
object->shadow_count));
|
|
if (!VM_OBJECT_TRYLOCK(robject)) {
|
|
/*
|
|
* Avoid a potential deadlock.
|
|
*/
|
|
object->ref_count++;
|
|
VM_OBJECT_UNLOCK(object);
|
|
/*
|
|
* More likely than not the thread
|
|
* holding robject's lock has lower
|
|
* priority than the current thread.
|
|
* Let the lower priority thread run.
|
|
*/
|
|
pause("vmo_de", 1);
|
|
continue;
|
|
}
|
|
/*
|
|
* Collapse object into its shadow unless its
|
|
* shadow is dead. In that case, object will
|
|
* be deallocated by the thread that is
|
|
* deallocating its shadow.
|
|
*/
|
|
if ((robject->flags & OBJ_DEAD) == 0 &&
|
|
(robject->handle == NULL) &&
|
|
(robject->type == OBJT_DEFAULT ||
|
|
robject->type == OBJT_SWAP)) {
|
|
|
|
robject->ref_count++;
|
|
retry:
|
|
if (robject->paging_in_progress) {
|
|
VM_OBJECT_UNLOCK(object);
|
|
vm_object_pip_wait(robject,
|
|
"objde1");
|
|
temp = robject->backing_object;
|
|
if (object == temp) {
|
|
VM_OBJECT_LOCK(object);
|
|
goto retry;
|
|
}
|
|
} else if (object->paging_in_progress) {
|
|
VM_OBJECT_UNLOCK(robject);
|
|
object->flags |= OBJ_PIPWNT;
|
|
msleep(object,
|
|
VM_OBJECT_MTX(object),
|
|
PDROP | PVM, "objde2", 0);
|
|
VM_OBJECT_LOCK(robject);
|
|
temp = robject->backing_object;
|
|
if (object == temp) {
|
|
VM_OBJECT_LOCK(object);
|
|
goto retry;
|
|
}
|
|
} else
|
|
VM_OBJECT_UNLOCK(object);
|
|
|
|
if (robject->ref_count == 1) {
|
|
robject->ref_count--;
|
|
object = robject;
|
|
goto doterm;
|
|
}
|
|
object = robject;
|
|
vm_object_collapse(object);
|
|
VM_OBJECT_UNLOCK(object);
|
|
continue;
|
|
}
|
|
VM_OBJECT_UNLOCK(robject);
|
|
}
|
|
VM_OBJECT_UNLOCK(object);
|
|
return;
|
|
}
|
|
doterm:
|
|
temp = object->backing_object;
|
|
if (temp != NULL) {
|
|
VM_OBJECT_LOCK(temp);
|
|
LIST_REMOVE(object, shadow_list);
|
|
temp->shadow_count--;
|
|
temp->generation++;
|
|
VM_OBJECT_UNLOCK(temp);
|
|
object->backing_object = NULL;
|
|
}
|
|
/*
|
|
* Don't double-terminate, we could be in a termination
|
|
* recursion due to the terminate having to sync data
|
|
* to disk.
|
|
*/
|
|
if ((object->flags & OBJ_DEAD) == 0)
|
|
vm_object_terminate(object);
|
|
else
|
|
VM_OBJECT_UNLOCK(object);
|
|
object = temp;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* vm_object_terminate actually destroys the specified object, freeing
|
|
* up all previously used resources.
|
|
*
|
|
* The object must be locked.
|
|
* This routine may block.
|
|
*/
|
|
void
|
|
vm_object_terminate(vm_object_t object)
|
|
{
|
|
vm_page_t p;
|
|
|
|
VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
|
|
|
|
/*
|
|
* Make sure no one uses us.
|
|
*/
|
|
vm_object_set_flag(object, OBJ_DEAD);
|
|
|
|
/*
|
|
* wait for the pageout daemon to be done with the object
|
|
*/
|
|
vm_object_pip_wait(object, "objtrm");
|
|
|
|
KASSERT(!object->paging_in_progress,
|
|
("vm_object_terminate: pageout in progress"));
|
|
|
|
/*
|
|
* Clean and free the pages, as appropriate. All references to the
|
|
* object are gone, so we don't need to lock it.
|
|
*/
|
|
if (object->type == OBJT_VNODE) {
|
|
struct vnode *vp = (struct vnode *)object->handle;
|
|
|
|
/*
|
|
* Clean pages and flush buffers.
|
|
*/
|
|
vm_object_page_clean(object, 0, 0, OBJPC_SYNC);
|
|
VM_OBJECT_UNLOCK(object);
|
|
|
|
vinvalbuf(vp, V_SAVE, NULL, 0, 0);
|
|
|
|
VM_OBJECT_LOCK(object);
|
|
}
|
|
|
|
KASSERT(object->ref_count == 0,
|
|
("vm_object_terminate: object with references, ref_count=%d",
|
|
object->ref_count));
|
|
|
|
/*
|
|
* Now free any remaining pages. For internal objects, this also
|
|
* removes them from paging queues. Don't free wired pages, just
|
|
* remove them from the object.
|
|
*/
|
|
vm_page_lock_queues();
|
|
while ((p = TAILQ_FIRST(&object->memq)) != NULL) {
|
|
KASSERT(!p->busy && (p->oflags & VPO_BUSY) == 0,
|
|
("vm_object_terminate: freeing busy page %p "
|
|
"p->busy = %d, p->flags %x\n", p, p->busy, p->flags));
|
|
if (p->wire_count == 0) {
|
|
vm_page_free(p);
|
|
cnt.v_pfree++;
|
|
} else {
|
|
vm_page_remove(p);
|
|
}
|
|
}
|
|
vm_page_unlock_queues();
|
|
|
|
#if VM_NRESERVLEVEL > 0
|
|
if (__predict_false(!LIST_EMPTY(&object->rvq)))
|
|
vm_reserv_break_all(object);
|
|
#endif
|
|
if (__predict_false(object->cache != NULL))
|
|
vm_page_cache_free(object, 0, 0);
|
|
|
|
/*
|
|
* Let the pager know object is dead.
|
|
*/
|
|
vm_pager_deallocate(object);
|
|
VM_OBJECT_UNLOCK(object);
|
|
|
|
/*
|
|
* Remove the object from the global object list.
|
|
*/
|
|
mtx_lock(&vm_object_list_mtx);
|
|
TAILQ_REMOVE(&vm_object_list, object, object_list);
|
|
mtx_unlock(&vm_object_list_mtx);
|
|
|
|
/*
|
|
* Free the space for the object.
|
|
*/
|
|
uma_zfree(obj_zone, object);
|
|
}
|
|
|
|
/*
|
|
* vm_object_page_clean
|
|
*
|
|
* Clean all dirty pages in the specified range of object. Leaves page
|
|
* on whatever queue it is currently on. If NOSYNC is set then do not
|
|
* write out pages with VPO_NOSYNC set (originally comes from MAP_NOSYNC),
|
|
* leaving the object dirty.
|
|
*
|
|
* When stuffing pages asynchronously, allow clustering. XXX we need a
|
|
* synchronous clustering mode implementation.
|
|
*
|
|
* Odd semantics: if start == end, we clean everything.
|
|
*
|
|
* The object must be locked.
|
|
*/
|
|
void
|
|
vm_object_page_clean(vm_object_t object, vm_pindex_t start, vm_pindex_t end, int flags)
|
|
{
|
|
vm_page_t p, np;
|
|
vm_pindex_t tstart, tend;
|
|
vm_pindex_t pi;
|
|
int clearobjflags;
|
|
int pagerflags;
|
|
int curgeneration;
|
|
|
|
VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
|
|
if (object->type != OBJT_VNODE ||
|
|
(object->flags & OBJ_MIGHTBEDIRTY) == 0)
|
|
return;
|
|
|
|
pagerflags = (flags & (OBJPC_SYNC | OBJPC_INVAL)) ? VM_PAGER_PUT_SYNC : VM_PAGER_CLUSTER_OK;
|
|
pagerflags |= (flags & OBJPC_INVAL) ? VM_PAGER_PUT_INVAL : 0;
|
|
|
|
vm_object_set_flag(object, OBJ_CLEANING);
|
|
|
|
tstart = start;
|
|
if (end == 0) {
|
|
tend = object->size;
|
|
} else {
|
|
tend = end;
|
|
}
|
|
|
|
vm_page_lock_queues();
|
|
/*
|
|
* If the caller is smart and only msync()s a range he knows is
|
|
* dirty, we may be able to avoid an object scan. This results in
|
|
* a phenominal improvement in performance. We cannot do this
|
|
* as a matter of course because the object may be huge - e.g.
