freebsd-skq/lib/libc/rpc/svc_dg.c
Pedro F. Giffuni 2614eccf45 su_data: correct macro expansion.
Protect su_data() users from strange macro expansion.

Obtained from:	linux libtirpc
2018-02-08 14:53:34 +00:00

713 lines
20 KiB
C

/* $NetBSD: svc_dg.c,v 1.4 2000/07/06 03:10:35 christos Exp $ */
/*-
* SPDX-License-Identifier: BSD-3-Clause
*
* Copyright (c) 2009, Sun Microsystems, Inc.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
* - Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
* - Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
* - Neither the name of Sun Microsystems, Inc. nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
/*
* Copyright (c) 1986-1991 by Sun Microsystems Inc.
*/
#if defined(LIBC_SCCS) && !defined(lint)
#ident "@(#)svc_dg.c 1.17 94/04/24 SMI"
#endif
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
/*
* svc_dg.c, Server side for connectionless RPC.
*
* Does some caching in the hopes of achieving execute-at-most-once semantics.
*/
#include "namespace.h"
#include "reentrant.h"
#include <sys/types.h>
#include <sys/socket.h>
#include <rpc/rpc.h>
#include <rpc/svc_dg.h>
#include <assert.h>
#include <errno.h>
#include <unistd.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#ifdef RPC_CACHE_DEBUG
#include <netconfig.h>
#include <netdir.h>
#endif
#include <err.h>
#include "un-namespace.h"
#include "rpc_com.h"
#include "mt_misc.h"
#define su_data(xprt) ((struct svc_dg_data *)((xprt)->xp_p2))
#define rpc_buffer(xprt) ((xprt)->xp_p1)
#ifndef MAX
#define MAX(a, b) (((a) > (b)) ? (a) : (b))
#endif
static void svc_dg_ops(SVCXPRT *);
static enum xprt_stat svc_dg_stat(SVCXPRT *);
static bool_t svc_dg_recv(SVCXPRT *, struct rpc_msg *);
static bool_t svc_dg_reply(SVCXPRT *, struct rpc_msg *);
static bool_t svc_dg_getargs(SVCXPRT *, xdrproc_t, void *);
static bool_t svc_dg_freeargs(SVCXPRT *, xdrproc_t, void *);
static void svc_dg_destroy(SVCXPRT *);
static bool_t svc_dg_control(SVCXPRT *, const u_int, void *);
static int cache_get(SVCXPRT *, struct rpc_msg *, char **, size_t *);
static void cache_set(SVCXPRT *, size_t);
int svc_dg_enablecache(SVCXPRT *, u_int);
/*
* Usage:
* xprt = svc_dg_create(sock, sendsize, recvsize);
* Does other connectionless specific initializations.
* Once *xprt is initialized, it is registered.
* see (svc.h, xprt_register). If recvsize or sendsize are 0 suitable
* system defaults are chosen.
* The routines returns NULL if a problem occurred.
*/
static const char svc_dg_str[] = "svc_dg_create: %s";
static const char svc_dg_err1[] = "could not get transport information";
static const char svc_dg_err2[] = "transport does not support data transfer";
static const char svc_dg_err3[] = "getsockname failed";
static const char svc_dg_err4[] = "cannot set IP_RECVDSTADDR";
static const char __no_mem_str[] = "out of memory";
