freebsd-skq/sys/dev/proto/proto_busdma.c
2015-07-28 04:54:05 +00:00

488 lines
13 KiB
C

/*-
* Copyright (c) 2015 Marcel Moolenaar
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include <sys/param.h>
#include <sys/systm.h>
#include <machine/bus.h>
#include <machine/bus_dma.h>
#include <machine/resource.h>
#include <sys/bus.h>
#include <sys/conf.h>
#include <sys/kernel.h>
#include <sys/malloc.h>
#include <sys/module.h>
#include <sys/proc.h>
#include <sys/queue.h>
#include <sys/rman.h>
#include <sys/sbuf.h>
#include <sys/uio.h>
#include <vm/vm.h>
#include <vm/pmap.h>
#include <vm/vm_map.h>
#include <dev/proto/proto.h>
#include <dev/proto/proto_dev.h>
#include <dev/proto/proto_busdma.h>
MALLOC_DEFINE(M_PROTO_BUSDMA, "proto_busdma", "DMA management data");
#define BNDRY_MIN(a, b) \
(((a) == 0) ? (b) : (((b) == 0) ? (a) : MIN((a), (b))))
struct proto_callback_bundle {
struct proto_busdma *busdma;
struct proto_md *md;
struct proto_ioc_busdma *ioc;
};
static int
proto_busdma_tag_create(struct proto_busdma *busdma, struct proto_tag *parent,
struct proto_ioc_busdma *ioc)
{
struct proto_tag *tag;
/* Make sure that when a boundary is specified, it's a power of 2 */
if (ioc->u.tag.bndry != 0 &&
(ioc->u.tag.bndry & (ioc->u.tag.bndry - 1)) != 0)
return (EINVAL);
/*
* If nsegs is 1, ignore maxsegsz. What this means is that if we have
* just 1 segment, then maxsz should be equal to maxsegsz. To keep it
* simple for us, limit maxsegsz to maxsz in any case.
*/
if (ioc->u.tag.maxsegsz > ioc->u.tag.maxsz || ioc->u.tag.nsegs == 1)
ioc->u.tag.maxsegsz = ioc->u.tag.maxsz;
tag = malloc(sizeof(*tag), M_PROTO_BUSDMA, M_WAITOK | M_ZERO);
if (parent != NULL) {
tag->parent = parent;
LIST_INSERT_HEAD(&parent->children, tag, peers);
tag->align = MAX(ioc->u.tag.align, parent->align);
tag->bndry = BNDRY_MIN(ioc->u.tag.bndry, parent->bndry);
tag->maxaddr = MIN(ioc->u.tag.maxaddr, parent->maxaddr);
tag->maxsz = MIN(ioc->u.tag.maxsz, parent->maxsz);
tag->maxsegsz = MIN(ioc->u.tag.maxsegsz, parent->maxsegsz);
tag->nsegs = MIN(ioc->u.tag.nsegs, parent->nsegs);
tag->datarate = MIN(ioc->u.tag.datarate, parent->datarate);
/* Write constraints back */
ioc->u.tag.align = tag->align;
ioc->u.tag.bndry = tag->bndry;
ioc->u.tag.maxaddr = tag->maxaddr;
ioc->u.tag.maxsz = tag->maxsz;
ioc->u.tag.maxsegsz = tag->maxsegsz;
ioc->u.tag.nsegs = tag->nsegs;
ioc->u.tag.datarate = tag->datarate;
} else {
tag->align = ioc->u.tag.align;
tag->bndry = ioc->u.tag.bndry;
tag->maxaddr = ioc->u.tag.maxaddr;
tag->maxsz = ioc->u.tag.maxsz;
tag->maxsegsz = ioc->u.tag.maxsegsz;
tag->nsegs = ioc->u.tag.nsegs;
tag->datarate = ioc->u.tag.datarate;
}
LIST_INSERT_HEAD(&busdma->tags, tag, tags);
ioc->result = (uintptr_t)(void *)tag;
return (0);
}
static int
proto_busdma_tag_destroy(struct proto_busdma *busdma, struct proto_tag *tag)
