369e66acd7
managing pages from different address ranges. Generally speaking, this feature is used to increase the likelihood that physical pages are available that can meet special DMA requirements or can be accessed through a limited-coverage direct mapping (e.g., MIPS). However, prior to this change, the configuration of the free lists was static, i.e., it was determined at compile time. Consequentally, free lists could be created for address ranges that held no actual pages, for example, on 32-bit MIPS- based systems with 512 MB or less of physical memory. This change makes the creation of the free lists dynamic, i.e., it is based on the available physical memory at boot time. On 64-bit x86-based systems with 64 GB or more of physical memory, create free lists for managing pages with physical addresses below 4 GB. This change is to address reported problems with initializing devices that require the allocation of physical pages below 4 GB on some systems with 128 GB or more of physical memory. PR: 185727 Differential Revision: https://reviews.freebsd.org/D1274 Reviewed by: jhb, kib MFC after: 3 weeks Sponsored by: EMC / Isilon Storage Division
1252 lines
34 KiB
C
1252 lines
34 KiB
C
/*-
|
|
* Copyright (c) 2002-2006 Rice University
|
|
* Copyright (c) 2007 Alan L. Cox <alc@cs.rice.edu>
|
|
* All rights reserved.
|
|
*
|
|
* This software was developed for the FreeBSD Project by Alan L. Cox,
|
|
* Olivier Crameri, Peter Druschel, Sitaram Iyer, and Juan Navarro.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
|
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
|
* HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
|
|
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
|
|
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
|
|
* OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
|
|
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY
|
|
* WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
|
* POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
/*
|
|
* Physical memory system implementation
|
|
*
|
|
* Any external functions defined by this module are only to be used by the
|
|
* virtual memory system.
|
|
*/
|
|
|
|
#include <sys/cdefs.h>
|
|
__FBSDID("$FreeBSD$");
|
|
|
|
#include "opt_ddb.h"
|
|
#include "opt_vm.h"
|
|
|
|
#include <sys/param.h>
|
|
#include <sys/systm.h>
|
|
#include <sys/lock.h>
|
|
#include <sys/kernel.h>
|
|
#include <sys/malloc.h>
|
|
#include <sys/mutex.h>
|
|
#if MAXMEMDOM > 1
|
|
#include <sys/proc.h>
|
|
#endif
|
|
#include <sys/queue.h>
|
|
#include <sys/rwlock.h>
|
|
#include <sys/sbuf.h>
|
|
#include <sys/sysctl.h>
|
|
#include <sys/tree.h>
|
|
#include <sys/vmmeter.h>
|
|
|
|
#include <ddb/ddb.h>
|
|
|
|
#include <vm/vm.h>
|
|
#include <vm/vm_param.h>
|
|
#include <vm/vm_kern.h>
|
|
#include <vm/vm_object.h>
|
|
#include <vm/vm_page.h>
|
|
#include <vm/vm_phys.h>
|
|
|
|
_Static_assert(sizeof(long) * NBBY >= VM_PHYSSEG_MAX,
|
|
"Too many physsegs.");
|
|
|
|
struct mem_affinity *mem_affinity;
|
|
|
|
int vm_ndomains = 1;
|
|
|
|
struct vm_phys_seg vm_phys_segs[VM_PHYSSEG_MAX];
|
|
int vm_phys_nsegs;
|
|
|
|
struct vm_phys_fictitious_seg;
|
|
static int vm_phys_fictitious_cmp(struct vm_phys_fictitious_seg *,
|
|
struct vm_phys_fictitious_seg *);
|
|
|
|
RB_HEAD(fict_tree, vm_phys_fictitious_seg) vm_phys_fictitious_tree =
|
|
RB_INITIALIZER(_vm_phys_fictitious_tree);
|
|
|
|
struct vm_phys_fictitious_seg {
|
|
RB_ENTRY(vm_phys_fictitious_seg) node;
|
|
/* Memory region data */
|
|
vm_paddr_t start;
|
|
vm_paddr_t end;
|
|
vm_page_t first_page;
|
|
};
|
|
|
|
RB_GENERATE_STATIC(fict_tree, vm_phys_fictitious_seg, node,
|
|
vm_phys_fictitious_cmp);
|
|
|
|
static struct rwlock vm_phys_fictitious_reg_lock;
|
|
MALLOC_DEFINE(M_FICT_PAGES, "vm_fictitious", "Fictitious VM pages");
|
|
|
|
static struct vm_freelist
|
|
vm_phys_free_queues[MAXMEMDOM][VM_NFREELIST][VM_NFREEPOOL][VM_NFREEORDER];
|
|
|
|
static int vm_nfreelists;
|
|
|
|
/*
|
|
* Provides the mapping from VM_FREELIST_* to free list indices (flind).
|
|
*/
|
|
static int vm_freelist_to_flind[VM_NFREELIST];
|
|
|
|
CTASSERT(VM_FREELIST_DEFAULT == 0);
|
|
|
|
#ifdef VM_FREELIST_ISADMA
|
|
#define VM_ISADMA_BOUNDARY 16777216
|
|
#endif
|
|
#ifdef VM_FREELIST_DMA32
|
|
#define VM_DMA32_BOUNDARY ((vm_paddr_t)1 << 32)
|
|
#endif
|
|
|
|
/*
|
|
* Enforce the assumptions made by vm_phys_add_seg() and vm_phys_init() about
|
|
* the ordering of the free list boundaries.
|
|
*/
|
|
#if defined(VM_ISADMA_BOUNDARY) && defined(VM_LOWMEM_BOUNDARY)
|
|
CTASSERT(VM_ISADMA_BOUNDARY < VM_LOWMEM_BOUNDARY);
|
|
#endif
|
|
#if defined(VM_LOWMEM_BOUNDARY) && defined(VM_DMA32_BOUNDARY)
|
|
CTASSERT(VM_LOWMEM_BOUNDARY < VM_DMA32_BOUNDARY);
|
|
#endif
|
|
|
|
static int cnt_prezero;
|
|
SYSCTL_INT(_vm_stats_misc, OID_AUTO, cnt_prezero, CTLFLAG_RD,
|
|
&cnt_prezero, 0, "The number of physical pages prezeroed at idle time");
|
|
|
|
static int sysctl_vm_phys_free(SYSCTL_HANDLER_ARGS);
|
|
SYSCTL_OID(_vm, OID_AUTO, phys_free, CTLTYPE_STRING | CTLFLAG_RD,
|
|
NULL, 0, sysctl_vm_phys_free, "A", "Phys Free Info");
|
|
|
|
static int sysctl_vm_phys_segs(SYSCTL_HANDLER_ARGS);
|
|
SYSCTL_OID(_vm, OID_AUTO, phys_segs, CTLTYPE_STRING | CTLFLAG_RD,
|
|
NULL, 0, sysctl_vm_phys_segs, "A", "Phys Seg Info");
|
|
|
|
SYSCTL_INT(_vm, OID_AUTO, ndomains, CTLFLAG_RD,
|
|
&vm_ndomains, 0, "Number of physical memory domains available.");
|
|
|
|
static vm_page_t vm_phys_alloc_domain_pages(int domain, int flind, int pool,
|
|
int order);
|
|
static void _vm_phys_create_seg(vm_paddr_t start, vm_paddr_t end, int domain);
|
|
static void vm_phys_create_seg(vm_paddr_t start, vm_paddr_t end);
|
|
static int vm_phys_paddr_to_segind(vm_paddr_t pa);
|
|
static void vm_phys_split_pages(vm_page_t m, int oind, struct vm_freelist *fl,
|
|
int order);
|
|
|
|
/*
|
|
* Red-black tree helpers for vm fictitious range management.