|
|
* the size might be in the gigabytes or terrabytes.
|
|
*/
|
|
if (msync_flush_flags & MSYNC_FLUSH_HARDSEQ) {
|
|
vm_pindex_t tscan;
|
|
int scanlimit;
|
|
int scanreset;
|
|
|
|
scanreset = object->resident_page_count / EASY_SCAN_FACTOR;
|
|
if (scanreset < 16)
|
|
scanreset = 16;
|
|
pagerflags |= VM_PAGER_IGNORE_CLEANCHK;
|
|
|
|
scanlimit = scanreset;
|
|
tscan = tstart;
|
|
while (tscan < tend) {
|
|
curgeneration = object->generation;
|
|
p = vm_page_lookup(object, tscan);
|
|
if (p == NULL || p->valid == 0) {
|
|
if (--scanlimit == 0)
|
|
break;
|
|
++tscan;
|
|
continue;
|
|
}
|
|
vm_page_test_dirty(p);
|
|
if ((p->dirty & p->valid) == 0) {
|
|
if (--scanlimit == 0)
|
|
break;
|
|
++tscan;
|
|
continue;
|
|
}
|
|
/*
|
|
* If we have been asked to skip nosync pages and
|
|
* this is a nosync page, we can't continue.
|
|
*/
|
|
if ((flags & OBJPC_NOSYNC) && (p->oflags & VPO_NOSYNC)) {
|
|
if (--scanlimit == 0)
|
|
break;
|
|
++tscan;
|
|
continue;
|
|
}
|
|
scanlimit = scanreset;
|
|
|
|
/*
|
|
* This returns 0 if it was unable to busy the first
|
|
* page (i.e. had to sleep).
|
|
*/
|
|
tscan += vm_object_page_collect_flush(object, p, curgeneration, pagerflags);
|
|
}
|
|
|
|
/*
|
|
* If everything was dirty and we flushed it successfully,
|
|
* and the requested range is not the entire object, we
|
|
* don't have to mess with CLEANCHK or MIGHTBEDIRTY and can
|
|
* return immediately.
|
|
*/
|
|
if (tscan >= tend && (tstart || tend < object->size)) {
|
|
vm_page_unlock_queues();
|
|
vm_object_clear_flag(object, OBJ_CLEANING);
|
|
return;
|
|
}
|
|
pagerflags &= ~VM_PAGER_IGNORE_CLEANCHK;
|
|
}
|
|
|
|
/*
|
|
* Generally set CLEANCHK interlock and make the page read-only so
|
|
* we can then clear the object flags.
|
|
*
|
|
* However, if this is a nosync mmap then the object is likely to
|
|
* stay dirty so do not mess with the page and do not clear the
|
|
* object flags.
|
|
*/
|
|
clearobjflags = 1;
|
|
TAILQ_FOREACH(p, &object->memq, listq) {
|
|
p->oflags |= VPO_CLEANCHK;
|
|
if ((flags & OBJPC_NOSYNC) && (p->oflags & VPO_NOSYNC))
|
|
clearobjflags = 0;
|
|
else
|
|
pmap_remove_write(p);
|
|
}
|
|
|
|
if (clearobjflags && (tstart == 0) && (tend == object->size)) {
|
|
struct vnode *vp;
|
|
|
|
vm_object_clear_flag(object, OBJ_MIGHTBEDIRTY);
|
|
if (object->type == OBJT_VNODE &&
|
|
(vp = (struct vnode *)object->handle) != NULL) {
|
|
VI_LOCK(vp);
|
|
if (vp->v_iflag & VI_OBJDIRTY)
|
|
vp->v_iflag &= ~VI_OBJDIRTY;
|
|
VI_UNLOCK(vp);
|
|
}
|
|
}
|
|
|
|
rescan:
|
|
curgeneration = object->generation;
|
|
|
|
for (p = TAILQ_FIRST(&object->memq); p; p = np) {
|
|
int n;
|
|
|
|
np = TAILQ_NEXT(p, listq);
|
|
|
|
again:
|
|
pi = p->pindex;
|
|
if ((p->oflags & VPO_CLEANCHK) == 0 ||
|
|
(pi < tstart) || (pi >= tend) ||
|
|
p->valid == 0) {
|
|
p->oflags &= ~VPO_CLEANCHK;
|
|
continue;
|
|
}
|
|
|
|
vm_page_test_dirty(p);
|
|
if ((p->dirty & p->valid) == 0) {
|
|
p->oflags &= ~VPO_CLEANCHK;
|
|
continue;
|
|
}
|
|
|
|
/*
|
|
* If we have been asked to skip nosync pages and this is a
|
|
* nosync page, skip it. Note that the object flags were
|
|
* not cleared in this case so we do not have to set them.
|
|
*/
|
|
if ((flags & OBJPC_NOSYNC) && (p->oflags & VPO_NOSYNC)) {
|
|
p->oflags &= ~VPO_CLEANCHK;
|
|
continue;
|
|
}
|
|
|
|
n = vm_object_page_collect_flush(object, p,
|
|
curgeneration, pagerflags);
|
|
if (n == 0)
|
|
goto rescan;
|
|
|
|
if (object->generation != curgeneration)
|
|
goto rescan;
|
|
|
|
/*
|
|
* Try to optimize the next page. If we can't we pick up
|
|
* our (random) scan where we left off.
|
|
*/
|
|
if (msync_flush_flags & MSYNC_FLUSH_SOFTSEQ) {
|
|
if ((p = vm_page_lookup(object, pi + n)) != NULL)
|
|
goto again;
|
|
}
|
|
}
|
|
vm_page_unlock_queues();
|
|
#if 0
|
|
VOP_FSYNC(vp, (pagerflags & VM_PAGER_PUT_SYNC)?MNT_WAIT:0, curproc);
|
|
#endif
|
|
|
|
vm_object_clear_flag(object, OBJ_CLEANING);
|
|
return;
|
|
}
|
|
|
|
static int
|
|
vm_object_page_collect_flush(vm_object_t object, vm_page_t p, int curgeneration, int pagerflags)
|
|
{
|
|
int runlen;
|
|
int maxf;
|
|
int chkb;
|
|
int maxb;
|
|
int i;
|
|
vm_pindex_t pi;
|
|
vm_page_t maf[vm_pageout_page_count];
|
|
vm_page_t mab[vm_pageout_page_count];
|
|
vm_page_t ma[vm_pageout_page_count];
|
|
|
|
mtx_assert(&vm_page_queue_mtx, MA_OWNED);
|
|
pi = p->pindex;
|
|
while (vm_page_sleep_if_busy(p, TRUE, "vpcwai")) {
|
|
vm_page_lock_queues();
|
|
if (object->generation != curgeneration) {
|
|
return(0);
|
|
}
|
|
}
|
|
maxf = 0;
|
|
for(i = 1; i < vm_pageout_page_count; i++) {
|
|
vm_page_t tp;
|
|
|
|
if ((tp = vm_page_lookup(object, pi + i)) != NULL) {
|
|
if ((tp->oflags & VPO_BUSY) ||
|
|
((pagerflags & VM_PAGER_IGNORE_CLEANCHK) == 0 &&
|
|
(tp->oflags & VPO_CLEANCHK) == 0) ||
|
|
(tp->busy != 0))
|
|
break;
|
|
vm_page_test_dirty(tp);
|
|
if ((tp->dirty & tp->valid) == 0) {
|
|
tp->oflags &= ~VPO_CLEANCHK;
|
|
break;
|
|
}
|
|
maf[ i - 1 ] = tp;
|
|
maxf++;
|
|
continue;
|
|
}
|
|
break;
|
|
}
|
|
|
|
maxb = 0;
|
|
chkb = vm_pageout_page_count - maxf;
|
|
if (chkb) {
|
|
for(i = 1; i < chkb;i++) {
|
|
vm_page_t tp;
|
|
|
|
if ((tp = vm_page_lookup(object, pi - i)) != NULL) {
|
|
if ((tp->oflags & VPO_BUSY) ||
|
|
((pagerflags & VM_PAGER_IGNORE_CLEANCHK) == 0 &&
|
|
(tp->oflags & VPO_CLEANCHK) == 0) ||
|
|
(tp->busy != 0))
|
|
break;
|
|
vm_page_test_dirty(tp);
|
|
if ((tp->dirty & tp->valid) == 0) {
|
|
tp->oflags &= ~VPO_CLEANCHK;
|
|
break;
|
|
}
|
|
mab[ i - 1 ] = tp;
|
|
maxb++;
|
|
continue;
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
|
|
for(i = 0; i < maxb; i++) {
|
|
int index = (maxb - i) - 1;
|
|
ma[index] = mab[i];
|
|
ma[index]->oflags &= ~VPO_CLEANCHK;
|
|
}
|
|
p->oflags &= ~VPO_CLEANCHK;
|
|
ma[maxb] = p;
|
|
for(i = 0; i < maxf; i++) {
|
|
int index = (maxb + i) + 1;
|
|
ma[index] = maf[i];
|
|
ma[index]->oflags &= ~VPO_CLEANCHK;
|
|
}
|
|
runlen = maxb + maxf + 1;
|
|
|
|
vm_pageout_flush(ma, runlen, pagerflags);
|
|
for (i = 0; i < runlen; i++) {
|
|
if (ma[i]->valid & ma[i]->dirty) {
|
|
pmap_remove_write(ma[i]);
|
|
ma[i]->oflags |= VPO_CLEANCHK;
|
|
|
|
/*
|
|
* maxf will end up being the actual number of pages
|
|
* we wrote out contiguously, non-inclusive of the
|
|
* first page. We do not count look-behind pages.
