Poul-Henning Kamp ddbf51af0c Find places to store the previously implicityly passed unit number in
the three configuration ioctls which need a unit number.

Add a "ccd.ctl" device for config operations.

Implement ioctls on ccd.ctl which rely on the explicityly passed
unit numbers.

Update ccdconfig to use the new ccd.ctl interface.

Add code to the kernel to detect old ccdconfig binaries, and whine
about it.

Add code to ccdconfig to detect old kernels, and whine about it.

These two compatibility measures will be retained only for a limited
period since they are in the way of GEOM'ification of ccd.
2003-01-17 14:53:53 +00:00

1855 lines
44 KiB
C

/* $FreeBSD$ */
/* $NetBSD: ccd.c,v 1.22 1995/12/08 19:13:26 thorpej Exp $ */
/*
* Copyright (c) 1995 Jason R. Thorpe.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed for the NetBSD Project
* by Jason R. Thorpe.
* 4. The name of the author may not be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
/*
* Copyright (c) 1988 University of Utah.
* Copyright (c) 1990, 1993
* The Regents of the University of California. All rights reserved.
*
* This code is derived from software contributed to Berkeley by
* the Systems Programming Group of the University of Utah Computer
* Science Department.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by the University of
* California, Berkeley and its contributors.
* 4. Neither the name of the University nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* from: Utah $Hdr: cd.c 1.6 90/11/28$
*
* @(#)cd.c 8.2 (Berkeley) 11/16/93
*/
/*
* "Concatenated" disk driver.
*
* Dynamic configuration and disklabel support by:
* Jason R. Thorpe <thorpej@nas.nasa.gov>
* Numerical Aerodynamic Simulation Facility
* Mail Stop 258-6
* NASA Ames Research Center
* Moffett Field, CA 94035
*/
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/kernel.h>
#include <sys/module.h>
#include <sys/proc.h>
#include <sys/bio.h>
#include <sys/malloc.h>
#include <sys/namei.h>
#include <sys/conf.h>
#include <sys/stat.h>
#include <sys/stdint.h>
#include <sys/sysctl.h>
#include <sys/disk.h>
#include <sys/disklabel.h>
#include <sys/devicestat.h>
#include <sys/fcntl.h>
#include <sys/vnode.h>
#include <sys/ccdvar.h>
MALLOC_DEFINE(M_CCD, "CCD driver", "Concatenated Disk driver");
#if defined(CCDDEBUG) && !defined(DEBUG)
#define DEBUG
#endif
#ifdef DEBUG
#define CCDB_FOLLOW 0x01
#define CCDB_INIT 0x02
#define CCDB_IO 0x04
#define CCDB_LABEL 0x08
#define CCDB_VNODE 0x10
static int ccddebug = CCDB_FOLLOW | CCDB_INIT | CCDB_IO | CCDB_LABEL |
CCDB_VNODE;
SYSCTL_INT(_debug, OID_AUTO, ccddebug, CTLFLAG_RW, &ccddebug, 0, "");
#endif
static u_int
ccdunit(dev_t dev)
{
return (((minor(dev) >> 16) & 0x1e0) | ((minor(dev) >> 3) & 0x1f));
}
#define ccdpart(x) (minor(x) & 7)
/*
This is how mirroring works (only writes are special):
When initiating a write, ccdbuffer() returns two "struct ccdbuf *"s
linked together by the cb_mirror field. "cb_pflags &
CCDPF_MIRROR_DONE" is set to 0 on both of them.
When a component returns to ccdiodone(), it checks if "cb_pflags &
CCDPF_MIRROR_DONE" is set or not. If not, it sets the partner's
flag and returns. If it is, it means its partner has already
returned, so it will go to the regular cleanup.
*/
struct ccdbuf {
struct bio cb_buf; /* new I/O buf */
struct bio *cb_obp; /* ptr. to original I/O buf */
struct ccdbuf *cb_freenext; /* free list link */
int cb_unit; /* target unit */
int cb_comp; /* target component */
int cb_pflags; /* mirror/parity status flag */
struct ccdbuf *cb_mirror; /* mirror counterpart */
};
/* bits in cb_pflags */
#define CCDPF_MIRROR_DONE 1 /* if set, mirror counterpart is done */
#define CCDLABELDEV(dev) \
(makedev(major((dev)), dkmakeminor(ccdunit((dev)), 0, RAW_PART)))
/* convinient macros for often-used statements */
#define IS_ALLOCATED(unit) (ccdfind(unit) != NULL)
#define IS_INITED(cs) (((cs)->sc_flags & CCDF_INITED) != 0)
static dev_t ccdctldev;
static d_open_t ccdopen;
static d_close_t ccdclose;
static d_strategy_t ccdstrategy;
static d_ioctl_t ccdioctl;
static d_ioctl_t ccdioctltoo;
static d_psize_t ccdsize;
#define NCCDFREEHIWAT 16
#define CDEV_MAJOR 74
static struct cdevsw ccd_cdevsw = {
/* open */ ccdopen,
/* close */ ccdclose,
/* read */ physread,
/* write */ physwrite,
/* ioctl */ ccdioctl,
/* poll */ nopoll,
/* mmap */ nommap,
/* strategy */ ccdstrategy,
/* name */ "ccd",
/* maj */ CDEV_MAJOR,
/* dump */ nodump,
/* psize */ ccdsize,
/* flags */ D_DISK,
};
static LIST_HEAD(, ccd_s) ccd_softc_list = LIST_HEAD_INITIALIZER(&ccd_softc_list);
static struct ccd_s *ccdfind(int);
static struct ccd_s *ccdnew(int);
static int ccddestroy(struct ccd_s *, struct proc *);
/* called during module initialization */
static void ccdattach(void);
static int ccd_modevent(module_t, int, void *);
/* called by biodone() at interrupt time */
static void ccdiodone(struct bio *bp);
static void ccdstart(struct ccd_s *, struct bio *);
static void ccdinterleave(struct ccd_s *, int);
static void ccdintr(struct ccd_s *, struct bio *);
static int ccdinit(struct ccd_s *, char **, struct thread *);
static int ccdlookup(char *, struct thread *p, struct vnode **);
static void ccdbuffer(struct ccdbuf **ret, struct ccd_s *,
struct bio *, daddr_t, caddr_t, long);
static void ccdgetdisklabel(dev_t);
static void ccdmakedisklabel(struct ccd_s *);
static int ccdlock(struct ccd_s *);
static void ccdunlock(struct ccd_s *);
#ifdef DEBUG
static void printiinfo(struct ccdiinfo *);
#endif
/* Non-private for the benefit of libkvm. */
struct ccdbuf *ccdfreebufs;
static int numccdfreebufs;
/*
* getccdbuf() - Allocate and zero a ccd buffer.
*
* This routine is called at splbio().
