Sam Leffler 88768458d2 "Fast IPsec": this is an experimental IPsec implementation that is derived
from the KAME IPsec implementation, but with heavy borrowing and influence
of openbsd.  A key feature of this implementation is that it uses the kernel
crypto framework to do all crypto work so when h/w crypto support is present
IPsec operation is automatically accelerated.  Otherwise the protocol
implementations are rather differet while the SADB and policy management
code is very similar to KAME (for the moment).

Note that this implementation is enabled with a FAST_IPSEC option.  With this
you get all protocols; i.e. there is no FAST_IPSEC_ESP option.

FAST_IPSEC and IPSEC are mutually exclusive; you cannot build both into a
single system.

This software is well tested with IPv4 but should be considered very
experimental (i.e. do not deploy in production environments).  This software
does NOT currently support IPv6.  In fact do not configure FAST_IPSEC and
INET6 in the same system.

Obtained from:	KAME + openbsd
Supported by:	Vernier Networks
2002-10-16 02:10:08 +00:00

604 lines
13 KiB
C

/* $FreeBSD$ */
/* $KAME: keysock.c,v 1.25 2001/08/13 20:07:41 itojun Exp $ */
/*
* Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. Neither the name of the project nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#include "opt_ipsec.h"
/* This code has derived from sys/net/rtsock.c on FreeBSD2.2.5 */
#include <sys/types.h>
#include <sys/param.h>
#include <sys/domain.h>
#include <sys/errno.h>
#include <sys/kernel.h>
#include <sys/malloc.h>
#include <sys/mbuf.h>
#include <sys/protosw.h>
#include <sys/signalvar.h>
#include <sys/socket.h>
#include <sys/socketvar.h>
#include <sys/sysctl.h>
#include <sys/systm.h>
#include <net/raw_cb.h>
#include <net/route.h>
#include <net/pfkeyv2.h>
#include <netipsec/key.h>
#include <netipsec/keysock.h>
#include <netipsec/key_debug.h>
#include <machine/stdarg.h>
struct key_cb {
int key_count;
int any_count;
};
static struct key_cb key_cb;
static struct sockaddr key_dst = { 2, PF_KEY, };
static struct sockaddr key_src = { 2, PF_KEY, };
static int key_sendup0 __P((struct rawcb *, struct mbuf *, int));
struct pfkeystat pfkeystat;
/*
* key_output()
*/
int
#if __STDC__
key_output(struct mbuf *m, ...)
#else
key_output(m, va_alist)
struct mbuf *m;
va_dcl
#endif
{
struct sadb_msg *msg;
int len, error = 0;
int s;
struct socket *so;
va_list ap;
va_start(ap, m);
so = va_arg(ap, struct socket *);
va_end(ap);
if (m == 0)
panic("key_output: NULL pointer was passed.\n");
pfkeystat.out_total++;
pfkeystat.out_bytes += m->m_pkthdr.len;
len = m->m_pkthdr.len;
if (len < sizeof(struct sadb_msg)) {
pfkeystat.out_tooshort++;
error = EINVAL;
goto end;
}
if (m->m_len < sizeof(struct sadb_msg)) {
if ((m = m_pullup(m, sizeof(struct sadb_msg))) == 0) {
pfkeystat.out_nomem++;
error = ENOBUFS;
goto end;
}
}
if ((m->m_flags & M_PKTHDR) == 0)
panic("key_output: not M_PKTHDR ??");
KEYDEBUG(KEYDEBUG_KEY_DUMP, kdebug_mbuf(m));
msg = mtod(m, struct sadb_msg *);
pfkeystat.out_msgtype[msg->sadb_msg_type]++;
if (len != PFKEY_UNUNIT64(msg->sadb_msg_len)) {
pfkeystat.out_invlen++;
error = EINVAL;
goto end;
}
/*XXX giant lock*/
s = splnet();
error = key_parse(m, so);
m = NULL;
splx(s);
end:
if (m)
m_freem(m);
return error;
}
/*
* send message to the socket.