SVCXPRT *
svc_dg_create(int fd, u_int sendsize, u_int recvsize)
{
SVCXPRT *xprt;
struct svc_dg_data *su = NULL;
struct __rpc_sockinfo si;
struct sockaddr_storage ss;
socklen_t slen;
if (!__rpc_fd2sockinfo(fd, &si)) {
warnx(svc_dg_str, svc_dg_err1);
return (NULL);
}
/*
* Find the receive and the send size
*/
sendsize = __rpc_get_t_size(si.si_af, si.si_proto, (int)sendsize);
recvsize = __rpc_get_t_size(si.si_af, si.si_proto, (int)recvsize);
if ((sendsize == 0) || (recvsize == 0)) {
warnx(svc_dg_str, svc_dg_err2);
return (NULL);
}
xprt = svc_xprt_alloc();
if (xprt == NULL)
goto freedata;
su = mem_alloc(sizeof (*su));
if (su == NULL)
goto freedata;
su->su_iosz = ((MAX(sendsize, recvsize) + 3) / 4) * 4;
if ((rpc_buffer(xprt) = mem_alloc(su->su_iosz)) == NULL)
goto freedata;
xdrmem_create(&(su->su_xdrs), rpc_buffer(xprt), su->su_iosz,
XDR_DECODE);
su->su_cache = NULL;
xprt->xp_fd = fd;
xprt->xp_p2 = su;
xprt->xp_verf.oa_base = su->su_verfbody;
svc_dg_ops(xprt);
xprt->xp_rtaddr.maxlen = sizeof (struct sockaddr_storage);
slen = sizeof ss;
if (_getsockname(fd, (struct sockaddr *)(void *)&ss, &slen) < 0) {
warnx(svc_dg_str, svc_dg_err3);
goto freedata_nowarn;
}
xprt->xp_ltaddr.buf = mem_alloc(sizeof (struct sockaddr_storage));
xprt->xp_ltaddr.maxlen = sizeof (struct sockaddr_storage);
xprt->xp_ltaddr.len = slen;
memcpy(xprt->xp_ltaddr.buf, &ss, slen);
if (ss.ss_family == AF_INET) {
struct sockaddr_in *sin;
static const int true_value = 1;
sin = (struct sockaddr_in *)(void *)&ss;
if (sin->sin_addr.s_addr == INADDR_ANY) {
su->su_srcaddr.buf = mem_alloc(sizeof (ss));
su->su_srcaddr.maxlen = sizeof (ss);
if (_setsockopt(fd, IPPROTO_IP, IP_RECVDSTADDR,
&true_value, sizeof(true_value))) {
warnx(svc_dg_str, svc_dg_err4);
goto freedata_nowarn;
}
}
}
xprt_register(xprt);
return (xprt);
freedata:
(void) warnx(svc_dg_str, __no_mem_str);
freedata_nowarn:
if (xprt) {
if (su)
(void) mem_free(su, sizeof (*su));
svc_xprt_free(xprt);
}
return (NULL);
}
/*ARGSUSED*/
static enum xprt_stat
svc_dg_stat(SVCXPRT *xprt)
{
return (XPRT_IDLE);
}
static int
svc_dg_recvfrom(int fd, char *buf, int buflen,
struct sockaddr *raddr, socklen_t *raddrlen,
struct sockaddr *laddr, socklen_t *laddrlen)
{
struct msghdr msg;
struct iovec msg_iov[1];
struct sockaddr_in *lin = (struct sockaddr_in *)laddr;
int rlen;
bool_t have_lin = FALSE;
char tmp[CMSG_LEN(sizeof(*lin))];
struct cmsghdr *cmsg;
memset((char *)&msg, 0, sizeof(msg));
msg_iov[0].iov_base = buf;
msg_iov[0].iov_len = buflen;
msg.msg_iov = msg_iov;
msg.msg_iovlen = 1;
msg.msg_namelen = *raddrlen;
msg.msg_name = (char *)raddr;
if (laddr != NULL) {
msg.msg_control = (caddr_t)tmp;
msg.msg_controllen = CMSG_LEN(sizeof(*lin));
}
rlen = _recvmsg(fd, &msg, 0);
if (rlen >= 0)
*raddrlen = msg.msg_namelen;
if (rlen == -1 || laddr == NULL ||