|
|
*/
|
|
if (i >= maxb + 1 && (maxf > i - maxb - 1))
|
|
maxf = i - maxb - 1;
|
|
}
|
|
}
|
|
return(maxf + 1);
|
|
}
|
|
|
|
/*
|
|
* Note that there is absolutely no sense in writing out
|
|
* anonymous objects, so we track down the vnode object
|
|
* to write out.
|
|
* We invalidate (remove) all pages from the address space
|
|
* for semantic correctness.
|
|
*
|
|
* Note: certain anonymous maps, such as MAP_NOSYNC maps,
|
|
* may start out with a NULL object.
|
|
*/
|
|
void
|
|
vm_object_sync(vm_object_t object, vm_ooffset_t offset, vm_size_t size,
|
|
boolean_t syncio, boolean_t invalidate)
|
|
{
|
|
vm_object_t backing_object;
|
|
struct vnode *vp;
|
|
struct mount *mp;
|
|
int flags;
|
|
|
|
if (object == NULL)
|
|
return;
|
|
VM_OBJECT_LOCK(object);
|
|
while ((backing_object = object->backing_object) != NULL) {
|
|
VM_OBJECT_LOCK(backing_object);
|
|
offset += object->backing_object_offset;
|
|
VM_OBJECT_UNLOCK(object);
|
|
object = backing_object;
|
|
if (object->size < OFF_TO_IDX(offset + size))
|
|
size = IDX_TO_OFF(object->size) - offset;
|
|
}
|
|
/*
|
|
* Flush pages if writing is allowed, invalidate them
|
|
* if invalidation requested. Pages undergoing I/O
|
|
* will be ignored by vm_object_page_remove().
|
|
*
|
|
* We cannot lock the vnode and then wait for paging
|
|
* to complete without deadlocking against vm_fault.
|
|
* Instead we simply call vm_object_page_remove() and
|
|
* allow it to block internally on a page-by-page
|
|
* basis when it encounters pages undergoing async
|
|
* I/O.
|
|
*/
|
|
if (object->type == OBJT_VNODE &&
|
|
(object->flags & OBJ_MIGHTBEDIRTY) != 0) {
|
|
int vfslocked;
|
|
vp = object->handle;
|
|
VM_OBJECT_UNLOCK(object);
|
|
(void) vn_start_write(vp, &mp, V_WAIT);
|
|
vfslocked = VFS_LOCK_GIANT(vp->v_mount);
|
|
vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
|
|
flags = (syncio || invalidate) ? OBJPC_SYNC : 0;
|
|
flags |= invalidate ? OBJPC_INVAL : 0;
|
|
VM_OBJECT_LOCK(object);
|
|
vm_object_page_clean(object,
|
|
OFF_TO_IDX(offset),
|
|
OFF_TO_IDX(offset + size + PAGE_MASK),
|
|
flags);
|
|
VM_OBJECT_UNLOCK(object);
|
|
VOP_UNLOCK(vp, 0);
|
|
VFS_UNLOCK_GIANT(vfslocked);
|
|
vn_finished_write(mp);
|
|
VM_OBJECT_LOCK(object);
|
|
}
|
|
if ((object->type == OBJT_VNODE ||
|
|
object->type == OBJT_DEVICE) && invalidate) {
|
|
boolean_t purge;
|
|
purge = old_msync || (object->type == OBJT_DEVICE);
|
|
vm_object_page_remove(object,
|
|
OFF_TO_IDX(offset),
|
|
OFF_TO_IDX(offset + size + PAGE_MASK),
|
|
purge ? FALSE : TRUE);
|
|
}
|
|
VM_OBJECT_UNLOCK(object);
|
|
}
|
|
|
|
/*
|
|
* vm_object_madvise:
|
|
*
|
|
* Implements the madvise function at the object/page level.
|
|
*
|
|
* MADV_WILLNEED (any object)
|
|
*
|
|
* Activate the specified pages if they are resident.
|
|
*
|
|
* MADV_DONTNEED (any object)
|
|
*
|
|
* Deactivate the specified pages if they are resident.
|
|
*
|
|
* MADV_FREE (OBJT_DEFAULT/OBJT_SWAP objects,
|
|
* OBJ_ONEMAPPING only)
|
|
*
|
|
* Deactivate and clean the specified pages if they are
|
|
* resident. This permits the process to reuse the pages
|
|
* without faulting or the kernel to reclaim the pages
|
|
* without I/O.
|
|
*/
|
|
void
|
|
vm_object_madvise(vm_object_t object, vm_pindex_t pindex, int count, int advise)
|
|
{
|
|
vm_pindex_t end, tpindex;
|
|
vm_object_t backing_object, tobject;
|
|
vm_page_t m;
|
|
|
|
if (object == NULL)
|
|
return;
|
|
VM_OBJECT_LOCK(object);
|
|
end = pindex + count;
|
|
/*
|
|
* Locate and adjust resident pages
|
|
*/
|
|
for (; pindex < end; pindex += 1) {
|
|
relookup:
|
|
tobject = object;
|
|
tpindex = pindex;
|
|
shadowlookup:
|
|
/*
|
|
* MADV_FREE only operates on OBJT_DEFAULT or OBJT_SWAP pages
|
|
* and those pages must be OBJ_ONEMAPPING.
|
|
*/
|
|
if (advise == MADV_FREE) {
|
|
if ((tobject->type != OBJT_DEFAULT &&
|
|
tobject->type != OBJT_SWAP) ||
|
|
(tobject->flags & OBJ_ONEMAPPING) == 0) {
|
|
goto unlock_tobject;
|
|
}
|
|
}
|
|
m = vm_page_lookup(tobject, tpindex);
|
|
if (m == NULL && advise == MADV_WILLNEED) {
|
|
/*
|
|
* If the page is cached, reactivate it.
|
|
*/
|
|
m = vm_page_alloc(tobject, tpindex, VM_ALLOC_IFCACHED |
|
|
VM_ALLOC_NOBUSY);
|
|
}
|
|
if (m == NULL) {
|
|
/*
|
|
* There may be swap even if there is no backing page
|
|
*/
|
|
if (advise == MADV_FREE && tobject->type == OBJT_SWAP)
|
|
swap_pager_freespace(tobject, tpindex, 1);
|
|
/*
|
|
* next object
|
|
*/
|
|
backing_object = tobject->backing_object;
|
|
if (backing_object == NULL)
|
|
goto unlock_tobject;
|
|
VM_OBJECT_LOCK(backing_object);
|
|
tpindex += OFF_TO_IDX(tobject->backing_object_offset);
|
|
if (tobject != object)
|
|
VM_OBJECT_UNLOCK(tobject);
|
|
tobject = backing_object;
|
|
goto shadowlookup;
|
|
}
|
|
/*
|
|
* If the page is busy or not in a normal active state,
|
|
* we skip it. If the page is not managed there are no
|
|
* page queues to mess with. Things can break if we mess
|
|
* with pages in any of the below states.