|
|
*/
|
|
static inline int
|
|
vm_phys_fictitious_in_range(struct vm_phys_fictitious_seg *p,
|
|
struct vm_phys_fictitious_seg *range)
|
|
{
|
|
|
|
KASSERT(range->start != 0 && range->end != 0,
|
|
("Invalid range passed on search for vm_fictitious page"));
|
|
if (p->start >= range->end)
|
|
return (1);
|
|
if (p->start < range->start)
|
|
return (-1);
|
|
|
|
return (0);
|
|
}
|
|
|
|
static int
|
|
vm_phys_fictitious_cmp(struct vm_phys_fictitious_seg *p1,
|
|
struct vm_phys_fictitious_seg *p2)
|
|
{
|
|
|
|
/* Check if this is a search for a page */
|
|
if (p1->end == 0)
|
|
return (vm_phys_fictitious_in_range(p1, p2));
|
|
|
|
KASSERT(p2->end != 0,
|
|
("Invalid range passed as second parameter to vm fictitious comparison"));
|
|
|
|
/* Searching to add a new range */
|
|
if (p1->end <= p2->start)
|
|
return (-1);
|
|
if (p1->start >= p2->end)
|
|
return (1);
|
|
|
|
panic("Trying to add overlapping vm fictitious ranges:\n"
|
|
"[%#jx:%#jx] and [%#jx:%#jx]", (uintmax_t)p1->start,
|
|
(uintmax_t)p1->end, (uintmax_t)p2->start, (uintmax_t)p2->end);
|
|
}
|
|
|
|
static __inline int
|
|
vm_rr_selectdomain(void)
|
|
{
|
|
#if MAXMEMDOM > 1
|
|
struct thread *td;
|
|
|
|
td = curthread;
|
|
|
|
td->td_dom_rr_idx++;
|
|
td->td_dom_rr_idx %= vm_ndomains;
|
|
return (td->td_dom_rr_idx);
|
|
#else
|
|
return (0);
|
|
#endif
|
|
}
|
|
|
|
boolean_t
|
|
vm_phys_domain_intersects(long mask, vm_paddr_t low, vm_paddr_t high)
|
|
{
|
|
struct vm_phys_seg *s;
|
|
int idx;
|
|
|
|
while ((idx = ffsl(mask)) != 0) {
|
|
idx--; /* ffsl counts from 1 */
|
|
mask &= ~(1UL << idx);
|
|
s = &vm_phys_segs[idx];
|
|
if (low < s->end && high > s->start)
|
|
return (TRUE);
|
|
}
|
|
return (FALSE);
|
|
}
|
|
|
|
/*
|
|
* Outputs the state of the physical memory allocator, specifically,
|
|
* the amount of physical memory in each free list.
|
|
*/
|
|
static int
|
|
sysctl_vm_phys_free(SYSCTL_HANDLER_ARGS)
|
|
{
|
|
struct sbuf sbuf;
|
|
struct vm_freelist *fl;
|
|
int dom, error, flind, oind, pind;
|
|
|
|
error = sysctl_wire_old_buffer(req, 0);
|
|
if (error != 0)
|
|
return (error);
|
|
sbuf_new_for_sysctl(&sbuf, NULL, 128 * vm_ndomains, req);
|
|
for (dom = 0; dom < vm_ndomains; dom++) {
|
|
sbuf_printf(&sbuf,"\nDOMAIN %d:\n", dom);
|
|
for (flind = 0; flind < vm_nfreelists; flind++) {
|
|
sbuf_printf(&sbuf, "\nFREE LIST %d:\n"
|
|
"\n ORDER (SIZE) | NUMBER"
|
|
"\n ", flind);
|
|
for (pind = 0; pind < VM_NFREEPOOL; pind++)
|
|
sbuf_printf(&sbuf, " | POOL %d", pind);
|
|
sbuf_printf(&sbuf, "\n-- ");
|
|
for (pind = 0; pind < VM_NFREEPOOL; pind++)
|
|
sbuf_printf(&sbuf, "-- -- ");
|
|
sbuf_printf(&sbuf, "--\n");
|
|
for (oind = VM_NFREEORDER - 1; oind >= 0; oind--) {
|
|
sbuf_printf(&sbuf, " %2d (%6dK)", oind,
|
|
1 << (PAGE_SHIFT - 10 + oind));
|
|
for (pind = 0; pind < VM_NFREEPOOL; pind++) {
|
|
fl = vm_phys_free_queues[dom][flind][pind];
|
|
sbuf_printf(&sbuf, " | %6d",
|
|
fl[oind].lcnt);
|
|
}
|
|
sbuf_printf(&sbuf, "\n");
|
|
}
|
|
}
|
|
}
|
|
error = sbuf_finish(&sbuf);
|
|
sbuf_delete(&sbuf);
|
|
return (error);
|
|
}
|
|
|
|
/*
|
|
* Outputs the set of physical memory segments.
