freebsd-skq/sys/dev/sound/pcm/feeder.c
Ed Schouten d745c852be Mark MALLOC_DEFINEs static that have no corresponding MALLOC_DECLAREs.
This means that their use is restricted to a single C file.
2011-11-07 06:44:47 +00:00

522 lines
13 KiB
C

/*-
* Copyright (c) 2005-2009 Ariff Abdullah <ariff@FreeBSD.org>
* Copyright (c) 1999 Cameron Grant <cg@FreeBSD.org>
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#ifdef HAVE_KERNEL_OPTION_HEADERS
#include "opt_snd.h"
#endif
#include <dev/sound/pcm/sound.h>
#include "feeder_if.h"
SND_DECLARE_FILE("$FreeBSD$");
static MALLOC_DEFINE(M_FEEDER, "feeder", "pcm feeder");
#define MAXFEEDERS 256
#undef FEEDER_DEBUG
struct feedertab_entry {
SLIST_ENTRY(feedertab_entry) link;
struct feeder_class *feederclass;
struct pcm_feederdesc *desc;
int idx;
};
static SLIST_HEAD(, feedertab_entry) feedertab;
/*****************************************************************************/
void
feeder_register(void *p)
{
static int feedercnt = 0;
struct feeder_class *fc = p;
struct feedertab_entry *fte;
int i;
if (feedercnt == 0) {
KASSERT(fc->desc == NULL, ("first feeder not root: %s", fc->name));
SLIST_INIT(&feedertab);
fte = malloc(sizeof(*fte), M_FEEDER, M_NOWAIT | M_ZERO);
if (fte == NULL) {
printf("can't allocate memory for root feeder: %s\n",
fc->name);
return;
}
fte->feederclass = fc;
fte->desc = NULL;
fte->idx = feedercnt;
SLIST_INSERT_HEAD(&feedertab, fte, link);
feedercnt++;
/* initialize global variables */
if (snd_verbose < 0 || snd_verbose > 4)
snd_verbose = 1;
/* initialize unit numbering */
snd_unit_init();
if (snd_unit < 0 || snd_unit > PCMMAXUNIT)
snd_unit = -1;
if (snd_maxautovchans < 0 ||
snd_maxautovchans > SND_MAXVCHANS)
snd_maxautovchans = 0;
if (chn_latency < CHN_LATENCY_MIN ||
chn_latency > CHN_LATENCY_MAX)
chn_latency = CHN_LATENCY_DEFAULT;
if (chn_latency_profile < CHN_LATENCY_PROFILE_MIN ||
chn_latency_profile > CHN_LATENCY_PROFILE_MAX)
chn_latency_profile = CHN_LATENCY_PROFILE_DEFAULT;
if (feeder_rate_min < FEEDRATE_MIN ||
feeder_rate_max < FEEDRATE_MIN ||
feeder_rate_min > FEEDRATE_MAX ||
feeder_rate_max > FEEDRATE_MAX ||
!(feeder_rate_min < feeder_rate_max)) {
feeder_rate_min = FEEDRATE_RATEMIN;
feeder_rate_max = FEEDRATE_RATEMAX;
}
if (feeder_rate_round < FEEDRATE_ROUNDHZ_MIN ||
feeder_rate_round > FEEDRATE_ROUNDHZ_MAX)
feeder_rate_round = FEEDRATE_ROUNDHZ;
if (bootverbose)
printf("%s: snd_unit=%d snd_maxautovchans=%d "
"latency=%d "
"feeder_rate_min=%d feeder_rate_max=%d "
"feeder_rate_round=%d\n",
__func__, snd_unit, snd_maxautovchans,
chn_latency,
feeder_rate_min, feeder_rate_max,
feeder_rate_round);
/* we've got our root feeder so don't veto pcm loading anymore */
pcm_veto_load = 0;
return;
}
KASSERT(fc->desc != NULL, ("feeder '%s' has no descriptor", fc->name));
/* beyond this point failure is non-fatal but may result in some translations being unavailable */
i = 0;
while ((feedercnt < MAXFEEDERS) && (fc->desc[i].type > 0)) {