*/
static __inline
struct ccdbuf *
getccdbuf(struct ccdbuf *cpy)
{
struct ccdbuf *cbp;
/*
* Allocate from freelist or malloc as necessary
*/
if ((cbp = ccdfreebufs) != NULL) {
ccdfreebufs = cbp->cb_freenext;
--numccdfreebufs;
} else {
cbp = malloc(sizeof(struct ccdbuf), M_DEVBUF, M_WAITOK);
}
/*
* Used by mirroring code
*/
if (cpy)
bcopy(cpy, cbp, sizeof(struct ccdbuf));
else
bzero(cbp, sizeof(struct ccdbuf));
/*
* independant struct bio initialization
*/
return(cbp);
}
/*
* putccdbuf() - Free a ccd buffer.
*
* This routine is called at splbio().
*/
static __inline
void
putccdbuf(struct ccdbuf *cbp)
{
if (numccdfreebufs < NCCDFREEHIWAT) {
cbp->cb_freenext = ccdfreebufs;
ccdfreebufs = cbp;
++numccdfreebufs;
} else {
free((caddr_t)cbp, M_DEVBUF);
}
}
/*
* Number of blocks to untouched in front of a component partition.
* This is to avoid violating its disklabel area when it starts at the
* beginning of the slice.
*/
#if !defined(CCD_OFFSET)
#define CCD_OFFSET 16
#endif
static struct ccd_s *
ccdfind(int unit)
{
struct ccd_s *sc = NULL;
/* XXX: LOCK(unique unit numbers) */
LIST_FOREACH(sc, &ccd_softc_list, list) {
if (sc->sc_unit == unit)
break;
}
/* XXX: UNLOCK(unique unit numbers) */
return ((sc == NULL) || (sc->sc_unit != unit) ? NULL : sc);
}
static struct ccd_s *
ccdnew(int unit)
{
struct ccd_s *sc;
/* XXX: LOCK(unique unit numbers) */
if (IS_ALLOCATED(unit) || unit > DKMAXUNIT)
return (NULL);
MALLOC(sc, struct ccd_s *, sizeof(*sc), M_CCD, M_WAITOK | M_ZERO);
sc->sc_unit = unit;
LIST_INSERT_HEAD(&ccd_softc_list, sc, list);
/* XXX: UNLOCK(unique unit numbers) */
return (sc);
}
static int
ccddestroy(struct ccd_s *sc, struct proc *p)
{
/* XXX: LOCK(unique unit numbers) */
LIST_REMOVE(sc, list);
/* XXX: UNLOCK(unique unit numbers) */
FREE(sc, M_CCD);
return (0);
}
static void
ccd_clone(void *arg, char *name, int namelen, dev_t *dev)
{
int i, u;
char *s;
if (*dev != NODEV)
return;
i = dev_stdclone(name, &s, "ccd", &u);
if (i != 2)
return;
if (*s < 'a' || *s > 'h')
return;
if (s[1] != '\0')
return;
*dev = make_dev(&ccd_cdevsw, u * 8 + *s - 'a',
UID_ROOT, GID_OPERATOR, 0640, name);
}
/*
* Called by main() during pseudo-device attachment. All we need
* to do is to add devsw entries.
*/
static void
ccdattach()
{
ccdctldev = make_dev(&ccd_cdevsw, 0xffff00ff,
UID_ROOT, GID_OPERATOR, 0640, "ccd.ctl");
ccdctldev->si_drv1 = ccdctldev;
EVENTHANDLER_REGISTER(dev_clone, ccd_clone, 0, 1000);
}
static int
ccd_modevent(module_t mod, int type, void *data)
{
int error = 0;
switch (type) {
case MOD_LOAD:
ccdattach();
break;
case MOD_UNLOAD:
printf("ccd0: Unload not supported!\n");
error = EOPNOTSUPP;
break;
case MOD_SHUTDOWN:
break;
default:
error = EOPNOTSUPP;
}
return (error);
}
DEV_MODULE(ccd, ccd_modevent, NULL);
static int
ccdinit(struct ccd_s *cs, char **cpaths, struct thread *td)
{
struct ccdcinfo *ci = NULL; /* XXX */
size_t size;
int ix;
struct vnode *vp;
size_t minsize;
int maxsecsize;
struct ccdgeom *ccg = &cs->sc_geom;
char *tmppath = NULL;
int error = 0;
off_t mediasize;
u_int sectorsize;
#ifdef DEBUG
if (ccddebug & (CCDB_FOLLOW|CCDB_INIT))
printf("ccdinit: unit %d\n", cs->sc_unit);
#endif
cs->sc_size = 0;
/* Allocate space for the component info. */
cs->sc_cinfo = malloc(cs->sc_nccdisks * sizeof(struct ccdcinfo),
M_DEVBUF, M_WAITOK);
/*
* Verify that each component piece exists and record
* relevant information about it.
*/
maxsecsize = 0;
minsize = 0;
tmppath = malloc(MAXPATHLEN, M_DEVBUF, M_WAITOK);
for (ix = 0; ix < cs->sc_nccdisks; ix++) {
vp = cs->sc_vpp[ix];
ci = &cs->sc_cinfo[ix];
ci->ci_vp = vp;
/*
* Copy in the pathname of the component.
*/
if ((error = copyinstr(cpaths[ix], tmppath,
MAXPATHLEN, &ci->ci_pathlen)) != 0) {
#ifdef DEBUG
if (ccddebug & (CCDB_FOLLOW|CCDB_INIT))
printf("ccd%d: can't copy path, error = %d\n",
cs->sc_unit, error);
#endif
goto fail;
}
ci->ci_path = malloc(ci->ci_pathlen, M_DEVBUF, M_WAITOK);
bcopy(tmppath, ci->ci_path, ci->ci_pathlen);
ci->ci_dev = vn_todev(vp);
/*
* Get partition information for the component.
*/
error = VOP_IOCTL(vp, DIOCGMEDIASIZE, (caddr_t)&mediasize,
FREAD, td->td_ucred, td);
if (error != 0) {
#ifdef DEBUG
if (ccddebug & (CCDB_FOLLOW|CCDB_INIT))
printf("ccd%d: %s: ioctl failed, error = %d\n",
cs->sc_unit, ci->ci_path, error);
#endif
goto fail;
}
/*
* Get partition information for the component.
*/
error = VOP_IOCTL(vp, DIOCGSECTORSIZE, (caddr_t)&sectorsize,
FREAD, td->td_ucred, td);
if (error != 0) {
#ifdef DEBUG
if (ccddebug & (CCDB_FOLLOW|CCDB_INIT))
printf("ccd%d: %s: ioctl failed, error = %d\n",
cs->sc_unit, ci->ci_path, error);
#endif
goto fail;
}
if (sectorsize > maxsecsize)
maxsecsize = sectorsize;
size = mediasize / DEV_BSIZE - CCD_OFFSET;
/*
* Calculate the size, truncating to an interleave
* boundary if necessary.
