freebsd-skq/sys/dev/aic7xxx/aic7xxx_inline.h
Justin T. Gibbs 6fb77fef4d This is an MFC candidate.
ahc_eisa.c:
	Change aic7770_map_int to take an additional irq parameter.
	Although we can get the irq from the eisa dev under FreeBSD,
	we can't do this under linux, so the OSM interface must supply
	this.

ahc_pci.c:
	Move ahc_power_state_change() to the OSM.  This allows us to
	use a platform supplied function that does the same thing.
	-current will move to the FreeBSD native API in the near
	future.

aic7770.c:
	Sync up with core changes to support Linux EISA.

	We now store a 2 bit primary channel number rather
	than a bit flag that only allows b to be the primary
	channel.   Adjust for this change.

aic7xxx.c:
	Namespace and staticization cleanup.  All exported symbols
	use an "ahc_" prefix to avoid collisions with other modules.

	Correct a logic bug that prevented us from dropping
	ATN during some exceptional conditions during message
	processing.

	Take advantage of a new flag managed by the sequencer
	that indicates if an SCB fetch is in progress.  If so,
	the currently selected SCB needs to be returned to the
	free list to prevent an SCB leak.  This leak is a rarity
	and would only occur if a bus reset or timeout resulting
	in a bus reset occurred in the middle of an SCB fetch.

	Don't attempt to perform ULTRA transfers on ultra capable
	adapters missing the external precision resistor required
	for ultra speeds.  I've never encountered an adapter
	configured this way, but better safe than sorry.

        Handle the case of 5MHz user sync rate set as "0" instead of 0x1c
        in scratch ram.

        If we lookup a period of 0 in our table (async), clear the scsi offset.

aic7xxx.h:
	Adjust for the primary channel being represented as
	a 2 bit integer in the flags member of the ahc softc.

	Cleanup the flags definitions so that comment blocks are
	not cramped.

	Update seeprom definitions to correctly reflect the fact
	that the primary channel is represented as a 2 bit integer.

	Add AHC_ULTRA_DIASABLED softc flag to denote controllers
	missing the external precision resistor.

aic7xxx.reg:
	Add DFCACHETH to the definition of DFSTATUS for completness sake.

	Add SEQ_FLAGS2 which currently only contains the SCB_DMA
	(SCB DMA in progress) flag.

aic7xxx.seq:
	Correct a problem when one lun has a disconnected untagged
	transaction and another lun has disconnected tagged transactions.
	Just because an entry is found in the untagged table doesn't
	mean that it will match.  If the match on the lun fails, cleanup
	the SCB (return it to the disconnected list or free it), and snoop
	for a tag message.  Before this change, we reported an unsolicited
	reselection.  This bug was introduced about a month ago during an
	overly aggressive optimization pass on the reselection code.

	When cleaning up an SCB, we can't just blindly free the SCB.  In
	the paging case, if the SCB came off of the disconnected list, its
	state may never have been updated in host memory.  So, check the
	disconnected bit in SCB_CONTROL and return the SCB to the disconnected
	list if appropriate.

	Manage the SCB_DMA flag of SEQ_FLAGS2.

	More carefully shutdown the S/G dma engine in all cases by using
	a subroutine.  Supposedly not doing this can cause an arbiter hang
	on some ULTRA2 chips.

	Formatting cleanup.

	On some chips, at least the aic7856, the transition from
	MREQPEND to HDONE can take a full 4 clock cycles.  Test
	HDONE one more time to avoid this race.  We only want our
	FIFO hung recovery code to execute when the engine is
	really hung.

aic7xxx_93cx6.c:
	Sync perforce ids.

aic7xxx_freebsd.c:
	Adjust for the primary channel being a 2 bit integer
	rather than a flag for 'B' channel being the primary.

	Namespace cleanup.

	Unpause the sequencer in one error recovery path that
	neglected to do so.  This could have caused us to perform
	a bus reset when a recovery message might have otherwise been
	successful.

aic7xxx_freebsd.h:
	Use AHC_PCI_CONFIG for controlling compilation of PCI
	support consistently throughout the driver.

	Move ahc_power_state_change() to OSM.

aic7xxx_inline.h
	Namespace cleanup.

