dffcea8d5f
(1) Merged i386/i386/sb.h, deleted pc98/pc98/sb.h. (2) pc98/conf/GENERIC8 looks more like i386/conf/GENERIC now. (3) Fixed display bug in pc98/boot/biosboot/io.c. (4) Prepare to merge memory allocation routines: pc98/i386/locore.s pc98/i386/machdep.c pc98/pc98/pc98_machdep.c pc98/pc98/pc98_machdep.h (5) Support new board "C-NET(98)": pc98/pc98/if_ed98.h pc98/pc98/if_ed.c (6) Make sure FPU is recognized for non-Intel CPUs: pc98/pc98/npx.c (7) Do not expect bss to be zero-allocated: pc98/pc98/pc98.c Submitted by: The FreeBSD(98) Development Team
2991 lines
64 KiB
C
2991 lines
64 KiB
C
/*
|
|
* Copyright (c) 1991 Regents of the University of California.
|
|
* All rights reserved.
|
|
* Copyright (c) 1994 John S. Dyson
|
|
* All rights reserved.
|
|
* Copyright (c) 1994 David Greenman
|
|
* All rights reserved.
|
|
*
|
|
* This code is derived from software contributed to Berkeley by
|
|
* the Systems Programming Group of the University of Utah Computer
|
|
* Science Department and William Jolitz of UUNET Technologies Inc.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 3. All advertising materials mentioning features or use of this software
|
|
* must display the following acknowledgement:
|
|
* This product includes software developed by the University of
|
|
* California, Berkeley and its contributors.
|
|
* 4. Neither the name of the University nor the names of its contributors
|
|
* may be used to endorse or promote products derived from this software
|
|
* without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*
|
|
* from: @(#)pmap.c 7.7 (Berkeley) 5/12/91
|
|
* $Id: pmap.c,v 1.4 1996/10/09 19:47:39 bde Exp $
|
|
*/
|
|
|
|
/*
|
|
* Manages physical address maps.
|
|
*
|
|
* In addition to hardware address maps, this
|
|
* module is called upon to provide software-use-only
|
|
* maps which may or may not be stored in the same
|
|
* form as hardware maps. These pseudo-maps are
|
|
* used to store intermediate results from copy
|
|
* operations to and from address spaces.
|
|
*
|
|
* Since the information managed by this module is
|
|
* also stored by the logical address mapping module,
|
|
* this module may throw away valid virtual-to-physical
|
|
* mappings at almost any time. However, invalidations
|
|
* of virtual-to-physical mappings must be done as
|
|
* requested.
|
|
*
|
|
* In order to cope with hardware architectures which
|
|
* make virtual-to-physical map invalidates expensive,
|
|
* this module may delay invalidate or reduced protection
|
|
* operations until such time as they are actually
|
|
* necessary. This module is given full information as
|
|
* to which processors are currently using which maps,
|
|
* and to when physical maps must be made correct.
|
|
*/
|
|
|
|
#include "opt_cpu.h"
|
|
|
|
#include <sys/param.h>
|
|
#include <sys/systm.h>
|
|
#include <sys/proc.h>
|
|
#include <sys/malloc.h>
|
|
#include <sys/msgbuf.h>
|
|
#include <sys/queue.h>
|
|
#include <sys/vmmeter.h>
|
|
#include <sys/mman.h>
|
|
|
|
#include <vm/vm.h>
|
|
#include <vm/vm_param.h>
|
|
#include <vm/vm_prot.h>
|
|
#include <vm/lock.h>
|
|
#include <vm/vm_kern.h>
|
|
#include <vm/vm_page.h>
|
|
#include <vm/vm_map.h>
|
|
#include <vm/vm_object.h>
|
|
#include <vm/vm_extern.h>
|
|
#include <vm/vm_pageout.h>
|
|
#include <vm/vm_pager.h>
|
|
|
|
#include <machine/pcb.h>
|
|
#include <machine/cputypes.h>
|
|
#include <machine/md_var.h>
|
|
|
|
#define PMAP_KEEP_PDIRS
|
|
|
|
#if defined(DIAGNOSTIC)
|
|
#define PMAP_DIAGNOSTIC
|
|
#endif
|
|
|
|
#if !defined(PMAP_DIAGNOSTIC)
|
|
#define PMAP_INLINE __inline
|
|
#else
|
|
#define PMAP_INLINE
|
|
#endif
|
|
|
|
#define PTPHINT
|
|
|
|
static void init_pv_entries __P((int));
|
|
|
|
/*
|
|
* Get PDEs and PTEs for user/kernel address space
|
|
*/
|
|
#define pmap_pde(m, v) (&((m)->pm_pdir[(vm_offset_t)(v) >> PDRSHIFT]))
|
|
#define pdir_pde(m, v) (m[(vm_offset_t)(v) >> PDRSHIFT])
|
|
|
|
#define pmap_pde_v(pte) ((*(int *)pte & PG_V) != 0)
|
|
#define pmap_pte_w(pte) ((*(int *)pte & PG_W) != 0)
|
|
#define pmap_pte_m(pte) ((*(int *)pte & PG_M) != 0)
|
|
#define pmap_pte_u(pte) ((*(int *)pte & PG_A) != 0)
|
|
#define pmap_pte_v(pte) ((*(int *)pte & PG_V) != 0)
|
|
|
|
#define pmap_pte_set_w(pte, v) ((v)?(*(int *)pte |= PG_W):(*(int *)pte &= ~PG_W))
|
|
#define pmap_pte_set_prot(pte, v) ((*(int *)pte &= ~PG_PROT), (*(int *)pte |= (v)))
|
|
|
|
/*
|
|
* Given a map and a machine independent protection code,
|
|
* convert to a vax protection code.