|
|
*/
|
|
static int
|
|
sysctl_vm_phys_segs(SYSCTL_HANDLER_ARGS)
|
|
{
|
|
struct sbuf sbuf;
|
|
struct vm_phys_seg *seg;
|
|
int error, segind;
|
|
|
|
error = sysctl_wire_old_buffer(req, 0);
|
|
if (error != 0)
|
|
return (error);
|
|
sbuf_new_for_sysctl(&sbuf, NULL, 128, req);
|
|
for (segind = 0; segind < vm_phys_nsegs; segind++) {
|
|
sbuf_printf(&sbuf, "\nSEGMENT %d:\n\n", segind);
|
|
seg = &vm_phys_segs[segind];
|
|
sbuf_printf(&sbuf, "start: %#jx\n",
|
|
(uintmax_t)seg->start);
|
|
sbuf_printf(&sbuf, "end: %#jx\n",
|
|
(uintmax_t)seg->end);
|
|
sbuf_printf(&sbuf, "domain: %d\n", seg->domain);
|
|
sbuf_printf(&sbuf, "free list: %p\n", seg->free_queues);
|
|
}
|
|
error = sbuf_finish(&sbuf);
|
|
sbuf_delete(&sbuf);
|
|
return (error);
|
|
}
|
|
|
|
static void
|
|
vm_freelist_add(struct vm_freelist *fl, vm_page_t m, int order, int tail)
|
|
{
|
|
|
|
m->order = order;
|
|
if (tail)
|
|
TAILQ_INSERT_TAIL(&fl[order].pl, m, plinks.q);
|
|
else
|
|
TAILQ_INSERT_HEAD(&fl[order].pl, m, plinks.q);
|
|
fl[order].lcnt++;
|
|
}
|
|
|
|
static void
|
|
vm_freelist_rem(struct vm_freelist *fl, vm_page_t m, int order)
|
|
{
|
|
|
|
TAILQ_REMOVE(&fl[order].pl, m, plinks.q);
|
|
fl[order].lcnt--;
|
|
m->order = VM_NFREEORDER;
|
|
}
|
|
|
|
/*
|
|
* Create a physical memory segment.
|
|
*/
|
|
static void
|
|
_vm_phys_create_seg(vm_paddr_t start, vm_paddr_t end, int domain)
|
|
{
|
|
struct vm_phys_seg *seg;
|
|
|
|
KASSERT(vm_phys_nsegs < VM_PHYSSEG_MAX,
|
|
("vm_phys_create_seg: increase VM_PHYSSEG_MAX"));
|
|
KASSERT(domain < vm_ndomains,
|
|
("vm_phys_create_seg: invalid domain provided"));
|
|
seg = &vm_phys_segs[vm_phys_nsegs++];
|
|
while (seg > vm_phys_segs && (seg - 1)->start >= end) {
|
|
*seg = *(seg - 1);
|
|
seg--;
|
|
}
|
|
seg->start = start;
|
|
seg->end = end;
|
|
seg->domain = domain;
|
|
}
|
|
|
|
static void
|
|
vm_phys_create_seg(vm_paddr_t start, vm_paddr_t end)
|
|
{
|
|
int i;
|
|
|
|
if (mem_affinity == NULL) {
|
|
_vm_phys_create_seg(start, end, 0);
|
|
return;
|
|
}
|
|
|
|
for (i = 0;; i++) {
|
|
if (mem_affinity[i].end == 0)
|
|
panic("Reached end of affinity info");
|
|
if (mem_affinity[i].end <= start)
|
|
continue;
|
|
if (mem_affinity[i].start > start)
|
|
panic("No affinity info for start %jx",
|
|
(uintmax_t)start);
|
|
if (mem_affinity[i].end >= end) {
|
|
_vm_phys_create_seg(start, end,
|
|
mem_affinity[i].domain);
|
|
break;
|
|
}
|
|
_vm_phys_create_seg(start, mem_affinity[i].end,
|
|
mem_affinity[i].domain);
|
|
start = mem_affinity[i].end;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Add a physical memory segment.
|
|
*/
|
|
void
|
|
vm_phys_add_seg(vm_paddr_t start, vm_paddr_t end)
|
|
{
|
|
vm_paddr_t paddr;
|
|
|
|
KASSERT((start & PAGE_MASK) == 0,
|
|
("vm_phys_define_seg: start is not page aligned"));
|
|
KASSERT((end & PAGE_MASK) == 0,
|
|
("vm_phys_define_seg: end is not page aligned"));
|
|
|
|
/*
|
|
* Split the physical memory segment if it spans two or more free
|
|
* list boundaries.
|
|
*/
|
|
paddr = start;
|
|
#ifdef VM_FREELIST_ISADMA
|
|
if (paddr < VM_ISADMA_BOUNDARY && end > VM_ISADMA_BOUNDARY) {
|
|
vm_phys_create_seg(paddr, VM_ISADMA_BOUNDARY);
|
|
paddr = VM_ISADMA_BOUNDARY;
|
|
}
|
|
#endif
|
|
#ifdef VM_FREELIST_LOWMEM
|
|
if (paddr < VM_LOWMEM_BOUNDARY && end > VM_LOWMEM_BOUNDARY) {
|
|
vm_phys_create_seg(paddr, VM_LOWMEM_BOUNDARY);
|
|
paddr = VM_LOWMEM_BOUNDARY;
|
|
}
|
|
#endif
|
|
#ifdef VM_FREELIST_DMA32
|
|
if (paddr < VM_DMA32_BOUNDARY && end > VM_DMA32_BOUNDARY) {
|
|
vm_phys_create_seg(paddr, VM_DMA32_BOUNDARY);
|
|
paddr = VM_DMA32_BOUNDARY;
|
|
}
|
|
#endif
|
|
vm_phys_create_seg(paddr, end);
|
|
}
|
|
|
|
/*
|
|
* Initialize the physical memory allocator.
|
|
*
|
|
* Requires that vm_page_array is initialized!
|
|
*/
|
|
void
|
|
vm_phys_init(void)
|
|
{
|
|
struct vm_freelist *fl;
|
|
struct vm_phys_seg *seg;
|
|
u_long npages;
|
|
int dom, flind, freelist, oind, pind, segind;
|
|
|
|
/*
|
|
* Compute the number of free lists, and generate the mapping from the
|
|
* manifest constants VM_FREELIST_* to the free list indices.
|
|
*
|
|
* Initially, the entries of vm_freelist_to_flind[] are set to either
|
|
* 0 or 1 to indicate which free lists should be created.
|
|
*/
|
|
npages = 0;
|
|
for (segind = vm_phys_nsegs - 1; segind >= 0; segind--) {
|
|
seg = &vm_phys_segs[segind];
|
|
#ifdef VM_FREELIST_ISADMA
|
|
if (seg->end <= VM_ISADMA_BOUNDARY)
|
|
vm_freelist_to_flind[VM_FREELIST_ISADMA] = 1;
|
|
else
|
|
#endif
|
|
#ifdef VM_FREELIST_LOWMEM
|
|
if (seg->end <= VM_LOWMEM_BOUNDARY)
|
|
vm_freelist_to_flind[VM_FREELIST_LOWMEM] = 1;
|
|
else
|
|
#endif
|
|
#ifdef VM_FREELIST_DMA32
|
|
if (
|
|
#ifdef VM_DMA32_NPAGES_THRESHOLD
|
|
/*
|
|
* Create the DMA32 free list only if the amount of
|
|
* physical memory above physical address 4G exceeds the
|
|
* given threshold.
