e395a20636
Rationale: Wider access, so we can add assertions to header files. panicstr is still in sys/systm.h Suggested by: phk Discussed with: peter
565 lines
16 KiB
C
565 lines
16 KiB
C
/*
|
|
* Low level routines for Second Generation
|
|
* Advanced Systems Inc. SCSI controllers chips
|
|
*
|
|
* Copyright (c) 1998 Justin Gibbs.
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions, and the following disclaimer,
|
|
* without modification, immediately at the beginning of the file.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 3. The name of the author may not be used to endorse or promote products
|
|
* derived from this software without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR
|
|
* ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*
|
|
* $FreeBSD$
|
|
*/
|
|
/*
|
|
* Ported from:
|
|
* advansys.c - Linux Host Driver for AdvanSys SCSI Adapters
|
|
*
|
|
* Copyright (c) 1995-1998 Advanced System Products, Inc.
|
|
* All Rights Reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that redistributions of source
|
|
* code retain the above copyright notice and this comment without
|
|
* modification.
|
|
*/
|
|
|
|
#include <sys/param.h>
|
|
#include <sys/systm.h>
|
|
|
|
#include <machine/bus_pio.h>
|
|
#include <machine/bus_memio.h>
|
|
#include <machine/bus.h>
|
|
#include <machine/clock.h>
|
|
|
|
#include <cam/cam.h>
|
|
#include <cam/scsi/scsi_all.h>
|
|
|
|
#include <dev/advansys/adwlib.h>
|
|
|
|
struct adw_eeprom adw_default_eeprom = {
|
|
ADW_EEPROM_BIOS_ENABLE, /* cfg_lsw */
|
|
0x0000, /* cfg_msw */
|
|
0xFFFF, /* disc_enable */
|
|
0xFFFF, /* wdtr_able */
|
|
0xFFFF, /* sdtr_able */
|
|
0xFFFF, /* start_motor */
|
|
0xFFFF, /* tagqng_able */
|
|
0xFFFF, /* bios_scan */
|
|
0, /* scam_tolerant */
|
|
7, /* adapter_scsi_id */
|
|
0, /* bios_boot_delay */
|
|
3, /* scsi_reset_delay */
|
|
0, /* bios_id_lun */
|
|
0, /* termination */
|
|
0, /* reserved1 */
|
|
{ /* Bios Ctrl */
|
|
1, 1, 1, 1, 1,
|
|
1, 1, 1, 1, 1,
|
|
},
|
|
0xFFFF, /* ultra_able */
|
|
0, /* reserved2 */
|
|
ADW_DEF_MAX_HOST_QNG, /* max_host_qng */
|
|
ADW_DEF_MAX_DVC_QNG, /* max_dvc_qng */
|
|
0, /* dvc_cntl */
|
|
0, /* bug_fix */
|
|
{ 0, 0, 0 }, /* serial_number */
|
|
0, /* check_sum */
|
|
{ /* oem_name[16] */
|
|
0, 0, 0, 0, 0, 0, 0, 0,
|
|
0, 0, 0, 0, 0, 0, 0, 0
|
|
},
|
|
0, /* dvc_err_code */
|
|
0, /* adv_err_code */
|
|
0, /* adv_err_addr */
|
|
0, /* saved_dvc_err_code */
|
|
0, /* saved_adv_err_code */
|
|
0, /* saved_adv_err_addr */
|
|
0 /* num_of_err */
|
|
};
|
|
|
|
static u_int16_t adw_eeprom_read_16(struct adw_softc *adw, int addr);
|
|
static void adw_eeprom_write_16(struct adw_softc *adw, int addr,
|
|
u_int data);
|
|
static void adw_eeprom_wait(struct adw_softc *adw);
|
|
|
|
int
|
|
adw_find_signature(bus_space_tag_t tag, bus_space_handle_t bsh)
|
|
{
|
|
if (bus_space_read_1(tag, bsh, ADW_SIGNATURE_BYTE) == ADW_CHIP_ID_BYTE
|
|
&& bus_space_read_2(tag, bsh, ADW_SIGNATURE_WORD) == ADW_CHIP_ID_WORD)
|
|
return (1);
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Reset Chip.
