freebsd-skq/sys/dev/ata/ata-raid.c
2003-11-24 14:54:41 +00:00

1699 lines
49 KiB
C

/*-
* Copyright (c) 2000 - 2003 Søren Schmidt <sos@FreeBSD.org>
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer,
* without modification, immediately at the beginning of the file.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. The name of the author may not be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include "opt_ata.h"
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/ata.h>
#include <sys/kernel.h>
#include <sys/proc.h>
#include <sys/malloc.h>
#include <sys/bio.h>
#include <sys/bus.h>
#include <sys/conf.h>
#include <sys/disk.h>
#include <sys/cons.h>
#include <sys/unistd.h>
#include <sys/kthread.h>
#include <sys/taskqueue.h>
#include <machine/bus.h>
#include <sys/rman.h>
#include <geom/geom_disk.h>
#include <dev/pci/pcivar.h>
#include <dev/pci/pcireg.h>
#include <dev/ata/ata-all.h>
#include <dev/ata/ata-pci.h>
#include <dev/ata/ata-disk.h>
#include <dev/ata/ata-raid.h>
/* device structures */
static disk_strategy_t arstrategy;
static dumper_t ardump;
/* prototypes */
static void ar_attach_raid(struct ar_softc *, int);
static void ar_done(struct bio *);
static void ar_config_changed(struct ar_softc *, int);
static void ar_rebuild(void *);
static int ar_highpoint_read_conf(struct ad_softc *, struct ar_softc **);
static int ar_highpoint_write_conf(struct ar_softc *);
static int ar_promise_read_conf(struct ad_softc *, struct ar_softc **, int);
static int ar_promise_write_conf(struct ar_softc *);
static int ar_rw(struct ad_softc *, u_int32_t, int, caddr_t, int);
static struct ata_device *ar_locate_disk(int);
static void ar_print_conf(struct ar_softc *);
/* internal vars */
static struct ar_softc **ar_table = NULL;
static MALLOC_DEFINE(M_AR, "AR driver", "ATA RAID driver");
#define AR_REBUILD_SIZE 128
int
ata_raiddisk_attach(struct ad_softc *adp)
{
struct ar_softc *rdp;
int array, disk;
if (ar_table) {
for (array = 0; array < MAX_ARRAYS; array++) {
if (!(rdp = ar_table[array]) || !rdp->flags)
continue;
for (disk = 0; disk < rdp->total_disks; disk++) {
if ((rdp->disks[disk].flags & AR_DF_ASSIGNED) &&
rdp->disks[disk].device == adp->device) {
ata_prtdev(rdp->disks[disk].device,
"inserted into ar%d disk%d as spare\n",
array, disk);
rdp->disks[disk].flags |= (AR_DF_PRESENT | AR_DF_SPARE);
AD_SOFTC(rdp->disks[disk])->flags |= AD_F_RAID_SUBDISK;
ar_config_changed(rdp, 1);
return 1;
}
}
}
}
if (!ar_table)
ar_table = malloc(sizeof(struct ar_soft *) * MAX_ARRAYS,
M_AR, M_NOWAIT | M_ZERO);
if (!ar_table) {
ata_prtdev(adp->device, "no memory for ATA raid array\n");
return 0;
}
switch(pci_get_vendor(device_get_parent(adp->device->channel->dev))) {
case ATA_PROMISE_ID:
/* test RAID bit in PCI reg XXX */
return (ar_promise_read_conf(adp, ar_table, 0));
case ATA_HIGHPOINT_ID:
return (ar_highpoint_read_conf(adp, ar_table));
default:
return (ar_promise_read_conf(adp, ar_table, 1));
}
return 0;
}
int
ata_raiddisk_detach(struct ad_softc *adp)
{
struct ar_softc *rdp;
int array, disk;
if (ar_table) {
for (array = 0; array < MAX_ARRAYS; array++) {
if (!(rdp = ar_table[array]) || !rdp->flags)
continue;
for (disk = 0; disk < rdp->total_disks; disk++) {
if (rdp->disks[disk].device == adp->device) {
ata_prtdev(rdp->disks[disk].device,
"deleted from ar%d disk%d\n", array, disk);
rdp->disks[disk].flags &= ~(AR_DF_PRESENT | AR_DF_ONLINE);
AD_SOFTC(rdp->disks[disk])->flags &= ~AD_F_RAID_SUBDISK;
rdp->disks[disk].device = NULL;
ar_config_changed(rdp, 1);
return 1;
}
}
}
}
return 0;
}
void
ata_raid_attach()
{
struct ar_softc *rdp;
int array;
if (!ar_table)
return;
for (array = 0; array < MAX_ARRAYS; array++) {
if (!(rdp = ar_table[array]) || !rdp->flags)
continue;
if (bootverbose)
ar_print_conf(rdp);
ar_attach_raid(rdp, 0);
}
}
static void
ar_attach_raid(struct ar_softc *rdp, int update)
{
int disk;
ar_config_changed(rdp, update);
rdp->disk.d_strategy = arstrategy;
rdp->disk.d_dump = ardump;
rdp->disk.d_name = "ar";
rdp->disk.d_sectorsize = DEV_BSIZE;
rdp->disk.d_mediasize = (off_t)rdp->total_sectors * DEV_BSIZE;
rdp->disk.d_fwsectors = rdp->sectors;
rdp->disk.d_fwheads = rdp->heads;
rdp->disk.d_maxsize = 128 * DEV_BSIZE;
rdp->disk.d_drv1 = rdp;
disk_create(rdp->lun, &rdp->disk, 0, NULL, NULL);
printf("ar%d: %lluMB <ATA ", rdp->lun, (unsigned long long)
(rdp->total_sectors / ((1024L * 1024L) / DEV_BSIZE)));
switch (rdp->flags & (AR_F_RAID0 | AR_F_RAID1 | AR_F_SPAN)) {
case AR_F_RAID0:
printf("RAID0 "); break;
case AR_F_RAID1:
printf("RAID1 "); break;
case AR_F_SPAN:
printf("SPAN "); break;
case (AR_F_RAID0 | AR_F_RAID1):
printf("RAID0+1 "); break;
default:
printf("unknown 0x%x> ", rdp->flags);
return;
}
printf("array> [%d/%d/%d] status: ",
rdp->cylinders, rdp->heads, rdp->sectors);
switch (rdp->flags & (AR_F_DEGRADED | AR_F_READY)) {
case AR_F_READY:
printf("READY");
break;
case (AR_F_DEGRADED | AR_F_READY):
printf("DEGRADED");
break;
default:
printf("BROKEN");
break;
}
printf(" subdisks:\n");
for (disk = 0; disk < rdp->total_disks; disk++) {
if (rdp->disks[disk].device &&
AD_SOFTC(rdp->disks[disk])->flags & AD_F_RAID_SUBDISK) {
if (rdp->disks[disk].flags & AR_DF_PRESENT) {
if (rdp->disks[disk].flags & AR_DF_ONLINE)
printf(" disk%d READY ", disk);
else if (rdp->disks[disk].flags & AR_DF_SPARE)
printf(" disk%d SPARE ", disk);
else
printf(" disk%d FREE ", disk);
printf("on %s at ata%d-%s\n", rdp->disks[disk].device->name,
device_get_unit(rdp->disks[disk].device->channel->dev),
(rdp->disks[disk].device->unit == ATA_MASTER) ?