|
|
*/
|
|
vm_page_lock_queues();
|
|
if (m->hold_count ||
|
|
m->wire_count ||
|
|
(m->flags & PG_UNMANAGED) ||
|
|
m->valid != VM_PAGE_BITS_ALL) {
|
|
vm_page_unlock_queues();
|
|
goto unlock_tobject;
|
|
}
|
|
if ((m->oflags & VPO_BUSY) || m->busy) {
|
|
vm_page_flag_set(m, PG_REFERENCED);
|
|
vm_page_unlock_queues();
|
|
if (object != tobject)
|
|
VM_OBJECT_UNLOCK(object);
|
|
m->oflags |= VPO_WANTED;
|
|
msleep(m, VM_OBJECT_MTX(tobject), PDROP | PVM, "madvpo", 0);
|
|
VM_OBJECT_LOCK(object);
|
|
goto relookup;
|
|
}
|
|
if (advise == MADV_WILLNEED) {
|
|
vm_page_activate(m);
|
|
} else if (advise == MADV_DONTNEED) {
|
|
vm_page_dontneed(m);
|
|
} else if (advise == MADV_FREE) {
|
|
/*
|
|
* Mark the page clean. This will allow the page
|
|
* to be freed up by the system. However, such pages
|
|
* are often reused quickly by malloc()/free()
|
|
* so we do not do anything that would cause
|
|
* a page fault if we can help it.
|
|
*
|
|
* Specifically, we do not try to actually free
|
|
* the page now nor do we try to put it in the
|
|
* cache (which would cause a page fault on reuse).
|
|
*
|
|
* But we do make the page is freeable as we
|
|
* can without actually taking the step of unmapping
|
|
* it.
|
|
*/
|
|
pmap_clear_modify(m);
|
|
m->dirty = 0;
|
|
m->act_count = 0;
|
|
vm_page_dontneed(m);
|
|
}
|
|
vm_page_unlock_queues();
|
|
if (advise == MADV_FREE && tobject->type == OBJT_SWAP)
|
|
swap_pager_freespace(tobject, tpindex, 1);
|
|
unlock_tobject:
|
|
if (tobject != object)
|
|
VM_OBJECT_UNLOCK(tobject);
|
|
}
|
|
VM_OBJECT_UNLOCK(object);
|
|
}
|
|
|
|
/*
|
|
* vm_object_shadow:
|
|
*
|
|
* Create a new object which is backed by the
|
|
* specified existing object range. The source
|
|
* object reference is deallocated.
|
|
*
|
|
* The new object and offset into that object
|
|
* are returned in the source parameters.
|
|
*/
|
|
void
|
|
vm_object_shadow(
|
|
vm_object_t *object, /* IN/OUT */
|
|
vm_ooffset_t *offset, /* IN/OUT */
|
|
vm_size_t length)
|
|
{
|
|
vm_object_t source;
|
|
vm_object_t result;
|
|
|
|
source = *object;
|
|
|
|
/*
|
|
* Don't create the new object if the old object isn't shared.
|
|
*/
|
|
if (source != NULL) {
|
|
VM_OBJECT_LOCK(source);
|
|
if (source->ref_count == 1 &&
|
|
source->handle == NULL &&
|
|
(source->type == OBJT_DEFAULT ||
|
|
source->type == OBJT_SWAP)) {
|
|
VM_OBJECT_UNLOCK(source);
|
|
return;
|
|
}
|
|
VM_OBJECT_UNLOCK(source);
|
|
}
|
|
|
|
/*
|
|
* Allocate a new object with the given length.
|
|
*/
|
|
result = vm_object_allocate(OBJT_DEFAULT, length);
|
|
|
|
/*
|
|
* The new object shadows the source object, adding a reference to it.
|
|
* Our caller changes his reference to point to the new object,
|
|
* removing a reference to the source object. Net result: no change
|
|
* of reference count.
|
|
*
|
|
* Try to optimize the result object's page color when shadowing
|
|
* in order to maintain page coloring consistency in the combined
|
|
* shadowed object.
|
|
*/
|
|
result->backing_object = source;
|
|
/*
|
|
* Store the offset into the source object, and fix up the offset into
|
|
* the new object.
|
|
*/
|
|
result->backing_object_offset = *offset;
|
|
if (source != NULL) {
|
|
VM_OBJECT_LOCK(source);
|
|
LIST_INSERT_HEAD(&source->shadow_head, result, shadow_list);
|
|
source->shadow_count++;
|
|
source->generation++;
|
|
#if VM_NRESERVLEVEL > 0
|
|
result->flags |= source->flags & (OBJ_NEEDGIANT | OBJ_COLORED);
|
|
result->pg_color = (source->pg_color + OFF_TO_IDX(*offset)) &
|
|
((1 << (VM_NFREEORDER - 1)) - 1);
|
|
#else
|
|
result->flags |= source->flags & OBJ_NEEDGIANT;
|
|
#endif
|
|
VM_OBJECT_UNLOCK(source);
|
|
}
|
|
|
|
|
|
/*
|
|
* Return the new things
|
|
*/
|
|
*offset = 0;
|
|
*object = result;
|
|
}
|
|
|
|
/*
|
|
* vm_object_split:
|
|
*
|
|
* Split the pages in a map entry into a new object. This affords
|
|
* easier removal of unused pages, and keeps object inheritance from
|
|
* being a negative impact on memory usage.
|
|
*/
|
|
void
|
|
vm_object_split(vm_map_entry_t entry)
|
|
{
|
|
vm_page_t m, m_next;
|
|
vm_object_t orig_object, new_object, source;
|
|
vm_pindex_t idx, offidxstart;
|
|
vm_size_t size;
|
|
|
|
orig_object = entry->object.vm_object;
|
|
if (orig_object->type != OBJT_DEFAULT && orig_object->type != OBJT_SWAP)
|
|
return;
|
|
if (orig_object->ref_count <= 1)
|
|
return;
|
|
VM_OBJECT_UNLOCK(orig_object);
|
|
|
|
offidxstart = OFF_TO_IDX(entry->offset);
|
|
size = atop(entry->end - entry->start);
|
|
|
|
/*
|
|
* If swap_pager_copy() is later called, it will convert new_object
|
|
* into a swap object.
|
|
*/
|
|
new_object = vm_object_allocate(OBJT_DEFAULT, size);
|
|
|
|
/*
|
|
* At this point, the new object is still private, so the order in
|
|
* which the original and new objects are locked does not matter.
|
|
*/
|
|
VM_OBJECT_LOCK(new_object);
|
|
VM_OBJECT_LOCK(orig_object);
|
|
source = orig_object->backing_object;
|
|
if (source != NULL) {
|
|
VM_OBJECT_LOCK(source);
|
|
if ((source->flags & OBJ_DEAD) != 0) {
|
|
VM_OBJECT_UNLOCK(source);
|
|
VM_OBJECT_UNLOCK(orig_object);
|
|
VM_OBJECT_UNLOCK(new_object);
|
|
vm_object_deallocate(new_object);
|
|
VM_OBJECT_LOCK(orig_object);
|
|
return;
|
|
}
|
|
LIST_INSERT_HEAD(&source->shadow_head,
|
|
new_object, shadow_list);
|
|
source->shadow_count++;
|
|
source->generation++;
|
|
vm_object_reference_locked(source); /* for new_object */
|
|
vm_object_clear_flag(source, OBJ_ONEMAPPING);
|
|
VM_OBJECT_UNLOCK(source);
|
|
new_object->backing_object_offset =
|
|
orig_object->backing_object_offset + entry->offset;
|
|
new_object->backing_object = source;
|
|
}
|
|
new_object->flags |= orig_object->flags & OBJ_NEEDGIANT;
|
|
retry:
|
|
if ((m = TAILQ_FIRST(&orig_object->memq)) != NULL) {
|
|
if (m->pindex < offidxstart) {
|
|
m = vm_page_splay(offidxstart, orig_object->root);
|
|
if ((orig_object->root = m)->pindex < offidxstart)
|
|
m = TAILQ_NEXT(m, listq);
|
|
}
|
|
}
|
|
vm_page_lock_queues();
|
|
for (; m != NULL && (idx = m->pindex - offidxstart) < size;
|
|
m = m_next) {
|
|
m_next = TAILQ_NEXT(m, listq);
|
|
|
|
/*
|
|
* We must wait for pending I/O to complete before we can
|
|
* rename the page.