|
|
*/
|
|
void
|
|
adw_reset_chip(struct adw_softc *adw)
|
|
{
|
|
adw_outw(adw, ADW_CTRL_REG, ADW_CTRL_REG_CMD_RESET);
|
|
DELAY(100);
|
|
adw_outw(adw, ADW_CTRL_REG, ADW_CTRL_REG_CMD_WR_IO_REG);
|
|
|
|
/*
|
|
* Initialize Chip registers.
|
|
*/
|
|
adw_outb(adw, ADW_MEM_CFG,
|
|
adw_inb(adw, ADW_MEM_CFG) | ADW_MEM_CFG_RAM_SZ_8KB);
|
|
|
|
adw_outw(adw, ADW_SCSI_CFG1,
|
|
adw_inw(adw, ADW_SCSI_CFG1) & ~ADW_SCSI_CFG1_BIG_ENDIAN);
|
|
|
|
/*
|
|
* Setting the START_CTL_EM_FU 3:2 bits sets a FIFO threshold
|
|
* of 128 bytes. This register is only accessible to the host.
|
|
*/
|
|
adw_outb(adw, ADW_DMA_CFG0,
|
|
ADW_DMA_CFG0_START_CTL_EM_FU|ADW_DMA_CFG0_READ_CMD_MRM);
|
|
}
|
|
|
|
/*
|
|
* Read the specified EEPROM location
|
|
*/
|
|
static u_int16_t
|
|
adw_eeprom_read_16(struct adw_softc *adw, int addr)
|
|
{
|
|
adw_outw(adw, ADW_EEP_CMD, ADW_EEP_CMD_READ | addr);
|
|
adw_eeprom_wait(adw);
|
|
return (adw_inw(adw, ADW_EEP_DATA));
|
|
}
|
|
|
|
static void
|
|
adw_eeprom_write_16(struct adw_softc *adw, int addr, u_int data)
|
|
{
|
|
adw_outw(adw, ADW_EEP_DATA, data);
|
|
adw_outw(adw, ADW_EEP_CMD, ADW_EEP_CMD_WRITE | addr);
|
|
adw_eeprom_wait(adw);
|
|
}
|
|
|
|
/*
|
|
* Wait for and EEPROM command to complete
|
|
*/
|
|
static void
|
|
adw_eeprom_wait(struct adw_softc *adw)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < ADW_EEP_DELAY_MS; i++) {
|
|
if ((adw_inw(adw, ADW_EEP_CMD) & ADW_EEP_CMD_DONE) != 0)
|
|
break;
|
|
DELAY(1000);
|
|
}
|
|
if (i == ADW_EEP_DELAY_MS)
|
|
panic("%s: Timedout Reading EEPROM", adw_name(adw));
|
|
}
|
|
|
|
/*
|
|
* Read EEPROM configuration into the specified buffer.
|
|
*
|
|
* Return a checksum based on the EEPROM configuration read.
|
|
*/
|
|
u_int16_t
|
|
adw_eeprom_read(struct adw_softc *adw, struct adw_eeprom *eep_buf)
|
|
{
|
|
u_int16_t *wbuf;
|
|
u_int16_t wval;
|
|
u_int16_t chksum;
|
|
int eep_addr;
|
|
|
|
wbuf = (u_int16_t *)eep_buf;
|
|
chksum = 0;
|
|
|
|
for (eep_addr = ADW_EEP_DVC_CFG_BEGIN;
|
|
eep_addr < ADW_EEP_DVC_CFG_END;
|
|
eep_addr++, wbuf++) {
|
|
wval = adw_eeprom_read_16(adw, eep_addr);
|
|
chksum += wval;
|
|
*wbuf = wval;
|
|
}
|
|
|
|
/* checksum field is not counted in the checksum */
|
|
*wbuf = adw_eeprom_read_16(adw, eep_addr);
|
|
wbuf++;
|
|
|
|
/* Driver seeprom variables are not included in the checksum */
|
|
for (eep_addr = ADW_EEP_DVC_CTL_BEGIN;
|
|
eep_addr < ADW_EEP_MAX_WORD_ADDR;
|
|
eep_addr++, wbuf++)
|
|
*wbuf = adw_eeprom_read_16(adw, eep_addr);
|
|
|
|
return (chksum);
|
|
}
|
|
|
|
void
|
|
adw_eeprom_write(struct adw_softc *adw, struct adw_eeprom *eep_buf)
|
|
{
|
|
u_int16_t *wbuf;
|
|
u_int16_t addr;
|
|
u_int16_t chksum;
|
|
|
|
wbuf = (u_int16_t *)eep_buf;
|
|
chksum = 0;
|
|
|
|
adw_outw(adw, ADW_EEP_CMD, ADW_EEP_CMD_WRITE_ABLE);
|
|
adw_eeprom_wait(adw);
|
|
|
|
/*
|
|
* Write EEPROM until checksum.