*/
static int
key_sendup0(rp, m, promisc)
struct rawcb *rp;
struct mbuf *m;
int promisc;
{
int error;
if (promisc) {
struct sadb_msg *pmsg;
M_PREPEND(m, sizeof(struct sadb_msg), M_NOWAIT);
if (m && m->m_len < sizeof(struct sadb_msg))
m = m_pullup(m, sizeof(struct sadb_msg));
if (!m) {
pfkeystat.in_nomem++;
m_freem(m);
return ENOBUFS;
}
m->m_pkthdr.len += sizeof(*pmsg);
pmsg = mtod(m, struct sadb_msg *);
bzero(pmsg, sizeof(*pmsg));
pmsg->sadb_msg_version = PF_KEY_V2;
pmsg->sadb_msg_type = SADB_X_PROMISC;
pmsg->sadb_msg_len = PFKEY_UNIT64(m->m_pkthdr.len);
/* pid and seq? */
pfkeystat.in_msgtype[pmsg->sadb_msg_type]++;
}
if (!sbappendaddr(&rp->rcb_socket->so_rcv, (struct sockaddr *)&key_src,
m, NULL)) {
pfkeystat.in_nomem++;
m_freem(m);
error = ENOBUFS;
} else
error = 0;
sorwakeup(rp->rcb_socket);
return error;
}
/* XXX this interface should be obsoleted. */
int
key_sendup(so, msg, len, target)
struct socket *so;
struct sadb_msg *msg;
u_int len;
int target; /*target of the resulting message*/
{
struct mbuf *m, *n, *mprev;
int tlen;
/* sanity check */
if (so == 0 || msg == 0)
panic("key_sendup: NULL pointer was passed.\n");
KEYDEBUG(KEYDEBUG_KEY_DUMP,
printf("key_sendup: \n");
kdebug_sadb(msg));
/*
* we increment statistics here, just in case we have ENOBUFS
* in this function.
*/
pfkeystat.in_total++;
pfkeystat.in_bytes += len;
pfkeystat.in_msgtype[msg->sadb_msg_type]++;
/*
* Get mbuf chain whenever possible (not clusters),
* to save socket buffer. We'll be generating many SADB_ACQUIRE
* messages to listening key sockets. If we simply allocate clusters,
* sbappendaddr() will raise ENOBUFS due to too little sbspace().
* sbspace() computes # of actual data bytes AND mbuf region.
*
* TODO: SADB_ACQUIRE filters should be implemented.
*/
tlen = len;
m = mprev = NULL;
while (tlen > 0) {
if (tlen == len) {
MGETHDR(n, M_DONTWAIT, MT_DATA);
n->m_len = MHLEN;
} else {
MGET(n, M_DONTWAIT, MT_DATA);
n->m_len = MLEN;
}
if (!n) {
pfkeystat.in_nomem++;
return ENOBUFS;
}
if (tlen >= MCLBYTES) { /*XXX better threshold? */
MCLGET(n, M_DONTWAIT);
if ((n->m_flags & M_EXT) == 0) {
m_free(n);
m_freem(m);
pfkeystat.in_nomem++;
return ENOBUFS;
}
n->m_len = MCLBYTES;
}
if (tlen < n->m_len)
n->m_len = tlen;
n->m_next = NULL;
if (m == NULL)
m = mprev = n;
else {
mprev->m_next = n;
mprev = n;
}
tlen -= n->m_len;
n = NULL;
}
m->m_pkthdr.len = len;
m->m_pkthdr.rcvif = NULL;
m_copyback(m, 0, len, (caddr_t)msg);
/* avoid duplicated statistics */
pfkeystat.in_total--;
pfkeystat.in_bytes -= len;
pfkeystat.in_msgtype[msg->sadb_msg_type]--;
return key_sendup_mbuf(so, m, target);
}
/* so can be NULL if target != KEY_SENDUP_ONE */
int
key_sendup_mbuf(so, m, target)
struct socket *so;
struct mbuf *m;
int target;
{
struct mbuf *n;
struct keycb *kp;
int sendup;
struct rawcb *rp;
int error = 0;
if (m == NULL)
panic("key_sendup_mbuf: NULL pointer was passed.\n");
if (so == NULL && target == KEY_SENDUP_ONE)
panic("key_sendup_mbuf: NULL pointer was passed.\n");
pfkeystat.in_total++;
pfkeystat.in_bytes += m->m_pkthdr.len;
if (m->m_len < sizeof(struct sadb_msg)) {
#if 1
m = m_pullup(m, sizeof(struct sadb_msg));
if (m == NULL) {
pfkeystat.in_nomem++;
return ENOBUFS;
}
#else
/* don't bother pulling it up just for stats */
#endif
}
if (m->m_len >= sizeof(struct sadb_msg)) {
struct sadb_msg *msg;
msg = mtod(m, struct sadb_msg *);
pfkeystat.in_msgtype[msg->sadb_msg_type]++;
}
LIST_FOREACH(rp, &rawcb_list, list)
{
if (rp->rcb_proto.sp_family != PF_KEY)
continue;
if (rp->rcb_proto.sp_protocol
&& rp->rcb_proto.sp_protocol != PF_KEY_V2) {
continue;
}
kp = (struct keycb *)rp;
/*
* If you are in promiscuous mode, and when you get broadcasted
* reply, you'll get two PF_KEY messages.