{
if (!LIST_EMPTY(&tag->mds))
return (EBUSY);
if (!LIST_EMPTY(&tag->children))
return (EBUSY);
if (tag->parent != NULL) {
LIST_REMOVE(tag, peers);
tag->parent = NULL;
}
LIST_REMOVE(tag, tags);
free(tag, M_PROTO_BUSDMA);
return (0);
}
static struct proto_tag *
proto_busdma_tag_lookup(struct proto_busdma *busdma, u_long key)
{
struct proto_tag *tag;
LIST_FOREACH(tag, &busdma->tags, tags) {
if ((void *)tag == (void *)key)
return (tag);
}
return (NULL);
}
static int
proto_busdma_md_destroy_internal(struct proto_busdma *busdma,
struct proto_md *md)
{
LIST_REMOVE(md, mds);
LIST_REMOVE(md, peers);
if (md->physaddr)
bus_dmamap_unload(md->bd_tag, md->bd_map);
if (md->virtaddr != NULL)
bus_dmamem_free(md->bd_tag, md->virtaddr, md->bd_map);
else
bus_dmamap_destroy(md->bd_tag, md->bd_map);
bus_dma_tag_destroy(md->bd_tag);
free(md, M_PROTO_BUSDMA);
return (0);
}
static void
proto_busdma_mem_alloc_callback(void *arg, bus_dma_segment_t *segs, int nseg,
int error)
{
struct proto_callback_bundle *pcb = arg;
pcb->ioc->u.md.bus_nsegs = nseg;
pcb->ioc->u.md.bus_addr = segs[0].ds_addr;
}
static int
proto_busdma_mem_alloc(struct proto_busdma *busdma, struct proto_tag *tag,
struct proto_ioc_busdma *ioc)
{
struct proto_callback_bundle pcb;
struct proto_md *md;
int error;
md = malloc(sizeof(*md), M_PROTO_BUSDMA, M_WAITOK | M_ZERO);
md->tag = tag;
error = bus_dma_tag_create(busdma->bd_roottag, tag->align, tag->bndry,
tag->maxaddr, BUS_SPACE_MAXADDR, NULL, NULL, tag->maxsz,
tag->nsegs, tag->maxsegsz, 0, NULL, NULL, &md->bd_tag);
if (error) {
free(md, M_PROTO_BUSDMA);
return (error);
}
error = bus_dmamem_alloc(md->bd_tag, &md->virtaddr, 0, &md->bd_map);
if (error) {
bus_dma_tag_destroy(md->bd_tag);
free(md, M_PROTO_BUSDMA);
return (error);
}
md->physaddr = pmap_kextract((uintptr_t)(md->virtaddr));
pcb.busdma = busdma;
pcb.md = md;
pcb.ioc = ioc;
error = bus_dmamap_load(md->bd_tag, md->bd_map, md->virtaddr,
tag->maxsz, proto_busdma_mem_alloc_callback, &pcb, BUS_DMA_NOWAIT);
if (error) {
bus_dmamem_free(md->bd_tag, md->virtaddr, md->bd_map);
bus_dma_tag_destroy(md->bd_tag);
free(md, M_PROTO_BUSDMA);
return (error);
}
LIST_INSERT_HEAD(&tag->mds, md, peers);
LIST_INSERT_HEAD(&busdma->mds, md, mds);
ioc->u.md.virt_addr = (uintptr_t)md->virtaddr;
ioc->u.md.virt_size = tag->maxsz;
ioc->u.md.phys_nsegs = 1;
ioc->u.md.phys_addr = md->physaddr;
ioc->result = (uintptr_t)(void *)md;
return (0);
}
static int
proto_busdma_mem_free(struct proto_busdma *busdma, struct proto_md *md)
{
if (md->virtaddr == NULL)
return (ENXIO);
return (proto_busdma_md_destroy_internal(busdma, md));
}
static int
proto_busdma_md_create(struct proto_busdma *busdma, struct proto_tag *tag,
struct proto_ioc_busdma *ioc)
{
struct proto_md *md;
int error;
md = malloc(sizeof(*md), M_PROTO_BUSDMA, M_WAITOK | M_ZERO);