"master" : "slave");
}
else if (rdp->disks[disk].flags & AR_DF_ASSIGNED)
printf(" disk%d DOWN\n", disk);
else
printf(" disk%d INVALID no RAID config on this disk\n", disk);
}
else
printf(" disk%d DOWN no device found for this disk\n", disk);
}
}
int
ata_raid_addspare(int array, int disk)
{
struct ar_softc *rdp;
struct ata_device *atadev;
int i;
if (!ar_table || !(rdp = ar_table[array]))
return ENXIO;
if (!(rdp->flags & AR_F_RAID1))
return EPERM;
if (rdp->flags & AR_F_REBUILDING)
return EBUSY;
if (!(rdp->flags & AR_F_DEGRADED) || !(rdp->flags & AR_F_READY))
return ENXIO;
for (i = 0; i < rdp->total_disks; i++ ) {
if (((rdp->disks[i].flags & (AR_DF_PRESENT | AR_DF_ONLINE)) ==
(AR_DF_PRESENT | AR_DF_ONLINE)) && rdp->disks[i].device)
continue;
if ((atadev = ar_locate_disk(disk))) {
if (((struct ad_softc*)(atadev->softc))->flags & AD_F_RAID_SUBDISK)
return EBUSY;
rdp->disks[i].device = atadev;
rdp->disks[i].flags |= (AR_DF_PRESENT|AR_DF_ASSIGNED|AR_DF_SPARE);
AD_SOFTC(rdp->disks[i])->flags |= AD_F_RAID_SUBDISK;
ata_prtdev(rdp->disks[i].device,
"inserted into ar%d disk%d as spare\n", array, i);
ar_config_changed(rdp, 1);
return 0;
}
}
return ENXIO;
}
int
ata_raid_create(struct raid_setup *setup)
{
struct ata_device *atadev;
struct ar_softc *rdp;
int array, disk;
int ctlr = 0, disk_size = 0, total_disks = 0;
if (!ar_table)
ar_table = malloc(sizeof(struct ar_soft *) * MAX_ARRAYS,
M_AR, M_NOWAIT | M_ZERO);
if (!ar_table) {
printf("ar: no memory for ATA raid array\n");
return 0;
}
for (array = 0; array < MAX_ARRAYS; array++) {
if (!ar_table[array])
break;
}
if (array >= MAX_ARRAYS)
return ENOSPC;
if (!(rdp = (struct ar_softc*)malloc(sizeof(struct ar_softc), M_AR,
M_NOWAIT | M_ZERO))) {
printf("ar%d: failed to allocate raid config storage\n", array);
return ENOMEM;
}
for (disk = 0; disk < setup->total_disks; disk++) {
if ((atadev = ar_locate_disk(setup->disks[disk]))) {
rdp->disks[disk].device = atadev;
if (AD_SOFTC(rdp->disks[disk])->flags & AD_F_RAID_SUBDISK) {
setup->disks[disk] = -1;
free(rdp, M_AR);
return EBUSY;
}
switch(pci_get_vendor(device_get_parent(
rdp->disks[disk].device->channel->dev))) {
case ATA_HIGHPOINT_ID:
ctlr |= AR_F_HIGHPOINT_RAID;
rdp->disks[disk].disk_sectors =
AD_SOFTC(rdp->disks[disk])->total_secs;
break;
default:
ctlr |= AR_F_FREEBSD_RAID;
/* FALLTHROUGH */
case ATA_PROMISE_ID:
ctlr |= AR_F_PROMISE_RAID;
rdp->disks[disk].disk_sectors =
PR_LBA(AD_SOFTC(rdp->disks[disk]));
break;
}
if (rdp->flags & (AR_F_PROMISE_RAID|AR_F_HIGHPOINT_RAID) &&
(rdp->flags & (AR_F_PROMISE_RAID|AR_F_HIGHPOINT_RAID)) !=
(ctlr & (AR_F_PROMISE_RAID|AR_F_HIGHPOINT_RAID))) {
free(rdp, M_AR);
return EXDEV;
}
else
rdp->flags |= ctlr;
if (disk_size)
disk_size = min(rdp->disks[disk].disk_sectors, disk_size);
else
disk_size = rdp->disks[disk].disk_sectors;
rdp->disks[disk].flags =
(AR_DF_PRESENT | AR_DF_ASSIGNED | AR_DF_ONLINE);
total_disks++;
}
else {
setup->disks[disk] = -1;
free(rdp, M_AR);
return ENXIO;
}
}
if (!total_disks) {
free(rdp, M_AR);
return ENODEV;
}
switch (setup->type) {
case 1:
rdp->flags |= AR_F_RAID0;
break;
case 2:
rdp->flags |= AR_F_RAID1;
if (total_disks != 2) {
free(rdp, M_AR);
return EPERM;
}
break;
case 3:
rdp->flags |= (AR_F_RAID0 | AR_F_RAID1);
if (total_disks % 2 != 0) {
free(rdp, M_AR);
return EPERM;
}
break;
case 4:
rdp->flags |= AR_F_SPAN;
break;
}
for (disk = 0; disk < total_disks; disk++)
AD_SOFTC(rdp->disks[disk])->flags |= AD_F_RAID_SUBDISK;
rdp->lun = array;
if (rdp->flags & AR_F_RAID0) {
int bit = 0;
while (setup->interleave >>= 1)
bit++;
if (rdp->flags & AR_F_PROMISE_RAID)
rdp->interleave = min(max(2, 1 << bit), 2048);
if (rdp->flags & AR_F_HIGHPOINT_RAID)
rdp->interleave = min(max(32, 1 << bit), 128);
}
rdp->total_disks = total_disks;
rdp->width = total_disks / ((rdp->flags & AR_F_RAID1) ? 2 : 1);
rdp->total_sectors = disk_size * rdp->width;
rdp->heads = 255;
rdp->sectors = 63;
rdp->cylinders = rdp->total_sectors / (255 * 63);
if (rdp->flags & AR_F_PROMISE_RAID) {
rdp->offset = 0;
rdp->reserved = 63;
}
if (rdp->flags & AR_F_HIGHPOINT_RAID) {
rdp->offset = HPT_LBA + 1;
rdp->reserved = HPT_LBA + 1;
}
rdp->lock_start = rdp->lock_end = 0xffffffff;
rdp->flags |= AR_F_READY;
ar_table[array] = rdp;
#if 0
/* kick off rebuild here */
if (setup->type == 2) {
rdp->disks[1].flags &= ~AR_DF_ONLINE;
rdp->disks[1].flags |= AR_DF_SPARE;
}
#endif
ar_attach_raid(rdp, 1);
ata_raid_rebuild(array);
setup->unit = array;
return 0;
}
int
ata_raid_delete(int array)
{
struct ar_softc *rdp;
int disk;
if (!ar_table) {
printf("ar: no memory for ATA raid array\n");
return 0;
}
if (!(rdp = ar_table[array]))
return ENXIO;
rdp->flags &= ~AR_F_READY;
for (disk = 0; disk < rdp->total_disks; disk++) {
if ((rdp->disks[disk].flags&AR_DF_PRESENT) && rdp->disks[disk].device) {
AD_SOFTC(rdp->disks[disk])->flags &= ~AD_F_RAID_SUBDISK;
/* SOS
ata_enclosure_leds(rdp->disks[disk].device, ATA_LED_GREEN);
XXX */
rdp->disks[disk].flags = 0;
}
}
if (rdp->flags & AR_F_PROMISE_RAID)
ar_promise_write_conf(rdp);
else
ar_highpoint_write_conf(rdp);
disk_destroy(&rdp->disk);
free(rdp, M_AR);
ar_table[array] = NULL;
return 0;
}
int
ata_raid_status(int array, struct raid_status *status)
{
struct ar_softc *rdp;
int i;
if (!ar_table || !(rdp = ar_table[array]))
return ENXIO;
switch (rdp->flags & (AR_F_RAID0 | AR_F_RAID1 | AR_F_SPAN)) {
case AR_F_RAID0:
status->type = AR_RAID0;
break;
case AR_F_RAID1:
status->type = AR_RAID1;
break;
case AR_F_RAID0 | AR_F_RAID1:
status->type = AR_RAID0 | AR_RAID1;