|
|
*/
|
|
for (addr = ADW_EEP_DVC_CFG_BEGIN;
|
|
addr < ADW_EEP_DVC_CFG_END; addr++, wbuf++) {
|
|
chksum += *wbuf;
|
|
adw_eeprom_write_16(adw, addr, *wbuf);
|
|
}
|
|
|
|
/*
|
|
* Write calculated EEPROM checksum
|
|
*/
|
|
adw_eeprom_write_16(adw, addr, chksum);
|
|
|
|
/* skip over buffer's checksum */
|
|
wbuf++;
|
|
|
|
/*
|
|
* Write the rest.
|
|
*/
|
|
for (addr = ADW_EEP_DVC_CTL_BEGIN;
|
|
addr < ADW_EEP_MAX_WORD_ADDR; addr++, wbuf++)
|
|
adw_eeprom_write_16(adw, addr, *wbuf);
|
|
|
|
adw_outw(adw, ADW_EEP_CMD, ADW_EEP_CMD_WRITE_DISABLE);
|
|
adw_eeprom_wait(adw);
|
|
}
|
|
|
|
int
|
|
adw_init_chip(struct adw_softc *adw, u_int term_scsicfg1)
|
|
{
|
|
u_int8_t biosmem[ADW_MC_BIOSLEN];
|
|
u_int16_t *mcodebuf;
|
|
u_int addr;
|
|
u_int end_addr;
|
|
u_int checksum;
|
|
u_int scsicfg1;
|
|
u_int i;
|
|
|
|
/*
|
|
* Save the RISC memory BIOS region before writing the microcode.
|
|
* The BIOS may already be loaded and using its RISC LRAM region
|
|
* so its region must be saved and restored.
|
|
*/
|
|
for (addr = 0; addr < ADW_MC_BIOSLEN; addr++)
|
|
biosmem[addr] = adw_lram_read_8(adw, ADW_MC_BIOSMEM + addr);
|
|
|
|
/*
|
|
* Load the Microcode. Casting here was less work than
|
|
* reformatting the supplied microcode into an array of
|
|
* 16bit values...
|
|
*/
|
|
mcodebuf = (u_int16_t *)adw_mcode;
|
|
adw_outw(adw, ADW_RAM_ADDR, 0);
|
|
for (addr = 0; addr < adw_mcode_size/2; addr++)
|
|
adw_outw(adw, ADW_RAM_DATA, mcodebuf[addr]);
|
|
|
|
/*
|
|
* Clear the rest of LRAM.
|
|
*/
|
|
for (; addr < ADW_CONDOR_MEMSIZE/2; addr++)
|
|
adw_outw(adw, ADW_RAM_DATA, 0);
|
|
|
|
/*
|
|
* Verify the microcode checksum.
|
|
*/
|
|
checksum = 0;
|
|
adw_outw(adw, ADW_RAM_ADDR, 0);
|
|
for (addr = 0; addr < adw_mcode_size/2; addr++)
|
|
checksum += adw_inw(adw, ADW_RAM_DATA);
|
|
|
|
if (checksum != adw_mcode_chksum) {
|
|
printf("%s: Firmware load failed!\n", adw_name(adw));
|
|
return (-1);
|
|
}
|
|
|
|
/*
|
|
* Restore the RISC memory BIOS region.
|
|
*/
|
|
for (addr = 0; addr < ADW_MC_BIOSLEN; addr++)
|
|
adw_lram_write_8(adw, addr + ADW_MC_BIOSLEN, biosmem[addr]);
|
|
|
|
/*
|
|
* Calculate and write the microcode code checksum to
|
|
* the microcode code checksum location.