|
|
*/
|
|
npages > VM_DMA32_NPAGES_THRESHOLD &&
|
|
#endif
|
|
seg->end <= VM_DMA32_BOUNDARY)
|
|
vm_freelist_to_flind[VM_FREELIST_DMA32] = 1;
|
|
else
|
|
#endif
|
|
{
|
|
npages += atop(seg->end - seg->start);
|
|
vm_freelist_to_flind[VM_FREELIST_DEFAULT] = 1;
|
|
}
|
|
}
|
|
/* Change each entry into a running total of the free lists. */
|
|
for (freelist = 1; freelist < VM_NFREELIST; freelist++) {
|
|
vm_freelist_to_flind[freelist] +=
|
|
vm_freelist_to_flind[freelist - 1];
|
|
}
|
|
vm_nfreelists = vm_freelist_to_flind[VM_NFREELIST - 1];
|
|
KASSERT(vm_nfreelists > 0, ("vm_phys_init: no free lists"));
|
|
/* Change each entry into a free list index. */
|
|
for (freelist = 0; freelist < VM_NFREELIST; freelist++)
|
|
vm_freelist_to_flind[freelist]--;
|
|
|
|
/*
|
|
* Initialize the first_page and free_queues fields of each physical
|
|
* memory segment.
|
|
*/
|
|
#ifdef VM_PHYSSEG_SPARSE
|
|
npages = 0;
|
|
#endif
|
|
for (segind = 0; segind < vm_phys_nsegs; segind++) {
|
|
seg = &vm_phys_segs[segind];
|
|
#ifdef VM_PHYSSEG_SPARSE
|
|
seg->first_page = &vm_page_array[npages];
|
|
npages += atop(seg->end - seg->start);
|
|
#else
|
|
seg->first_page = PHYS_TO_VM_PAGE(seg->start);
|
|
#endif
|
|
#ifdef VM_FREELIST_ISADMA
|
|
if (seg->end <= VM_ISADMA_BOUNDARY) {
|
|
flind = vm_freelist_to_flind[VM_FREELIST_ISADMA];
|
|
KASSERT(flind >= 0,
|
|
("vm_phys_init: ISADMA flind < 0"));
|
|
} else
|
|
#endif
|
|
#ifdef VM_FREELIST_LOWMEM
|
|
if (seg->end <= VM_LOWMEM_BOUNDARY) {
|
|
flind = vm_freelist_to_flind[VM_FREELIST_LOWMEM];
|
|
KASSERT(flind >= 0,
|
|
("vm_phys_init: LOWMEM flind < 0"));
|
|
} else
|
|
#endif
|
|
#ifdef VM_FREELIST_DMA32
|
|
if (seg->end <= VM_DMA32_BOUNDARY) {
|
|
flind = vm_freelist_to_flind[VM_FREELIST_DMA32];
|
|
KASSERT(flind >= 0,
|
|
("vm_phys_init: DMA32 flind < 0"));
|
|
} else
|
|
#endif
|
|
{
|
|
flind = vm_freelist_to_flind[VM_FREELIST_DEFAULT];
|
|
KASSERT(flind >= 0,
|
|
("vm_phys_init: DEFAULT flind < 0"));
|
|
}
|
|
seg->free_queues = &vm_phys_free_queues[seg->domain][flind];
|
|
}
|
|
|
|
/*
|
|
* Initialize the free queues.
|
|
*/
|
|
for (dom = 0; dom < vm_ndomains; dom++) {
|
|
for (flind = 0; flind < vm_nfreelists; flind++) {
|
|
for (pind = 0; pind < VM_NFREEPOOL; pind++) {
|
|
fl = vm_phys_free_queues[dom][flind][pind];
|
|
for (oind = 0; oind < VM_NFREEORDER; oind++)
|
|
TAILQ_INIT(&fl[oind].pl);
|
|
}
|
|
}
|
|
}
|
|
|
|
rw_init(&vm_phys_fictitious_reg_lock, "vmfctr");
|
|
}
|
|
|
|
/*
|
|
* Split a contiguous, power of two-sized set of physical pages.
|
|
*/
|
|
static __inline void
|
|
vm_phys_split_pages(vm_page_t m, int oind, struct vm_freelist *fl, int order)
|
|
{
|
|
vm_page_t m_buddy;
|
|
|
|
while (oind > order) {
|
|
oind--;
|
|
m_buddy = &m[1 << oind];
|
|
KASSERT(m_buddy->order == VM_NFREEORDER,
|
|
("vm_phys_split_pages: page %p has unexpected order %d",
|
|
m_buddy, m_buddy->order));
|
|
vm_freelist_add(fl, m_buddy, oind, 0);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Initialize a physical page and add it to the free lists.
|
|
*/
|
|
void
|
|
vm_phys_add_page(vm_paddr_t pa)
|
|
{
|
|
vm_page_t m;
|
|
struct vm_domain *vmd;
|
|
|
|
vm_cnt.v_page_count++;
|
|
m = vm_phys_paddr_to_vm_page(pa);
|
|
m->phys_addr = pa;
|
|
m->queue = PQ_NONE;
|
|
m->segind = vm_phys_paddr_to_segind(pa);
|
|
vmd = vm_phys_domain(m);
|
|
vmd->vmd_page_count++;
|
|
vmd->vmd_segs |= 1UL << m->segind;
|
|
KASSERT(m->order == VM_NFREEORDER,
|
|
("vm_phys_add_page: page %p has unexpected order %d",
|
|
m, m->order));
|
|
m->pool = VM_FREEPOOL_DEFAULT;
|
|
pmap_page_init(m);
|
|
mtx_lock(&vm_page_queue_free_mtx);
|
|
vm_phys_freecnt_adj(m, 1);
|
|
vm_phys_free_pages(m, 0);
|
|
mtx_unlock(&vm_page_queue_free_mtx);
|
|
}
|
|
|
|
/*
|
|
* Allocate a contiguous, power of two-sized set of physical pages
|
|
* from the free lists.
|
|
*
|
|
* The free page queues must be locked.
|
|
*/
|
|
vm_page_t
|
|
vm_phys_alloc_pages(int pool, int order)
|
|
{
|
|
vm_page_t m;
|
|
int dom, domain, flind;
|
|
|
|
KASSERT(pool < VM_NFREEPOOL,
|
|
("vm_phys_alloc_pages: pool %d is out of range", pool));
|
|
KASSERT(order < VM_NFREEORDER,
|
|
("vm_phys_alloc_pages: order %d is out of range", order));
|
|
|
|
for (dom = 0; dom < vm_ndomains; dom++) {
|
|
domain = vm_rr_selectdomain();
|
|
for (flind = 0; flind < vm_nfreelists; flind++) {
|
|
m = vm_phys_alloc_domain_pages(domain, flind, pool,
|
|
order);
|
|
if (m != NULL)
|
|
return (m);
|
|
}
|
|
}
|
|
return (NULL);
|
|
}
|
|
|
|
/*
|
|
* Allocate a contiguous, power of two-sized set of physical pages from the
|
|
* specified free list. The free list must be specified using one of the
|
|
* manifest constants VM_FREELIST_*.