break;
case AR_F_SPAN:
status->type = AR_SPAN;
break;
}
status->total_disks = rdp->total_disks;
for (i = 0; i < rdp->total_disks; i++ ) {
if ((rdp->disks[i].flags & AR_DF_PRESENT) && rdp->disks[i].device)
status->disks[i] = AD_SOFTC(rdp->disks[i])->lun;
else
status->disks[i] = -1;
}
status->interleave = rdp->interleave;
status->status = 0;
if (rdp->flags & AR_F_READY)
status->status |= AR_READY;
if (rdp->flags & AR_F_DEGRADED)
status->status |= AR_DEGRADED;
if (rdp->flags & AR_F_REBUILDING) {
status->status |= AR_REBUILDING;
status->progress = 100*rdp->lock_start/(rdp->total_sectors/rdp->width);
}
return 0;
}
int
ata_raid_rebuild(int array)
{
struct ar_softc *rdp;
if (!ar_table || !(rdp = ar_table[array]))
return ENXIO;
if (rdp->flags & AR_F_REBUILDING)
return EBUSY;
return kthread_create(ar_rebuild, rdp, &rdp->pid, RFNOWAIT, 0,
"rebuilding ar%d", array);
}
static int
ardump(void *arg, void *virtual, vm_offset_t physical,
off_t offset, size_t length)
{
struct ar_softc *rdp;
struct disk *dp, *ap;
vm_offset_t pdata;
caddr_t vdata;
int blkno, count, chunk, error1, error2, lba, lbs, tmplba;
int drv = 0;
dp = arg;
rdp = dp->d_drv1;
if (!rdp || !(rdp->flags & AR_F_READY))
return ENXIO;
if (length == 0) {
for (drv = 0; drv < rdp->total_disks; drv++) {
if (rdp->disks[drv].flags & AR_DF_ONLINE) {
ap = &AD_SOFTC(rdp->disks[drv])->disk;
(void) ap->d_dump(ap, NULL, 0, 0, 0);
}
}
return 0;
}
blkno = offset / DEV_BSIZE;
vdata = virtual;
pdata = physical;
for (count = howmany(length, DEV_BSIZE); count > 0;
count -= chunk, blkno += chunk, vdata += (chunk * DEV_BSIZE),
pdata += (chunk * DEV_BSIZE)) {
switch (rdp->flags & (AR_F_RAID0 | AR_F_RAID1 | AR_F_SPAN)) {
case AR_F_SPAN:
lba = blkno;
while (lba >= AD_SOFTC(rdp->disks[drv])->total_secs-rdp->reserved)
lba -= AD_SOFTC(rdp->disks[drv++])->total_secs-rdp->reserved;
chunk = min(AD_SOFTC(rdp->disks[drv])->total_secs-rdp->reserved-lba,
count);
break;
case AR_F_RAID0:
case AR_F_RAID0 | AR_F_RAID1:
tmplba = blkno / rdp->interleave;
chunk = blkno % rdp->interleave;
if (blkno >= (rdp->total_sectors / (rdp->interleave * rdp->width)) *
(rdp->interleave * rdp->width) ) {
lbs = (rdp->total_sectors -
((rdp->total_sectors / (rdp->interleave * rdp->width)) *
(rdp->interleave * rdp->width))) / rdp->width;
drv = (blkno -
((rdp->total_sectors / (rdp->interleave * rdp->width)) *
(rdp->interleave * rdp->width))) / lbs;
lba = ((tmplba / rdp->width) * rdp->interleave) +
(blkno - ((tmplba / rdp->width) * rdp->interleave)) % lbs;
chunk = min(count, lbs);
}
else {
drv = tmplba % rdp->width;
lba = ((tmplba / rdp->width) * rdp->interleave) + chunk;
chunk = min(count, rdp->interleave - chunk);
}
break;
case AR_F_RAID1:
drv = 0;
lba = blkno;
chunk = count;
break;
default:
printf("ar%d: unknown array type in ardump\n", rdp->lun);
return EIO;
}
if (drv > 0)
lba += rdp->offset;
switch (rdp->flags & (AR_F_RAID0 | AR_F_RAID1 | AR_F_SPAN)) {
case AR_F_SPAN:
case AR_F_RAID0:
if (rdp->disks[drv].flags & AR_DF_ONLINE) {
ap = &AD_SOFTC(rdp->disks[drv])->disk;
error1 = ap->d_dump(ap, vdata, pdata,
(off_t) lba * DEV_BSIZE,
chunk * DEV_BSIZE);
} else
error1 = EIO;
if (error1)
return error1;
break;
case AR_F_RAID1:
case AR_F_RAID0 | AR_F_RAID1:
if ((rdp->disks[drv].flags & AR_DF_ONLINE) ||
((rdp->flags & AR_F_REBUILDING) &&
(rdp->disks[drv].flags & AR_DF_SPARE))) {
ap = &AD_SOFTC(rdp->disks[drv])->disk;
error1 = ap->d_dump(ap, vdata, pdata,
(off_t) lba * DEV_BSIZE,
chunk * DEV_BSIZE);
} else
error1 = EIO;
if ((rdp->disks[drv + rdp->width].flags & AR_DF_ONLINE) ||
((rdp->flags & AR_F_REBUILDING) &&
(rdp->disks[drv + rdp->width].flags & AR_DF_SPARE))) {
ap = &AD_SOFTC(rdp->disks[drv + rdp->width])->disk;
error2 = ap->d_dump(ap, vdata, pdata,
(off_t) lba * DEV_BSIZE,
chunk * DEV_BSIZE);
} else
error2 = EIO;
if (error1 && error2)
return error1;
break;
default:
printf("ar%d: unknown array type in ardump\n", rdp->lun);
return EIO;
}
}
return 0;
}
static void
arstrategy(struct bio *bp)
{
struct ar_softc *rdp = bp->bio_disk->d_drv1;
int blkno, count, chunk, lba, lbs, tmplba;
int drv = 0, change = 0;
caddr_t data;
if (!(rdp->flags & AR_F_READY)) {
bp->bio_flags |= BIO_ERROR;
bp->bio_error = EIO;
biodone(bp);
return;
}
bp->bio_resid = bp->bio_bcount;
blkno = bp->bio_pblkno;
data = bp->bio_data;
for (count = howmany(bp->bio_bcount, DEV_BSIZE); count > 0;
count -= chunk, blkno += chunk, data += (chunk * DEV_BSIZE)) {
struct ar_buf *buf1, *buf2;
switch (rdp->flags & (AR_F_RAID0 | AR_F_RAID1 | AR_F_SPAN)) {
case AR_F_SPAN:
lba = blkno;
while (lba >= AD_SOFTC(rdp->disks[drv])->total_secs-rdp->reserved)
lba -= AD_SOFTC(rdp->disks[drv++])->total_secs-rdp->reserved;
chunk = min(AD_SOFTC(rdp->disks[drv])->total_secs-rdp->reserved-lba,
count);
break;
case AR_F_RAID0:
case AR_F_RAID0 | AR_F_RAID1:
tmplba = blkno / rdp->interleave;
chunk = blkno % rdp->interleave;
if (blkno >= (rdp->total_sectors / (rdp->interleave * rdp->width)) *
(rdp->interleave * rdp->width) ) {
lbs = (rdp->total_sectors -
((rdp->total_sectors / (rdp->interleave * rdp->width)) *
(rdp->interleave * rdp->width))) / rdp->width;
drv = (blkno -
((rdp->total_sectors / (rdp->interleave * rdp->width)) *
(rdp->interleave * rdp->width))) / lbs;
lba = ((tmplba / rdp->width) * rdp->interleave) +
(blkno - ((tmplba / rdp->width) * rdp->interleave)) % lbs;
chunk = min(count, lbs);
}
else {
drv = tmplba % rdp->width;
lba = ((tmplba / rdp->width) * rdp->interleave) + chunk;
chunk = min(count, rdp->interleave - chunk);