msg.msg_controllen < sizeof(struct cmsghdr) ||
msg.msg_flags & MSG_CTRUNC)
return rlen;
for (cmsg = CMSG_FIRSTHDR(&msg); cmsg != NULL;
cmsg = CMSG_NXTHDR(&msg, cmsg)) {
if (cmsg->cmsg_level == IPPROTO_IP &&
cmsg->cmsg_type == IP_RECVDSTADDR) {
have_lin = TRUE;
memcpy(&lin->sin_addr,
(struct in_addr *)CMSG_DATA(cmsg),
sizeof(struct in_addr));
break;
}
}
lin->sin_family = AF_INET;
lin->sin_port = 0;
*laddrlen = sizeof(struct sockaddr_in);
if (!have_lin)
lin->sin_addr.s_addr = INADDR_ANY;
return rlen;
}
static bool_t
svc_dg_recv(SVCXPRT *xprt, struct rpc_msg *msg)
{
struct svc_dg_data *su = su_data(xprt);
XDR *xdrs = &(su->su_xdrs);
char *reply;
struct sockaddr_storage ss;
socklen_t alen;
size_t replylen;
ssize_t rlen;
again:
alen = sizeof (struct sockaddr_storage);
rlen = svc_dg_recvfrom(xprt->xp_fd, rpc_buffer(xprt), su->su_iosz,
(struct sockaddr *)(void *)&ss, &alen,
(struct sockaddr *)su->su_srcaddr.buf, &su->su_srcaddr.len);
if (rlen == -1 && errno == EINTR)
goto again;
if (rlen == -1 || (rlen < (ssize_t)(4 * sizeof (u_int32_t))))
return (FALSE);
if (xprt->xp_rtaddr.len < alen) {
if (xprt->xp_rtaddr.len != 0)
mem_free(xprt->xp_rtaddr.buf, xprt->xp_rtaddr.len);
xprt->xp_rtaddr.buf = mem_alloc(alen);
xprt->xp_rtaddr.len = alen;
}
memcpy(xprt->xp_rtaddr.buf, &ss, alen);
#ifdef PORTMAP
if (ss.ss_family == AF_INET) {
xprt->xp_raddr = *(struct sockaddr_in *)xprt->xp_rtaddr.buf;
xprt->xp_addrlen = sizeof (struct sockaddr_in);
}
#endif /* PORTMAP */
xdrs->x_op = XDR_DECODE;
XDR_SETPOS(xdrs, 0);
if (! xdr_callmsg(xdrs, msg)) {
return (FALSE);
}
su->su_xid = msg->rm_xid;
if (su->su_cache != NULL) {
if (cache_get(xprt, msg, &reply, &replylen)) {
(void)_sendto(xprt->xp_fd, reply, replylen, 0,
(struct sockaddr *)(void *)&ss, alen);
return (FALSE);
}
}
return (TRUE);
}
static int
svc_dg_sendto(int fd, char *buf, int buflen,
const struct sockaddr *raddr, socklen_t raddrlen,
const struct sockaddr *laddr, socklen_t laddrlen)
{
struct msghdr msg;
struct iovec msg_iov[1];
struct sockaddr_in *laddr_in = (struct sockaddr_in *)laddr;
struct in_addr *lin = &laddr_in->sin_addr;
char tmp[CMSG_SPACE(sizeof(*lin))];
struct cmsghdr *cmsg;
memset((char *)&msg, 0, sizeof(msg));
msg_iov[0].iov_base = buf;
msg_iov[0].iov_len = buflen;
msg.msg_iov = msg_iov;
msg.msg_iovlen = 1;
msg.msg_namelen = raddrlen;
msg.msg_name = (char *)raddr;
if (laddr != NULL && laddr->sa_family == AF_INET &&
lin->s_addr != INADDR_ANY) {
msg.msg_control = (caddr_t)tmp;
msg.msg_controllen = CMSG_LEN(sizeof(*lin));
cmsg = CMSG_FIRSTHDR(&msg);
cmsg->cmsg_len = CMSG_LEN(sizeof(*lin));
cmsg->cmsg_level = IPPROTO_IP;
cmsg->cmsg_type = IP_SENDSRCADDR;
memcpy(CMSG_DATA(cmsg), lin, sizeof(*lin));
}
return _sendmsg(fd, &msg, 0);
}
static bool_t
svc_dg_reply(SVCXPRT *xprt, struct rpc_msg *msg)
{