|
|
*
|
|
* The free page queues must be locked.
|
|
*/
|
|
vm_page_t
|
|
vm_phys_alloc_freelist_pages(int freelist, int pool, int order)
|
|
{
|
|
vm_page_t m;
|
|
int dom, domain;
|
|
|
|
KASSERT(freelist < VM_NFREELIST,
|
|
("vm_phys_alloc_freelist_pages: freelist %d is out of range",
|
|
freelist));
|
|
KASSERT(pool < VM_NFREEPOOL,
|
|
("vm_phys_alloc_freelist_pages: pool %d is out of range", pool));
|
|
KASSERT(order < VM_NFREEORDER,
|
|
("vm_phys_alloc_freelist_pages: order %d is out of range", order));
|
|
for (dom = 0; dom < vm_ndomains; dom++) {
|
|
domain = vm_rr_selectdomain();
|
|
m = vm_phys_alloc_domain_pages(domain,
|
|
vm_freelist_to_flind[freelist], pool, order);
|
|
if (m != NULL)
|
|
return (m);
|
|
}
|
|
return (NULL);
|
|
}
|
|
|
|
static vm_page_t
|
|
vm_phys_alloc_domain_pages(int domain, int flind, int pool, int order)
|
|
{
|
|
struct vm_freelist *fl;
|
|
struct vm_freelist *alt;
|
|
int oind, pind;
|
|
vm_page_t m;
|
|
|
|
mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
|
|
fl = &vm_phys_free_queues[domain][flind][pool][0];
|
|
for (oind = order; oind < VM_NFREEORDER; oind++) {
|
|
m = TAILQ_FIRST(&fl[oind].pl);
|
|
if (m != NULL) {
|
|
vm_freelist_rem(fl, m, oind);
|
|
vm_phys_split_pages(m, oind, fl, order);
|
|
return (m);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* The given pool was empty. Find the largest
|
|
* contiguous, power-of-two-sized set of pages in any
|
|
* pool. Transfer these pages to the given pool, and
|
|
* use them to satisfy the allocation.
|
|
*/
|
|
for (oind = VM_NFREEORDER - 1; oind >= order; oind--) {
|
|
for (pind = 0; pind < VM_NFREEPOOL; pind++) {
|
|
alt = &vm_phys_free_queues[domain][flind][pind][0];
|
|
m = TAILQ_FIRST(&alt[oind].pl);
|
|
if (m != NULL) {
|
|
vm_freelist_rem(alt, m, oind);
|
|
vm_phys_set_pool(pool, m, oind);
|
|
vm_phys_split_pages(m, oind, fl, order);
|
|
return (m);
|
|
}
|
|
}
|
|
}
|
|
return (NULL);
|
|
}
|
|
|
|
/*
|
|
* Find the vm_page corresponding to the given physical address.
|
|
*/
|
|
vm_page_t
|
|
vm_phys_paddr_to_vm_page(vm_paddr_t pa)
|
|
{
|
|
struct vm_phys_seg *seg;
|
|
int segind;
|
|
|
|
for (segind = 0; segind < vm_phys_nsegs; segind++) {
|
|
seg = &vm_phys_segs[segind];
|
|
if (pa >= seg->start && pa < seg->end)
|
|
return (&seg->first_page[atop(pa - seg->start)]);
|
|
}
|
|
return (NULL);
|
|
}
|
|
|
|
vm_page_t
|
|
vm_phys_fictitious_to_vm_page(vm_paddr_t pa)
|
|
{
|
|
struct vm_phys_fictitious_seg tmp, *seg;
|
|
vm_page_t m;
|
|
|
|
m = NULL;
|
|
tmp.start = pa;
|
|
tmp.end = 0;
|
|
|
|
rw_rlock(&vm_phys_fictitious_reg_lock);
|
|
seg = RB_FIND(fict_tree, &vm_phys_fictitious_tree, &tmp);
|
|
rw_runlock(&vm_phys_fictitious_reg_lock);
|
|
if (seg == NULL)
|
|
return (NULL);
|
|
|
|
m = &seg->first_page[atop(pa - seg->start)];
|
|
KASSERT((m->flags & PG_FICTITIOUS) != 0, ("%p not fictitious", m));
|
|
|
|
return (m);
|
|
}
|
|
|
|
static inline void
|
|
vm_phys_fictitious_init_range(vm_page_t range, vm_paddr_t start,
|
|
long page_count, vm_memattr_t memattr)
|
|
{
|
|
long i;
|
|
|
|
for (i = 0; i < page_count; i++) {
|
|
vm_page_initfake(&range[i], start + PAGE_SIZE * i, memattr);
|
|
range[i].oflags &= ~VPO_UNMANAGED;
|
|
range[i].busy_lock = VPB_UNBUSIED;
|
|
}
|
|
}
|
|
|
|
int
|
|
vm_phys_fictitious_reg_range(vm_paddr_t start, vm_paddr_t end,
|
|
vm_memattr_t memattr)
|
|
{
|
|
struct vm_phys_fictitious_seg *seg;
|
|
vm_page_t fp;
|
|
long page_count;
|
|
#ifdef VM_PHYSSEG_DENSE
|
|
long pi, pe;
|
|
long dpage_count;
|
|
#endif
|
|
|
|
KASSERT(start < end,
|
|
("Start of segment isn't less than end (start: %jx end: %jx)",
|
|
(uintmax_t)start, (uintmax_t)end));
|
|
|
|
page_count = (end - start) / PAGE_SIZE;
|
|
|
|
#ifdef VM_PHYSSEG_DENSE
|
|
pi = atop(start);
|
|
pe = atop(end);
|
|
if (pi >= first_page && (pi - first_page) < vm_page_array_size) {
|
|
fp = &vm_page_array[pi - first_page];
|
|
if ((pe - first_page) > vm_page_array_size) {
|
|
/*
|
|
* We have a segment that starts inside
|
|
* of vm_page_array, but ends outside of it.
|
|
*
|
|
* Use vm_page_array pages for those that are
|
|
* inside of the vm_page_array range, and
|
|
* allocate the remaining ones.
|
|
*/
|
|
dpage_count = vm_page_array_size - (pi - first_page);
|
|
vm_phys_fictitious_init_range(fp, start, dpage_count,
|
|
memattr);
|
|
page_count -= dpage_count;
|
|
start += ptoa(dpage_count);
|
|
goto alloc;
|
|
}
|
|
/*
|
|
* We can allocate the full range from vm_page_array,
|
|
* so there's no need to register the range in the tree.