* (based on pf_key@inner.net message on 14 Oct 1998)
*/
if (((struct keycb *)rp)->kp_promisc) {
if ((n = m_copy(m, 0, (int)M_COPYALL)) != NULL) {
(void)key_sendup0(rp, n, 1);
n = NULL;
}
}
/* the exact target will be processed later */
if (so && sotorawcb(so) == rp)
continue;
sendup = 0;
switch (target) {
case KEY_SENDUP_ONE:
/* the statement has no effect */
if (so && sotorawcb(so) == rp)
sendup++;
break;
case KEY_SENDUP_ALL:
sendup++;
break;
case KEY_SENDUP_REGISTERED:
if (kp->kp_registered)
sendup++;
break;
}
pfkeystat.in_msgtarget[target]++;
if (!sendup)
continue;
if ((n = m_copy(m, 0, (int)M_COPYALL)) == NULL) {
m_freem(m);
pfkeystat.in_nomem++;
return ENOBUFS;
}
if ((error = key_sendup0(rp, n, 0)) != 0) {
m_freem(m);
return error;
}
n = NULL;
}
if (so) {
error = key_sendup0(sotorawcb(so), m, 0);
m = NULL;
} else {
error = 0;
m_freem(m);
}
return error;
}
/*
* key_abort()
* derived from net/rtsock.c:rts_abort()
*/
static int
key_abort(struct socket *so)
{
int s, error;
s = splnet();
error = raw_usrreqs.pru_abort(so);
splx(s);
return error;
}
/*
* key_attach()
* derived from net/rtsock.c:rts_attach()
*/
static int
key_attach(struct socket *so, int proto, struct thread *td)
{
struct keycb *kp;
int s, error;
if (sotorawcb(so) != 0)
return EISCONN; /* XXX panic? */
kp = (struct keycb *)malloc(sizeof *kp, M_PCB, M_WAITOK|M_ZERO); /* XXX */
if (kp == 0)
return ENOBUFS;
/*
* The splnet() is necessary to block protocols from sending
* error notifications (like RTM_REDIRECT or RTM_LOSING) while
* this PCB is extant but incompletely initialized.
* Probably we should try to do more of this work beforehand and
* eliminate the spl.