}
break;
case AR_F_RAID1:
drv = 0;
lba = blkno;
chunk = count;
break;
default:
printf("ar%d: unknown array type in arstrategy\n", rdp->lun);
bp->bio_flags |= BIO_ERROR;
bp->bio_error = EIO;
biodone(bp);
return;
}
buf1 = malloc(sizeof(struct ar_buf), M_AR, M_NOWAIT | M_ZERO);
buf1->bp.bio_pblkno = lba;
if ((buf1->drive = drv) > 0)
buf1->bp.bio_pblkno += rdp->offset;
buf1->bp.bio_driver1 = (void *)rdp;
buf1->bp.bio_bcount = chunk * DEV_BSIZE;
buf1->bp.bio_data = data;
buf1->bp.bio_cmd = bp->bio_cmd;
buf1->bp.bio_flags = bp->bio_flags;
buf1->bp.bio_done = ar_done;
buf1->org = bp;
switch (rdp->flags & (AR_F_RAID0 | AR_F_RAID1 | AR_F_SPAN)) {
case AR_F_SPAN:
case AR_F_RAID0:
if ((rdp->disks[buf1->drive].flags &
(AR_DF_PRESENT|AR_DF_ONLINE))==(AR_DF_PRESENT|AR_DF_ONLINE) &&
!rdp->disks[buf1->drive].device->softc) {
rdp->disks[buf1->drive].flags &= ~AR_DF_ONLINE;
ar_config_changed(rdp, 1);
free(buf1, M_AR);
bp->bio_flags |= BIO_ERROR;
bp->bio_error = EIO;
biodone(bp);
return;
}
buf1->bp.bio_disk = &AD_SOFTC(rdp->disks[buf1->drive])->disk;
AR_STRATEGY((struct bio *)buf1);
break;
case AR_F_RAID1:
case AR_F_RAID0 | AR_F_RAID1:
if (rdp->flags & AR_F_REBUILDING && bp->bio_cmd == BIO_WRITE) {
if ((bp->bio_pblkno >= rdp->lock_start &&
bp->bio_pblkno < rdp->lock_end) ||
((bp->bio_pblkno + chunk) > rdp->lock_start &&
(bp->bio_pblkno + chunk) <= rdp->lock_end)) {
tsleep(rdp, PRIBIO, "arwait", 0);
}
}
if ((rdp->disks[buf1->drive].flags &
(AR_DF_PRESENT|AR_DF_ONLINE))==(AR_DF_PRESENT|AR_DF_ONLINE) &&
!rdp->disks[buf1->drive].device->softc) {
rdp->disks[buf1->drive].flags &= ~AR_DF_ONLINE;
change = 1;
}
if ((rdp->disks[buf1->drive + rdp->width].flags &
(AR_DF_PRESENT|AR_DF_ONLINE))==(AR_DF_PRESENT|AR_DF_ONLINE) &&
!rdp->disks[buf1->drive + rdp->width].device->softc) {
rdp->disks[buf1->drive + rdp->width].flags &= ~AR_DF_ONLINE;
change = 1;
}
if (change)
ar_config_changed(rdp, 1);
if (!(rdp->flags & AR_F_READY)) {
free(buf1, M_AR);
bp->bio_flags |= BIO_ERROR;
bp->bio_error = EIO;
biodone(bp);
return;
}
if (bp->bio_cmd == BIO_READ) {
int src_online =
(rdp->disks[buf1->drive].flags & AR_DF_ONLINE);
int mir_online =
(rdp->disks[buf1->drive+rdp->width].flags & AR_DF_ONLINE);
/* if mirror gone or close to last access on source */
if (!mir_online ||
((src_online) &&
buf1->bp.bio_pblkno >=
(rdp->disks[buf1->drive].last_lba - AR_PROXIMITY) &&
buf1->bp.bio_pblkno <=
(rdp->disks[buf1->drive].last_lba + AR_PROXIMITY))) {
rdp->flags &= ~AR_F_TOGGLE;
}
/* if source gone or close to last access on mirror */
else if (!src_online ||
((mir_online) &&
buf1->bp.bio_pblkno >=
(rdp->disks[buf1->drive + rdp->width].last_lba -
AR_PROXIMITY) &&
buf1->bp.bio_pblkno <=
(rdp->disks[buf1->drive + rdp->width].last_lba +
AR_PROXIMITY))) {
buf1->drive = buf1->drive + rdp->width;
rdp->flags |= AR_F_TOGGLE;
}
/* not close to any previous access, toggle */
else {
if (rdp->flags & AR_F_TOGGLE)
rdp->flags &= ~AR_F_TOGGLE;
else {
buf1->drive = buf1->drive + rdp->width;
rdp->flags |= AR_F_TOGGLE;
}
}
}
if (bp->bio_cmd == BIO_WRITE) {
if ((rdp->disks[buf1->drive+rdp->width].flags & AR_DF_ONLINE) ||
((rdp->flags & AR_F_REBUILDING) &&
(rdp->disks[buf1->drive+rdp->width].flags & AR_DF_SPARE) &&
buf1->bp.bio_pblkno < rdp->lock_start)) {
if ((rdp->disks[buf1->drive].flags & AR_DF_ONLINE) ||
((rdp->flags & AR_F_REBUILDING) &&
(rdp->disks[buf1->drive].flags & AR_DF_SPARE) &&
buf1->bp.bio_pblkno < rdp->lock_start)) {
buf2 = malloc(sizeof(struct ar_buf), M_AR, M_NOWAIT);
bcopy(buf1, buf2, sizeof(struct ar_buf));
buf1->mirror = buf2;
buf2->mirror = buf1;
buf2->drive = buf1->drive + rdp->width;
buf2->bp.bio_disk =
&AD_SOFTC(rdp->disks[buf2->drive])->disk;
AR_STRATEGY((struct bio *)buf2);
rdp->disks[buf2->drive].last_lba =
buf2->bp.bio_pblkno + chunk;
}
else
buf1->drive = buf1->drive + rdp->width;
}
}
buf1->bp.bio_disk = &AD_SOFTC(rdp->disks[buf1->drive])->disk;
AR_STRATEGY((struct bio *)buf1);
rdp->disks[buf1->drive].last_lba = buf1->bp.bio_pblkno + chunk;
break;
default:
printf("ar%d: unknown array type in arstrategy\n", rdp->lun);
}
}
}
static void
ar_done(struct bio *bp)
{
struct ar_softc *rdp = (struct ar_softc *)bp->bio_driver1;
struct ar_buf *buf = (struct ar_buf *)bp;
switch (rdp->flags & (AR_F_RAID0 | AR_F_RAID1 | AR_F_SPAN)) {
case AR_F_SPAN:
case AR_F_RAID0:
if (buf->bp.bio_flags & BIO_ERROR) {
rdp->disks[buf->drive].flags &= ~AR_DF_ONLINE;
ar_config_changed(rdp, 1);
buf->org->bio_flags |= BIO_ERROR;
buf->org->bio_error = EIO;
biodone(buf->org);
}
else {
buf->org->bio_resid -= buf->bp.bio_bcount;
if (buf->org->bio_resid == 0)
biodone(buf->org);
}
break;
case AR_F_RAID1:
case AR_F_RAID0 | AR_F_RAID1:
if (buf->bp.bio_flags & BIO_ERROR) {
rdp->disks[buf->drive].flags &= ~AR_DF_ONLINE;
ar_config_changed(rdp, 1);
if (rdp->flags & AR_F_READY) {
if (buf->bp.bio_cmd == BIO_READ) {
if (buf->drive < rdp->width)
buf->drive = buf->drive + rdp->width;
else
buf->drive = buf->drive - rdp->width;
buf->bp.bio_disk = &AD_SOFTC(rdp->disks[buf->drive])->disk;
buf->bp.bio_flags = buf->org->bio_flags;
buf->bp.bio_error = 0;
AR_STRATEGY((struct bio *)buf);
return;
}
if (buf->bp.bio_cmd == BIO_WRITE) {
if (buf->flags & AB_F_DONE) {
buf->org->bio_resid -= buf->bp.bio_bcount;
if (buf->org->bio_resid == 0)
biodone(buf->org);
}
else
buf->mirror->flags |= AB_F_DONE;
}
}
else {
buf->org->bio_flags |= BIO_ERROR;
buf->org->bio_error = EIO;
biodone(buf->org);
}
}
else {
if (buf->bp.bio_cmd == BIO_WRITE) {