|
|
*/
|
|
vm_phys_fictitious_init_range(fp, start, page_count, memattr);
|
|
return (0);
|
|
} else if (pe > first_page && (pe - first_page) < vm_page_array_size) {
|
|
/*
|
|
* We have a segment that ends inside of vm_page_array,
|
|
* but starts outside of it.
|
|
*/
|
|
fp = &vm_page_array[0];
|
|
dpage_count = pe - first_page;
|
|
vm_phys_fictitious_init_range(fp, ptoa(first_page), dpage_count,
|
|
memattr);
|
|
end -= ptoa(dpage_count);
|
|
page_count -= dpage_count;
|
|
goto alloc;
|
|
} else if (pi < first_page && pe > (first_page + vm_page_array_size)) {
|
|
/*
|
|
* Trying to register a fictitious range that expands before
|
|
* and after vm_page_array.
|
|
*/
|
|
return (EINVAL);
|
|
} else {
|
|
alloc:
|
|
#endif
|
|
fp = malloc(page_count * sizeof(struct vm_page), M_FICT_PAGES,
|
|
M_WAITOK | M_ZERO);
|
|
#ifdef VM_PHYSSEG_DENSE
|
|
}
|
|
#endif
|
|
vm_phys_fictitious_init_range(fp, start, page_count, memattr);
|
|
|
|
seg = malloc(sizeof(*seg), M_FICT_PAGES, M_WAITOK | M_ZERO);
|
|
seg->start = start;
|
|
seg->end = end;
|
|
seg->first_page = fp;
|
|
|
|
rw_wlock(&vm_phys_fictitious_reg_lock);
|
|
RB_INSERT(fict_tree, &vm_phys_fictitious_tree, seg);
|
|
rw_wunlock(&vm_phys_fictitious_reg_lock);
|
|
|
|
return (0);
|
|
}
|
|
|
|
void
|
|
vm_phys_fictitious_unreg_range(vm_paddr_t start, vm_paddr_t end)
|
|
{
|
|
struct vm_phys_fictitious_seg *seg, tmp;
|
|
#ifdef VM_PHYSSEG_DENSE
|
|
long pi, pe;
|
|
#endif
|
|
|
|
KASSERT(start < end,
|
|
("Start of segment isn't less than end (start: %jx end: %jx)",
|
|
(uintmax_t)start, (uintmax_t)end));
|
|
|
|
#ifdef VM_PHYSSEG_DENSE
|
|
pi = atop(start);
|
|
pe = atop(end);
|
|
if (pi >= first_page && (pi - first_page) < vm_page_array_size) {
|
|
if ((pe - first_page) <= vm_page_array_size) {
|
|
/*
|
|
* This segment was allocated using vm_page_array
|
|
* only, there's nothing to do since those pages
|
|
* were never added to the tree.
|
|
*/
|
|
return;
|
|
}
|
|
/*
|
|
* We have a segment that starts inside
|
|
* of vm_page_array, but ends outside of it.
|
|
*
|
|
* Calculate how many pages were added to the
|
|
* tree and free them.
|
|
*/
|
|
start = ptoa(first_page + vm_page_array_size);
|
|
} else if (pe > first_page && (pe - first_page) < vm_page_array_size) {
|
|
/*
|
|
* We have a segment that ends inside of vm_page_array,
|
|
* but starts outside of it.
|
|
*/
|
|
end = ptoa(first_page);
|
|
} else if (pi < first_page && pe > (first_page + vm_page_array_size)) {
|
|
/* Since it's not possible to register such a range, panic. */
|
|
panic(
|
|
"Unregistering not registered fictitious range [%#jx:%#jx]",
|
|
(uintmax_t)start, (uintmax_t)end);
|
|
}
|
|
#endif
|
|
tmp.start = start;
|
|
tmp.end = 0;
|
|
|
|
rw_wlock(&vm_phys_fictitious_reg_lock);
|
|
seg = RB_FIND(fict_tree, &vm_phys_fictitious_tree, &tmp);
|
|
if (seg->start != start || seg->end != end) {
|
|
rw_wunlock(&vm_phys_fictitious_reg_lock);
|
|
panic(
|
|
"Unregistering not registered fictitious range [%#jx:%#jx]",
|
|
(uintmax_t)start, (uintmax_t)end);
|
|
}
|
|
RB_REMOVE(fict_tree, &vm_phys_fictitious_tree, seg);
|
|
rw_wunlock(&vm_phys_fictitious_reg_lock);
|
|
free(seg->first_page, M_FICT_PAGES);
|
|
free(seg, M_FICT_PAGES);
|
|
}
|
|
|
|
/*
|
|
* Find the segment containing the given physical address.
|
|
*/
|
|
static int
|
|
vm_phys_paddr_to_segind(vm_paddr_t pa)
|
|
{
|
|
struct vm_phys_seg *seg;
|
|
int segind;
|
|
|
|
for (segind = 0; segind < vm_phys_nsegs; segind++) {
|
|
seg = &vm_phys_segs[segind];
|
|
if (pa >= seg->start && pa < seg->end)
|
|
return (segind);
|
|
}
|
|
panic("vm_phys_paddr_to_segind: paddr %#jx is not in any segment" ,
|
|
(uintmax_t)pa);
|
|
}
|
|
|
|
/*
|
|
* Free a contiguous, power of two-sized set of physical pages.
|
|
*
|
|
* The free page queues must be locked.
|
|
*/
|
|
void
|
|
vm_phys_free_pages(vm_page_t m, int order)
|
|
{
|
|
struct vm_freelist *fl;
|
|
struct vm_phys_seg *seg;
|
|
vm_paddr_t pa;
|
|
vm_page_t m_buddy;
|
|
|
|
KASSERT(m->order == VM_NFREEORDER,
|
|
("vm_phys_free_pages: page %p has unexpected order %d",
|
|
m, m->order));
|
|
KASSERT(m->pool < VM_NFREEPOOL,
|
|
("vm_phys_free_pages: page %p has unexpected pool %d",
|
|
m, m->pool));
|
|
KASSERT(order < VM_NFREEORDER,
|
|
("vm_phys_free_pages: order %d is out of range", order));
|
|
mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
|
|
seg = &vm_phys_segs[m->segind];
|
|
if (order < VM_NFREEORDER - 1) {
|
|
pa = VM_PAGE_TO_PHYS(m);
|
|
do {
|
|
pa ^= ((vm_paddr_t)1 << (PAGE_SHIFT + order));
|
|
if (pa < seg->start || pa >= seg->end)
|
|
break;
|
|
m_buddy = &seg->first_page[atop(pa - seg->start)];
|
|
if (m_buddy->order != order)
|
|
break;
|
|
fl = (*seg->free_queues)[m_buddy->pool];
|
|
vm_freelist_rem(fl, m_buddy, order);
|
|
if (m_buddy->pool != m->pool)
|
|
vm_phys_set_pool(m->pool, m_buddy, order);
|
|
order++;
|
|
pa &= ~(((vm_paddr_t)1 << (PAGE_SHIFT + order)) - 1);
|
|
m = &seg->first_page[atop(pa - seg->start)];
|
|
} while (order < VM_NFREEORDER - 1);
|
|
}
|
|
fl = (*seg->free_queues)[m->pool];
|
|
vm_freelist_add(fl, m, order, 1);
|
|
}
|
|
|
|
/*
|
|
* Free a contiguous, arbitrarily sized set of physical pages.