struct svc_dg_data *su = su_data(xprt);
XDR *xdrs = &(su->su_xdrs);
bool_t stat = TRUE;
size_t slen;
xdrproc_t xdr_proc;
caddr_t xdr_where;
xdrs->x_op = XDR_ENCODE;
XDR_SETPOS(xdrs, 0);
msg->rm_xid = su->su_xid;
if (msg->rm_reply.rp_stat == MSG_ACCEPTED &&
msg->rm_reply.rp_acpt.ar_stat == SUCCESS) {
xdr_proc = msg->acpted_rply.ar_results.proc;
xdr_where = msg->acpted_rply.ar_results.where;
msg->acpted_rply.ar_results.proc = (xdrproc_t) xdr_void;
msg->acpted_rply.ar_results.where = NULL;
if (!xdr_replymsg(xdrs, msg) ||
!SVCAUTH_WRAP(&SVC_AUTH(xprt), xdrs, xdr_proc, xdr_where))
stat = FALSE;
} else {
stat = xdr_replymsg(xdrs, msg);
}
if (stat) {
slen = XDR_GETPOS(xdrs);
if (svc_dg_sendto(xprt->xp_fd, rpc_buffer(xprt), slen,
(struct sockaddr *)xprt->xp_rtaddr.buf,
(socklen_t)xprt->xp_rtaddr.len,
(struct sockaddr *)su->su_srcaddr.buf,
(socklen_t)su->su_srcaddr.len) == (ssize_t) slen) {
stat = TRUE;
if (su->su_cache)
cache_set(xprt, slen);
}
}
return (stat);
}
static bool_t
svc_dg_getargs(SVCXPRT *xprt, xdrproc_t xdr_args, void *args_ptr)
{
struct svc_dg_data *su;
assert(xprt != NULL);
su = su_data(xprt);
return (SVCAUTH_UNWRAP(&SVC_AUTH(xprt),
&su->su_xdrs, xdr_args, args_ptr));
}
static bool_t
svc_dg_freeargs(SVCXPRT *xprt, xdrproc_t xdr_args, void *args_ptr)
{
XDR *xdrs = &(su_data(xprt)->su_xdrs);
xdrs->x_op = XDR_FREE;
return (*xdr_args)(xdrs, args_ptr);
}
static void
svc_dg_destroy(SVCXPRT *xprt)
{
struct svc_dg_data *su = su_data(xprt);
xprt_unregister(xprt);
if (xprt->xp_fd != -1)
(void)_close(xprt->xp_fd);
XDR_DESTROY(&(su->su_xdrs));
(void) mem_free(rpc_buffer(xprt), su->su_iosz);
if (su->su_srcaddr.buf)
(void) mem_free(su->su_srcaddr.buf, su->su_srcaddr.maxlen);
(void) mem_free(su, sizeof (*su));
if (xprt->xp_rtaddr.buf)
(void) mem_free(xprt->xp_rtaddr.buf, xprt->xp_rtaddr.maxlen);
if (xprt->xp_ltaddr.buf)
(void) mem_free(xprt->xp_ltaddr.buf, xprt->xp_ltaddr.maxlen);
free(xprt->xp_tp);
svc_xprt_free(xprt);
}
static bool_t
/*ARGSUSED*/
svc_dg_control(SVCXPRT *xprt, const u_int rq, void *in)
{
return (FALSE);
}
static void
svc_dg_ops(SVCXPRT *xprt)
{
static struct xp_ops ops;
static struct xp_ops2 ops2;
/* VARIABLES PROTECTED BY ops_lock: ops */
mutex_lock(&ops_lock);
if (ops.xp_recv == NULL) {
ops.xp_recv = svc_dg_recv;
ops.xp_stat = svc_dg_stat;
ops.xp_getargs = svc_dg_getargs;
ops.xp_reply = svc_dg_reply;
ops.xp_freeargs = svc_dg_freeargs;
ops.xp_destroy = svc_dg_destroy;
ops2.xp_control = svc_dg_control;
}
xprt->xp_ops = &ops;
xprt->xp_ops2 = &ops2;
mutex_unlock(&ops_lock);
}
/* The CACHING COMPONENT */
/*
* Could have been a separate file, but some part of it depends upon the
* private structure of the client handle.
*
* Fifo cache for cl server
* Copies pointers to reply buffers into fifo cache
* Buffers are sent again if retransmissions are detected.