|
|
*/
|
|
addr = adw_lram_read_16(adw, ADW_MC_CODE_BEGIN_ADDR) / 2;
|
|
end_addr = adw_lram_read_16(adw, ADW_MC_CODE_END_ADDR) / 2;
|
|
checksum = 0;
|
|
for (; addr < end_addr; addr++)
|
|
checksum += mcodebuf[addr];
|
|
adw_lram_write_16(adw, ADW_MC_CODE_CHK_SUM, checksum);
|
|
|
|
/*
|
|
* Initialize microcode operating variables
|
|
*/
|
|
adw_lram_write_16(adw, ADW_MC_ADAPTER_SCSI_ID, adw->initiator_id);
|
|
|
|
/*
|
|
* Leave WDTR and SDTR negotiation disabled until the XPT has
|
|
* informed us of device capabilities, but do set the ultra mask
|
|
* in case we receive an SDTR request from the target before we
|
|
* negotiate. We turn on tagged queuing at the microcode level
|
|
* for all devices, and modulate this on a per command basis.
|
|
*/
|
|
adw_lram_write_16(adw, ADW_MC_ULTRA_ABLE, adw->user_ultra);
|
|
adw_lram_write_16(adw, ADW_MC_DISC_ENABLE, adw->user_discenb);
|
|
adw_lram_write_16(adw, ADW_MC_TAGQNG_ABLE, ~0);
|
|
|
|
/*
|
|
* Set SCSI_CFG0 Microcode Default Value.
|
|
*
|
|
* The microcode will set the SCSI_CFG0 register using this value
|
|
* after it is started.
|
|
*/
|
|
adw_lram_write_16(adw, ADW_MC_DEFAULT_SCSI_CFG0,
|
|
ADW_SCSI_CFG0_PARITY_EN|ADW_SCSI_CFG0_SEL_TMO_LONG|
|
|
ADW_SCSI_CFG0_OUR_ID_EN|adw->initiator_id);
|
|
|
|
/*
|
|
* Determine SCSI_CFG1 Microcode Default Value.
|
|
*
|
|
* The microcode will set the SCSI_CFG1 register using this value
|
|
* after it is started below.
|
|
*/
|
|
scsicfg1 = adw_inw(adw, ADW_SCSI_CFG1);
|
|
|
|
/*
|
|
* If all three connectors are in use, return an error.
|
|
*/
|
|
if ((scsicfg1 & ADW_SCSI_CFG1_ILLEGAL_CABLE_CONF_A_MASK) == 0
|
|
|| (scsicfg1 & ADW_SCSI_CFG1_ILLEGAL_CABLE_CONF_B_MASK) == 0) {
|
|
printf("%s: Illegal Cable Config!\n", adw_name(adw));
|
|
printf("%s: Only Two Ports may be used at a time!\n",
|
|
adw_name(adw));
|
|
return (-1);
|
|
}
|
|
|
|
/*
|
|
* If the internal narrow cable is reversed all of the SCSI_CTRL
|
|
* register signals will be set. Check for and return an error if
|
|
* this condition is found.
|
|
*/
|
|
if ((adw_inw(adw, ADW_SCSI_CTRL) & 0x3F07) == 0x3F07) {
|
|
printf("%s: Illegal Cable Config!\n", adw_name(adw));
|
|
printf("%s: Internal cable is reversed!\n", adw_name(adw));
|
|
return (-1);
|
|
}
|
|
|
|
/*
|
|
* If this is a differential board and a single-ended device
|
|
* is attached to one of the connectors, return an error.
|
|
*/
|
|
if ((scsicfg1 & ADW_SCSI_CFG1_DIFF_MODE) != 0
|
|
&& (scsicfg1 & ADW_SCSI_CFG1_DIFF_SENSE) == 0) {
|
|
printf("%s: A Single Ended Device is attached to our "
|
|
"differential bus!\n", adw_name(adw));
|
|
return (-1);
|
|
}
|
|
|
|
/*
|
|
* Perform automatic termination control if desired.