if (buf->mirror && !(buf->flags & AB_F_DONE)){
buf->mirror->flags |= AB_F_DONE;
break;
}
}
buf->org->bio_resid -= buf->bp.bio_bcount;
if (buf->org->bio_resid == 0)
biodone(buf->org);
}
break;
default:
printf("ar%d: unknown array type in ar_done\n", rdp->lun);
}
free(buf, M_AR);
}
static void
ar_config_changed(struct ar_softc *rdp, int writeback)
{
int disk, flags;
flags = rdp->flags;
rdp->flags |= AR_F_READY;
rdp->flags &= ~AR_F_DEGRADED;
for (disk = 0; disk < rdp->total_disks; disk++)
if (!(rdp->disks[disk].flags & AR_DF_PRESENT))
rdp->disks[disk].flags &= ~AR_DF_ONLINE;
for (disk = 0; disk < rdp->total_disks; disk++) {
switch (rdp->flags & (AR_F_RAID0 | AR_F_RAID1 | AR_F_SPAN)) {
case AR_F_SPAN:
case AR_F_RAID0:
if (!(rdp->disks[disk].flags & AR_DF_ONLINE)) {
rdp->flags &= ~AR_F_READY;
printf("ar%d: ERROR - array broken\n", rdp->lun);
}
break;
case AR_F_RAID1:
case AR_F_RAID0 | AR_F_RAID1:
if (disk < rdp->width) {
if (!(rdp->disks[disk].flags & AR_DF_ONLINE) &&
!(rdp->disks[disk + rdp->width].flags & AR_DF_ONLINE)) {
rdp->flags &= ~AR_F_READY;
printf("ar%d: ERROR - array broken\n", rdp->lun);
}
else if (((rdp->disks[disk].flags & AR_DF_ONLINE) &&
!(rdp->disks
[disk + rdp->width].flags & AR_DF_ONLINE))||
(!(rdp->disks[disk].flags & AR_DF_ONLINE) &&
(rdp->disks
[disk + rdp->width].flags & AR_DF_ONLINE))) {
rdp->flags |= AR_F_DEGRADED;
if (!(flags & AR_F_DEGRADED))
printf("ar%d: WARNING - mirror lost\n", rdp->lun);
}
}
break;
}
if ((rdp->disks[disk].flags&AR_DF_PRESENT) && rdp->disks[disk].device) {
/* SOS
if (rdp->disks[disk].flags & AR_DF_ONLINE)
ata_enclosure_leds(rdp->disks[disk].device, ATA_LED_GREEN);
else
ata_enclosure_leds(rdp->disks[disk].device, ATA_LED_RED);
XXX */
}
}
if (writeback) {
if (rdp->flags & AR_F_PROMISE_RAID)
ar_promise_write_conf(rdp);
if (rdp->flags & AR_F_HIGHPOINT_RAID)
ar_highpoint_write_conf(rdp);
}
}
static void
ar_rebuild(void *arg)
{
struct ar_softc *rdp = arg;
int disk, s, count = 0, error = 0;
caddr_t buffer;
mtx_lock(&Giant);
if ((rdp->flags & (AR_F_READY|AR_F_DEGRADED)) != (AR_F_READY|AR_F_DEGRADED))
kthread_exit(EEXIST);
for (disk = 0; disk < rdp->total_disks; disk++) {
if (((rdp->disks[disk].flags&(AR_DF_PRESENT|AR_DF_ONLINE|AR_DF_SPARE))==
(AR_DF_PRESENT | AR_DF_SPARE)) && rdp->disks[disk].device) {
if (AD_SOFTC(rdp->disks[disk])->total_secs <
rdp->disks[disk].disk_sectors) {
ata_prtdev(rdp->disks[disk].device,
"disk capacity too small for this RAID config\n");
#if 0
rdp->disks[disk].flags &= ~AR_DF_SPARE;
AD_SOFTC(rdp->disks[disk])->flags &= ~AD_F_RAID_SUBDISK;
#endif
continue;
}
/* SOS
ata_enclosure_leds(rdp->disks[disk].device, ATA_LED_ORANGE);
XXX */
count++;
}
}
if (!count)
kthread_exit(ENODEV);
/* setup start conditions */
s = splbio();
rdp->lock_start = 0;
rdp->lock_end = rdp->lock_start + AR_REBUILD_SIZE;
rdp->flags |= AR_F_REBUILDING;
splx(s);
buffer = malloc(AR_REBUILD_SIZE * DEV_BSIZE, M_AR, M_NOWAIT | M_ZERO);
/* now go copy entire disk(s) */
while (rdp->lock_end < (rdp->total_sectors / rdp->width)) {
int size = min(AR_REBUILD_SIZE,
(rdp->total_sectors / rdp->width) - rdp->lock_end);
for (disk = 0; disk < rdp->width; disk++) {
struct ad_softc *adp;
if (((rdp->disks[disk].flags & AR_DF_ONLINE) &&
(rdp->disks[disk + rdp->width].flags & AR_DF_ONLINE)) ||
((rdp->disks[disk].flags & AR_DF_ONLINE) &&
!(rdp->disks[disk + rdp->width].flags & AR_DF_SPARE)) ||
((rdp->disks[disk + rdp->width].flags & AR_DF_ONLINE) &&
!(rdp->disks[disk].flags & AR_DF_SPARE)))
continue;
if (rdp->disks[disk].flags & AR_DF_ONLINE)
adp = AD_SOFTC(rdp->disks[disk]);
else
adp = AD_SOFTC(rdp->disks[disk + rdp->width]);
if ((error = ar_rw(adp, rdp->lock_start,
size * DEV_BSIZE, buffer, AR_READ | AR_WAIT)))
break;
if (rdp->disks[disk].flags & AR_DF_ONLINE)
adp = AD_SOFTC(rdp->disks[disk + rdp->width]);
else
adp = AD_SOFTC(rdp->disks[disk]);
if ((error = ar_rw(adp, rdp->lock_start,
size * DEV_BSIZE, buffer, AR_WRITE | AR_WAIT)))
break;
}
if (error) {
wakeup(rdp);
free(buffer, M_AR);
kthread_exit(error);
}
s = splbio();
rdp->lock_start = rdp->lock_end;
rdp->lock_end = rdp->lock_start + size;
splx(s);
wakeup(rdp);
sprintf(rdp->pid->p_comm, "rebuilding ar%d %lld%%", rdp->lun,
(unsigned long long)(100 * rdp->lock_start /
(rdp->total_sectors / rdp->width)));
}
free(buffer, M_AR);
for (disk = 0; disk < rdp->total_disks; disk++) {
if ((rdp->disks[disk].flags&(AR_DF_PRESENT|AR_DF_ONLINE|AR_DF_SPARE))==
(AR_DF_PRESENT | AR_DF_SPARE)) {
rdp->disks[disk].flags &= ~AR_DF_SPARE;
rdp->disks[disk].flags |= (AR_DF_ASSIGNED | AR_DF_ONLINE);
}
}
s = splbio();
rdp->lock_start = 0xffffffff;
rdp->lock_end = 0xffffffff;
rdp->flags &= ~AR_F_REBUILDING;
splx(s);
ar_config_changed(rdp, 1);
kthread_exit(0);
}
static int
ar_highpoint_read_conf(struct ad_softc *adp, struct ar_softc **raidp)
{
struct highpoint_raid_conf *info;
struct ar_softc *raid = NULL;
int array, disk_number = 0, retval = 0;
if (!(info = (struct highpoint_raid_conf *)
malloc(sizeof(struct highpoint_raid_conf), M_AR, M_NOWAIT | M_ZERO)))
return retval;
if (ar_rw(adp, HPT_LBA, sizeof(struct highpoint_raid_conf),
(caddr_t)info, AR_READ | AR_WAIT)) {
if (bootverbose)
printf("ar: HighPoint read conf failed\n");
goto highpoint_out;
}
/* check if this is a HighPoint RAID struct */
if (info->magic != HPT_MAGIC_OK && info->magic != HPT_MAGIC_BAD) {
if (bootverbose)
printf("ar: HighPoint check1 failed\n");
goto highpoint_out;
}
/* is this disk defined, or an old leftover/spare ? */
if (!info->magic_0) {