	Adjust our interrupt handler so it will work in the edge
	interrupt case.  We must process all interrupt sources
	when the interrupt fires or risk not ever getting an
	interrupt again.  This involves marking the fact
	that we are relying on an edge interrupt in ahc->flags
	and checking for this condition in addition to the
	AHC_ALL_INTERRUPTS flag.  This fixes hangs on the
	284X and any other aic7770 installation where level
	interrupts are not available.

aic7xxx_pci.c:
	Move the powerstate manipulation code into the OSM.  Several
	OSes now provide this functionality natively.

	Take another shot at using the data stored in scratch ram
	if the SCB2 signature is correct and no SEEPROM data is
	available.  In the past this failed if external SCB ram
	was configured because the memory port was locked.  We
	now release the memory port prior to testing the values
	in SCB2 and re-acquire it prior to doing termination control.

	Adjust for new 2 bit primary channel setting.

	Trust the STPWLEVEL setting on v 3.X BIOSes too.

	Configure any 785X ID in the same fashion and assume
	that any device with a rev id of 1 or higher has the
	PCI 2.1 retry bug.
2001-03-11 06:34:17 +00:00

488 lines
14 KiB
C

/*
* Inline routines shareable across OS platforms.
*
* Copyright (c) 1994-2001 Justin T. Gibbs.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions, and the following disclaimer,
* without modification.
* 2. The name of the author may not be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* Alternatively, this software may be distributed under the terms of the
* GNU Public License ("GPL").
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR
* ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* $Id: //depot/src/aic7xxx/aic7xxx_inline.h#17 $
*
* $FreeBSD$
*/
#ifndef _AIC7XXX_INLINE_H_
#define _AIC7XXX_INLINE_H_
/************************* Sequencer Execution Control ************************/
static __inline int ahc_is_paused(struct ahc_softc *ahc);
static __inline void ahc_pause_bug_fix(struct ahc_softc *ahc);
static __inline void ahc_pause(struct ahc_softc *ahc);
static __inline void ahc_unpause(struct ahc_softc *ahc);
/*
* Work around any chip bugs related to halting sequencer execution.
* On Ultra2 controllers, we must clear the CIOBUS stretch signal by
* reading a register that will set this signal and deassert it.
* Without this workaround, if the chip is paused, by an interrupt or
* manual pause while accessing scb ram, accesses to certain registers
* will hang the system (infinite pci retries).
*/
static __inline void
ahc_pause_bug_fix(struct ahc_softc *ahc)
{
if ((ahc->features & AHC_ULTRA2) != 0)
(void)ahc_inb(ahc, CCSCBCTL);
}
/*
* Determine whether the sequencer has halted code execution.
* Returns non-zero status if the sequencer is stopped.
*/
static __inline int
ahc_is_paused(struct ahc_softc *ahc)
{
return ((ahc_inb(ahc, HCNTRL) & PAUSE) != 0);
}
/*
* Request that the sequencer stop and wait, indefinitely, for it
* to stop. The sequencer will only acknowledge that it is paused
* once it has reached an instruction boundary and PAUSEDIS is
* cleared in the SEQCTL register. The sequencer may use PAUSEDIS
* for critical sections.
*/
static __inline void
ahc_pause(struct ahc_softc *ahc)
{
ahc_outb(ahc, HCNTRL, ahc->pause);
/*
* Since the sequencer can disable pausing in a critical section, we
* must loop until it actually stops.
*/
while (ahc_is_paused(ahc) == 0)
;
ahc_pause_bug_fix(ahc);
}
/*
* Allow the sequencer to continue program execution.