/* printf("adding feeder %s, %x -> %x\n", fc->name, fc->desc[i].in, fc->desc[i].out); */
fte = malloc(sizeof(*fte), M_FEEDER, M_NOWAIT | M_ZERO);
if (fte == NULL) {
printf("can't allocate memory for feeder '%s', %x -> %x\n", fc->name, fc->desc[i].in, fc->desc[i].out);
return;
}
fte->feederclass = fc;
fte->desc = &fc->desc[i];
fte->idx = feedercnt;
fte->desc->idx = feedercnt;
SLIST_INSERT_HEAD(&feedertab, fte, link);
i++;
}
feedercnt++;
if (feedercnt >= MAXFEEDERS)
printf("MAXFEEDERS (%d >= %d) exceeded\n", feedercnt, MAXFEEDERS);
}
static void
feeder_unregisterall(void *p)
{
struct feedertab_entry *fte, *next;
next = SLIST_FIRST(&feedertab);
while (next != NULL) {
fte = next;
next = SLIST_NEXT(fte, link);
free(fte, M_FEEDER);
}
}
static int
cmpdesc(struct pcm_feederdesc *n, struct pcm_feederdesc *m)
{
return ((n->type == m->type) &&
((n->in == 0) || (n->in == m->in)) &&
((n->out == 0) || (n->out == m->out)) &&
(n->flags == m->flags));
}
static void
feeder_destroy(struct pcm_feeder *f)
{
FEEDER_FREE(f);
kobj_delete((kobj_t)f, M_FEEDER);
}
static struct pcm_feeder *
feeder_create(struct feeder_class *fc, struct pcm_feederdesc *desc)
{
struct pcm_feeder *f;
int err;
f = (struct pcm_feeder *)kobj_create((kobj_class_t)fc, M_FEEDER, M_NOWAIT | M_ZERO);
if (f == NULL)
return NULL;
f->data = fc->data;
f->source = NULL;
f->parent = NULL;
f->class = fc;
f->desc = &(f->desc_static);
if (desc) {
*(f->desc) = *desc;
} else {
f->desc->type = FEEDER_ROOT;
f->desc->in = 0;
f->desc->out = 0;
f->desc->flags = 0;
f->desc->idx = 0;
}
err = FEEDER_INIT(f);
if (err) {
printf("feeder_init(%p) on %s returned %d\n", f, fc->name, err);
feeder_destroy(f);
return NULL;
}
return f;
}
struct feeder_class *
feeder_getclass(struct pcm_feederdesc *desc)
{
struct feedertab_entry *fte;
SLIST_FOREACH(fte, &feedertab, link) {
if ((desc == NULL) && (fte->desc == NULL))
return fte->feederclass;
if ((fte->desc != NULL) && (desc != NULL) && cmpdesc(desc, fte->desc))
return fte->feederclass;
}
return NULL;
}
int
chn_addfeeder(struct pcm_channel *c, struct feeder_class *fc, struct pcm_feederdesc *desc)
{
struct pcm_feeder *nf;
nf = feeder_create(fc, desc);
if (nf == NULL)
return ENOSPC;
nf->source = c->feeder;
if (c->feeder != NULL)
c->feeder->parent = nf;
c->feeder = nf;
return 0;
}
int
chn_removefeeder(struct pcm_channel *c)
{
struct pcm_feeder *f;
if (c->feeder == NULL)
return -1;
f = c->feeder;
c->feeder = c->feeder->source;
feeder_destroy(f);
return 0;
}
struct pcm_feeder *
chn_findfeeder(struct pcm_channel *c, u_int32_t type)
{
struct pcm_feeder *f;
f = c->feeder;
while (f != NULL) {
if (f->desc->type == type)
return f;
f = f->source;
}
return NULL;
}
/*
* 14bit format scoring
* --------------------
*
* 13 12 11 10 9 8 2 1 0 offset
* +---+---+---+---+---+---+-------------+---+---+
* | X | X | X | X | X | X | X X X X X X | X | X |
* +---+---+---+---+---+---+-------------+---+---+
* | | | | | | | | |
* | | | | | | | | +--> signed?