*/
if (cs->sc_ileave > 1)
size -= size % cs->sc_ileave;
if (size == 0) {
#ifdef DEBUG
if (ccddebug & (CCDB_FOLLOW|CCDB_INIT))
printf("ccd%d: %s: size == 0\n",
cs->sc_unit, ci->ci_path);
#endif
error = ENODEV;
goto fail;
}
if (minsize == 0 || size < minsize)
minsize = size;
ci->ci_size = size;
cs->sc_size += size;
}
free(tmppath, M_DEVBUF);
tmppath = NULL;
/*
* Don't allow the interleave to be smaller than
* the biggest component sector.
*/
if ((cs->sc_ileave > 0) &&
(cs->sc_ileave < (maxsecsize / DEV_BSIZE))) {
#ifdef DEBUG
if (ccddebug & (CCDB_FOLLOW|CCDB_INIT))
printf("ccd%d: interleave must be at least %d\n",
cs->sc_unit, (maxsecsize / DEV_BSIZE));
#endif
error = EINVAL;
goto fail;
}
/*
* If uniform interleave is desired set all sizes to that of
* the smallest component. This will guarentee that a single
* interleave table is generated.
*
* Lost space must be taken into account when calculating the
* overall size. Half the space is lost when CCDF_MIRROR is
* specified.
*/
if (cs->sc_flags & CCDF_UNIFORM) {
for (ci = cs->sc_cinfo;
ci < &cs->sc_cinfo[cs->sc_nccdisks]; ci++) {
ci->ci_size = minsize;
}
if (cs->sc_flags & CCDF_MIRROR) {
/*
* Check to see if an even number of components
* have been specified. The interleave must also
* be non-zero in order for us to be able to
* guarentee the topology.
*/
if (cs->sc_nccdisks % 2) {
printf("ccd%d: mirroring requires an even number of disks\n", cs->sc_unit );
error = EINVAL;
goto fail;
}
if (cs->sc_ileave == 0) {
printf("ccd%d: an interleave must be specified when mirroring\n", cs->sc_unit);
error = EINVAL;
goto fail;
}
cs->sc_size = (cs->sc_nccdisks/2) * minsize;
} else {
if (cs->sc_ileave == 0) {
printf("ccd%d: an interleave must be specified when using parity\n", cs->sc_unit);
error = EINVAL;
goto fail;
}
cs->sc_size = cs->sc_nccdisks * minsize;
}
}
/*
* Construct the interleave table.
*/
ccdinterleave(cs, cs->sc_unit);
/*
* Create pseudo-geometry based on 1MB cylinders. It's
* pretty close.
*/
ccg->ccg_secsize = maxsecsize;
ccg->ccg_ntracks = 1;
ccg->ccg_nsectors = 1024 * 1024 / ccg->ccg_secsize;
ccg->ccg_ncylinders = cs->sc_size / ccg->ccg_nsectors;
/*
* Add a devstat entry for this device.
*/
devstat_add_entry(&cs->device_stats, "ccd", cs->sc_unit,
ccg->ccg_secsize, DEVSTAT_ALL_SUPPORTED,
DEVSTAT_TYPE_STORARRAY |DEVSTAT_TYPE_IF_OTHER,
DEVSTAT_PRIORITY_ARRAY);
cs->sc_flags |= CCDF_INITED;
cs->sc_cflags = cs->sc_flags; /* So we can find out later... */
return (0);
fail:
while (ci > cs->sc_cinfo) {
ci--;
free(ci->ci_path, M_DEVBUF);
}
if (tmppath != NULL)
free(tmppath, M_DEVBUF);
free(cs->sc_cinfo, M_DEVBUF);
return (error);
}
static void
ccdinterleave(struct ccd_s *cs, int unit)
{
struct ccdcinfo *ci, *smallci;
struct ccdiinfo *ii;
daddr_t bn, lbn;
int ix;
u_long size;
#ifdef DEBUG
if (ccddebug & CCDB_INIT)
printf("ccdinterleave(%p): ileave %d\n", cs, cs->sc_ileave);
#endif
/*
* Allocate an interleave table. The worst case occurs when each
* of N disks is of a different size, resulting in N interleave
* tables.
*
* Chances are this is too big, but we don't care.
*/
size = (cs->sc_nccdisks + 1) * sizeof(struct ccdiinfo);
cs->sc_itable = (struct ccdiinfo *)malloc(size, M_DEVBUF,
M_WAITOK | M_ZERO);
/*
* Trivial case: no interleave (actually interleave of disk size).
* Each table entry represents a single component in its entirety.
*
* An interleave of 0 may not be used with a mirror setup.
*/
if (cs->sc_ileave == 0) {
bn = 0;
ii = cs->sc_itable;
for (ix = 0; ix < cs->sc_nccdisks; ix++) {
/* Allocate space for ii_index. */
ii->ii_index = malloc(sizeof(int), M_DEVBUF, M_WAITOK);
ii->ii_ndisk = 1;
ii->ii_startblk = bn;
ii->ii_startoff = 0;
ii->ii_index[0] = ix;
bn += cs->sc_cinfo[ix].ci_size;
ii++;
}
ii->ii_ndisk = 0;
#ifdef DEBUG
if (ccddebug & CCDB_INIT)
printiinfo(cs->sc_itable);
#endif
return;
}
/*
* The following isn't fast or pretty; it doesn't have to be.
*/
size = 0;
bn = lbn = 0;
for (ii = cs->sc_itable; ; ii++) {
/*
* Allocate space for ii_index. We might allocate more then
* we use.
*/
ii->ii_index = malloc((sizeof(int) * cs->sc_nccdisks),
M_DEVBUF, M_WAITOK);
/*
* Locate the smallest of the remaining components
*/
smallci = NULL;
for (ci = cs->sc_cinfo; ci < &cs->sc_cinfo[cs->sc_nccdisks];
ci++) {
if (ci->ci_size > size &&
(smallci == NULL ||
ci->ci_size < smallci->ci_size)) {
smallci = ci;
}
}
/*
* Nobody left, all done
*/
if (smallci == NULL) {
ii->ii_ndisk = 0;
break;
}
/*
* Record starting logical block using an sc_ileave blocksize.
*/
ii->ii_startblk = bn / cs->sc_ileave;
/*
* Record starting comopnent block using an sc_ileave
* blocksize. This value is relative to the beginning of
* a component disk.
*/
ii->ii_startoff = lbn;
/*
* Determine how many disks take part in this interleave
* and record their indices.