|
|
*/
|
|
#define pte_prot(m, p) (protection_codes[p])
|
|
static int protection_codes[8];
|
|
|
|
static struct pmap kernel_pmap_store;
|
|
pmap_t kernel_pmap;
|
|
|
|
vm_offset_t avail_start; /* PA of first available physical page */
|
|
vm_offset_t avail_end; /* PA of last available physical page */
|
|
vm_offset_t virtual_avail; /* VA of first avail page (after kernel bss) */
|
|
vm_offset_t virtual_end; /* VA of last avail page (end of kernel AS) */
|
|
static boolean_t pmap_initialized = FALSE; /* Has pmap_init completed? */
|
|
static vm_offset_t vm_first_phys;
|
|
|
|
static int nkpt;
|
|
static vm_page_t nkpg;
|
|
vm_offset_t kernel_vm_end;
|
|
|
|
extern vm_offset_t clean_sva, clean_eva;
|
|
extern int cpu_class;
|
|
|
|
#if defined(I386_CPU) || defined(CYRIX_486DLC)
|
|
extern int cpu;
|
|
#endif
|
|
|
|
#define PV_FREELIST_MIN ((PAGE_SIZE / sizeof (struct pv_entry)) / 2)
|
|
|
|
/*
|
|
* Data for the pv entry allocation mechanism
|
|
*/
|
|
static int pv_freelistcnt;
|
|
TAILQ_HEAD (,pv_entry) pv_freelist;
|
|
static vm_offset_t pvva;
|
|
static int npvvapg;
|
|
|
|
/*
|
|
* All those kernel PT submaps that BSD is so fond of
|
|
*/
|
|
pt_entry_t *CMAP1;
|
|
static pt_entry_t *CMAP2, *ptmmap;
|
|
caddr_t CADDR1, ptvmmap;
|
|
static caddr_t CADDR2;
|
|
static pt_entry_t *msgbufmap;
|
|
struct msgbuf *msgbufp;
|
|
|
|
pt_entry_t *PMAP1;
|
|
unsigned *PADDR1;
|
|
|
|
static void free_pv_entry __P((pv_entry_t pv));
|
|
static unsigned * get_ptbase __P((pmap_t pmap));
|
|
static pv_entry_t get_pv_entry __P((void));
|
|
static void i386_protection_init __P((void));
|
|
static void pmap_alloc_pv_entry __P((void));
|
|
static void pmap_changebit __P((vm_offset_t pa, int bit, boolean_t setem));
|
|
|
|
static int pmap_is_managed __P((vm_offset_t pa));
|
|
static void pmap_remove_all __P((vm_offset_t pa));
|
|
static vm_page_t pmap_enter_quick __P((pmap_t pmap, vm_offset_t va,
|
|
vm_offset_t pa, vm_page_t mpte));
|
|
static int pmap_remove_pte __P((struct pmap *pmap, unsigned *ptq,
|
|
vm_offset_t sva));
|
|
static void pmap_remove_page __P((struct pmap *pmap, vm_offset_t va));
|
|
static int pmap_remove_entry __P((struct pmap *pmap, pv_table_t *pv,
|
|
vm_offset_t va));
|
|
static boolean_t pmap_testbit __P((vm_offset_t pa, int bit));
|
|
static void pmap_insert_entry __P((pmap_t pmap, vm_offset_t va,
|
|
vm_page_t mpte, vm_offset_t pa));
|
|
|
|
static vm_page_t pmap_allocpte __P((pmap_t pmap, vm_offset_t va));
|
|
|
|
static int pmap_release_free_page __P((pmap_t pmap, vm_page_t p));
|
|
static vm_page_t _pmap_allocpte __P((pmap_t pmap, unsigned ptepindex));
|
|
static unsigned * pmap_pte_quick __P((pmap_t pmap, vm_offset_t va));
|
|
static vm_page_t pmap_page_alloc __P((vm_object_t object, vm_pindex_t pindex));
|
|
static PMAP_INLINE void pmap_lock __P((pmap_t pmap));
|
|
static PMAP_INLINE void pmap_unlock __P((pmap_t pmap));
|
|
static void pmap_lock2 __P((pmap_t pmap1, pmap_t pmap2));
|
|
|
|
#define PDSTACKMAX 6
|
|
static vm_offset_t pdstack[PDSTACKMAX];
|
|
static int pdstackptr;
|
|
|
|
/*
|
|
* Bootstrap the system enough to run with virtual memory.