|
|
*
|
|
* We do not have to VM_PROT_NONE the page as mappings should
|
|
* not be changed by this operation.
|
|
*/
|
|
if ((m->oflags & VPO_BUSY) || m->busy) {
|
|
vm_page_flag_set(m, PG_REFERENCED);
|
|
vm_page_unlock_queues();
|
|
VM_OBJECT_UNLOCK(new_object);
|
|
m->oflags |= VPO_WANTED;
|
|
msleep(m, VM_OBJECT_MTX(orig_object), PVM, "spltwt", 0);
|
|
VM_OBJECT_LOCK(new_object);
|
|
goto retry;
|
|
}
|
|
vm_page_rename(m, new_object, idx);
|
|
/* page automatically made dirty by rename and cache handled */
|
|
vm_page_busy(m);
|
|
}
|
|
vm_page_unlock_queues();
|
|
if (orig_object->type == OBJT_SWAP) {
|
|
/*
|
|
* swap_pager_copy() can sleep, in which case the orig_object's
|
|
* and new_object's locks are released and reacquired.
|
|
*/
|
|
swap_pager_copy(orig_object, new_object, offidxstart, 0);
|
|
|
|
/*
|
|
* Transfer any cached pages from orig_object to new_object.
|
|
*/
|
|
if (__predict_false(orig_object->cache != NULL))
|
|
vm_page_cache_transfer(orig_object, offidxstart,
|
|
new_object);
|
|
}
|
|
VM_OBJECT_UNLOCK(orig_object);
|
|
TAILQ_FOREACH(m, &new_object->memq, listq)
|
|
vm_page_wakeup(m);
|
|
VM_OBJECT_UNLOCK(new_object);
|
|
entry->object.vm_object = new_object;
|
|
entry->offset = 0LL;
|
|
vm_object_deallocate(orig_object);
|
|
VM_OBJECT_LOCK(new_object);
|
|
}
|
|
|
|
#define OBSC_TEST_ALL_SHADOWED 0x0001
|
|
#define OBSC_COLLAPSE_NOWAIT 0x0002
|
|
#define OBSC_COLLAPSE_WAIT 0x0004
|
|
|
|
static int
|
|
vm_object_backing_scan(vm_object_t object, int op)
|
|
{
|
|
int r = 1;
|
|
vm_page_t p;
|
|
vm_object_t backing_object;
|
|
vm_pindex_t backing_offset_index;
|
|
|
|
VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
|
|
VM_OBJECT_LOCK_ASSERT(object->backing_object, MA_OWNED);
|
|
|
|
backing_object = object->backing_object;
|
|
backing_offset_index = OFF_TO_IDX(object->backing_object_offset);
|
|
|
|
/*
|
|
* Initial conditions
|
|
*/
|
|
if (op & OBSC_TEST_ALL_SHADOWED) {
|
|
/*
|
|
* We do not want to have to test for the existence of cache
|
|
* or swap pages in the backing object. XXX but with the
|
|
* new swapper this would be pretty easy to do.
|
|
*
|
|
* XXX what about anonymous MAP_SHARED memory that hasn't
|
|
* been ZFOD faulted yet? If we do not test for this, the
|
|
* shadow test may succeed! XXX
|
|
*/
|
|
if (backing_object->type != OBJT_DEFAULT) {
|
|
return (0);
|
|
}
|
|
}
|
|
if (op & OBSC_COLLAPSE_WAIT) {
|
|
vm_object_set_flag(backing_object, OBJ_DEAD);
|
|
}
|
|
|
|
/*
|
|
* Our scan
|
|
*/
|
|
p = TAILQ_FIRST(&backing_object->memq);
|
|
while (p) {
|
|
vm_page_t next = TAILQ_NEXT(p, listq);
|
|
vm_pindex_t new_pindex = p->pindex - backing_offset_index;
|
|
|
|
if (op & OBSC_TEST_ALL_SHADOWED) {
|
|
vm_page_t pp;
|
|
|
|
/*
|
|
* Ignore pages outside the parent object's range
|
|
* and outside the parent object's mapping of the
|
|
* backing object.
|
|
*
|
|
* note that we do not busy the backing object's
|
|
* page.
|
|
*/
|
|
if (
|
|
p->pindex < backing_offset_index ||
|
|
new_pindex >= object->size
|
|
) {
|
|
p = next;
|
|
continue;
|
|
}
|
|
|
|
/*
|
|
* See if the parent has the page or if the parent's
|
|
* object pager has the page. If the parent has the
|
|
* page but the page is not valid, the parent's
|
|
* object pager must have the page.
|
|
*
|
|
* If this fails, the parent does not completely shadow
|
|
* the object and we might as well give up now.
|
|
*/
|
|
|
|
pp = vm_page_lookup(object, new_pindex);
|
|
if (
|
|
(pp == NULL || pp->valid == 0) &&
|
|
!vm_pager_has_page(object, new_pindex, NULL, NULL)
|
|
) {
|
|
r = 0;
|
|
break;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Check for busy page
|
|
*/
|
|
if (op & (OBSC_COLLAPSE_WAIT | OBSC_COLLAPSE_NOWAIT)) {
|
|
vm_page_t pp;
|
|
|
|
if (op & OBSC_COLLAPSE_NOWAIT) {
|
|
if ((p->oflags & VPO_BUSY) ||
|
|
!p->valid ||
|
|
p->busy) {
|
|
p = next;
|
|
continue;
|
|
}
|
|
} else if (op & OBSC_COLLAPSE_WAIT) {
|
|
if ((p->oflags & VPO_BUSY) || p->busy) {
|
|
vm_page_lock_queues();
|
|
vm_page_flag_set(p, PG_REFERENCED);
|
|
vm_page_unlock_queues();
|
|
VM_OBJECT_UNLOCK(object);
|
|
p->oflags |= VPO_WANTED;
|
|
msleep(p, VM_OBJECT_MTX(backing_object),
|
|
PDROP | PVM, "vmocol", 0);
|
|
VM_OBJECT_LOCK(object);
|
|
VM_OBJECT_LOCK(backing_object);
|
|
/*
|
|
* If we slept, anything could have
|
|
* happened. Since the object is
|
|
* marked dead, the backing offset
|
|
* should not have changed so we
|
|
* just restart our scan.
|
|
*/
|
|
p = TAILQ_FIRST(&backing_object->memq);
|
|
continue;
|
|
}
|
|
}
|
|
|
|
KASSERT(
|
|
p->object == backing_object,
|
|
("vm_object_backing_scan: object mismatch")
|
|
);
|
|
|
|
/*
|
|
* Destroy any associated swap
|
|
*/
|
|
if (backing_object->type == OBJT_SWAP) {
|
|
swap_pager_freespace(
|
|
backing_object,
|
|
p->pindex,
|
|
1
|
|
);
|
|
}
|
|
|
|
if (
|
|
p->pindex < backing_offset_index ||
|
|
new_pindex >= object->size
|
|
) {
|
|
/*
|
|
* Page is out of the parent object's range, we
|
|
* can simply destroy it.
|
|
*/
|
|
vm_page_lock_queues();
|
|
KASSERT(!pmap_page_is_mapped(p),
|
|
("freeing mapped page %p", p));
|
|
if (p->wire_count == 0)
|
|
vm_page_free(p);
|
|
else
|
|
vm_page_remove(p);
|
|
vm_page_unlock_queues();
|
|
p = next;
|
|
continue;
|
|
}
|
|
|
|
pp = vm_page_lookup(object, new_pindex);
|
|
if (
|
|
pp != NULL ||
|
|
vm_pager_has_page(object, new_pindex, NULL, NULL)
|
|
) {
|
|
/*
|
|
* page already exists in parent OR swap exists
|
|
* for this location in the parent. Destroy
|
|
* the original page from the backing object.