|
|
*/
|
|
if (term_scsicfg1 == 0) {
|
|
switch(scsicfg1 & ADW_SCSI_CFG1_CABLE_DETECT) {
|
|
case (ADW_SCSI_CFG1_INT16_MASK|ADW_SCSI_CFG1_INT8_MASK):
|
|
case (ADW_SCSI_CFG1_INT16_MASK|
|
|
ADW_SCSI_CFG1_INT8_MASK|ADW_SCSI_CFG1_EXT8_MASK):
|
|
case (ADW_SCSI_CFG1_INT16_MASK|
|
|
ADW_SCSI_CFG1_INT8_MASK|ADW_SCSI_CFG1_EXT16_MASK):
|
|
case (ADW_SCSI_CFG1_INT16_MASK|
|
|
ADW_SCSI_CFG1_EXT8_MASK|ADW_SCSI_CFG1_EXT16_MASK):
|
|
case (ADW_SCSI_CFG1_INT8_MASK|
|
|
ADW_SCSI_CFG1_EXT8_MASK|ADW_SCSI_CFG1_EXT16_MASK):
|
|
case (ADW_SCSI_CFG1_INT16_MASK|ADW_SCSI_CFG1_INT8_MASK|
|
|
ADW_SCSI_CFG1_EXT8_MASK|ADW_SCSI_CFG1_EXT16_MASK):
|
|
/* Two out of three cables missing. Both on. */
|
|
term_scsicfg1 |= ADW_SCSI_CFG1_TERM_CTL_L
|
|
| ADW_SCSI_CFG1_TERM_CTL_H;
|
|
break;
|
|
case (ADW_SCSI_CFG1_INT16_MASK):
|
|
case (ADW_SCSI_CFG1_INT16_MASK|ADW_SCSI_CFG1_EXT8_MASK):
|
|
case (ADW_SCSI_CFG1_INT16_MASK|ADW_SCSI_CFG1_EXT16_MASK):
|
|
case (ADW_SCSI_CFG1_INT8_MASK|ADW_SCSI_CFG1_EXT16_MASK):
|
|
case (ADW_SCSI_CFG1_EXT8_MASK|ADW_SCSI_CFG1_EXT16_MASK):
|
|
/* No two 16bit cables present. High on. */
|
|
term_scsicfg1 |= ADW_SCSI_CFG1_TERM_CTL_H;
|
|
break;
|
|
case (ADW_SCSI_CFG1_INT8_MASK):
|
|
case (ADW_SCSI_CFG1_INT8_MASK|ADW_SCSI_CFG1_EXT8_MASK):
|
|
/* Wide -> Wide or Narrow -> Wide. Both off */
|
|
break;
|
|
}
|
|
}
|
|
|
|
/* Tell the user about our decission */
|
|
switch (term_scsicfg1 & ADW_SCSI_CFG1_TERM_CTL_MASK) {
|
|
case ADW_SCSI_CFG1_TERM_CTL_MASK:
|
|
printf("High & Low Termination Enabled, ");
|
|
break;
|
|
case ADW_SCSI_CFG1_TERM_CTL_H:
|
|
printf("High Termination Enabled, ");
|
|
break;
|
|
case ADW_SCSI_CFG1_TERM_CTL_L:
|
|
printf("Low Termination Enabled, ");
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* Invert the TERM_CTL_H and TERM_CTL_L bits and then
|
|
* set 'scsicfg1'. The TERM_POL bit does not need to be
|
|
* referenced, because the hardware internally inverts
|
|
* the Termination High and Low bits if TERM_POL is set.
|
|
*/
|
|
term_scsicfg1 = ~term_scsicfg1 & ADW_SCSI_CFG1_TERM_CTL_MASK;
|
|
scsicfg1 &= ~ADW_SCSI_CFG1_TERM_CTL_MASK;
|
|
scsicfg1 |= term_scsicfg1 | ADW_SCSI_CFG1_TERM_CTL_MANUAL;
|
|
|
|
/*
|
|
* Set SCSI_CFG1 Microcode Default Value
|
|
*
|
|
* Set filter value and possibly modified termination control
|
|
* bits in the Microcode SCSI_CFG1 Register Value.
|
|
*
|
|
* The microcode will set the SCSI_CFG1 register using this value
|
|
* after it is started below.
|
|
*/
|
|
adw_lram_write_16(adw, ADW_MC_DEFAULT_SCSI_CFG1,
|
|
scsicfg1 | ADW_SCSI_CFG1_FLTR_11_TO_20NS);
|
|
|
|
/*
|
|
* Only accept selections on our initiator target id.
|
|
* This may change in target mode scenarios...
|
|
*/
|
|
adw_lram_write_16(adw, ADW_MC_DEFAULT_SEL_MASK,
|
|
(0x01 << adw->initiator_id));
|
|
|
|
/*
|
|
* Link all the RISC Queue Lists together in a doubly-linked
|
|
* NULL terminated list.
|
|
*
|
|
* Skip the NULL (0) queue which is not used.