|
|
*
|
|
* The free page queues must be locked.
|
|
*/
|
|
void
|
|
vm_phys_free_contig(vm_page_t m, u_long npages)
|
|
{
|
|
u_int n;
|
|
int order;
|
|
|
|
/*
|
|
* Avoid unnecessary coalescing by freeing the pages in the largest
|
|
* possible power-of-two-sized subsets.
|
|
*/
|
|
mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
|
|
for (;; npages -= n) {
|
|
/*
|
|
* Unsigned "min" is used here so that "order" is assigned
|
|
* "VM_NFREEORDER - 1" when "m"'s physical address is zero
|
|
* or the low-order bits of its physical address are zero
|
|
* because the size of a physical address exceeds the size of
|
|
* a long.
|
|
*/
|
|
order = min(ffsl(VM_PAGE_TO_PHYS(m) >> PAGE_SHIFT) - 1,
|
|
VM_NFREEORDER - 1);
|
|
n = 1 << order;
|
|
if (npages < n)
|
|
break;
|
|
vm_phys_free_pages(m, order);
|
|
m += n;
|
|
}
|
|
/* The residual "npages" is less than "1 << (VM_NFREEORDER - 1)". */
|
|
for (; npages > 0; npages -= n) {
|
|
order = flsl(npages) - 1;
|
|
n = 1 << order;
|
|
vm_phys_free_pages(m, order);
|
|
m += n;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Set the pool for a contiguous, power of two-sized set of physical pages.
|
|
*/
|
|
void
|
|
vm_phys_set_pool(int pool, vm_page_t m, int order)
|
|
{
|
|
vm_page_t m_tmp;
|
|
|
|
for (m_tmp = m; m_tmp < &m[1 << order]; m_tmp++)
|
|
m_tmp->pool = pool;
|
|
}
|
|
|
|
/*
|
|
* Search for the given physical page "m" in the free lists. If the search
|
|
* succeeds, remove "m" from the free lists and return TRUE. Otherwise, return
|
|
* FALSE, indicating that "m" is not in the free lists.
|
|
*
|
|
* The free page queues must be locked.
|
|
*/
|
|
boolean_t
|
|
vm_phys_unfree_page(vm_page_t m)
|
|
{
|
|
struct vm_freelist *fl;
|
|
struct vm_phys_seg *seg;
|
|
vm_paddr_t pa, pa_half;
|
|
vm_page_t m_set, m_tmp;
|
|
int order;
|
|
|
|
mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
|
|
|
|
/*
|
|
* First, find the contiguous, power of two-sized set of free
|
|
* physical pages containing the given physical page "m" and
|
|
* assign it to "m_set".
|
|
*/
|
|
seg = &vm_phys_segs[m->segind];
|
|
for (m_set = m, order = 0; m_set->order == VM_NFREEORDER &&
|
|
order < VM_NFREEORDER - 1; ) {
|
|
order++;
|
|
pa = m->phys_addr & (~(vm_paddr_t)0 << (PAGE_SHIFT + order));
|
|
if (pa >= seg->start)
|
|
m_set = &seg->first_page[atop(pa - seg->start)];
|
|
else
|
|
return (FALSE);
|
|
}
|
|
if (m_set->order < order)
|
|
return (FALSE);
|
|
if (m_set->order == VM_NFREEORDER)
|
|
return (FALSE);
|
|
KASSERT(m_set->order < VM_NFREEORDER,
|
|
("vm_phys_unfree_page: page %p has unexpected order %d",
|
|
m_set, m_set->order));
|
|
|
|
/*
|
|
* Next, remove "m_set" from the free lists. Finally, extract
|
|
* "m" from "m_set" using an iterative algorithm: While "m_set"
|
|
* is larger than a page, shrink "m_set" by returning the half
|
|
* of "m_set" that does not contain "m" to the free lists.
|
|
*/
|
|
fl = (*seg->free_queues)[m_set->pool];
|
|
order = m_set->order;
|
|
vm_freelist_rem(fl, m_set, order);
|
|
while (order > 0) {
|
|
order--;
|
|
pa_half = m_set->phys_addr ^ (1 << (PAGE_SHIFT + order));
|
|
if (m->phys_addr < pa_half)
|
|
m_tmp = &seg->first_page[atop(pa_half - seg->start)];
|
|
else {
|
|
m_tmp = m_set;
|
|
m_set = &seg->first_page[atop(pa_half - seg->start)];
|
|
}
|
|
vm_freelist_add(fl, m_tmp, order, 0);
|
|
}
|
|
KASSERT(m_set == m, ("vm_phys_unfree_page: fatal inconsistency"));
|
|
return (TRUE);
|
|
}
|
|
|
|
/*
|
|
* Try to zero one physical page. Used by an idle priority thread.
|
|
*/
|
|
boolean_t
|
|
vm_phys_zero_pages_idle(void)
|
|
{
|
|
static struct vm_freelist *fl;
|
|
static int flind, oind, pind;
|
|
vm_page_t m, m_tmp;
|
|
int domain;
|
|
|
|
domain = vm_rr_selectdomain();
|
|
fl = vm_phys_free_queues[domain][0][0];
|
|
mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
|
|
for (;;) {
|
|
TAILQ_FOREACH_REVERSE(m, &fl[oind].pl, pglist, plinks.q) {
|
|
for (m_tmp = m; m_tmp < &m[1 << oind]; m_tmp++) {
|
|
if ((m_tmp->flags & (PG_CACHED | PG_ZERO)) == 0) {
|
|
vm_phys_unfree_page(m_tmp);
|
|
vm_phys_freecnt_adj(m, -1);
|
|
mtx_unlock(&vm_page_queue_free_mtx);
|
|
pmap_zero_page_idle(m_tmp);
|
|
m_tmp->flags |= PG_ZERO;
|
|
mtx_lock(&vm_page_queue_free_mtx);
|
|
vm_phys_freecnt_adj(m, 1);
|
|
vm_phys_free_pages(m_tmp, 0);
|
|
vm_page_zero_count++;
|
|
cnt_prezero++;
|
|
return (TRUE);
|
|
}
|
|
}
|
|
}
|
|
oind++;
|
|
if (oind == VM_NFREEORDER) {
|
|
oind = 0;
|
|
pind++;
|
|
if (pind == VM_NFREEPOOL) {
|
|
pind = 0;
|
|
flind++;
|
|
if (flind == vm_nfreelists)
|
|
flind = 0;
|
|
}
|
|
fl = vm_phys_free_queues[domain][flind][pind];
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Allocate a contiguous set of physical pages of the given size
|
|
* "npages" from the free lists. All of the physical pages must be at
|
|
* or above the given physical address "low" and below the given
|
|
* physical address "high". The given value "alignment" determines the
|
|
* alignment of the first physical page in the set. If the given value
|
|
* "boundary" is non-zero, then the set of physical pages cannot cross
|
|
* any physical address boundary that is a multiple of that value. Both
|
|
* "alignment" and "boundary" must be a power of two.