|
|
*
|
|
* Leave the parent's page alone
|
|
*/
|
|
vm_page_lock_queues();
|
|
KASSERT(!pmap_page_is_mapped(p),
|
|
("freeing mapped page %p", p));
|
|
if (p->wire_count == 0)
|
|
vm_page_free(p);
|
|
else
|
|
vm_page_remove(p);
|
|
vm_page_unlock_queues();
|
|
p = next;
|
|
continue;
|
|
}
|
|
|
|
#if VM_NRESERVLEVEL > 0
|
|
/*
|
|
* Rename the reservation.
|
|
*/
|
|
vm_reserv_rename(p, object, backing_object,
|
|
backing_offset_index);
|
|
#endif
|
|
|
|
/*
|
|
* Page does not exist in parent, rename the
|
|
* page from the backing object to the main object.
|
|
*
|
|
* If the page was mapped to a process, it can remain
|
|
* mapped through the rename.
|
|
*/
|
|
vm_page_lock_queues();
|
|
vm_page_rename(p, object, new_pindex);
|
|
vm_page_unlock_queues();
|
|
/* page automatically made dirty by rename */
|
|
}
|
|
p = next;
|
|
}
|
|
return (r);
|
|
}
|
|
|
|
|
|
/*
|
|
* this version of collapse allows the operation to occur earlier and
|
|
* when paging_in_progress is true for an object... This is not a complete
|
|
* operation, but should plug 99.9% of the rest of the leaks.
|
|
*/
|
|
static void
|
|
vm_object_qcollapse(vm_object_t object)
|
|
{
|
|
vm_object_t backing_object = object->backing_object;
|
|
|
|
VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
|
|
VM_OBJECT_LOCK_ASSERT(backing_object, MA_OWNED);
|
|
|
|
if (backing_object->ref_count != 1)
|
|
return;
|
|
|
|
vm_object_backing_scan(object, OBSC_COLLAPSE_NOWAIT);
|
|
}
|
|
|
|
/*
|
|
* vm_object_collapse:
|
|
*
|
|
* Collapse an object with the object backing it.
|
|
* Pages in the backing object are moved into the
|
|
* parent, and the backing object is deallocated.
|
|
*/
|
|
void
|
|
vm_object_collapse(vm_object_t object)
|
|
{
|
|
VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
|
|
|
|
while (TRUE) {
|
|
vm_object_t backing_object;
|
|
|
|
/*
|
|
* Verify that the conditions are right for collapse:
|
|
*
|
|
* The object exists and the backing object exists.
|
|
*/
|
|
if ((backing_object = object->backing_object) == NULL)
|
|
break;
|
|
|
|
/*
|
|
* we check the backing object first, because it is most likely
|
|
* not collapsable.
|
|
*/
|
|
VM_OBJECT_LOCK(backing_object);
|
|
if (backing_object->handle != NULL ||
|
|
(backing_object->type != OBJT_DEFAULT &&
|
|
backing_object->type != OBJT_SWAP) ||
|
|
(backing_object->flags & OBJ_DEAD) ||
|
|
object->handle != NULL ||
|
|
(object->type != OBJT_DEFAULT &&
|
|
object->type != OBJT_SWAP) ||
|
|
(object->flags & OBJ_DEAD)) {
|
|
VM_OBJECT_UNLOCK(backing_object);
|
|
break;
|
|
}
|
|
|
|
if (
|
|
object->paging_in_progress != 0 ||
|
|
backing_object->paging_in_progress != 0
|
|
) {
|
|
vm_object_qcollapse(object);
|
|
VM_OBJECT_UNLOCK(backing_object);
|
|
break;
|
|
}
|
|
/*
|
|
* We know that we can either collapse the backing object (if
|
|
* the parent is the only reference to it) or (perhaps) have
|
|
* the parent bypass the object if the parent happens to shadow
|
|
* all the resident pages in the entire backing object.
|
|
*
|
|
* This is ignoring pager-backed pages such as swap pages.
|
|
* vm_object_backing_scan fails the shadowing test in this
|
|
* case.
|
|
*/
|
|
if (backing_object->ref_count == 1) {
|
|
/*
|
|
* If there is exactly one reference to the backing
|
|
* object, we can collapse it into the parent.
|
|
*/
|
|
vm_object_backing_scan(object, OBSC_COLLAPSE_WAIT);
|
|
|
|
#if VM_NRESERVLEVEL > 0
|
|
/*
|
|
* Break any reservations from backing_object.
|
|
*/
|
|
if (__predict_false(!LIST_EMPTY(&backing_object->rvq)))
|
|
vm_reserv_break_all(backing_object);
|
|
#endif
|
|
|
|
/*
|
|
* Move the pager from backing_object to object.
|
|
*/
|
|
if (backing_object->type == OBJT_SWAP) {
|
|
/*
|
|
* swap_pager_copy() can sleep, in which case
|
|
* the backing_object's and object's locks are
|
|
* released and reacquired.
|
|
*/
|
|
swap_pager_copy(
|
|
backing_object,
|
|
object,
|
|
OFF_TO_IDX(object->backing_object_offset), TRUE);
|
|
|
|
/*
|
|
* Free any cached pages from backing_object.
|
|
*/
|
|
if (__predict_false(backing_object->cache != NULL))
|
|
vm_page_cache_free(backing_object, 0, 0);
|
|
}
|
|
/*
|
|
* Object now shadows whatever backing_object did.
|
|
* Note that the reference to
|
|
* backing_object->backing_object moves from within
|
|
* backing_object to within object.
|
|
*/
|
|
LIST_REMOVE(object, shadow_list);
|
|
backing_object->shadow_count--;
|
|
backing_object->generation++;
|
|
if (backing_object->backing_object) {
|
|
VM_OBJECT_LOCK(backing_object->backing_object);
|
|
LIST_REMOVE(backing_object, shadow_list);
|
|
LIST_INSERT_HEAD(
|
|
&backing_object->backing_object->shadow_head,
|
|
object, shadow_list);
|
|
/*
|
|
* The shadow_count has not changed.
|
|
*/
|
|
backing_object->backing_object->generation++;
|
|
VM_OBJECT_UNLOCK(backing_object->backing_object);
|
|
}
|
|
object->backing_object = backing_object->backing_object;
|
|
object->backing_object_offset +=
|
|
backing_object->backing_object_offset;
|
|
|
|
/*
|
|
* Discard backing_object.
|
|
*
|
|
* Since the backing object has no pages, no pager left,
|
|
* and no object references within it, all that is
|
|
* necessary is to dispose of it.
|
|
*/
|
|
KASSERT(backing_object->ref_count == 1, ("backing_object %p was somehow re-referenced during collapse!", backing_object));
|
|
VM_OBJECT_UNLOCK(backing_object);
|
|
|
|
mtx_lock(&vm_object_list_mtx);
|
|
TAILQ_REMOVE(
|
|
&vm_object_list,
|
|
backing_object,
|
|
object_list
|
|
);
|
|
mtx_unlock(&vm_object_list_mtx);
|
|
|
|
uma_zfree(obj_zone, backing_object);
|
|
|
|
object_collapses++;
|
|
} else {
|
|
vm_object_t new_backing_object;
|
|
|
|
/*
|
|
* If we do not entirely shadow the backing object,
|
|
* there is nothing we can do so we give up.
|
|
*/
|
|
if (object->resident_page_count != object->size &&
|
|
vm_object_backing_scan(object,
|
|
OBSC_TEST_ALL_SHADOWED) == 0) {
|
|
VM_OBJECT_UNLOCK(backing_object);
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* Make the parent shadow the next object in the
|
|
* chain. Deallocating backing_object will not remove
|
|
* it, since its reference count is at least 2.
|
|
*/
|
|
LIST_REMOVE(object, shadow_list);
|
|
backing_object->shadow_count--;
|
|
backing_object->generation++;
|
|
|
|
new_backing_object = backing_object->backing_object;
|
|
if ((object->backing_object = new_backing_object) != NULL) {
|
|
VM_OBJECT_LOCK(new_backing_object);
|
|
LIST_INSERT_HEAD(
|
|
&new_backing_object->shadow_head,
|
|
object,
|
|
shadow_list
|
|
);
|
|
new_backing_object->shadow_count++;
|
|
new_backing_object->generation++;
|
|
vm_object_reference_locked(new_backing_object);
|
|
VM_OBJECT_UNLOCK(new_backing_object);
|
|
object->backing_object_offset +=
|
|
backing_object->backing_object_offset;
|
|
}
|
|
|
|
/*
|
|
* Drop the reference count on backing_object. Since
|
|
* its ref_count was at least 2, it will not vanish.