|
|
*
|
|
* On the i386 this is called after mapping has already been enabled
|
|
* and just syncs the pmap module with what has already been done.
|
|
* [We can't call it easily with mapping off since the kernel is not
|
|
* mapped with PA == VA, hence we would have to relocate every address
|
|
* from the linked base (virtual) address "KERNBASE" to the actual
|
|
* (physical) address starting relative to 0]
|
|
*/
|
|
void
|
|
pmap_bootstrap(firstaddr, loadaddr)
|
|
vm_offset_t firstaddr;
|
|
vm_offset_t loadaddr;
|
|
{
|
|
vm_offset_t va;
|
|
pt_entry_t *pte;
|
|
|
|
avail_start = firstaddr;
|
|
|
|
/*
|
|
* XXX The calculation of virtual_avail is wrong. It's NKPT*PAGE_SIZE too
|
|
* large. It should instead be correctly calculated in locore.s and
|
|
* not based on 'first' (which is a physical address, not a virtual
|
|
* address, for the start of unused physical memory). The kernel
|
|
* page tables are NOT double mapped and thus should not be included
|
|
* in this calculation.
|
|
*/
|
|
virtual_avail = (vm_offset_t) KERNBASE + firstaddr;
|
|
virtual_end = VM_MAX_KERNEL_ADDRESS;
|
|
|
|
/*
|
|
* Initialize protection array.
|
|
*/
|
|
i386_protection_init();
|
|
|
|
/*
|
|
* The kernel's pmap is statically allocated so we don't have to use
|
|
* pmap_create, which is unlikely to work correctly at this part of
|
|
* the boot sequence (XXX and which no longer exists).
|
|
*/
|
|
kernel_pmap = &kernel_pmap_store;
|
|
|
|
kernel_pmap->pm_pdir = (pd_entry_t *) (KERNBASE + IdlePTD);
|
|
|
|
kernel_pmap->pm_count = 1;
|
|
TAILQ_INIT(&kernel_pmap->pm_pvlist);
|
|
nkpt = NKPT;
|
|
|
|
/*
|
|
* Reserve some special page table entries/VA space for temporary
|
|
* mapping of pages.
|
|
*/
|
|
#define SYSMAP(c, p, v, n) \
|
|
v = (c)va; va += ((n)*PAGE_SIZE); p = pte; pte += (n);
|
|
|
|
va = virtual_avail;
|
|
pte = (pt_entry_t *) pmap_pte(kernel_pmap, va);
|
|
|
|
/*
|
|
* CMAP1/CMAP2 are used for zeroing and copying pages.
|
|
*/
|
|
SYSMAP(caddr_t, CMAP1, CADDR1, 1)
|
|
SYSMAP(caddr_t, CMAP2, CADDR2, 1)
|
|
|
|
/*
|
|
* ptmmap is used for reading arbitrary physical pages via /dev/mem.
|
|
*/
|
|
SYSMAP(caddr_t, ptmmap, ptvmmap, 1)
|
|
|
|
/*
|
|
* msgbufmap is used to map the system message buffer.
|
|
*/
|
|
SYSMAP(struct msgbuf *, msgbufmap, msgbufp, 1)
|
|
|
|
/*
|
|
* ptemap is used for pmap_pte_quick
|
|
*/
|
|
SYSMAP(unsigned *, PMAP1, PADDR1, 1);
|
|
|
|
virtual_avail = va;
|
|
|
|
*(int *) CMAP1 = *(int *) CMAP2 = *(int *) PTD = 0;
|
|
invltlb();
|
|
|
|
}
|
|
|
|
/*
|
|
* Initialize the pmap module.
|
|
* Called by vm_init, to initialize any structures that the pmap
|
|
* system needs to map virtual memory.
|
|
* pmap_init has been enhanced to support in a fairly consistant
|
|
* way, discontiguous physical memory.