*/
s = splnet();
so->so_pcb = (caddr_t)kp;
error = raw_usrreqs.pru_attach(so, proto, td);
kp = (struct keycb *)sotorawcb(so);
if (error) {
free(kp, M_PCB);
so->so_pcb = (caddr_t) 0;
splx(s);
return error;
}
kp->kp_promisc = kp->kp_registered = 0;
if (kp->kp_raw.rcb_proto.sp_protocol == PF_KEY) /* XXX: AF_KEY */
key_cb.key_count++;
key_cb.any_count++;
kp->kp_raw.rcb_laddr = &key_src;
kp->kp_raw.rcb_faddr = &key_dst;
soisconnected(so);
so->so_options |= SO_USELOOPBACK;
splx(s);
return 0;
}
/*
* key_bind()
* derived from net/rtsock.c:rts_bind()
*/
static int
key_bind(struct socket *so, struct sockaddr *nam, struct thread *td)
{
int s, error;
s = splnet();
error = raw_usrreqs.pru_bind(so, nam, td); /* xxx just EINVAL */
splx(s);
return error;
}
/*
* key_connect()
* derived from net/rtsock.c:rts_connect()
*/
static int
key_connect(struct socket *so, struct sockaddr *nam, struct thread *td)
{
int s, error;
s = splnet();
error = raw_usrreqs.pru_connect(so, nam, td); /* XXX just EINVAL */
splx(s);
return error;
}
/*
* key_detach()
* derived from net/rtsock.c:rts_detach()
*/
static int
key_detach(struct socket *so)
{
struct keycb *kp = (struct keycb *)sotorawcb(so);
int s, error;
s = splnet();
if (kp != 0) {
if (kp->kp_raw.rcb_proto.sp_protocol
== PF_KEY) /* XXX: AF_KEY */
key_cb.key_count--;
key_cb.any_count--;
key_freereg(so);
}
error = raw_usrreqs.pru_detach(so);
splx(s);
return error;
}
/*
* key_disconnect()
* derived from net/rtsock.c:key_disconnect()
*/
static int
key_disconnect(struct socket *so)
{
int s, error;
s = splnet();
error = raw_usrreqs.pru_disconnect(so);
splx(s);
return error;
}
/*
* key_peeraddr()
* derived from net/rtsock.c:rts_peeraddr()
*/
static int
key_peeraddr(struct socket *so, struct sockaddr **nam)
{
int s, error;
s = splnet();
error = raw_usrreqs.pru_peeraddr(so, nam);
splx(s);
return error;
}
/*
* key_send()
* derived from net/rtsock.c:rts_send()
*/
static int
key_send(struct socket *so, int flags, struct mbuf *m, struct sockaddr *nam,
struct mbuf *control, struct thread *td)
{
int s, error;
s = splnet();
error = raw_usrreqs.pru_send(so, flags, m, nam, control, td);
splx(s);
return error;
}
/*
* key_shutdown()
* derived from net/rtsock.c:rts_shutdown()
*/
static int
key_shutdown(struct socket *so)
{
int s, error;
s = splnet();
error = raw_usrreqs.pru_shutdown(so);
splx(s);
return error;
}
/*
* key_sockaddr()
* derived from net/rtsock.c:rts_sockaddr()
*/
static int
key_sockaddr(struct socket *so, struct sockaddr **nam)
{
int s, error;
s = splnet();
error = raw_usrreqs.pru_sockaddr(so, nam);
splx(s);
return error;
}
struct pr_usrreqs key_usrreqs = {
key_abort, pru_accept_notsupp, key_attach, key_bind,
key_connect,
pru_connect2_notsupp, pru_control_notsupp, key_detach,
key_disconnect, pru_listen_notsupp, key_peeraddr,
pru_rcvd_notsupp,
pru_rcvoob_notsupp, key_send, pru_sense_null, key_shutdown,
key_sockaddr, sosend, soreceive, sopoll
};
/* sysctl */
SYSCTL_NODE(_net, PF_KEY, key, CTLFLAG_RW, 0, "Key Family");
/*
* Definitions of protocols supported in the KEY domain.
*/
extern struct domain keydomain;
struct protosw keysw[] = {
{ SOCK_RAW, &keydomain, PF_KEY_V2, PR_ATOMIC|PR_ADDR,
0, (pr_output_t *)key_output, raw_ctlinput, 0,
0,
raw_init, 0, 0, 0,
&key_usrreqs
}
};
static void
key_init0(void)
{
bzero((caddr_t)&key_cb, sizeof(key_cb));
key_init();
}
struct domain keydomain =
{ PF_KEY, "key", key_init0, 0, 0,
keysw, &keysw[sizeof(keysw)/sizeof(keysw[0])] };
DOMAIN_SET(key);