if (bootverbose)
printf("ar: HighPoint check2 failed\n");
goto highpoint_out;
}
/* now convert HighPoint config info into our generic form */
for (array = 0; array < MAX_ARRAYS; array++) {
if (!raidp[array]) {
raidp[array] =
(struct ar_softc*)malloc(sizeof(struct ar_softc), M_AR,
M_NOWAIT | M_ZERO);
if (!raidp[array]) {
printf("ar%d: failed to allocate raid config storage\n", array);
goto highpoint_out;
}
}
raid = raidp[array];
if (raid->flags & AR_F_PROMISE_RAID)
continue;
switch (info->type) {
case HPT_T_RAID0:
if ((info->order & (HPT_O_RAID0|HPT_O_OK))==(HPT_O_RAID0|HPT_O_OK))
goto highpoint_raid1;
if (info->order & (HPT_O_RAID0 | HPT_O_RAID1))
goto highpoint_raid01;
if (raid->magic_0 && raid->magic_0 != info->magic_0)
continue;
raid->magic_0 = info->magic_0;
raid->flags |= AR_F_RAID0;
raid->interleave = 1 << info->stripe_shift;
disk_number = info->disk_number;
if (!(info->order & HPT_O_OK))
info->magic = 0; /* mark bad */
break;
case HPT_T_RAID1:
highpoint_raid1:
if (raid->magic_0 && raid->magic_0 != info->magic_0)
continue;
raid->magic_0 = info->magic_0;
raid->flags |= AR_F_RAID1;
disk_number = (info->disk_number > 0);
break;
case HPT_T_RAID01_RAID0:
highpoint_raid01:
if (info->order & HPT_O_RAID0) {
if ((raid->magic_0 && raid->magic_0 != info->magic_0) ||
(raid->magic_1 && raid->magic_1 != info->magic_1))
continue;
raid->magic_0 = info->magic_0;
raid->magic_1 = info->magic_1;
raid->flags |= (AR_F_RAID0 | AR_F_RAID1);
raid->interleave = 1 << info->stripe_shift;
disk_number = info->disk_number;
}
else {
if (raid->magic_1 && raid->magic_1 != info->magic_1)
continue;
raid->magic_1 = info->magic_1;
raid->flags |= (AR_F_RAID0 | AR_F_RAID1);
raid->interleave = 1 << info->stripe_shift;
disk_number = info->disk_number + info->array_width;
if (!(info->order & HPT_O_RAID1))
info->magic = 0; /* mark bad */
}
break;
case HPT_T_SPAN:
if (raid->magic_0 && raid->magic_0 != info->magic_0)
continue;
raid->magic_0 = info->magic_0;
raid->flags |= AR_F_SPAN;
disk_number = info->disk_number;
break;
default:
printf("ar%d: HighPoint unknown RAID type 0x%02x\n",
array, info->type);
goto highpoint_out;
}
raid->flags |= AR_F_HIGHPOINT_RAID;
raid->disks[disk_number].device = adp->device;
raid->disks[disk_number].flags = (AR_DF_PRESENT | AR_DF_ASSIGNED);
AD_SOFTC(raid->disks[disk_number])->flags |= AD_F_RAID_SUBDISK;
raid->lun = array;
if (info->magic == HPT_MAGIC_OK) {
raid->disks[disk_number].flags |= AR_DF_ONLINE;
raid->flags |= AR_F_READY;
raid->width = info->array_width;
raid->heads = 255;
raid->sectors = 63;
raid->cylinders = info->total_sectors / (63 * 255);
raid->total_sectors = info->total_sectors;
raid->offset = HPT_LBA + 1;
raid->reserved = HPT_LBA + 1;
raid->lock_start = raid->lock_end = info->rebuild_lba;
raid->disks[disk_number].disk_sectors =
info->total_sectors / info->array_width;
}
else
raid->disks[disk_number].flags &= ~ AR_DF_ONLINE;
if ((raid->flags & AR_F_RAID0) && (raid->total_disks < raid->width))
raid->total_disks = raid->width;
if (disk_number >= raid->total_disks)
raid->total_disks = disk_number + 1;
retval = 1;
break;
}
highpoint_out:
free(info, M_AR);
return retval;
}
static int
ar_highpoint_write_conf(struct ar_softc *rdp)
{
struct highpoint_raid_conf *config;
struct timeval timestamp;
int disk;
microtime(&timestamp);
rdp->magic_0 = timestamp.tv_sec + 2;
rdp->magic_1 = timestamp.tv_sec;
for (disk = 0; disk < rdp->total_disks; disk++) {
if (!(config = (struct highpoint_raid_conf *)
malloc(sizeof(struct highpoint_raid_conf),
M_AR, M_NOWAIT | M_ZERO))) {
printf("ar%d: Highpoint write conf failed\n", rdp->lun);
return -1;
}
if ((rdp->disks[disk].flags & (AR_DF_PRESENT | AR_DF_ONLINE)) ==
(AR_DF_PRESENT | AR_DF_ONLINE))
config->magic = HPT_MAGIC_OK;
if (rdp->disks[disk].flags & AR_DF_ASSIGNED) {
config->magic_0 = rdp->magic_0;
strcpy(config->name_1, "FreeBSD");
}
config->disk_number = disk;
switch (rdp->flags & (AR_F_RAID0 | AR_F_RAID1 | AR_F_SPAN)) {
case AR_F_RAID0:
config->type = HPT_T_RAID0;
strcpy(config->name_2, "RAID 0");
if (rdp->disks[disk].flags & AR_DF_ONLINE)
config->order = HPT_O_OK;
break;
case AR_F_RAID1:
config->type = HPT_T_RAID0;
strcpy(config->name_2, "RAID 1");
config->disk_number = (disk < rdp->width) ? disk : disk + 5;
config->order = HPT_O_RAID0 | HPT_O_OK;
break;
case AR_F_RAID0 | AR_F_RAID1:
config->type = HPT_T_RAID01_RAID0;
strcpy(config->name_2, "RAID 0+1");
if (rdp->disks[disk].flags & AR_DF_ONLINE) {
if (disk < rdp->width) {
config->order = (HPT_O_RAID0 | HPT_O_RAID1);
config->magic_0 = rdp->magic_0 - 1;
}
else {
config->order = HPT_O_RAID1;
config->disk_number -= rdp->width;
}
}
else
config->magic_0 = rdp->magic_0 - 1;
config->magic_1 = rdp->magic_1;
break;
case AR_F_SPAN:
config->type = HPT_T_SPAN;
strcpy(config->name_2, "SPAN");
break;
}
config->array_width = rdp->width;
config->stripe_shift = (rdp->width > 1) ? (ffs(rdp->interleave)-1) : 0;
config->total_sectors = rdp->total_sectors;
config->rebuild_lba = rdp->lock_start;
if (rdp->disks[disk].device && rdp->disks[disk].device->softc &&
!(rdp->disks[disk].device->flags & ATA_D_DETACHING)) {
if (ar_rw(AD_SOFTC(rdp->disks[disk]), HPT_LBA,
sizeof(struct highpoint_raid_conf),
(caddr_t)config, AR_WRITE)) {
printf("ar%d: Highpoint write conf failed\n", rdp->lun);
return -1;
}
}
}
return 0;
}
static int
ar_promise_read_conf(struct ad_softc *adp, struct ar_softc **raidp, int local)
{
struct promise_raid_conf *info;
struct ar_softc *raid;
u_int32_t magic, cksum, *ckptr;