*/
ix = 0;
for (ci = cs->sc_cinfo;
ci < &cs->sc_cinfo[cs->sc_nccdisks]; ci++) {
if (ci->ci_size >= smallci->ci_size) {
ii->ii_index[ix++] = ci - cs->sc_cinfo;
}
}
ii->ii_ndisk = ix;
bn += ix * (smallci->ci_size - size);
lbn = smallci->ci_size / cs->sc_ileave;
size = smallci->ci_size;
}
#ifdef DEBUG
if (ccddebug & CCDB_INIT)
printiinfo(cs->sc_itable);
#endif
}
/* ARGSUSED */
static int
ccdopen(dev_t dev, int flags, int fmt, struct thread *td)
{
int unit = ccdunit(dev);
struct ccd_s *cs;
struct disklabel *lp;
int error = 0, part, pmask;
if (dev->si_drv1 == dev)
return (0);
#ifdef DEBUG
if (ccddebug & CCDB_FOLLOW)
printf("ccdopen(%p, %x)\n", dev, flags);
#endif
cs = IS_ALLOCATED(unit) ? ccdfind(unit) : ccdnew(unit);
if ((error = ccdlock(cs)) != 0)
return (error);
lp = &cs->sc_label;
part = ccdpart(dev);
pmask = (1 << part);
/*
* If we're initialized, check to see if there are any other
* open partitions. If not, then it's safe to update
* the in-core disklabel.
*/
if (IS_INITED(cs) && (cs->sc_openmask == 0))
ccdgetdisklabel(dev);
/* Check that the partition exists. */
if (part != RAW_PART && ((part >= lp->d_npartitions) ||
(lp->d_partitions[part].p_fstype == FS_UNUSED))) {
error = ENXIO;
goto done;
}
cs->sc_openmask |= pmask;
done:
ccdunlock(cs);
return (0);
}
/* ARGSUSED */
static int
ccdclose(dev_t dev, int flags, int fmt, struct thread *td)
{
int unit = ccdunit(dev);
struct ccd_s *cs;
int error = 0, part;
if (dev->si_drv1 == dev)
return (0);
#ifdef DEBUG
if (ccddebug & CCDB_FOLLOW)
printf("ccdclose(%p, %x)\n", dev, flags);
#endif
if (!IS_ALLOCATED(unit))
return (ENXIO);
cs = ccdfind(unit);
if ((error = ccdlock(cs)) != 0)
return (error);
part = ccdpart(dev);
/* ...that much closer to allowing unconfiguration... */
cs->sc_openmask &= ~(1 << part);
/* collect "garbage" if possible */
if (!IS_INITED(cs) && (cs->sc_flags & CCDF_WANTED) == 0)
ccddestroy(cs, td->td_proc);
else
ccdunlock(cs);
return (0);
}
static void
ccdstrategy(struct bio *bp)
{
int unit = ccdunit(bp->bio_dev);
struct ccd_s *cs = ccdfind(unit);
int s;
int wlabel;
struct disklabel *lp;
if (bp->bio_dev->si_drv1 == bp->bio_dev) {
biofinish(bp, NULL, ENXIO);
return;
}
#ifdef DEBUG
if (ccddebug & CCDB_FOLLOW)
printf("ccdstrategy(%p): unit %d\n", bp, unit);
#endif
if (!IS_INITED(cs)) {
biofinish(bp, NULL, ENXIO);
return;
}
/* If it's a nil transfer, wake up the top half now. */
if (bp->bio_bcount == 0) {
biodone(bp);
return;
}
lp = &cs->sc_label;
/*
* Do bounds checking and adjust transfer. If there's an
* error, the bounds check will flag that for us.
*/
wlabel = cs->sc_flags & (CCDF_WLABEL|CCDF_LABELLING);
if (ccdpart(bp->bio_dev) != RAW_PART) {
if (bounds_check_with_label(bp, lp, wlabel) <= 0) {
biodone(bp);
return;
}
} else {
int pbn; /* in sc_secsize chunks */
long sz; /* in sc_secsize chunks */
pbn = bp->bio_blkno / (cs->sc_geom.ccg_secsize / DEV_BSIZE);
sz = howmany(bp->bio_bcount, cs->sc_geom.ccg_secsize);
/*
* If out of bounds return an error. If at the EOF point,
* simply read or write less.
*/
if (pbn < 0 || pbn >= cs->sc_size) {
bp->bio_resid = bp->bio_bcount;
if (pbn != cs->sc_size)
biofinish(bp, NULL, EINVAL);
else
biodone(bp);
return;
}
/*
* If the request crosses EOF, truncate the request.
*/
if (pbn + sz > cs->sc_size) {
bp->bio_bcount = (cs->sc_size - pbn) *
cs->sc_geom.ccg_secsize;
}
}
bp->bio_resid = bp->bio_bcount;
/*
* "Start" the unit.
*/
s = splbio();
ccdstart(cs, bp);
splx(s);
return;
}
static void
ccdstart(struct ccd_s *cs, struct bio *bp)
{
long bcount, rcount;
struct ccdbuf *cbp[4];
/* XXX! : 2 reads and 2 writes for RAID 4/5 */
caddr_t addr;
daddr_t bn;
struct partition *pp;
#ifdef DEBUG
if (ccddebug & CCDB_FOLLOW)
printf("ccdstart(%p, %p)\n", cs, bp);
#endif
/* Record the transaction start */
devstat_start_transaction(&cs->device_stats);
/*
* Translate the partition-relative block number to an absolute.
*/
bn = bp->bio_blkno;
if (ccdpart(bp->bio_dev) != RAW_PART) {
pp = &cs->sc_label.d_partitions[ccdpart(bp->bio_dev)];
bn += pp->p_offset;
}
/*
* Allocate component buffers and fire off the requests
*/
addr = bp->bio_data;
for (bcount = bp->bio_bcount; bcount > 0; bcount -= rcount) {
ccdbuffer(cbp, cs, bp, bn, addr, bcount);
rcount = cbp[0]->cb_buf.bio_bcount;
if (cs->sc_cflags & CCDF_MIRROR) {
/*
* Mirroring. Writes go to both disks, reads are
* taken from whichever disk seems most appropriate.
*
* We attempt to localize reads to the disk whos arm
* is nearest the read request. We ignore seeks due
* to writes when making this determination and we
* also try to avoid hogging.
*/
if (cbp[0]->cb_buf.bio_cmd == BIO_WRITE) {
BIO_STRATEGY(&cbp[0]->cb_buf);
BIO_STRATEGY(&cbp[1]->cb_buf);
} else {
int pick = cs->sc_pick;
daddr_t range = cs->sc_size / 16;
if (bn < cs->sc_blk[pick] - range ||
bn > cs->sc_blk[pick] + range
) {
cs->sc_pick = pick = 1 - pick;
}
cs->sc_blk[pick] = bn + btodb(rcount);
BIO_STRATEGY(&cbp[pick]->cb_buf);
}
} else {
/*
* Not mirroring
*/
BIO_STRATEGY(&cbp[0]->cb_buf);
}
bn += btodb(rcount);
addr += rcount;
}
}
/*
* Build a component buffer header.