md->tag = tag;
error = bus_dma_tag_create(busdma->bd_roottag, tag->align, tag->bndry,
tag->maxaddr, BUS_SPACE_MAXADDR, NULL, NULL, tag->maxsz,
tag->nsegs, tag->maxsegsz, 0, NULL, NULL, &md->bd_tag);
if (error) {
free(md, M_PROTO_BUSDMA);
return (error);
}
error = bus_dmamap_create(md->bd_tag, 0, &md->bd_map);
if (error) {
bus_dma_tag_destroy(md->bd_tag);
free(md, M_PROTO_BUSDMA);
return (error);
}
LIST_INSERT_HEAD(&tag->mds, md, peers);
LIST_INSERT_HEAD(&busdma->mds, md, mds);
ioc->result = (uintptr_t)(void *)md;
return (0);
}
static int
proto_busdma_md_destroy(struct proto_busdma *busdma, struct proto_md *md)
{
if (md->virtaddr != NULL)
return (ENXIO);
return (proto_busdma_md_destroy_internal(busdma, md));
}
static void
proto_busdma_md_load_callback(void *arg, bus_dma_segment_t *segs, int nseg,
bus_size_t sz, int error)
{
struct proto_callback_bundle *pcb = arg;
pcb->ioc->u.md.bus_nsegs = nseg;
pcb->ioc->u.md.bus_addr = segs[0].ds_addr;
}
static int
proto_busdma_md_load(struct proto_busdma *busdma, struct proto_md *md,
struct proto_ioc_busdma *ioc, struct thread *td)
{
struct proto_callback_bundle pcb;
struct iovec iov;
struct uio uio;
pmap_t pmap;
int error;
iov.iov_base = (void *)(uintptr_t)ioc->u.md.virt_addr;
iov.iov_len = ioc->u.md.virt_size;
uio.uio_iov = &iov;
uio.uio_iovcnt = 1;
uio.uio_offset = 0;
uio.uio_resid = iov.iov_len;
uio.uio_segflg = UIO_USERSPACE;
uio.uio_rw = UIO_READ;
uio.uio_td = td;
pcb.busdma = busdma;
pcb.md = md;
pcb.ioc = ioc;
error = bus_dmamap_load_uio(md->bd_tag, md->bd_map, &uio,
proto_busdma_md_load_callback, &pcb, BUS_DMA_NOWAIT);
if (error)
return (error);
/* XXX determine *all* physical memory segments */
pmap = vmspace_pmap(td->td_proc->p_vmspace);
md->physaddr = pmap_extract(pmap, ioc->u.md.virt_addr);
ioc->u.md.phys_nsegs = 1; /* XXX */
ioc->u.md.phys_addr = md->physaddr;
return (0);
}
static int
proto_busdma_md_unload(struct proto_busdma *busdma, struct proto_md *md)
{
if (!md->physaddr)
return (ENXIO);
bus_dmamap_unload(md->bd_tag, md->bd_map);
md->physaddr = 0;
return (0);
}
static int
proto_busdma_sync(struct proto_busdma *busdma, struct proto_md *md,
struct proto_ioc_busdma *ioc)
{
u_int ops;
ops = BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE |
BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE;
if (ioc->u.sync.op & ~ops)
return (EINVAL);
if (!md->physaddr)
return (ENXIO);
bus_dmamap_sync(md->bd_tag, md->bd_map, ioc->u.sync.op);
return (0);
}
static struct proto_md *
proto_busdma_md_lookup(struct proto_busdma *busdma, u_long key)
{
struct proto_md *md;
LIST_FOREACH(md, &busdma->mds, mds) {
if ((void *)md == (void *)key)
return (md);
}
return (NULL);
}
struct proto_busdma *
proto_busdma_attach(struct proto_softc *sc)
{
struct proto_busdma *busdma;
busdma = malloc(sizeof(*busdma), M_PROTO_BUSDMA, M_WAITOK | M_ZERO);