|
|
*/
|
|
vm_page_t
|
|
vm_phys_alloc_contig(u_long npages, vm_paddr_t low, vm_paddr_t high,
|
|
u_long alignment, vm_paddr_t boundary)
|
|
{
|
|
struct vm_freelist *fl;
|
|
struct vm_phys_seg *seg;
|
|
vm_paddr_t pa, pa_last, size;
|
|
vm_page_t m, m_ret;
|
|
u_long npages_end;
|
|
int dom, domain, flind, oind, order, pind;
|
|
|
|
mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
|
|
size = npages << PAGE_SHIFT;
|
|
KASSERT(size != 0,
|
|
("vm_phys_alloc_contig: size must not be 0"));
|
|
KASSERT((alignment & (alignment - 1)) == 0,
|
|
("vm_phys_alloc_contig: alignment must be a power of 2"));
|
|
KASSERT((boundary & (boundary - 1)) == 0,
|
|
("vm_phys_alloc_contig: boundary must be a power of 2"));
|
|
/* Compute the queue that is the best fit for npages. */
|
|
for (order = 0; (1 << order) < npages; order++);
|
|
dom = 0;
|
|
restartdom:
|
|
domain = vm_rr_selectdomain();
|
|
for (flind = 0; flind < vm_nfreelists; flind++) {
|
|
for (oind = min(order, VM_NFREEORDER - 1); oind < VM_NFREEORDER; oind++) {
|
|
for (pind = 0; pind < VM_NFREEPOOL; pind++) {
|
|
fl = &vm_phys_free_queues[domain][flind][pind][0];
|
|
TAILQ_FOREACH(m_ret, &fl[oind].pl, plinks.q) {
|
|
/*
|
|
* A free list may contain physical pages
|
|
* from one or more segments.
|
|
*/
|
|
seg = &vm_phys_segs[m_ret->segind];
|
|
if (seg->start > high ||
|
|
low >= seg->end)
|
|
continue;
|
|
|
|
/*
|
|
* Is the size of this allocation request
|
|
* larger than the largest block size?
|
|
*/
|
|
if (order >= VM_NFREEORDER) {
|
|
/*
|
|
* Determine if a sufficient number
|
|
* of subsequent blocks to satisfy
|
|
* the allocation request are free.
|
|
*/
|
|
pa = VM_PAGE_TO_PHYS(m_ret);
|
|
pa_last = pa + size;
|
|
for (;;) {
|
|
pa += 1 << (PAGE_SHIFT + VM_NFREEORDER - 1);
|
|
if (pa >= pa_last)
|
|
break;
|
|
if (pa < seg->start ||
|
|
pa >= seg->end)
|
|
break;
|
|
m = &seg->first_page[atop(pa - seg->start)];
|
|
if (m->order != VM_NFREEORDER - 1)
|
|
break;
|
|
}
|
|
/* If not, continue to the next block. */
|
|
if (pa < pa_last)
|
|
continue;
|
|
}
|
|
|
|
/*
|
|
* Determine if the blocks are within the given range,
|
|
* satisfy the given alignment, and do not cross the
|
|
* given boundary.
|
|
*/
|
|
pa = VM_PAGE_TO_PHYS(m_ret);
|
|
if (pa >= low &&
|
|
pa + size <= high &&
|
|
(pa & (alignment - 1)) == 0 &&
|
|
((pa ^ (pa + size - 1)) & ~(boundary - 1)) == 0)
|
|
goto done;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
if (++dom < vm_ndomains)
|
|
goto restartdom;
|
|
return (NULL);
|
|
done:
|
|
for (m = m_ret; m < &m_ret[npages]; m = &m[1 << oind]) {
|
|
fl = (*seg->free_queues)[m->pool];
|
|
vm_freelist_rem(fl, m, m->order);
|
|
}
|
|
if (m_ret->pool != VM_FREEPOOL_DEFAULT)
|
|
vm_phys_set_pool(VM_FREEPOOL_DEFAULT, m_ret, oind);
|
|
fl = (*seg->free_queues)[m_ret->pool];
|
|
vm_phys_split_pages(m_ret, oind, fl, order);
|
|
/* Return excess pages to the free lists. */
|
|
npages_end = roundup2(npages, 1 << imin(oind, order));
|
|
if (npages < npages_end)
|
|
vm_phys_free_contig(&m_ret[npages], npages_end - npages);
|
|
return (m_ret);
|
|
}
|
|
|
|
#ifdef DDB
|
|
/*
|
|
* Show the number of physical pages in each of the free lists.
|
|
*/
|
|
DB_SHOW_COMMAND(freepages, db_show_freepages)
|
|
{
|
|
struct vm_freelist *fl;
|
|
int flind, oind, pind, dom;
|
|
|
|
for (dom = 0; dom < vm_ndomains; dom++) {
|
|
db_printf("DOMAIN: %d\n", dom);
|
|
for (flind = 0; flind < vm_nfreelists; flind++) {
|
|
db_printf("FREE LIST %d:\n"
|
|
"\n ORDER (SIZE) | NUMBER"
|
|
"\n ", flind);
|
|
for (pind = 0; pind < VM_NFREEPOOL; pind++)
|
|
db_printf(" | POOL %d", pind);
|
|
db_printf("\n-- ");
|
|
for (pind = 0; pind < VM_NFREEPOOL; pind++)
|
|
db_printf("-- -- ");
|
|
db_printf("--\n");
|
|
for (oind = VM_NFREEORDER - 1; oind >= 0; oind--) {
|
|
db_printf(" %2.2d (%6.6dK)", oind,
|
|
1 << (PAGE_SHIFT - 10 + oind));
|
|
for (pind = 0; pind < VM_NFREEPOOL; pind++) {
|
|
fl = vm_phys_free_queues[dom][flind][pind];
|
|
db_printf(" | %6.6d", fl[oind].lcnt);
|
|
}
|
|
db_printf("\n");
|
|
}
|
|
db_printf("\n");
|
|
}
|
|
db_printf("\n");
|
|
}
|
|
}
|
|
#endif
|