*/
static void
ccdbuffer(struct ccdbuf **cb, struct ccd_s *cs, struct bio *bp, daddr_t bn, caddr_t addr, long bcount)
{
struct ccdcinfo *ci, *ci2 = NULL; /* XXX */
struct ccdbuf *cbp;
daddr_t cbn, cboff;
off_t cbc;
#ifdef DEBUG
if (ccddebug & CCDB_IO)
printf("ccdbuffer(%p, %p, %lld, %p, %ld)\n",
(void *)cs, (void *)bp, (long long)bn, (void *)addr,
bcount);
#endif
/*
* Determine which component bn falls in.
*/
cbn = bn;
cboff = 0;
if (cs->sc_ileave == 0) {
/*
* Serially concatenated and neither a mirror nor a parity
* config. This is a special case.
*/
daddr_t sblk;
sblk = 0;
for (ci = cs->sc_cinfo; cbn >= sblk + ci->ci_size; ci++)
sblk += ci->ci_size;
cbn -= sblk;
} else {
struct ccdiinfo *ii;
int ccdisk, off;
/*
* Calculate cbn, the logical superblock (sc_ileave chunks),
* and cboff, a normal block offset (DEV_BSIZE chunks) relative
* to cbn.
*/
cboff = cbn % cs->sc_ileave; /* DEV_BSIZE gran */
cbn = cbn / cs->sc_ileave; /* DEV_BSIZE * ileave gran */
/*
* Figure out which interleave table to use.
*/
for (ii = cs->sc_itable; ii->ii_ndisk; ii++) {
if (ii->ii_startblk > cbn)
break;
}
ii--;
/*
* off is the logical superblock relative to the beginning
* of this interleave block.
*/
off = cbn - ii->ii_startblk;
/*
* We must calculate which disk component to use (ccdisk),
* and recalculate cbn to be the superblock relative to
* the beginning of the component. This is typically done by
* adding 'off' and ii->ii_startoff together. However, 'off'
* must typically be divided by the number of components in
* this interleave array to be properly convert it from a
* CCD-relative logical superblock number to a
* component-relative superblock number.
*/
if (ii->ii_ndisk == 1) {
/*
* When we have just one disk, it can't be a mirror
* or a parity config.
*/
ccdisk = ii->ii_index[0];
cbn = ii->ii_startoff + off;
} else {
if (cs->sc_cflags & CCDF_MIRROR) {
/*
* We have forced a uniform mapping, resulting
* in a single interleave array. We double
* up on the first half of the available
* components and our mirror is in the second
* half. This only works with a single
* interleave array because doubling up
* doubles the number of sectors, so there
* cannot be another interleave array because
* the next interleave array's calculations
* would be off.
*/
int ndisk2 = ii->ii_ndisk / 2;
ccdisk = ii->ii_index[off % ndisk2];
cbn = ii->ii_startoff + off / ndisk2;
ci2 = &cs->sc_cinfo[ccdisk + ndisk2];
} else {
ccdisk = ii->ii_index[off % ii->ii_ndisk];
cbn = ii->ii_startoff + off / ii->ii_ndisk;
}
}
ci = &cs->sc_cinfo[ccdisk];
/*
* Convert cbn from a superblock to a normal block so it
* can be used to calculate (along with cboff) the normal
* block index into this particular disk.
*/
cbn *= cs->sc_ileave;
}
/*
* Fill in the component buf structure.
*/
cbp = getccdbuf(NULL);
cbp->cb_buf.bio_cmd = bp->bio_cmd;
cbp->cb_buf.bio_done = ccdiodone;
cbp->cb_buf.bio_dev = ci->ci_dev; /* XXX */
cbp->cb_buf.bio_blkno = cbn + cboff + CCD_OFFSET;
cbp->cb_buf.bio_offset = dbtob(cbn + cboff + CCD_OFFSET);
cbp->cb_buf.bio_data = addr;
if (cs->sc_ileave == 0)
cbc = dbtob((off_t)(ci->ci_size - cbn));
else
cbc = dbtob((off_t)(cs->sc_ileave - cboff));
cbp->cb_buf.bio_bcount = (cbc < bcount) ? cbc : bcount;
cbp->cb_buf.bio_caller1 = (void*)cbp->cb_buf.bio_bcount;
/*
* context for ccdiodone
*/
cbp->cb_obp = bp;
cbp->cb_unit = cs->sc_unit;
cbp->cb_comp = ci - cs->sc_cinfo;
#ifdef DEBUG
if (ccddebug & CCDB_IO)
printf(" dev %p(u%ld): cbp %p bn %jd addr %p bcnt %ld\n",
ci->ci_dev, (unsigned long)(ci-cs->sc_cinfo), cbp,
(intmax_t)cbp->cb_buf.bio_blkno, cbp->cb_buf.bio_data,
cbp->cb_buf.bio_bcount);
#endif
cb[0] = cbp;
/*
* Note: both I/O's setup when reading from mirror, but only one
* will be executed.
*/
if (cs->sc_cflags & CCDF_MIRROR) {
/* mirror, setup second I/O */
cbp = getccdbuf(cb[0]);
cbp->cb_buf.bio_dev = ci2->ci_dev;
cbp->cb_comp = ci2 - cs->sc_cinfo;
cb[1] = cbp;
/* link together the ccdbuf's and clear "mirror done" flag */
cb[0]->cb_mirror = cb[1];
cb[1]->cb_mirror = cb[0];
cb[0]->cb_pflags &= ~CCDPF_MIRROR_DONE;
cb[1]->cb_pflags &= ~CCDPF_MIRROR_DONE;
}
}
static void
ccdintr(struct ccd_s *cs, struct bio *bp)
{
#ifdef DEBUG
if (ccddebug & CCDB_FOLLOW)
printf("ccdintr(%p, %p)\n", cs, bp);
#endif
/*
* Request is done for better or worse, wakeup the top half.
*/
if (bp->bio_flags & BIO_ERROR)
bp->bio_resid = bp->bio_bcount;
biofinish(bp, &cs->device_stats, 0);
}
/*
* Called at interrupt time.
* Mark the component as done and if all components are done,
* take a ccd interrupt.
*/
static void
ccdiodone(struct bio *ibp)
{
struct ccdbuf *cbp = (struct ccdbuf *)ibp;
struct bio *bp = cbp->cb_obp;
int unit = cbp->cb_unit;
int count, s;
s = splbio();
#ifdef DEBUG
if (ccddebug & CCDB_FOLLOW)
printf("ccdiodone(%p)\n", cbp);
if (ccddebug & CCDB_IO) {
printf("ccdiodone: bp %p bcount %ld resid %ld\n",
bp, bp->bio_bcount, bp->bio_resid);
printf(" dev %p(u%d), cbp %p bn %jd addr %p bcnt %ld\n",
cbp->cb_buf.bio_dev, cbp->cb_comp, cbp,
(intmax_t)cbp->cb_buf.bio_blkno, cbp->cb_buf.bio_data,
cbp->cb_buf.bio_bcount);
}
#endif
/*
* If an error occured, report it. If this is a mirrored
* configuration and the first of two possible reads, do not
* set the error in the bp yet because the second read may
* succeed.