*/
#define SPARSENESS 4 /* 75% sparse */
#define ALLOC(type, size) \
(type *) mem_alloc((sizeof (type) * (size)))
#define MEMZERO(addr, type, size) \
(void) memset((void *) (addr), 0, sizeof (type) * (int) (size))
#define FREE(addr, type, size) \
mem_free((addr), (sizeof (type) * (size)))
/*
* An entry in the cache
*/
typedef struct cache_node *cache_ptr;
struct cache_node {
/*
* Index into cache is xid, proc, vers, prog and address
*/
u_int32_t cache_xid;
rpcproc_t cache_proc;
rpcvers_t cache_vers;
rpcprog_t cache_prog;
struct netbuf cache_addr;
/*
* The cached reply and length
*/
char *cache_reply;
size_t cache_replylen;
/*
* Next node on the list, if there is a collision
*/
cache_ptr cache_next;
};
/*
* The entire cache
*/
struct cl_cache {
u_int uc_size; /* size of cache */
cache_ptr *uc_entries; /* hash table of entries in cache */
cache_ptr *uc_fifo; /* fifo list of entries in cache */
u_int uc_nextvictim; /* points to next victim in fifo list */
rpcprog_t uc_prog; /* saved program number */
rpcvers_t uc_vers; /* saved version number */
rpcproc_t uc_proc; /* saved procedure number */
};
/*
* the hashing function
*/
#define CACHE_LOC(transp, xid) \
(xid % (SPARSENESS * ((struct cl_cache *) \
su_data(transp)->su_cache)->uc_size))
/*
* Enable use of the cache. Returns 1 on success, 0 on failure.
* Note: there is no disable.
*/
static const char cache_enable_str[] = "svc_enablecache: %s %s";
static const char alloc_err[] = "could not allocate cache ";
static const char enable_err[] = "cache already enabled";
int
svc_dg_enablecache(SVCXPRT *transp, u_int size)
{
struct svc_dg_data *su = su_data(transp);
struct cl_cache *uc;
mutex_lock(&dupreq_lock);
if (su->su_cache != NULL) {
(void) warnx(cache_enable_str, enable_err, " ");
mutex_unlock(&dupreq_lock);
return (0);
}
uc = ALLOC(struct cl_cache, 1);
if (uc == NULL) {
warnx(cache_enable_str, alloc_err, " ");
mutex_unlock(&dupreq_lock);
return (0);
}
uc->uc_size = size;
uc->uc_nextvictim = 0;
uc->uc_entries = ALLOC(cache_ptr, size * SPARSENESS);
if (uc->uc_entries == NULL) {
warnx(cache_enable_str, alloc_err, "data");
FREE(uc, struct cl_cache, 1);
mutex_unlock(&dupreq_lock);
return (0);
}
MEMZERO(uc->uc_entries, cache_ptr, size * SPARSENESS);
uc->uc_fifo = ALLOC(cache_ptr, size);
if (uc->uc_fifo == NULL) {
warnx(cache_enable_str, alloc_err, "fifo");
FREE(uc->uc_entries, cache_ptr, size * SPARSENESS);
FREE(uc, struct cl_cache, 1);
mutex_unlock(&dupreq_lock);
return (0);
}
MEMZERO(uc->uc_fifo, cache_ptr, size);
su->su_cache = (char *)(void *)uc;
mutex_unlock(&dupreq_lock);
return (1);
}
/*
* Set an entry in the cache. It assumes that the uc entry is set from
* the earlier call to cache_get() for the same procedure. This will always
* happen because cache_get() is calle by svc_dg_recv and cache_set() is called
* by svc_dg_reply(). All this hoopla because the right RPC parameters are
* not available at svc_dg_reply time.