* We check here to ensure that no additional interrupt
* sources that would cause the sequencer to halt have been
* asserted. If, for example, a SCSI bus reset is detected
* while we are fielding a different, pausing, interrupt type,
* we don't want to release the sequencer before going back
* into our interrupt handler and dealing with this new
* condition.
*/
static __inline void
ahc_unpause(struct ahc_softc *ahc)
{
if ((ahc_inb(ahc, INTSTAT) & (SCSIINT | SEQINT | BRKADRINT)) == 0)
ahc_outb(ahc, HCNTRL, ahc->unpause);
}
/*********************** Untagged Transaction Routines ************************/
static __inline void ahc_freeze_untagged_queues(struct ahc_softc *ahc);
static __inline void ahc_release_untagged_queues(struct ahc_softc *ahc);
/*
* Block our completion routine from starting the next untagged
* transaction for this target or target lun.
*/
static __inline void
ahc_freeze_untagged_queues(struct ahc_softc *ahc)
{
if ((ahc->flags & AHC_SCB_BTT) == 0)
ahc->untagged_queue_lock++;
}
/*
* Allow the next untagged transaction for this target or target lun
* to be executed. We use a counting semaphore to allow the lock
* to be acquired recursively. Once the count drops to zero, the
* transaction queues will be run.
*/
static __inline void
ahc_release_untagged_queues(struct ahc_softc *ahc)
{
if ((ahc->flags & AHC_SCB_BTT) == 0) {
ahc->untagged_queue_lock--;
if (ahc->untagged_queue_lock == 0)
ahc_run_untagged_queues(ahc);
}
}
/************************** Memory mapping routines ***************************/
static __inline struct ahc_dma_seg *
ahc_sg_bus_to_virt(struct scb *scb,
uint32_t sg_busaddr);
static __inline uint32_t
ahc_sg_virt_to_bus(struct scb *scb,
struct ahc_dma_seg *sg);
static __inline uint32_t
ahc_hscb_busaddr(struct ahc_softc *ahc, u_int index);
static __inline struct ahc_dma_seg *
ahc_sg_bus_to_virt(struct scb *scb, uint32_t sg_busaddr)
{
int sg_index;
sg_index = (sg_busaddr - scb->sg_list_phys)/sizeof(struct ahc_dma_seg);
/* sg_list_phys points to entry 1, not 0 */
sg_index++;
return (&scb->sg_list[sg_index]);
}
static __inline uint32_t
ahc_sg_virt_to_bus(struct scb *scb, struct ahc_dma_seg *sg)
{
int sg_index;
/* sg_list_phys points to entry 1, not 0 */
sg_index = sg - &scb->sg_list[1];
return (scb->sg_list_phys + (sg_index * sizeof(*scb->sg_list)));
}
static __inline uint32_t
ahc_hscb_busaddr(struct ahc_softc *ahc, u_int index)
{
return (ahc->scb_data->hscb_busaddr
+ (sizeof(struct hardware_scb) * index));
}
/******************************** Debugging ***********************************/
static __inline char *ahc_name(struct ahc_softc *ahc);
static __inline char *
ahc_name(struct ahc_softc *ahc)
{
return (ahc->name);
}
/*********************** Miscelaneous Support Functions ***********************/
static __inline int ahc_check_residual(struct scb *scb);
static __inline struct ahc_initiator_tinfo *
ahc_fetch_transinfo(struct ahc_softc *ahc,
char channel, u_int our_id,
u_int remote_id,
struct tmode_tstate **tstate);
static __inline struct scb*
ahc_get_scb(struct ahc_softc *ahc);
static __inline void ahc_free_scb(struct ahc_softc *ahc, struct scb *scb);
static __inline void ahc_swap_with_next_hscb(struct ahc_softc *ahc,
struct scb *scb);
static __inline void ahc_queue_scb(struct ahc_softc *ahc, struct scb *scb);
static __inline struct scsi_sense_data *
ahc_get_sense_buf(struct ahc_softc *ahc,
struct scb *scb);
static __inline uint32_t
ahc_get_sense_bufaddr(struct ahc_softc *ahc,
struct scb *scb);
/*
