f80c9bf833
This completes the effort to handle dependent functions, which are used in some machines for irq link resources. Also, clean up some nearby comments while I'm at it.
387 lines
12 KiB
C
387 lines
12 KiB
C
/*-
|
|
* Copyright (c) 2000 Michael Smith
|
|
* Copyright (c) 2000 BSDi
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*/
|
|
|
|
#include <sys/cdefs.h>
|
|
__FBSDID("$FreeBSD$");
|
|
|
|
#include "opt_acpi.h"
|
|
#include <sys/param.h>
|
|
#include <sys/bus.h>
|
|
#include <sys/malloc.h>
|
|
#include <sys/kernel.h>
|
|
|
|
#include "acpi.h"
|
|
|
|
#include <dev/acpica/acpivar.h>
|
|
#include <dev/acpica/acpi_pcibvar.h>
|
|
|
|
#include <machine/pci_cfgreg.h>
|
|
#include <dev/pci/pcivar.h>
|
|
#include <dev/pci/pcib_private.h>
|
|
#include "pcib_if.h"
|
|
|
|
/*
|
|
* Hooks for the ACPI CA debugging infrastructure
|
|
*/
|
|
#define _COMPONENT ACPI_BUS
|
|
ACPI_MODULE_NAME("PCI")
|
|
|
|
int
|
|
acpi_pcib_attach(device_t dev, ACPI_BUFFER *prt, int busno)
|
|
{
|
|
device_t child;
|
|
ACPI_STATUS status;
|
|
|
|
ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__);
|
|
|
|
/*
|
|
* Don't attach if we're not really there.
|
|
*
|
|
* XXX: This isn't entirely correct since we may be a PCI bus
|
|
* on a hot-plug docking station, etc.
|
|
*/
|
|
if (!acpi_DeviceIsPresent(dev))
|
|
return_VALUE(ENXIO);
|
|
|
|
/*
|
|
* Get the PCI interrupt routing table for this bus.
|
|
*/
|
|
prt->Length = ACPI_ALLOCATE_BUFFER;
|
|
status = AcpiGetIrqRoutingTable(acpi_get_handle(dev), prt);
|
|
if (ACPI_FAILURE(status))
|
|
/* This is not an error, but it may reduce functionality. */
|
|
device_printf(dev,
|
|
"could not get PCI interrupt routing table for %s - %s\n",
|
|
acpi_name(acpi_get_handle(dev)), AcpiFormatException(status));
|
|
|
|
/*
|
|
* Attach the PCI bus proper.
|
|
*/
|
|
if ((child = device_add_child(dev, "pci", busno)) == NULL) {
|
|
device_printf(device_get_parent(dev), "couldn't attach pci bus\n");
|
|
return_VALUE(ENXIO);
|
|
}
|
|
|
|
/*
|
|
* Now go scan the bus.
|
|
*/
|
|
acpi_pci_link_config(dev, prt, busno);
|
|
return_VALUE(bus_generic_attach(dev));
|
|
}
|
|
|
|
int
|
|
acpi_pcib_resume(device_t dev, ACPI_BUFFER *prt, int busno)
|
|
{
|
|
acpi_pci_link_resume(dev, prt, busno);
|
|
return (bus_generic_resume(dev));
|
|
}
|
|
|
|
/*
|
|
* Route an interrupt for a child of the bridge.
|
|
*
|
|
* XXX clean up error messages
|
|
*
|
|
* XXX this function is somewhat bulky
|
|
*/
|
|
int
|
|
acpi_pcib_route_interrupt(device_t pcib, device_t dev, int pin,
|
|
ACPI_BUFFER *prtbuf)
|
|
{
|
|
ACPI_PCI_ROUTING_TABLE *prt;
|
|
ACPI_HANDLE lnkdev;
|
|
ACPI_BUFFER crsbuf, prsbuf, buf;
|
|
ACPI_RESOURCE *crsres, *prsres, resbuf;
|
|
ACPI_DEVICE_INFO *devinfo;
|
|
ACPI_STATUS status;
|
|
UINT32 NumberOfInterrupts;
|
|
UINT32 *Interrupts;
|
|
u_int8_t *prtp;
|
|
int interrupt;
|
|
int i;
|
|
|
|
ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__);
|
|
|
|
buf.Pointer = NULL;
|
|
crsbuf.Pointer = NULL;
|
|
prsbuf.Pointer = NULL;
|
|
interrupt = 255;
|
|
|
|
/* ACPI numbers pins 0-3, not 1-4 like the BIOS */
|
|
pin--;
|
|
|
|
prtp = prtbuf->Pointer;
|
|
if (prtp == NULL) /* didn't get routing table */
|
|
goto out;
|
|
|
|
/* scan the table looking for this device */
|
|
for (;;) {
|
|
prt = (ACPI_PCI_ROUTING_TABLE *)prtp;
|
|
|
|
if (prt->Length == 0) /* end of table */
|
|
goto out;
|
|
|
|
/*
|
|
* Compare the slot number (high word of Address) and pin number
|
|
* (note that ACPI uses 0 for INTA) to check for a match.