int array, count, disk, disksum = 0, retval = 0;
if (!(info = (struct promise_raid_conf *)
malloc(sizeof(struct promise_raid_conf), M_AR, M_NOWAIT | M_ZERO)))
return retval;
if (ar_rw(adp, PR_LBA(adp), sizeof(struct promise_raid_conf),
(caddr_t)info, AR_READ | AR_WAIT)) {
if (bootverbose)
printf("ar: %s read conf failed\n", local ? "FreeBSD" : "Promise");
goto promise_out;
}
/* check if this is a Promise RAID struct (or our local one) */
if (local) {
if (strncmp(info->promise_id, ATA_MAGIC, sizeof(ATA_MAGIC))) {
if (bootverbose)
printf("ar: FreeBSD check1 failed\n");
goto promise_out;
}
}
else {
if (strncmp(info->promise_id, PR_MAGIC, sizeof(PR_MAGIC))) {
if (bootverbose)
printf("ar: Promise check1 failed\n");
goto promise_out;
}
}
/* check if the checksum is OK */
for (cksum = 0, ckptr = (int32_t *)info, count = 0; count < 511; count++)
cksum += *ckptr++;
if (cksum != *ckptr) {
if (bootverbose)
printf("ar: %s check2 failed\n", local ? "FreeBSD" : "Promise");
goto promise_out;
}
/* now convert Promise config info into our generic form */
if (info->raid.integrity != PR_I_VALID) {
if (bootverbose)
printf("ar: %s check3 failed\n", local ? "FreeBSD" : "Promise");
goto promise_out;
}
for (array = 0; array < MAX_ARRAYS; array++) {
if (!raidp[array]) {
raidp[array] =
(struct ar_softc*)malloc(sizeof(struct ar_softc), M_AR,
M_NOWAIT | M_ZERO);
if (!raidp[array]) {
printf("ar%d: failed to allocate raid config storage\n", array);
goto promise_out;
}
}
raid = raidp[array];
if (raid->flags & AR_F_HIGHPOINT_RAID)
continue;
magic = (pci_get_device(device_get_parent(
adp->device->channel->dev)) >> 16) |
(info->raid.array_number << 16);
if (raid->flags & AR_F_PROMISE_RAID && magic != raid->magic_0)
continue;
/* update our knowledge about the array config based on generation */
if (!info->raid.generation || info->raid.generation > raid->generation){
raid->generation = info->raid.generation;
raid->flags = AR_F_PROMISE_RAID;
if (local)
raid->flags |= AR_F_FREEBSD_RAID;
raid->magic_0 = magic;
raid->lun = array;
if ((info->raid.status &
(PR_S_VALID | PR_S_ONLINE | PR_S_INITED | PR_S_READY)) ==
(PR_S_VALID | PR_S_ONLINE | PR_S_INITED | PR_S_READY)) {
raid->flags |= AR_F_READY;
if (info->raid.status & PR_S_DEGRADED)
raid->flags |= AR_F_DEGRADED;
}
else
raid->flags &= ~AR_F_READY;
switch (info->raid.type) {
case PR_T_RAID0:
raid->flags |= AR_F_RAID0;
break;
case PR_T_RAID1:
raid->flags |= AR_F_RAID1;
if (info->raid.array_width > 1)
raid->flags |= AR_F_RAID0;
break;
case PR_T_SPAN:
raid->flags |= AR_F_SPAN;
break;
default:
printf("ar%d: %s unknown RAID type 0x%02x\n",
array, local ? "FreeBSD" : "Promise", info->raid.type);
goto promise_out;
}
raid->interleave = 1 << info->raid.stripe_shift;
raid->width = info->raid.array_width;
raid->total_disks = info->raid.total_disks;
raid->heads = info->raid.heads + 1;
raid->sectors = info->raid.sectors;
raid->cylinders = info->raid.cylinders + 1;
raid->total_sectors = info->raid.total_sectors;
raid->offset = 0;
raid->reserved = 63;
raid->lock_start = raid->lock_end = info->raid.rebuild_lba;
/* convert disk flags to our internal types */
for (disk = 0; disk < info->raid.total_disks; disk++) {
raid->disks[disk].flags = 0;
disksum += info->raid.disk[disk].flags;
if (info->raid.disk[disk].flags & PR_F_ONLINE)
raid->disks[disk].flags |= AR_DF_ONLINE;
if (info->raid.disk[disk].flags & PR_F_ASSIGNED)
raid->disks[disk].flags |= AR_DF_ASSIGNED;
if (info->raid.disk[disk].flags & PR_F_SPARE) {
raid->disks[disk].flags &= ~AR_DF_ONLINE;
raid->disks[disk].flags |= AR_DF_SPARE;
}
if (info->raid.disk[disk].flags & (PR_F_REDIR | PR_F_DOWN))
raid->disks[disk].flags &= ~AR_DF_ONLINE;
}
if (!disksum) {
free(raidp[array], M_AR);
raidp[array] = NULL;
goto promise_out;
}
}
if (info->raid.generation >= raid->generation) {
if (raid->disks[info->raid.disk_number].flags && adp->device) {
raid->disks[info->raid.disk_number].device = adp->device;
raid->disks[info->raid.disk_number].flags |= AR_DF_PRESENT;
raid->disks[info->raid.disk_number].disk_sectors =
info->raid.disk_sectors;
if ((raid->disks[info->raid.disk_number].flags &
(AR_DF_PRESENT | AR_DF_ASSIGNED | AR_DF_ONLINE)) ==
(AR_DF_PRESENT | AR_DF_ASSIGNED | AR_DF_ONLINE)) {
AD_SOFTC(raid->disks[info->raid.disk_number])->flags |=
AD_F_RAID_SUBDISK;
retval = 1;
}
}
}
break;
}
promise_out:
free(info, M_AR);
return retval;
}
static int
ar_promise_write_conf(struct ar_softc *rdp)
{
struct promise_raid_conf *config;
struct timeval timestamp;
u_int32_t *ckptr;
int count, disk, drive;
int local = rdp->flags & AR_F_FREEBSD_RAID;
rdp->generation++;
microtime(&timestamp);
for (disk = 0; disk < rdp->total_disks; disk++) {
if (!(config = (struct promise_raid_conf *)
malloc(sizeof(struct promise_raid_conf), M_AR, M_NOWAIT))) {
printf("ar%d: %s write conf failed\n",
rdp->lun, local ? "FreeBSD" : "Promise");
return -1;
}
for (count = 0; count < sizeof(struct promise_raid_conf); count++)
*(((u_int8_t *)config) + count) = 255 - (count % 256);
config->dummy_0 = 0x00020000;
config->magic_0 = PR_MAGIC0(rdp->disks[disk]) | timestamp.tv_sec;
config->magic_1 = timestamp.tv_sec >> 16;
config->magic_2 = timestamp.tv_sec;
config->raid.integrity = PR_I_VALID;
config->raid.disk_number = disk;
if (rdp->disks[disk].flags & AR_DF_PRESENT && rdp->disks[disk].device) {
config->raid.channel = rdp->disks[disk].device->channel->unit;
config->raid.device = (rdp->disks[disk].device->unit != 0);
if (rdp->disks[disk].device->softc)