*/
if (cbp->cb_buf.bio_flags & BIO_ERROR) {
const char *msg = "";
if ((ccdfind(unit)->sc_cflags & CCDF_MIRROR) &&
(cbp->cb_buf.bio_cmd == BIO_READ) &&
(cbp->cb_pflags & CCDPF_MIRROR_DONE) == 0) {
/*
* We will try our read on the other disk down
* below, also reverse the default pick so if we
* are doing a scan we do not keep hitting the
* bad disk first.
*/
struct ccd_s *cs = ccdfind(unit);
msg = ", trying other disk";
cs->sc_pick = 1 - cs->sc_pick;
cs->sc_blk[cs->sc_pick] = bp->bio_blkno;
} else {
bp->bio_flags |= BIO_ERROR;
bp->bio_error = cbp->cb_buf.bio_error ?
cbp->cb_buf.bio_error : EIO;
}
printf("ccd%d: error %d on component %d block %jd "
"(ccd block %jd)%s\n", unit, bp->bio_error, cbp->cb_comp,
(intmax_t)cbp->cb_buf.bio_blkno, (intmax_t)bp->bio_blkno,
msg);
}
/*
* Process mirror. If we are writing, I/O has been initiated on both
* buffers and we fall through only after both are finished.
*
* If we are reading only one I/O is initiated at a time. If an
* error occurs we initiate the second I/O and return, otherwise
* we free the second I/O without initiating it.
*/
if (ccdfind(unit)->sc_cflags & CCDF_MIRROR) {
if (cbp->cb_buf.bio_cmd == BIO_WRITE) {
/*
* When writing, handshake with the second buffer
* to determine when both are done. If both are not
* done, return here.
*/
if ((cbp->cb_pflags & CCDPF_MIRROR_DONE) == 0) {
cbp->cb_mirror->cb_pflags |= CCDPF_MIRROR_DONE;
putccdbuf(cbp);
splx(s);
return;
}
} else {
/*
* When reading, either dispose of the second buffer
* or initiate I/O on the second buffer if an error
* occured with this one.
*/
if ((cbp->cb_pflags & CCDPF_MIRROR_DONE) == 0) {
if (cbp->cb_buf.bio_flags & BIO_ERROR) {
cbp->cb_mirror->cb_pflags |=
CCDPF_MIRROR_DONE;
BIO_STRATEGY(&cbp->cb_mirror->cb_buf);
putccdbuf(cbp);
splx(s);
return;
} else {
putccdbuf(cbp->cb_mirror);
/* fall through */
}
}
}
}
/*
* use bio_caller1 to determine how big the original request was rather
* then bio_bcount, because bio_bcount may have been truncated for EOF.
*
* XXX We check for an error, but we do not test the resid for an
* aligned EOF condition. This may result in character & block
* device access not recognizing EOF properly when read or written
* sequentially, but will not effect filesystems.
*/
count = (long)cbp->cb_buf.bio_caller1;
putccdbuf(cbp);
/*
* If all done, "interrupt".
*/
bp->bio_resid -= count;
if (bp->bio_resid < 0)
panic("ccdiodone: count");
if (bp->bio_resid == 0)
ccdintr(ccdfind(unit), bp);
splx(s);
}
static int
ccdioctl(dev_t dev, u_long cmd, caddr_t data, int flag, struct thread *td)
{
struct ccd_ioctl *ccio;
u_int unit;
dev_t dev2;
int error;
if (dev->si_drv1 != dev) {
switch (cmd) {
case CCDIOCSET:
case CCDIOCCLR:
case CCDCONFINFO:
case CCDCPPINFO:
printf("*** WARNING: upgrade your ccdconfig(8) binary\n");
printf("*** WARNING: continuing in 30 seconds\n");
tsleep(dev, PRIBIO, "ccdbug", hz * 30);
break;
}
return ccdioctltoo(dev, cmd, data, flag, td);
}
switch (cmd) {
case CCDIOCSET:
case CCDIOCCLR:
ccio = (struct ccd_ioctl *)data;
unit = ccio->ccio_size;
dev2 = makedev(CDEV_MAJOR, unit * 8 + 2);
if (!(dev2->si_flags & SI_NAMED)) {
dev2 = make_dev(&ccd_cdevsw, unit * 8 + 2,
UID_ROOT, GID_OPERATOR, 0640, "ccd%dc", unit);
ccdnew(unit);
}
return (ccdioctltoo(dev2, cmd, data, flag, td));
case CCDCONFINFO:
{
int ninit = 0;
struct ccdconf *conf = (struct ccdconf *)data;
struct ccd_s *tmpcs;
struct ccd_s *ubuf = conf->buffer;
/* XXX: LOCK(unique unit numbers) */
LIST_FOREACH(tmpcs, &ccd_softc_list, list)
if (IS_INITED(tmpcs))
ninit++;
if (conf->size == 0) {
conf->size = sizeof(struct ccd_s) * ninit;
return (0);
} else if ((conf->size / sizeof(struct ccd_s) != ninit) ||
(conf->size % sizeof(struct ccd_s) != 0)) {
/* XXX: UNLOCK(unique unit numbers) */
return (EINVAL);
}
ubuf += ninit;
LIST_FOREACH(tmpcs, &ccd_softc_list, list) {
if (!IS_INITED(tmpcs))
continue;
error = copyout(tmpcs, --ubuf,
sizeof(struct ccd_s));
if (error != 0)
/* XXX: UNLOCK(unique unit numbers) */
return (error);
}
/* XXX: UNLOCK(unique unit numbers) */
return (0);
}
case CCDCPPINFO:
{
struct ccdcpps *cpps = (struct ccdcpps *)data;
char *ubuf = cpps->buffer;
error = copyin(ubuf, &unit, sizeof (unit));
if (error)
return (error);
if (!IS_ALLOCATED(unit))
return (ENXIO);
dev2 = makedev(CDEV_MAJOR, unit * 8 + 2);
return (ccdioctltoo(dev2, cmd, data, flag, td));
}
default:
return (ENXIO);
}
}
static int
ccdioctltoo(dev_t dev, u_long cmd, caddr_t data, int flag, struct thread *td)
{
int unit;
int i, j, lookedup = 0, error = 0;
int part, pmask, s;
struct ccd_s *cs;
struct ccd_ioctl *ccio = (struct ccd_ioctl *)data;
char **cpp;
struct vnode **vpp;
unit = ccdunit(dev);
if (!IS_ALLOCATED(unit))
return (ENXIO);
cs = ccdfind(unit);
switch (cmd) {
case CCDIOCSET:
if (IS_INITED(cs))
return (EBUSY);
if ((flag & FWRITE) == 0)
return (EBADF);
if ((error = ccdlock(cs)) != 0)
return (error);
if (ccio->ccio_ndisks > CCD_MAXNDISKS)
return (EINVAL);
/* Fill in some important bits. */
cs->sc_ileave = ccio->ccio_ileave;
if (cs->sc_ileave == 0 && (ccio->ccio_flags & CCDF_MIRROR)) {
printf("ccd%d: disabling mirror, interleave is 0\n",
unit);
ccio->ccio_flags &= ~(CCDF_MIRROR);
}
if ((ccio->ccio_flags & CCDF_MIRROR) &&
!(ccio->ccio_flags & CCDF_UNIFORM)) {
printf("ccd%d: mirror/parity forces uniform flag\n",
unit);
ccio->ccio_flags |= CCDF_UNIFORM;
}
cs->sc_flags = ccio->ccio_flags & CCDF_USERMASK;
/*
* Allocate space for and copy in the array of
* componet pathnames and device numbers.