|
|
*
|
|
* Note that the low word of the Address field (function number)
|
|
* is required by the specification to be 0xffff. We don't risk
|
|
* checking it here.
|
|
*/
|
|
if ((((prt->Address & 0xffff0000) >> 16) == pci_get_slot(dev)) &&
|
|
(prt->Pin == pin)) {
|
|
if (bootverbose)
|
|
device_printf(pcib, "matched entry for %d.%d.INT%c (source %s)\n",
|
|
pci_get_bus(dev), pci_get_slot(dev), 'A' + pin, prt->Source);
|
|
break;
|
|
}
|
|
|
|
/* skip to next entry */
|
|
prtp += prt->Length;
|
|
}
|
|
|
|
/*
|
|
* If source is empty/NULL, the source index is the global IRQ number.
|
|
*/
|
|
if ((prt->Source == NULL) || (prt->Source[0] == '\0')) {
|
|
if (bootverbose)
|
|
device_printf(pcib, "device is hardwired to IRQ %d\n",
|
|
prt->SourceIndex);
|
|
interrupt = prt->SourceIndex;
|
|
goto out;
|
|
}
|
|
|
|
/*
|
|
* We have to find the source device (PCI interrupt link device)
|
|
*/
|
|
if (ACPI_FAILURE(AcpiGetHandle(ACPI_ROOT_OBJECT, prt->Source, &lnkdev))) {
|
|
device_printf(pcib, "couldn't find PCI interrupt link device %s\n",
|
|
prt->Source);
|
|
goto out;
|
|
}
|
|
|
|
/*
|
|
* Verify that this is a PCI link device, and that it's present.
|
|
*/
|
|
buf.Length = ACPI_ALLOCATE_BUFFER;
|
|
if (ACPI_FAILURE(AcpiGetObjectInfo(lnkdev, &buf))) {
|
|
device_printf(pcib, "couldn't validate PCI interrupt link device %s\n",
|
|
prt->Source);
|
|
goto out;
|
|
}
|
|
devinfo = (ACPI_DEVICE_INFO *)buf.Pointer;
|
|
if ((devinfo->Valid & ACPI_VALID_HID) == 0 ||
|
|
strcmp("PNP0C0F", devinfo->HardwareId.Value) != 0) {
|
|
|
|
device_printf(pcib, "PCI interrupt link device %s has wrong _HID (%s)\n",
|
|
prt->Source, devinfo->HardwareId.Value);
|
|
goto out;
|
|
}
|
|
if ((devinfo->Valid & ACPI_VALID_STA) != 0 &&
|
|
(devinfo->CurrentStatus & 0x9) != 0x9) {
|
|
|
|
device_printf(pcib, "PCI interrupt link device %s not present\n",
|
|
prt->Source);
|
|
goto out;
|
|
}
|
|
|
|
/*
|
|
* Get the current and possible resources for the interrupt link device.