config->raid.disk_sectors = PR_LBA(AD_SOFTC(rdp->disks[disk]));
/*config->raid.disk_offset*/
}
config->raid.magic_0 = config->magic_0;
config->raid.rebuild_lba = rdp->lock_start;
config->raid.generation = rdp->generation;
if (rdp->flags & AR_F_READY) {
config->raid.flags = (PR_F_VALID | PR_F_ASSIGNED | PR_F_ONLINE);
config->raid.status =
(PR_S_VALID | PR_S_ONLINE | PR_S_INITED | PR_S_READY);
if (rdp->flags & AR_F_DEGRADED)
config->raid.status |= PR_S_DEGRADED;
else
config->raid.status |= PR_S_FUNCTIONAL;
}
else {
config->raid.flags = PR_F_DOWN;
config->raid.status = 0;
}
switch (rdp->flags & (AR_F_RAID0 | AR_F_RAID1 | AR_F_SPAN)) {
case AR_F_RAID0:
config->raid.type = PR_T_RAID0;
break;
case AR_F_RAID1:
config->raid.type = PR_T_RAID1;
break;
case AR_F_RAID0 | AR_F_RAID1:
config->raid.type = PR_T_RAID1;
break;
case AR_F_SPAN:
config->raid.type = PR_T_SPAN;
break;
}
config->raid.total_disks = rdp->total_disks;
config->raid.stripe_shift = ffs(rdp->interleave) - 1;
config->raid.array_width = rdp->width;
config->raid.array_number = rdp->lun;
config->raid.total_sectors = rdp->total_sectors;
config->raid.cylinders = rdp->cylinders - 1;
config->raid.heads = rdp->heads - 1;
config->raid.sectors = rdp->sectors;
config->raid.magic_1 = (u_int64_t)config->magic_2<<16 | config->magic_1;
bzero(&config->raid.disk, 8 * 12);
for (drive = 0; drive < rdp->total_disks; drive++) {
config->raid.disk[drive].flags = 0;
if (rdp->disks[drive].flags & AR_DF_PRESENT)
config->raid.disk[drive].flags |= PR_F_VALID;
if (rdp->disks[drive].flags & AR_DF_ASSIGNED)
config->raid.disk[drive].flags |= PR_F_ASSIGNED;
if (rdp->disks[drive].flags & AR_DF_ONLINE)
config->raid.disk[drive].flags |= PR_F_ONLINE;
else
if (rdp->disks[drive].flags & AR_DF_PRESENT)
config->raid.disk[drive].flags = (PR_F_REDIR | PR_F_DOWN);
if (rdp->disks[drive].flags & AR_DF_SPARE)
config->raid.disk[drive].flags |= PR_F_SPARE;
config->raid.disk[drive].dummy_0 = 0x0;
if (rdp->disks[drive].device) {
config->raid.disk[drive].channel =
rdp->disks[drive].device->channel->unit;
config->raid.disk[drive].device =
(rdp->disks[drive].device->unit != 0);
}
config->raid.disk[drive].magic_0 =
PR_MAGIC0(rdp->disks[drive]) | timestamp.tv_sec;
}
if (rdp->disks[disk].device && rdp->disks[disk].device->softc &&
!(rdp->disks[disk].device->flags & ATA_D_DETACHING)) {
if ((rdp->disks[disk].flags & (AR_DF_PRESENT | AR_DF_ONLINE)) ==
(AR_DF_PRESENT | AR_DF_ONLINE)) {
if (local)
bcopy(ATA_MAGIC, config->promise_id, sizeof(ATA_MAGIC));
else
bcopy(PR_MAGIC, config->promise_id, sizeof(PR_MAGIC));
}
else
bzero(config->promise_id, sizeof(config->promise_id));
config->checksum = 0;
for (ckptr = (int32_t *)config, count = 0; count < 511; count++)
config->checksum += *ckptr++;
if (ar_rw(AD_SOFTC(rdp->disks[disk]),
PR_LBA(AD_SOFTC(rdp->disks[disk])),
sizeof(struct promise_raid_conf),
(caddr_t)config, AR_WRITE)) {
printf("ar%d: %s write conf failed\n",
rdp->lun, local ? "FreeBSD" : "Promise");
return -1;
}
}
}
return 0;
}
static void
ar_rw_done(struct bio *bp)
{
free(bp->bio_data, M_AR);
free(bp, M_AR);
}
static int
ar_rw(struct ad_softc *adp, u_int32_t lba, int count, caddr_t data, int flags)
{
struct bio *bp;
int retry = 0, error = 0;
if (!(bp = (struct bio *)malloc(sizeof(struct bio), M_AR, M_NOWAIT|M_ZERO)))
return 1;
bp->bio_disk = &adp->disk;
bp->bio_data = data;
bp->bio_pblkno = lba;
bp->bio_bcount = count;
if (flags & AR_READ)
bp->bio_cmd = BIO_READ;
if (flags & AR_WRITE)
bp->bio_cmd = BIO_WRITE;
if (flags & AR_WAIT)
bp->bio_done = (void *)wakeup;
else
bp->bio_done = ar_rw_done;
AR_STRATEGY(bp);
if (flags & AR_WAIT) {
while ((retry++ < (15*hz/10)) && (error = !(bp->bio_flags & BIO_DONE)))
error = tsleep(bp, PRIBIO, "arrw", 10);
if (!error && bp->bio_flags & BIO_ERROR)
error = bp->bio_error;
free(bp, M_AR);
}
return error;
}
static struct ata_device *
ar_locate_disk(int diskno)
{
struct ata_channel *ch;
int ctlr;
for (ctlr = 0; ctlr < devclass_get_maxunit(ata_devclass); ctlr++) {
if (!(ch = devclass_get_softc(ata_devclass, ctlr)))
continue;
if (ch->devices & ATA_ATA_MASTER)
if (ch->device[MASTER].softc &&
((struct ad_softc *)(ch->device[MASTER].softc))->lun == diskno)
return &ch->device[MASTER];
if (ch->devices & ATA_ATA_SLAVE)
if (ch->device[SLAVE].softc &&
((struct ad_softc *)(ch->device[SLAVE].softc))->lun == diskno)
return &ch->device[SLAVE];
}
return NULL;
}
static void
ar_print_conf(struct ar_softc *config)
{
int i;
printf("lun %d\n", config->lun);
printf("magic_0 0x%08x\n", config->magic_0);
printf("magic_1 0x%08x\n", config->magic_1);
printf("flags 0x%02x %b\n", config->flags, config->flags,
"\20\16HIGHPOINT\15PROMISE\13REBUILDING\12DEGRADED\11READY\3SPAN\2RAID1\1RAID0\n");
printf("total_disks %d\n", config->total_disks);
printf("generation %d\n", config->generation);
printf("width %d\n", config->width);
printf("heads %d\n", config->heads);
printf("sectors %d\n", config->sectors);
printf("cylinders %d\n", config->cylinders);
printf("total_sectors %lld\n", (long long)config->total_sectors);
printf("interleave %d\n", config->interleave);
printf("reserved %d\n", config->reserved);
printf("offset %d\n", config->offset);
for (i = 0; i < config->total_disks; i++) {
printf("disk %d: flags = 0x%02x %b\n", i, config->disks[i].flags, config->disks[i].flags, "\20\4ONLINE\3SPARE\2ASSIGNED\1PRESENT\n");
if (config->disks[i].device)
printf(" %s\n", config->disks[i].device->name);
printf(" sectors %lld\n", (long long)config->disks[i].disk_sectors);
}
}