* Determine whether the sequencer reported a residual
* for this SCB/transaction.
*/
static __inline int
ahc_check_residual(struct scb *scb)
{
struct status_pkt *sp;
sp = &scb->hscb->shared_data.status;
if ((scb->hscb->sgptr & SG_RESID_VALID) != 0)
return (1);
return (0);
}
/*
* Return pointers to the transfer negotiation information
* for the specified our_id/remote_id pair.
*/
static __inline struct ahc_initiator_tinfo *
ahc_fetch_transinfo(struct ahc_softc *ahc, char channel, u_int our_id,
u_int remote_id, struct tmode_tstate **tstate)
{
/*
* Transfer data structures are stored from the perspective
* of the target role. Since the parameters for a connection
* in the initiator role to a given target are the same as
* when the roles are reversed, we pretend we are the target.
*/
if (channel == 'B')
our_id += 8;
*tstate = ahc->enabled_targets[our_id];
return (&(*tstate)->transinfo[remote_id]);
}
/*
* Get a free scb. If there are none, see if we can allocate a new SCB.
*/
static __inline struct scb *
ahc_get_scb(struct ahc_softc *ahc)
{
struct scb *scb;
if ((scb = SLIST_FIRST(&ahc->scb_data->free_scbs)) == NULL) {
ahc_alloc_scbs(ahc);
scb = SLIST_FIRST(&ahc->scb_data->free_scbs);
if (scb == NULL)
return (NULL);
}
SLIST_REMOVE_HEAD(&ahc->scb_data->free_scbs, links.sle);
return (scb);
}
/*
* Return an SCB resource to the free list.
*/
static __inline void
ahc_free_scb(struct ahc_softc *ahc, struct scb *scb)
{
struct hardware_scb *hscb;
hscb = scb->hscb;
/* Clean up for the next user */
ahc->scb_data->scbindex[hscb->tag] = NULL;
scb->flags = SCB_FREE;
hscb->control = 0;
SLIST_INSERT_HEAD(&ahc->scb_data->free_scbs, scb, links.sle);
/* Notify the OSM that a resource is now available. */
ahc_platform_scb_free(ahc, scb);
}
static __inline struct scb *
ahc_lookup_scb(struct ahc_softc *ahc, u_int tag)
{
return (ahc->scb_data->scbindex[tag]);
}
static __inline void
ahc_swap_with_next_hscb(struct ahc_softc *ahc, struct scb *scb)
{
struct hardware_scb *q_hscb;
u_int saved_tag;
/*
* Our queuing method is a bit tricky. The card
* knows in advance which HSCB to download, and we
* can't disappoint it. To achieve this, the next
* SCB to download is saved off in ahc->next_queued_scb.
* When we are called to queue "an arbitrary scb",
* we copy the contents of the incoming HSCB to the one
* the sequencer knows about, swap HSCB pointers and
* finally assign the SCB to the tag indexed location
* in the scb_array. This makes sure that we can still
* locate the correct SCB by SCB_TAG.
*/
q_hscb = ahc->next_queued_scb->hscb;
saved_tag = q_hscb->tag;
memcpy(q_hscb, scb->hscb, sizeof(*scb->hscb));
if ((scb->flags & SCB_CDB32_PTR) != 0) {
q_hscb->shared_data.cdb_ptr =
ahc_hscb_busaddr(ahc, q_hscb->tag)
+ offsetof(struct hardware_scb, cdb32);
}
q_hscb->tag = saved_tag;
q_hscb->next = scb->hscb->tag;
/* Now swap HSCB pointers. */
ahc->next_queued_scb->hscb = scb->hscb;
scb->hscb = q_hscb;
/* Now define the mapping from tag to SCB in the scbindex */
ahc->scb_data->scbindex[scb->hscb->tag] = scb;
}
/*
* Tell the sequencer about a new transaction to execute.
*/
static __inline void
ahc_queue_scb(struct ahc_softc *ahc, struct scb *scb)
{
ahc_swap_with_next_hscb(ahc, scb);
if (scb->hscb->tag == SCB_LIST_NULL
|| scb->hscb->next == SCB_LIST_NULL)
panic("Attempt to queue invalid SCB tag %x:%x\n",
scb->hscb->tag, scb->hscb->next);
/*
* Keep a history of SCBs we've downloaded in the qinfifo.
*/
ahc->qinfifo[ahc->qinfifonext++] = scb->hscb->tag;
if ((ahc->features & AHC_QUEUE_REGS) != 0) {
ahc_outb(ahc, HNSCB_QOFF, ahc->qinfifonext);