*/
cpp = malloc(ccio->ccio_ndisks * sizeof(char *),
M_DEVBUF, M_WAITOK);
vpp = malloc(ccio->ccio_ndisks * sizeof(struct vnode *),
M_DEVBUF, M_WAITOK);
error = copyin((caddr_t)ccio->ccio_disks, (caddr_t)cpp,
ccio->ccio_ndisks * sizeof(char **));
if (error) {
free(vpp, M_DEVBUF);
free(cpp, M_DEVBUF);
ccdunlock(cs);
return (error);
}
#ifdef DEBUG
if (ccddebug & CCDB_INIT)
for (i = 0; i < ccio->ccio_ndisks; ++i)
printf("ccdioctl: component %d: %p\n",
i, cpp[i]);
#endif
for (i = 0; i < ccio->ccio_ndisks; ++i) {
#ifdef DEBUG
if (ccddebug & CCDB_INIT)
printf("ccdioctl: lookedup = %d\n", lookedup);
#endif
if ((error = ccdlookup(cpp[i], td, &vpp[i])) != 0) {
for (j = 0; j < lookedup; ++j)
(void)vn_close(vpp[j], FREAD|FWRITE,
td->td_ucred, td);
free(vpp, M_DEVBUF);
free(cpp, M_DEVBUF);
ccdunlock(cs);
return (error);
}
++lookedup;
}
cs->sc_vpp = vpp;
cs->sc_nccdisks = ccio->ccio_ndisks;
/*
* Initialize the ccd. Fills in the softc for us.
*/
if ((error = ccdinit(cs, cpp, td)) != 0) {
for (j = 0; j < lookedup; ++j)
(void)vn_close(vpp[j], FREAD|FWRITE,
td->td_ucred, td);
/*
* We can't ccddestroy() cs just yet, because nothing
* prevents user-level app to do another ioctl()
* without closing the device first, therefore
* declare unit null and void and let ccdclose()
* destroy it when it is safe to do so.
*/
cs->sc_flags &= (CCDF_WANTED | CCDF_LOCKED);
free(vpp, M_DEVBUF);
free(cpp, M_DEVBUF);
ccdunlock(cs);
return (error);
}
/*
* The ccd has been successfully initialized, so
* we can place it into the array and read the disklabel.
*/
ccio->ccio_unit = unit;
ccio->ccio_size = cs->sc_size;
ccdgetdisklabel(dev);
ccdunlock(cs);
break;
case CCDIOCCLR:
if (!IS_INITED(cs))
return (ENXIO);
if ((flag & FWRITE) == 0)
return (EBADF);
if ((error = ccdlock(cs)) != 0)
return (error);
/* Don't unconfigure if any other partitions are open */
part = ccdpart(dev);
pmask = (1 << part);
if ((cs->sc_openmask & ~pmask)) {
ccdunlock(cs);
return (EBUSY);
}
/* Declare unit null and void (reset all flags) */
cs->sc_flags &= (CCDF_WANTED | CCDF_LOCKED);
/* Close the components and free their pathnames. */
for (i = 0; i < cs->sc_nccdisks; ++i) {
/*
* XXX: this close could potentially fail and
* cause Bad Things. Maybe we need to force
* the close to happen?
*/
#ifdef DEBUG
if (ccddebug & CCDB_VNODE)
vprint("CCDIOCCLR: vnode info",
cs->sc_cinfo[i].ci_vp);
#endif
(void)vn_close(cs->sc_cinfo[i].ci_vp, FREAD|FWRITE,
td->td_ucred, td);
free(cs->sc_cinfo[i].ci_path, M_DEVBUF);
}
/* Free interleave index. */
for (i = 0; cs->sc_itable[i].ii_ndisk; ++i)
free(cs->sc_itable[i].ii_index, M_DEVBUF);
/* Free component info and interleave table. */
free(cs->sc_cinfo, M_DEVBUF);
free(cs->sc_itable, M_DEVBUF);
free(cs->sc_vpp, M_DEVBUF);
/* And remove the devstat entry. */
devstat_remove_entry(&cs->device_stats);
/* This must be atomic. */
s = splhigh();
ccdunlock(cs);
splx(s);
break;
case CCDCONFINFO:
{
int ninit = 0;
struct ccdconf *conf = (struct ccdconf *)data;
struct ccd_s *tmpcs;
struct ccd_s *ubuf = conf->buffer;
/* XXX: LOCK(unique unit numbers) */
LIST_FOREACH(tmpcs, &ccd_softc_list, list)
if (IS_INITED(tmpcs))
ninit++;
if (conf->size == 0) {
conf->size = sizeof(struct ccd_s) * ninit;
break;
} else if ((conf->size / sizeof(struct ccd_s) != ninit) ||
(conf->size % sizeof(struct ccd_s) != 0)) {
/* XXX: UNLOCK(unique unit numbers) */
return (EINVAL);
}
ubuf += ninit;
LIST_FOREACH(tmpcs, &ccd_softc_list, list) {
if (!IS_INITED(tmpcs))
continue;
error = copyout(tmpcs, --ubuf,
sizeof(struct ccd_s));
if (error != 0)
/* XXX: UNLOCK(unique unit numbers) */
return (error);
}
/* XXX: UNLOCK(unique unit numbers) */
}
break;
case CCDCPPINFO:
if (!IS_INITED(cs))
return (ENXIO);
{
int len = 0;
struct ccdcpps *cpps = (struct ccdcpps *)data;
char *ubuf = cpps->buffer;
for (i = 0; i < cs->sc_nccdisks; ++i)
len += cs->sc_cinfo[i].ci_pathlen;
if (cpps->size == 0) {
cpps->size = len;
break;
} else if (cpps->size < len) {
return (ENOMEM);
}
for (i = 0; i < cs->sc_nccdisks; ++i) {
len = cs->sc_cinfo[i].ci_pathlen;
error = copyout(cs->sc_cinfo[i].ci_path, ubuf,
len);
if (error != 0)
return (error);
ubuf += len;
}
return(copyout("", ubuf, 1));
}
break;
case DIOCGDINFO:
if (!IS_INITED(cs))
return (ENXIO);
*(struct disklabel *)data = cs->sc_label;
break;
case DIOCWDINFO:
case DIOCSDINFO:
if (!IS_INITED(cs))
return (ENXIO);
if ((flag & FWRITE) == 0)
return (EBADF);
if ((error = ccdlock(cs)) != 0)
return (error);
cs->sc_flags |= CCDF_LABELLING;
error = setdisklabel(&cs->sc_label,
(struct disklabel *)data, 0);
if (error == 0) {
if (cmd == DIOCWDINFO)
error = writedisklabel(CCDLABELDEV(dev),
&cs->sc_label);
}
cs->sc_flags &= ~CCDF_LABELLING;
ccdunlock(cs);
if (error)
return (error);
break;
case DIOCWLABEL:
if (!IS_INITED(cs))
return (ENXIO);
if ((flag & FWRITE) == 0)
return (EBADF);
if (*(int *)data != 0)
cs->sc_flags |= CCDF_WLABEL;
else
cs->sc_flags &= ~CCDF_WLABEL;
break;
default:
return (ENOTTY);
}
return (0);
}
static int
ccdsize(dev_t dev)
{
struct ccd_s *cs;
int part, size;
if (dev->si_drv1 == dev)
return (-1);
if (ccdopen(dev, 0, S_IFCHR, curthread))
return (-1);
cs = ccdfind(ccdunit(dev));
part = ccdpart(dev);
if (!IS_INITED(cs))
return (-1);
if (cs->sc_label.d_partitions[part].p_fstype != FS_SWAP)
size = -1;
else
size = cs->sc_label.d_partitions[part].p_size;
if (ccdclose(dev, 0, S_IFCHR, curthread))
return (-1);
return (size);
}
/*
* Lookup the provided name in the filesystem. If the file exists,
* is a valid block device, and isn't being used by anyone else,
* set *vpp to the file's vnode.