|
|
*/
|
|
for (i = 1, addr = ADW_MC_RISC_Q_LIST_BASE + ADW_MC_RISC_Q_LIST_SIZE;
|
|
i < ADW_MC_RISC_Q_TOTAL_CNT;
|
|
i++, addr += ADW_MC_RISC_Q_LIST_SIZE) {
|
|
|
|
/*
|
|
* Set the current RISC Queue List's
|
|
* RQL_FWD and RQL_BWD pointers in a
|
|
* one word write and set the state
|
|
* (RQL_STATE) to free.
|
|
*/
|
|
adw_lram_write_16(adw, addr, ((i + 1) | ((i - 1) << 8)));
|
|
adw_lram_write_8(adw, addr + RQL_STATE, ADW_MC_QS_FREE);
|
|
}
|
|
|
|
/*
|
|
* Set the Host and RISC Queue List pointers.
|
|
*
|
|
* Both sets of pointers are initialized with the same values:
|
|
* ADW_MC_RISC_Q_FIRST(0x01) and ADW_MC_RISC_Q_LAST (0xFF).
|
|
*/
|
|
adw_lram_write_8(adw, ADW_MC_HOST_NEXT_READY, ADW_MC_RISC_Q_FIRST);
|
|
adw_lram_write_8(adw, ADW_MC_HOST_NEXT_DONE, ADW_MC_RISC_Q_LAST);
|
|
|
|
adw_lram_write_8(adw, ADW_MC_RISC_NEXT_READY, ADW_MC_RISC_Q_FIRST);
|
|
adw_lram_write_8(adw, ADW_MC_RISC_NEXT_DONE, ADW_MC_RISC_Q_LAST);
|
|
|
|
/*
|
|
* Set up the last RISC Queue List (255) with a NULL forward pointer.
|
|
*/
|
|
adw_lram_write_16(adw, addr, (ADW_MC_NULL_Q + ((i - 1) << 8)));
|
|
adw_lram_write_8(adw, addr + RQL_STATE, ADW_MC_QS_FREE);
|
|
|
|
adw_outb(adw, ADW_INTR_ENABLES,
|
|
ADW_INTR_ENABLE_HOST_INTR|ADW_INTR_ENABLE_GLOBAL_INTR);
|
|
|
|
adw_outw(adw, ADW_PC, adw_lram_read_16(adw, ADW_MC_CODE_BEGIN_ADDR));
|
|
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Send an idle command to the chip and optionally wait for completion.
|
|
*/
|
|
void
|
|
adw_idle_cmd_send(struct adw_softc *adw, adw_idle_cmd_t cmd, u_int parameter)
|
|
{
|
|
int s;
|
|
|
|
adw->idle_command_cmp = 0;
|
|
|
|
s = splcam();
|
|
|
|
if (adw->idle_cmd != ADW_IDLE_CMD_COMPLETED)
|
|
printf("%s: Warning! Overlapped Idle Commands Attempted\n",
|
|
adw_name(adw));
|
|
adw->idle_cmd = cmd;
|
|
adw->idle_cmd_param = parameter;
|
|
|
|
/*
|
|
* Write the idle command value after the idle command parameter
|
|
* has been written to avoid a race condition. If the order is not
|
|
* followed, the microcode may process the idle command before the
|
|
* parameters have been written to LRAM.
|
|
*/
|
|
adw_lram_write_16(adw, ADW_MC_IDLE_PARA_STAT, parameter);
|
|
adw_lram_write_16(adw, ADW_MC_IDLE_CMD, cmd);
|
|
splx(s);
|
|
}
|
|
|
|
/* Wait for an idle command to complete */
|
|
adw_idle_cmd_status_t
|
|
adw_idle_cmd_wait(struct adw_softc *adw)
|
|
{
|
|
u_int timeout;
|
|
adw_idle_cmd_status_t status;
|
|
int s;
|
|
|
|
/* Wait for up to 10 seconds for the command to complete */
|
|
timeout = 10000;
|
|
while (--timeout) {
|
|
if (adw->idle_command_cmp != 0)
|
|
break;
|
|
DELAY(1000);
|
|
}
|
|
|
|
if (timeout == 0)
|
|
panic("%s: Idle Command Timed Out!\n", adw_name(adw));
|
|
s = splcam();
|
|
status = adw_lram_read_16(adw, ADW_MC_IDLE_PARA_STAT);
|
|
splx(s);
|
|
return (status);
|
|
}
|