} else {
if ((ahc->features & AHC_AUTOPAUSE) == 0)
ahc_pause(ahc);
ahc_outb(ahc, KERNEL_QINPOS, ahc->qinfifonext);
if ((ahc->features & AHC_AUTOPAUSE) == 0)
ahc_unpause(ahc);
}
}
static __inline struct scsi_sense_data *
ahc_get_sense_buf(struct ahc_softc *ahc, struct scb *scb)
{
int offset;
offset = scb - ahc->scb_data->scbarray;
return (&ahc->scb_data->sense[offset]);
}
static __inline uint32_t
ahc_get_sense_bufaddr(struct ahc_softc *ahc, struct scb *scb)
{
int offset;
offset = scb - ahc->scb_data->scbarray;
return (ahc->scb_data->sense_busaddr
+ (offset * sizeof(struct scsi_sense_data)));
}
/************************** Interrupt Processing ******************************/
static __inline u_int ahc_check_cmdcmpltqueues(struct ahc_softc *ahc);
static __inline void ahc_intr(struct ahc_softc *ahc);
/*
* See if the firmware has posted any completed commands
* into our in-core command complete fifos.
*/
#define AHC_RUN_QOUTFIFO 0x1
#define AHC_RUN_TQINFIFO 0x2
static __inline u_int
ahc_check_cmdcmpltqueues(struct ahc_softc *ahc)
{
u_int retval;
retval = 0;
if (ahc->qoutfifo[ahc->qoutfifonext] != SCB_LIST_NULL)
retval |= AHC_RUN_QOUTFIFO;
#ifdef AHC_TARGET_MODE
if ((ahc->flags & AHC_TARGETROLE) != 0
&& ahc->targetcmds[ahc->tqinfifonext].cmd_valid != 0)
retval |= AHC_RUN_TQINFIFO;
#endif
return (retval);
}
/*
* Catch an interrupt from the adapter
*/
static __inline void
ahc_intr(struct ahc_softc *ahc)
{
u_int intstat;
u_int queuestat;
/*
* Instead of directly reading the interrupt status register,
* infer the cause of the interrupt by checking our in-core
* completion queues. This avoids a costly PCI bus read in
* most cases.
*/
if ((ahc->flags & (AHC_ALL_INTERRUPTS|AHC_EDGE_INTERRUPT)) == 0
&& (queuestat = ahc_check_cmdcmpltqueues(ahc)) != 0)
intstat = CMDCMPLT;
else {
intstat = ahc_inb(ahc, INTSTAT);
/*
* We can't generate queuestat once above
* or we are exposed to a race when our
* interrupt is shared with another device.
* if instat showed a command complete interrupt,
* but our first generation of queue stat
* "just missed" the delivery of this transaction,
* we would clear the command complete interrupt
* below without ever servicing the completed
* command.
*/
queuestat = ahc_check_cmdcmpltqueues(ahc);
#if AHC_PCI_CONFIG > 0
if (ahc->unsolicited_ints > 500
&& (ahc->chip & AHC_PCI) != 0
&& (ahc_inb(ahc, ERROR) & PCIERRSTAT) != 0)
ahc_pci_intr(ahc);
#endif
}
if (intstat == 0xFF && (ahc->features & AHC_REMOVABLE) != 0)
/* Hot eject */
return;
if ((intstat & INT_PEND) == 0) {
ahc->unsolicited_ints++;
return;
}
ahc->unsolicited_ints = 0;
if (intstat & CMDCMPLT) {
ahc_outb(ahc, CLRINT, CLRCMDINT);
/*
* Ensure that the chip sees that we've cleared
* this interrupt before we walk the output fifo.
* Otherwise, we may, due to posted bus writes,
* clear the interrupt after we finish the scan,
* and after the sequencer has added new entries
* and asserted the interrupt again.
*/
ahc_flush_device_writes(ahc);
#ifdef AHC_TARGET_MODE
if ((queuestat & AHC_RUN_QOUTFIFO) != 0)
#endif
ahc_run_qoutfifo(ahc);
#ifdef AHC_TARGET_MODE
if ((queuestat & AHC_RUN_TQINFIFO) != 0)
ahc_run_tqinfifo(ahc, /*paused*/FALSE);
#endif
}
if (intstat & BRKADRINT) {
ahc_handle_brkadrint(ahc);
/* Fatal error, no more interrupts to handle. */
return;
}
if ((intstat & (SEQINT|SCSIINT)) != 0)
ahc_pause_bug_fix(ahc);
if ((intstat & SEQINT) != 0)
ahc_handle_seqint(ahc, intstat);
if ((intstat & SCSIINT) != 0)
ahc_handle_scsiint(ahc, intstat);
}
#endif /* _AIC7XXX_INLINE_H_ */