* | | | | | | | |
* | | | | | | | +------> bigendian?
* | | | | | | |
* | | | | | | +---------------> total channels
* | | | | | |
* | | | | | +------------------------> AFMT_A_LAW
* | | | | |
* | | | | +----------------------------> AFMT_MU_LAW
* | | | |
* | | | +--------------------------------> AFMT_8BIT
* | | |
* | | +------------------------------------> AFMT_16BIT
* | |
* | +----------------------------------------> AFMT_24BIT
* |
* +--------------------------------------------> AFMT_32BIT
*/
#define score_signeq(s1, s2) (((s1) & 0x1) == ((s2) & 0x1))
#define score_endianeq(s1, s2) (((s1) & 0x2) == ((s2) & 0x2))
#define score_cheq(s1, s2) (((s1) & 0xfc) == ((s2) & 0xfc))
#define score_chgt(s1, s2) (((s1) & 0xfc) > ((s2) & 0xfc))
#define score_chlt(s1, s2) (((s1) & 0xfc) < ((s2) & 0xfc))
#define score_val(s1) ((s1) & 0x3f00)
#define score_cse(s1) ((s1) & 0x7f)
u_int32_t
snd_fmtscore(u_int32_t fmt)
{
u_int32_t ret;
ret = 0;
if (fmt & AFMT_SIGNED)
ret |= 1 << 0;
if (fmt & AFMT_BIGENDIAN)
ret |= 1 << 1;
/*if (fmt & AFMT_STEREO)
ret |= (2 & 0x3f) << 2;
else
ret |= (1 & 0x3f) << 2;*/
ret |= (AFMT_CHANNEL(fmt) & 0x3f) << 2;
if (fmt & AFMT_A_LAW)
ret |= 1 << 8;
else if (fmt & AFMT_MU_LAW)
ret |= 1 << 9;
else if (fmt & AFMT_8BIT)
ret |= 1 << 10;
else if (fmt & AFMT_16BIT)
ret |= 1 << 11;
else if (fmt & AFMT_24BIT)
ret |= 1 << 12;
else if (fmt & AFMT_32BIT)
ret |= 1 << 13;
return ret;
}
static u_int32_t
snd_fmtbestfunc(u_int32_t fmt, u_int32_t *fmts, int cheq)
{
u_int32_t best, score, score2, oldscore;
int i;
if (fmt == 0 || fmts == NULL || fmts[0] == 0)
return 0;
if (snd_fmtvalid(fmt, fmts))
return fmt;
best = 0;
score = snd_fmtscore(fmt);
oldscore = 0;
for (i = 0; fmts[i] != 0; i++) {
score2 = snd_fmtscore(fmts[i]);
if (cheq && !score_cheq(score, score2) &&
(score_chlt(score2, score) ||
(oldscore != 0 && score_chgt(score2, oldscore))))
continue;
if (oldscore == 0 ||
(score_val(score2) == score_val(score)) ||
(score_val(score2) == score_val(oldscore)) ||
(score_val(score2) > score_val(oldscore) &&
score_val(score2) < score_val(score)) ||
(score_val(score2) < score_val(oldscore) &&
score_val(score2) > score_val(score)) ||
(score_val(oldscore) < score_val(score) &&
score_val(score2) > score_val(oldscore))) {
if (score_val(oldscore) != score_val(score2) ||
score_cse(score) == score_cse(score2) ||
((score_cse(oldscore) != score_cse(score) &&
!score_endianeq(score, oldscore) &&
(score_endianeq(score, score2) ||
(!score_signeq(score, oldscore) &&
score_signeq(score, score2)))))) {
best = fmts[i];
oldscore = score2;
}
}
}
return best;
}
u_int32_t
snd_fmtbestbit(u_int32_t fmt, u_int32_t *fmts)
{
return snd_fmtbestfunc(fmt, fmts, 0);