*/
static const char cache_set_str[] = "cache_set: %s";
static const char cache_set_err1[] = "victim not found";
static const char cache_set_err2[] = "victim alloc failed";
static const char cache_set_err3[] = "could not allocate new rpc buffer";
static void
cache_set(SVCXPRT *xprt, size_t replylen)
{
cache_ptr victim;
cache_ptr *vicp;
struct svc_dg_data *su = su_data(xprt);
struct cl_cache *uc = (struct cl_cache *) su->su_cache;
u_int loc;
char *newbuf;
#ifdef RPC_CACHE_DEBUG
struct netconfig *nconf;
char *uaddr;
#endif
mutex_lock(&dupreq_lock);
/*
* Find space for the new entry, either by
* reusing an old entry, or by mallocing a new one
*/
victim = uc->uc_fifo[uc->uc_nextvictim];
if (victim != NULL) {
loc = CACHE_LOC(xprt, victim->cache_xid);
for (vicp = &uc->uc_entries[loc];
*vicp != NULL && *vicp != victim;
vicp = &(*vicp)->cache_next)
;
if (*vicp == NULL) {
warnx(cache_set_str, cache_set_err1);
mutex_unlock(&dupreq_lock);
return;
}
*vicp = victim->cache_next; /* remove from cache */
newbuf = victim->cache_reply;
} else {
victim = ALLOC(struct cache_node, 1);
if (victim == NULL) {
warnx(cache_set_str, cache_set_err2);
mutex_unlock(&dupreq_lock);
return;
}
newbuf = mem_alloc(su->su_iosz);
if (newbuf == NULL) {
warnx(cache_set_str, cache_set_err3);
FREE(victim, struct cache_node, 1);
mutex_unlock(&dupreq_lock);
return;
}
}
/*
* Store it away
*/
#ifdef RPC_CACHE_DEBUG
if (nconf = getnetconfigent(xprt->xp_netid)) {
uaddr = taddr2uaddr(nconf, &xprt->xp_rtaddr);
freenetconfigent(nconf);
printf(
"cache set for xid= %x prog=%d vers=%d proc=%d for rmtaddr=%s\n",
su->su_xid, uc->uc_prog, uc->uc_vers,
uc->uc_proc, uaddr);
free(uaddr);
}
#endif
victim->cache_replylen = replylen;
victim->cache_reply = rpc_buffer(xprt);
rpc_buffer(xprt) = newbuf;
xdrmem_create(&(su->su_xdrs), rpc_buffer(xprt),
su->su_iosz, XDR_ENCODE);
victim->cache_xid = su->su_xid;
victim->cache_proc = uc->uc_proc;
victim->cache_vers = uc->uc_vers;
victim->cache_prog = uc->uc_prog;
victim->cache_addr = xprt->xp_rtaddr;
victim->cache_addr.buf = ALLOC(char, xprt->xp_rtaddr.len);
(void) memcpy(victim->cache_addr.buf, xprt->xp_rtaddr.buf,
(size_t)xprt->xp_rtaddr.len);
loc = CACHE_LOC(xprt, victim->cache_xid);
victim->cache_next = uc->uc_entries[loc];
uc->uc_entries[loc] = victim;
uc->uc_fifo[uc->uc_nextvictim++] = victim;
uc->uc_nextvictim %= uc->uc_size;
mutex_unlock(&dupreq_lock);
}
/*
* Try to get an entry from the cache
* return 1 if found, 0 if not found and set the stage for cache_set()
*/
static int
cache_get(SVCXPRT *xprt, struct rpc_msg *msg, char **replyp, size_t *replylenp)
{
u_int loc;
cache_ptr ent;
struct svc_dg_data *su = su_data(xprt);
struct cl_cache *uc = (struct cl_cache *) su->su_cache;
#ifdef RPC_CACHE_DEBUG
struct netconfig *nconf;
char *uaddr;
#endif
mutex_lock(&dupreq_lock);
loc = CACHE_LOC(xprt, su->su_xid);
for (ent = uc->uc_entries[loc]; ent != NULL; ent = ent->cache_next) {
if (ent->cache_xid == su->su_xid &&
ent->cache_proc == msg->rm_call.cb_proc &&
ent->cache_vers == msg->rm_call.cb_vers &&
ent->cache_prog == msg->rm_call.cb_prog &&
ent->cache_addr.len == xprt->xp_rtaddr.len &&
(memcmp(ent->cache_addr.buf, xprt->xp_rtaddr.buf,
xprt->xp_rtaddr.len) == 0)) {
#ifdef RPC_CACHE_DEBUG
if (nconf = getnetconfigent(xprt->xp_netid)) {
uaddr = taddr2uaddr(nconf, &xprt->xp_rtaddr);
freenetconfigent(nconf);
printf(
"cache entry found for xid=%x prog=%d vers=%d proc=%d for rmtaddr=%s\n",
su->su_xid, msg->rm_call.cb_prog,
msg->rm_call.cb_vers,
msg->rm_call.cb_proc, uaddr);
free(uaddr);
}
#endif
*replyp = ent->cache_reply;
*replylenp = ent->cache_replylen;
mutex_unlock(&dupreq_lock);
return (1);
}
}
/*
* Failed to find entry
* Remember a few things so we can do a set later
*/
uc->uc_proc = msg->rm_call.cb_proc;
uc->uc_vers = msg->rm_call.cb_vers;
uc->uc_prog = msg->rm_call.cb_prog;
mutex_unlock(&dupreq_lock);
return (0);
}