|
|
*/
|
|
crsbuf.Length = ACPI_ALLOCATE_BUFFER;
|
|
if (ACPI_FAILURE(status = AcpiGetCurrentResources(lnkdev, &crsbuf))) {
|
|
device_printf(pcib, "couldn't get PCI interrupt link device _CRS data - %s\n",
|
|
AcpiFormatException(status));
|
|
goto out; /* this is fatal */
|
|
}
|
|
prsbuf.Length = ACPI_ALLOCATE_BUFFER;
|
|
if (ACPI_FAILURE(status = AcpiGetPossibleResources(lnkdev, &prsbuf))) {
|
|
device_printf(pcib, "couldn't get PCI interrupt link device _PRS data - %s\n",
|
|
AcpiFormatException(status));
|
|
/* this is not fatal, since it may be hardwired */
|
|
}
|
|
ACPI_DEBUG_PRINT((ACPI_DB_RESOURCES, "got %ld bytes for %s._CRS\n",
|
|
(long)crsbuf.Length, acpi_name(lnkdev)));
|
|
ACPI_DEBUG_PRINT((ACPI_DB_RESOURCES, "got %ld bytes for %s._PRS\n",
|
|
(long)prsbuf.Length, acpi_name(lnkdev)));
|
|
|
|
/*
|
|
* The interrupt may already be routed, so check _CRS first. We don't check the
|
|
* 'decoding' bit in the _STA result, since there's nothing in the spec that
|
|
* mandates it be set, however some BIOS' will set it if the decode is active.
|
|
*
|
|
* The Source Index points to the particular resource entry we're interested in.
|
|
*/
|
|
if (ACPI_FAILURE(acpi_FindIndexedResource(&crsbuf, prt->SourceIndex, &crsres))) {
|
|
device_printf(pcib, "_CRS buffer corrupt, cannot route interrupt\n");
|
|
goto out;
|
|
}
|
|
|
|
/* type-check the resource we've got */
|
|
if (crsres->Id != ACPI_RSTYPE_IRQ && crsres->Id != ACPI_RSTYPE_EXT_IRQ) {
|
|
device_printf(pcib, "_CRS resource entry has unsupported type %d\n",
|
|
crsres->Id);
|
|
goto out;
|
|
}
|
|
|
|
/* set variables based on resource type */
|
|
if (crsres->Id == ACPI_RSTYPE_IRQ) {
|
|
NumberOfInterrupts = crsres->Data.Irq.NumberOfInterrupts;
|
|
Interrupts = crsres->Data.Irq.Interrupts;
|
|
} else {
|
|
NumberOfInterrupts = crsres->Data.ExtendedIrq.NumberOfInterrupts;
|
|
Interrupts = crsres->Data.ExtendedIrq.Interrupts;
|
|
}
|
|
|
|
/* if there's more than one interrupt, we are confused */
|
|
if (NumberOfInterrupts > 1) {
|
|
device_printf(pcib, "device has too many interrupts (%d)\n",
|
|
NumberOfInterrupts);
|
|
goto out;
|
|
}
|
|
|
|
/*
|
|
* If there's only one interrupt, and it's not zero, then we're already routed.
|
|
*
|
|
* Note that we could also check the 'decoding' bit in _STA, but can't depend on
|
|
* it since it's not part of the spec.
|
|
*
|
|
* XXX check ASL examples to see if this is an acceptable set of tests
|
|
*/
|
|
if ((NumberOfInterrupts == 1) && (Interrupts[0] != 0)) {
|
|
device_printf(pcib, "slot %d INT%c is routed to irq %d\n",
|
|
pci_get_slot(dev), 'A' + pin, Interrupts[0]);
|
|
interrupt = Interrupts[0];
|
|
goto out;
|
|
}
|
|
|
|
/*
|
|
* There isn't an interrupt, so we have to look at _PRS to get one.
|
|
* Get the set of allowed interrupts from the _PRS resource indexed
|
|
* by SourceIndex.
|
|
*/
|
|
if (prsbuf.Pointer == NULL) {
|
|
device_printf(pcib, "no routed irq and no _PRS on irq link device\n");
|
|
goto out;
|
|
}
|
|
|
|
/*
|
|
* Search through the _PRS resources, looking for an IRQ or extended
|
|
* IRQ resource. Skip dependent function resources for now. In the
|
|
* future, we might use these for priority but this is good enough for
|
|
* now until BIOS vendors actually mean something by using them.