|
|
*/
|
|
backing_object->ref_count--;
|
|
VM_OBJECT_UNLOCK(backing_object);
|
|
object_bypasses++;
|
|
}
|
|
|
|
/*
|
|
* Try again with this object's new backing object.
|
|
*/
|
|
}
|
|
}
|
|
|
|
/*
|
|
* vm_object_page_remove:
|
|
*
|
|
* For the given object, either frees or invalidates each of the
|
|
* specified pages. In general, a page is freed. However, if a
|
|
* page is wired for any reason other than the existence of a
|
|
* managed, wired mapping, then it may be invalidated but not
|
|
* removed from the object. Pages are specified by the given
|
|
* range ["start", "end") and Boolean "clean_only". As a
|
|
* special case, if "end" is zero, then the range extends from
|
|
* "start" to the end of the object. If "clean_only" is TRUE,
|
|
* then only the non-dirty pages within the specified range are
|
|
* affected.
|
|
*
|
|
* In general, this operation should only be performed on objects
|
|
* that contain managed pages. There are two exceptions. First,
|
|
* it may be performed on the kernel and kmem objects. Second,
|
|
* it may be used by msync(..., MS_INVALIDATE) to invalidate
|
|
* device-backed pages.
|
|
*
|
|
* The object must be locked.
|
|
*/
|
|
void
|
|
vm_object_page_remove(vm_object_t object, vm_pindex_t start, vm_pindex_t end,
|
|
boolean_t clean_only)
|
|
{
|
|
vm_page_t p, next;
|
|
int wirings;
|
|
|
|
VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
|
|
if (object->resident_page_count == 0)
|
|
goto skipmemq;
|
|
|
|
/*
|
|
* Since physically-backed objects do not use managed pages, we can't
|
|
* remove pages from the object (we must instead remove the page
|
|
* references, and then destroy the object).
|
|
*/
|
|
KASSERT(object->type != OBJT_PHYS || object == kernel_object ||
|
|
object == kmem_object,
|
|
("attempt to remove pages from a physical object"));
|
|
|
|
vm_object_pip_add(object, 1);
|
|
again:
|
|
vm_page_lock_queues();
|
|
if ((p = TAILQ_FIRST(&object->memq)) != NULL) {
|
|
if (p->pindex < start) {
|
|
p = vm_page_splay(start, object->root);
|
|
if ((object->root = p)->pindex < start)
|
|
p = TAILQ_NEXT(p, listq);
|
|
}
|
|
}
|
|
/*
|
|
* Assert: the variable p is either (1) the page with the
|
|
* least pindex greater than or equal to the parameter pindex
|
|
* or (2) NULL.
|
|
*/
|
|
for (;
|
|
p != NULL && (p->pindex < end || end == 0);
|
|
p = next) {
|
|
next = TAILQ_NEXT(p, listq);
|
|
|
|
/*
|
|
* If the page is wired for any reason besides the
|
|
* existence of managed, wired mappings, then it cannot
|
|
* be freed. For example, fictitious pages, which
|
|
* represent device memory, are inherently wired and
|
|
* cannot be freed. They can, however, be invalidated
|
|
* if "clean_only" is FALSE.
|
|
*/
|
|
if ((wirings = p->wire_count) != 0 &&
|
|
(wirings = pmap_page_wired_mappings(p)) != p->wire_count) {
|
|
/* Fictitious pages do not have managed mappings. */
|
|
if ((p->flags & PG_FICTITIOUS) == 0)
|
|
pmap_remove_all(p);
|
|
/* Account for removal of managed, wired mappings. */
|
|
p->wire_count -= wirings;
|
|
if (!clean_only)
|
|
p->valid = 0;
|
|
continue;
|
|
}
|
|
if (vm_page_sleep_if_busy(p, TRUE, "vmopar"))
|
|
goto again;
|
|
KASSERT((p->flags & PG_FICTITIOUS) == 0,
|
|
("vm_object_page_remove: page %p is fictitious", p));
|
|
if (clean_only && p->valid) {
|
|
pmap_remove_write(p);
|
|
if (p->valid & p->dirty)
|
|
continue;
|
|
}
|
|
pmap_remove_all(p);
|
|
/* Account for removal of managed, wired mappings. */
|
|
if (wirings != 0)
|
|
p->wire_count -= wirings;
|
|
vm_page_free(p);
|
|
}
|
|
vm_page_unlock_queues();
|
|
vm_object_pip_wakeup(object);
|
|
skipmemq:
|
|
if (__predict_false(object->cache != NULL))
|
|
vm_page_cache_free(object, start, end);
|
|
}
|
|
|
|
/*
|
|
* Routine: vm_object_coalesce
|
|
* Function: Coalesces two objects backing up adjoining
|
|
* regions of memory into a single object.
|
|
*
|
|
* returns TRUE if objects were combined.
|
|
*
|
|
* NOTE: Only works at the moment if the second object is NULL -
|
|
* if it's not, which object do we lock first?
|
|
*
|
|
* Parameters:
|
|
* prev_object First object to coalesce
|
|
* prev_offset Offset into prev_object
|
|
* prev_size Size of reference to prev_object
|
|
* next_size Size of reference to the second object
|
|
*
|
|
* Conditions:
|
|
* The object must *not* be locked.
|
|
*/
|
|
boolean_t
|
|
vm_object_coalesce(vm_object_t prev_object, vm_ooffset_t prev_offset,
|
|
vm_size_t prev_size, vm_size_t next_size)
|
|
{
|
|
vm_pindex_t next_pindex;
|
|
|
|
if (prev_object == NULL)
|
|
return (TRUE);
|
|
VM_OBJECT_LOCK(prev_object);
|
|
if (prev_object->type != OBJT_DEFAULT &&
|
|
prev_object->type != OBJT_SWAP) {
|
|
VM_OBJECT_UNLOCK(prev_object);
|
|
return (FALSE);
|
|
}
|
|
|
|
/*
|
|
* Try to collapse the object first
|
|
*/
|
|
vm_object_collapse(prev_object);
|
|
|
|
/*
|
|
* Can't coalesce if: . more than one reference . paged out . shadows
|
|
* another object . has a copy elsewhere (any of which mean that the
|
|
* pages not mapped to prev_entry may be in use anyway)
|
|
*/
|
|
if (prev_object->backing_object != NULL) {
|
|
VM_OBJECT_UNLOCK(prev_object);
|
|
return (FALSE);
|
|
}
|
|
|
|
prev_size >>= PAGE_SHIFT;
|
|
next_size >>= PAGE_SHIFT;
|
|
next_pindex = OFF_TO_IDX(prev_offset) + prev_size;
|
|
|
|
if ((prev_object->ref_count > 1) &&
|
|
(prev_object->size != next_pindex)) {
|
|
VM_OBJECT_UNLOCK(prev_object);
|
|
return (FALSE);
|
|
}
|
|
|
|
/*
|
|
* Remove any pages that may still be in the object from a previous
|
|
* deallocation.
|
|
*/
|
|
if (next_pindex < prev_object->size) {
|
|
vm_object_page_remove(prev_object,
|
|
next_pindex,
|
|
next_pindex + next_size, FALSE);
|
|
if (prev_object->type == OBJT_SWAP)
|
|
swap_pager_freespace(prev_object,
|
|
next_pindex, next_size);
|
|
}
|
|
|
|
/*
|
|
* Extend the object if necessary.