}
u_int32_t
snd_fmtbestchannel(u_int32_t fmt, u_int32_t *fmts)
{
return snd_fmtbestfunc(fmt, fmts, 1);
}
u_int32_t
snd_fmtbest(u_int32_t fmt, u_int32_t *fmts)
{
u_int32_t best1, best2;
u_int32_t score, score1, score2;
if (snd_fmtvalid(fmt, fmts))
return fmt;
best1 = snd_fmtbestchannel(fmt, fmts);
best2 = snd_fmtbestbit(fmt, fmts);
if (best1 != 0 && best2 != 0 && best1 != best2) {
/*if (fmt & AFMT_STEREO)*/
if (AFMT_CHANNEL(fmt) > 1)
return best1;
else {
score = score_val(snd_fmtscore(fmt));
score1 = score_val(snd_fmtscore(best1));
score2 = score_val(snd_fmtscore(best2));
if (score1 == score2 || score1 == score)
return best1;
else if (score2 == score)
return best2;
else if (score1 > score2)
return best1;
return best2;
}
} else if (best2 == 0)
return best1;
else
return best2;
}
void
feeder_printchain(struct pcm_feeder *head)
{
struct pcm_feeder *f;
printf("feeder chain (head @%p)\n", head);
f = head;
while (f != NULL) {
printf("%s/%d @ %p\n", f->class->name, f->desc->idx, f);
f = f->source;
}
printf("[end]\n\n");
}
/*****************************************************************************/
static int
feed_root(struct pcm_feeder *feeder, struct pcm_channel *ch, u_int8_t *buffer, u_int32_t count, void *source)
{
struct snd_dbuf *src = source;
int l, offset;
KASSERT(count > 0, ("feed_root: count == 0"));
if (++ch->feedcount == 0)
ch->feedcount = 2;
l = min(count, sndbuf_getready(src));
/* When recording only return as much data as available */
if (ch->direction == PCMDIR_REC) {
sndbuf_dispose(src, buffer, l);
return l;
}
offset = count - l;
if (offset > 0) {
if (snd_verbose > 3)
printf("%s: (%s) %spending %d bytes "
"(count=%d l=%d feed=%d)\n",
__func__,
(ch->flags & CHN_F_VIRTUAL) ? "virtual" : "hardware",
(ch->feedcount == 1) ? "pre" : "ap",
offset, count, l, ch->feedcount);
if (ch->feedcount == 1) {
memset(buffer,
sndbuf_zerodata(sndbuf_getfmt(src)),
offset);
if (l > 0)
sndbuf_dispose(src, buffer + offset, l);
else
ch->feedcount--;
} else {
if (l > 0)
sndbuf_dispose(src, buffer, l);
memset(buffer + l,
sndbuf_zerodata(sndbuf_getfmt(src)),
offset);
if (!(ch->flags & CHN_F_CLOSING))
ch->xruns++;
}
} else if (l > 0)
sndbuf_dispose(src, buffer, l);
return count;
}
static kobj_method_t feeder_root_methods[] = {
KOBJMETHOD(feeder_feed, feed_root),
KOBJMETHOD_END
};
static struct feeder_class feeder_root_class = {
.name = "feeder_root",
.methods = feeder_root_methods,
.size = sizeof(struct pcm_feeder),
.desc = NULL,
.data = NULL,
};
SYSINIT(feeder_root, SI_SUB_DRIVERS, SI_ORDER_FIRST, feeder_register, &feeder_root_class);
SYSUNINIT(feeder_root, SI_SUB_DRIVERS, SI_ORDER_FIRST, feeder_unregisterall, NULL);