return (busdma);
}
int
proto_busdma_detach(struct proto_softc *sc, struct proto_busdma *busdma)
{
proto_busdma_cleanup(sc, busdma);
free(busdma, M_PROTO_BUSDMA);
return (0);
}
int
proto_busdma_cleanup(struct proto_softc *sc, struct proto_busdma *busdma)
{
struct proto_md *md, *md1;
struct proto_tag *tag, *tag1;
LIST_FOREACH_SAFE(md, &busdma->mds, mds, md1)
proto_busdma_md_destroy_internal(busdma, md);
LIST_FOREACH_SAFE(tag, &busdma->tags, tags, tag1)
proto_busdma_tag_destroy(busdma, tag);
return (0);
}
int
proto_busdma_ioctl(struct proto_softc *sc, struct proto_busdma *busdma,
struct proto_ioc_busdma *ioc, struct thread *td)
{
struct proto_tag *tag;
struct proto_md *md;
int error;
error = 0;
switch (ioc->request) {
case PROTO_IOC_BUSDMA_TAG_CREATE:
busdma->bd_roottag = bus_get_dma_tag(sc->sc_dev);
error = proto_busdma_tag_create(busdma, NULL, ioc);
break;
case PROTO_IOC_BUSDMA_TAG_DERIVE:
tag = proto_busdma_tag_lookup(busdma, ioc->key);
if (tag == NULL) {
error = EINVAL;
break;
}
error = proto_busdma_tag_create(busdma, tag, ioc);
break;
case PROTO_IOC_BUSDMA_TAG_DESTROY:
tag = proto_busdma_tag_lookup(busdma, ioc->key);
if (tag == NULL) {
error = EINVAL;
break;
}
error = proto_busdma_tag_destroy(busdma, tag);
break;
case PROTO_IOC_BUSDMA_MEM_ALLOC:
tag = proto_busdma_tag_lookup(busdma, ioc->u.md.tag);
if (tag == NULL) {
error = EINVAL;
break;
}
error = proto_busdma_mem_alloc(busdma, tag, ioc);
break;
case PROTO_IOC_BUSDMA_MEM_FREE:
md = proto_busdma_md_lookup(busdma, ioc->key);
if (md == NULL) {
error = EINVAL;
break;
}
error = proto_busdma_mem_free(busdma, md);
break;
case PROTO_IOC_BUSDMA_MD_CREATE:
tag = proto_busdma_tag_lookup(busdma, ioc->u.md.tag);
if (tag == NULL) {
error = EINVAL;
break;
}
error = proto_busdma_md_create(busdma, tag, ioc);
break;
case PROTO_IOC_BUSDMA_MD_DESTROY:
md = proto_busdma_md_lookup(busdma, ioc->key);
if (md == NULL) {
error = EINVAL;
break;
}
error = proto_busdma_md_destroy(busdma, md);
break;
case PROTO_IOC_BUSDMA_MD_LOAD:
md = proto_busdma_md_lookup(busdma, ioc->key);
if (md == NULL) {
error = EINVAL;
break;
}
error = proto_busdma_md_load(busdma, md, ioc, td);
break;
case PROTO_IOC_BUSDMA_MD_UNLOAD:
md = proto_busdma_md_lookup(busdma, ioc->key);
if (md == NULL) {
error = EINVAL;
break;
}
error = proto_busdma_md_unload(busdma, md);
break;
case PROTO_IOC_BUSDMA_SYNC:
md = proto_busdma_md_lookup(busdma, ioc->key);
if (md == NULL) {
error = EINVAL;
break;
}
error = proto_busdma_sync(busdma, md, ioc);
break;
default:
error = EINVAL;
break;
}
return (error);
}
int
proto_busdma_mmap_allowed(struct proto_busdma *busdma, vm_paddr_t physaddr)
{
struct proto_md *md;
LIST_FOREACH(md, &busdma->mds, mds) {
if (physaddr >= trunc_page(md->physaddr) &&
physaddr <= trunc_page(md->physaddr + md->tag->maxsz))
return (1);
}
return (0);
}