|
|
*/
|
|
prsres = NULL;
|
|
for (i = prt->SourceIndex; prsres == NULL; i++) {
|
|
if (ACPI_FAILURE(acpi_FindIndexedResource(&prsbuf, i, &prsres))) {
|
|
device_printf(pcib, "_PRS lacks IRQ resource, routing failed\n");
|
|
goto out;
|
|
}
|
|
switch (prsres->Id) {
|
|
case ACPI_RSTYPE_IRQ:
|
|
NumberOfInterrupts = prsres->Data.Irq.NumberOfInterrupts;
|
|
Interrupts = prsres->Data.Irq.Interrupts;
|
|
break;
|
|
case ACPI_RSTYPE_EXT_IRQ:
|
|
NumberOfInterrupts = prsres->Data.ExtendedIrq.NumberOfInterrupts;
|
|
Interrupts = prsres->Data.ExtendedIrq.Interrupts;
|
|
break;
|
|
case ACPI_RSTYPE_START_DPF:
|
|
prsres = NULL;
|
|
continue;
|
|
default:
|
|
device_printf(pcib, "_PRS has invalid type %d\n", prsres->Id);
|
|
goto out;
|
|
}
|
|
}
|
|
|
|
/* there has to be at least one interrupt available */
|
|
if (NumberOfInterrupts < 1) {
|
|
device_printf(pcib, "device has no interrupts\n");
|
|
goto out;
|
|
}
|
|
|
|
/*
|
|
* Pick an interrupt to use. Note that a more scientific approach than
|
|
* just taking the first one available would be desirable.
|
|
*
|
|
* The PCI BIOS $PIR table offers "preferred PCI interrupts", but ACPI
|
|
* doesn't seem to offer a similar mechanism, so picking a "good"
|
|
* interrupt here is a difficult task.
|
|
*
|
|
* Build a resource buffer and pass it to AcpiSetCurrentResources to
|
|
* route the new interrupt.
|
|
*/
|
|
device_printf(pcib, "possible interrupts:");
|
|
for (i = 0; i < NumberOfInterrupts; i++)
|
|
printf(" %d", Interrupts[i]);
|
|
printf("\n");
|
|
|
|
if (crsbuf.Pointer != NULL) /* should never happen */
|
|
AcpiOsFree(crsbuf.Pointer);
|
|
crsbuf.Pointer = NULL;
|
|
if (prsres->Id == ACPI_RSTYPE_IRQ) {
|
|
resbuf.Id = ACPI_RSTYPE_IRQ;
|
|
resbuf.Length = ACPI_SIZEOF_RESOURCE(ACPI_RESOURCE_IRQ);
|
|
resbuf.Data.Irq = prsres->Data.Irq; /* structure copy other fields */
|
|
resbuf.Data.Irq.NumberOfInterrupts = 1;
|
|
resbuf.Data.Irq.Interrupts[0] = Interrupts[0]; /* just take first... */
|
|
} else {
|
|
resbuf.Id = ACPI_RSTYPE_EXT_IRQ;
|
|
resbuf.Length = ACPI_SIZEOF_RESOURCE(ACPI_RESOURCE_IRQ);
|
|
resbuf.Data.ExtendedIrq = prsres->Data.ExtendedIrq; /* structure copy other fields */
|
|
resbuf.Data.ExtendedIrq.NumberOfInterrupts = 1;
|
|
resbuf.Data.ExtendedIrq.Interrupts[0] = Interrupts[0]; /* just take first... */
|
|
}
|
|
if (ACPI_FAILURE(status = acpi_AppendBufferResource(&crsbuf, &resbuf))) {
|
|
device_printf(pcib, "couldn't route interrupt %d via %s, interrupt resource build failed - %s\n",
|
|
Interrupts[0], acpi_name(lnkdev), AcpiFormatException(status));
|
|
goto out;
|
|
}
|
|
if (ACPI_FAILURE(status = AcpiSetCurrentResources(lnkdev, &crsbuf))) {
|
|
device_printf(pcib, "couldn't route interrupt %d via %s - %s\n",
|
|
Interrupts[0], acpi_name(lnkdev), AcpiFormatException(status));
|
|
goto out;
|
|
}
|
|
|
|
/* successful, return the interrupt we just routed */
|
|
device_printf(pcib, "slot %d INT%c routed to irq %d via %s\n",
|
|
pci_get_slot(dev), 'A' + pin, Interrupts[0], acpi_name(lnkdev));
|
|
interrupt = Interrupts[0];
|
|
|
|
out:
|
|
if (crsbuf.Pointer != NULL)
|
|
AcpiOsFree(crsbuf.Pointer);
|
|
if (prsbuf.Pointer != NULL)
|
|
AcpiOsFree(prsbuf.Pointer);
|
|
if (buf.Pointer != NULL)
|
|
AcpiOsFree(buf.Pointer);
|
|
|
|
/* XXX APIC_IO interrupt mapping? */
|
|
return_VALUE(interrupt);
|
|
}
|