|
|
*/
|
|
if (next_pindex + next_size > prev_object->size)
|
|
prev_object->size = next_pindex + next_size;
|
|
|
|
VM_OBJECT_UNLOCK(prev_object);
|
|
return (TRUE);
|
|
}
|
|
|
|
void
|
|
vm_object_set_writeable_dirty(vm_object_t object)
|
|
{
|
|
struct vnode *vp;
|
|
|
|
VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
|
|
if ((object->flags & OBJ_MIGHTBEDIRTY) != 0)
|
|
return;
|
|
vm_object_set_flag(object, OBJ_MIGHTBEDIRTY);
|
|
if (object->type == OBJT_VNODE &&
|
|
(vp = (struct vnode *)object->handle) != NULL) {
|
|
VI_LOCK(vp);
|
|
vp->v_iflag |= VI_OBJDIRTY;
|
|
VI_UNLOCK(vp);
|
|
}
|
|
}
|
|
|
|
#include "opt_ddb.h"
|
|
#ifdef DDB
|
|
#include <sys/kernel.h>
|
|
|
|
#include <sys/cons.h>
|
|
|
|
#include <ddb/ddb.h>
|
|
|
|
static int
|
|
_vm_object_in_map(vm_map_t map, vm_object_t object, vm_map_entry_t entry)
|
|
{
|
|
vm_map_t tmpm;
|
|
vm_map_entry_t tmpe;
|
|
vm_object_t obj;
|
|
int entcount;
|
|
|
|
if (map == 0)
|
|
return 0;
|
|
|
|
if (entry == 0) {
|
|
tmpe = map->header.next;
|
|
entcount = map->nentries;
|
|
while (entcount-- && (tmpe != &map->header)) {
|
|
if (_vm_object_in_map(map, object, tmpe)) {
|
|
return 1;
|
|
}
|
|
tmpe = tmpe->next;
|
|
}
|
|
} else if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) {
|
|
tmpm = entry->object.sub_map;
|
|
tmpe = tmpm->header.next;
|
|
entcount = tmpm->nentries;
|
|
while (entcount-- && tmpe != &tmpm->header) {
|
|
if (_vm_object_in_map(tmpm, object, tmpe)) {
|
|
return 1;
|
|
}
|
|
tmpe = tmpe->next;
|
|
}
|
|
} else if ((obj = entry->object.vm_object) != NULL) {
|
|
for (; obj; obj = obj->backing_object)
|
|
if (obj == object) {
|
|
return 1;
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
vm_object_in_map(vm_object_t object)
|
|
{
|
|
struct proc *p;
|
|
|
|
/* sx_slock(&allproc_lock); */
|
|
FOREACH_PROC_IN_SYSTEM(p) {
|
|
if (!p->p_vmspace /* || (p->p_flag & (P_SYSTEM|P_WEXIT)) */)
|
|
continue;
|
|
if (_vm_object_in_map(&p->p_vmspace->vm_map, object, 0)) {
|
|
/* sx_sunlock(&allproc_lock); */
|
|
return 1;
|
|
}
|
|
}
|
|
/* sx_sunlock(&allproc_lock); */
|
|
if (_vm_object_in_map(kernel_map, object, 0))
|
|
return 1;
|
|
if (_vm_object_in_map(kmem_map, object, 0))
|
|
return 1;
|
|
if (_vm_object_in_map(pager_map, object, 0))
|
|
return 1;
|
|
if (_vm_object_in_map(buffer_map, object, 0))
|
|
return 1;
|
|
return 0;
|
|
}
|
|
|
|
DB_SHOW_COMMAND(vmochk, vm_object_check)
|
|
{
|
|
vm_object_t object;
|
|
|
|
/*
|
|
* make sure that internal objs are in a map somewhere
|
|
* and none have zero ref counts.
|
|
*/
|
|
TAILQ_FOREACH(object, &vm_object_list, object_list) {
|
|
if (object->handle == NULL &&
|
|
(object->type == OBJT_DEFAULT || object->type == OBJT_SWAP)) {
|
|
if (object->ref_count == 0) {
|
|
db_printf("vmochk: internal obj has zero ref count: %ld\n",
|
|
(long)object->size);
|
|
}
|
|
if (!vm_object_in_map(object)) {
|
|
db_printf(
|
|
"vmochk: internal obj is not in a map: "
|
|
"ref: %d, size: %lu: 0x%lx, backing_object: %p\n",
|
|
object->ref_count, (u_long)object->size,
|
|
(u_long)object->size,
|
|
(void *)object->backing_object);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* vm_object_print: [ debug ]
|
|
*/
|
|
DB_SHOW_COMMAND(object, vm_object_print_static)
|
|
{
|
|
/* XXX convert args. */
|
|
vm_object_t object = (vm_object_t)addr;
|
|
boolean_t full = have_addr;
|
|
|
|
vm_page_t p;
|
|
|
|
/* XXX count is an (unused) arg. Avoid shadowing it. */
|
|
#define count was_count
|
|
|
|
int count;
|
|
|
|
if (object == NULL)
|
|
return;
|
|
|
|
db_iprintf(
|
|
"Object %p: type=%d, size=0x%jx, res=%d, ref=%d, flags=0x%x\n",
|
|
object, (int)object->type, (uintmax_t)object->size,
|
|
object->resident_page_count, object->ref_count, object->flags);
|
|
db_iprintf(" sref=%d, backing_object(%d)=(%p)+0x%jx\n",
|
|
object->shadow_count,
|
|
object->backing_object ? object->backing_object->ref_count : 0,
|
|
object->backing_object, (uintmax_t)object->backing_object_offset);
|
|
|
|
if (!full)
|
|
return;
|
|
|
|
db_indent += 2;
|
|
count = 0;
|
|
TAILQ_FOREACH(p, &object->memq, listq) {
|
|
if (count == 0)
|
|
db_iprintf("memory:=");
|
|
else if (count == 6) {
|
|
db_printf("\n");
|
|
db_iprintf(" ...");
|
|
count = 0;
|
|
} else
|
|
db_printf(",");
|
|
count++;
|
|
|
|
db_printf("(off=0x%jx,page=0x%jx)",
|
|
(uintmax_t)p->pindex, (uintmax_t)VM_PAGE_TO_PHYS(p));
|
|
}
|
|
if (count != 0)
|
|
db_printf("\n");
|
|
db_indent -= 2;
|
|
}
|
|
|
|
/* XXX. */
|
|
#undef count
|
|
|
|
/* XXX need this non-static entry for calling from vm_map_print. */
|
|
void
|
|
vm_object_print(
|
|
/* db_expr_t */ long addr,
|
|
boolean_t have_addr,
|
|
/* db_expr_t */ long count,
|
|
char *modif)
|
|
{
|
|
vm_object_print_static(addr, have_addr, count, modif);
|
|
}
|
|
|
|
DB_SHOW_COMMAND(vmopag, vm_object_print_pages)
|
|
{
|
|
vm_object_t object;
|
|
int nl = 0;
|
|
int c;
|
|
|
|
TAILQ_FOREACH(object, &vm_object_list, object_list) {
|
|
vm_pindex_t idx, fidx;
|
|
vm_pindex_t osize;
|
|
vm_paddr_t pa = -1;
|
|
int rcount;
|
|
vm_page_t m;
|
|
|
|
db_printf("new object: %p\n", (void *)object);
|
|
if (nl > 18) {
|
|
c = cngetc();
|
|
if (c != ' ')
|
|
return;
|
|
nl = 0;
|
|
}
|
|
nl++;
|
|
rcount = 0;
|
|
fidx = 0;
|
|
osize = object->size;
|
|
if (osize > 128)
|
|
osize = 128;
|
|
for (idx = 0; idx < osize; idx++) {
|
|
m = vm_page_lookup(object, idx);
|
|
if (m == NULL) {
|
|
if (rcount) {
|
|
db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
|
|
(long)fidx, rcount, (long)pa);
|
|
if (nl > 18) {
|
|
c = cngetc();
|
|
if (c != ' ')
|
|
return;
|
|
nl = 0;
|
|
}
|
|
nl++;
|
|
rcount = 0;
|
|
}
|
|
continue;
|
|
}
|
|
|
|
|
|
if (rcount &&
|
|
(VM_PAGE_TO_PHYS(m) == pa + rcount * PAGE_SIZE)) {
|
|
++rcount;
|
|
continue;
|
|
}
|
|
if (rcount) {
|
|
db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
|
|
(long)fidx, rcount, (long)pa);
|
|
if (nl > 18) {
|
|
c = cngetc();
|
|
if (c != ' ')
|
|
return;
|
|
nl = 0;
|
|
}
|
|
nl++;
|
|
}
|
|
fidx = idx;
|
|
pa = VM_PAGE_TO_PHYS(m);
|
|
rcount = 1;
|
|
}
|
|
if (rcount) {
|
|
db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
|
|
(long)fidx, rcount, (long)pa);
|
|
if (nl > 18) {
|
|
c = cngetc();
|
|
if (c != ' ')
|
|
return;
|
|
nl = 0;
|
|
}
|
|
nl++;
|
|
}
|
|
}
|
|
}
|
|
#endif /* DDB */
|