*/
static int
ccdlookup(char *path, struct thread *td, struct vnode **vpp)
{
struct nameidata nd;
struct vnode *vp;
int error, flags;
NDINIT(&nd, LOOKUP, FOLLOW, UIO_USERSPACE, path, td);
flags = FREAD | FWRITE;
if ((error = vn_open(&nd, &flags, 0)) != 0) {
#ifdef DEBUG
if (ccddebug & (CCDB_FOLLOW|CCDB_INIT))
printf("ccdlookup: vn_open error = %d\n", error);
#endif
return (error);
}
vp = nd.ni_vp;
if (vrefcnt(vp) > 1) {
error = EBUSY;
goto bad;
}
if (!vn_isdisk(vp, &error))
goto bad;
#ifdef DEBUG
if (ccddebug & CCDB_VNODE)
vprint("ccdlookup: vnode info", vp);
#endif
VOP_UNLOCK(vp, 0, td);
NDFREE(&nd, NDF_ONLY_PNBUF);
*vpp = vp;
return (0);
bad:
VOP_UNLOCK(vp, 0, td);
NDFREE(&nd, NDF_ONLY_PNBUF);
/* vn_close does vrele() for vp */
(void)vn_close(vp, FREAD|FWRITE, td->td_ucred, td);
return (error);
}
/*
* Read the disklabel from the ccd. If one is not present, fake one
* up.
*/
static void
ccdgetdisklabel(dev_t dev)
{
int unit = ccdunit(dev);
struct ccd_s *cs = ccdfind(unit);
char *errstring;
struct disklabel *lp = &cs->sc_label;
struct ccdgeom *ccg = &cs->sc_geom;
bzero(lp, sizeof(*lp));
lp->d_secperunit = cs->sc_size;
lp->d_secsize = ccg->ccg_secsize;
lp->d_nsectors = ccg->ccg_nsectors;
lp->d_ntracks = ccg->ccg_ntracks;
lp->d_ncylinders = ccg->ccg_ncylinders;
lp->d_secpercyl = lp->d_ntracks * lp->d_nsectors;
strncpy(lp->d_typename, "ccd", sizeof(lp->d_typename));
lp->d_type = DTYPE_CCD;
strncpy(lp->d_packname, "fictitious", sizeof(lp->d_packname));
lp->d_rpm = 3600;
lp->d_interleave = 1;
lp->d_flags = 0;
lp->d_partitions[RAW_PART].p_offset = 0;
lp->d_partitions[RAW_PART].p_size = cs->sc_size;
lp->d_partitions[RAW_PART].p_fstype = FS_UNUSED;
lp->d_npartitions = RAW_PART + 1;
lp->d_bbsize = BBSIZE; /* XXX */
lp->d_sbsize = 0;
lp->d_magic = DISKMAGIC;
lp->d_magic2 = DISKMAGIC;
lp->d_checksum = dkcksum(&cs->sc_label);
/*
* Call the generic disklabel extraction routine.
*/
errstring = readdisklabel(CCDLABELDEV(dev), &cs->sc_label);
if (errstring != NULL)
ccdmakedisklabel(cs);
#ifdef DEBUG
/* It's actually extremely common to have unlabeled ccds. */
if (ccddebug & CCDB_LABEL)
if (errstring != NULL)
printf("ccd%d: %s\n", unit, errstring);
#endif
}
/*
* Take care of things one might want to take care of in the event
* that a disklabel isn't present.
*/
static void
ccdmakedisklabel(struct ccd_s *cs)
{
struct disklabel *lp = &cs->sc_label;
/*
* For historical reasons, if there's no disklabel present
* the raw partition must be marked FS_BSDFFS.
*/
lp->d_partitions[RAW_PART].p_fstype = FS_BSDFFS;
strncpy(lp->d_packname, "default label", sizeof(lp->d_packname));
}
/*
* Wait interruptibly for an exclusive lock.
*
* XXX
* Several drivers do this; it should be abstracted and made MP-safe.
*/
static int
ccdlock(struct ccd_s *cs)
{
int error;
while ((cs->sc_flags & CCDF_LOCKED) != 0) {
cs->sc_flags |= CCDF_WANTED;
if ((error = tsleep(cs, PRIBIO | PCATCH, "ccdlck", 0)) != 0)
return (error);
}
cs->sc_flags |= CCDF_LOCKED;
return (0);
}
/*
* Unlock and wake up any waiters.
*/
static void
ccdunlock(struct ccd_s *cs)
{
cs->sc_flags &= ~CCDF_LOCKED;
if ((cs->sc_flags & CCDF_WANTED) != 0) {
cs->sc_flags &= ~CCDF_WANTED;
wakeup(cs);
}
}
#ifdef DEBUG
static void
printiinfo(struct ccdiinfo *ii)
{
int ix, i;
for (ix = 0; ii->ii_ndisk; ix++, ii++) {
printf(" itab[%d]: #dk %d sblk %lld soff %lld",
ix, ii->ii_ndisk, (long long)ii->ii_startblk,
(long long)ii->ii_startoff);
for (i = 0; i < ii->ii_ndisk; i++)
printf(" %d", ii->ii_index[i]);
printf("\n");
}
}
#endif