|
|
*/
|
|
void
|
|
pmap_init(phys_start, phys_end)
|
|
vm_offset_t phys_start, phys_end;
|
|
{
|
|
vm_offset_t addr;
|
|
vm_size_t npg, s;
|
|
int i;
|
|
|
|
/*
|
|
* calculate the number of pv_entries needed
|
|
*/
|
|
vm_first_phys = phys_avail[0];
|
|
for (i = 0; phys_avail[i + 1]; i += 2);
|
|
npg = (phys_avail[(i - 2) + 1] - vm_first_phys) / PAGE_SIZE;
|
|
|
|
/*
|
|
* Allocate memory for random pmap data structures. Includes the
|
|
* pv_head_table.
|
|
*/
|
|
s = (vm_size_t) (sizeof(pv_table_t) * npg);
|
|
s = round_page(s);
|
|
|
|
addr = (vm_offset_t) kmem_alloc(kernel_map, s);
|
|
pv_table = (pv_table_t *) addr;
|
|
for(i=0;i<npg;i++) {
|
|
vm_offset_t pa;
|
|
TAILQ_INIT(&pv_table[i].pv_list);
|
|
pv_table[i].pv_list_count = 0;
|
|
pa = vm_first_phys + i * PAGE_SIZE;
|
|
pv_table[i].pv_vm_page = PHYS_TO_VM_PAGE(pa);
|
|
}
|
|
TAILQ_INIT(&pv_freelist);
|
|
|
|
/*
|
|
* init the pv free list
|
|
*/
|
|
init_pv_entries(npg);
|
|
/*
|
|
* Now it is safe to enable pv_table recording.
|
|
*/
|
|
pmap_initialized = TRUE;
|
|
}
|
|
|
|
/*
|
|
* Used to map a range of physical addresses into kernel
|
|
* virtual address space.
|
|
*
|
|
* For now, VM is already on, we only need to map the
|
|
* specified memory.
|
|
*/
|
|
vm_offset_t
|
|
pmap_map(virt, start, end, prot)
|
|
vm_offset_t virt;
|
|
vm_offset_t start;
|
|
vm_offset_t end;
|
|
int prot;
|
|
{
|
|
while (start < end) {
|
|
pmap_enter(kernel_pmap, virt, start, prot, FALSE);
|
|
virt += PAGE_SIZE;
|
|
start += PAGE_SIZE;
|
|
}
|
|
return (virt);
|
|
}
|
|
|
|
|
|
/***************************************************
|
|
* Low level helper routines.....
|
|
***************************************************/
|
|
|
|
#if defined(PMAP_DIAGNOSTIC)
|
|
|
|
/*
|
|
* This code checks for non-writeable/modified pages.
|
|
* This should be an invalid condition.
|
|
*/
|
|
static int
|
|
pmap_nw_modified(pt_entry_t ptea) {
|
|
int pte;
|
|
|
|
pte = (int) ptea;
|
|
|
|
if ((pte & (PG_M|PG_RW)) == PG_M)
|
|
return 1;
|
|
else
|
|
return 0;
|
|
}
|
|
#endif
|
|
|
|
|
|
/*
|
|
* this routine defines the region(s) of memory that should
|
|
* not be tested for the modified bit.
|
|
*/
|
|
static PMAP_INLINE int
|
|
pmap_track_modified( vm_offset_t va) {
|
|
if ((va < clean_sva) || (va >= clean_eva))
|
|
return 1;
|
|
else
|
|
return 0;
|
|
}
|
|
|
|
static PMAP_INLINE void
|
|
invltlb_1pg( vm_offset_t va) {
|
|
#if defined(I386_CPU)
|
|
if (cpu_class == CPUCLASS_386) {
|
|
invltlb();
|
|
} else
|
|
#endif
|
|
{
|
|
invlpg(va);
|
|
}
|
|
}
|
|
|
|
static PMAP_INLINE void
|
|
invltlb_2pg( vm_offset_t va1, vm_offset_t va2) {
|
|
#if defined(I386_CPU)
|
|
if (cpu_class == CPUCLASS_386) {
|
|
invltlb();
|
|
} else
|
|
#endif
|
|
{
|
|
invlpg(va1);
|
|
invlpg(va2);
|
|
}
|
|
}
|
|
|
|
|
|
static PMAP_INLINE void
|
|
pmap_lock(pmap)
|
|
pmap_t pmap;
|
|
{
|
|
int s;
|
|
if (pmap == kernel_pmap)
|
|
return;
|
|
s = splhigh();
|
|
while (pmap->pm_flags & PM_FLAG_LOCKED) {
|
|
pmap->pm_flags |= PM_FLAG_WANTED;
|
|
tsleep(pmap, PVM - 1, "pmaplk", 0);
|
|
}
|
|
splx(s);
|
|
}
|
|
|
|
static PMAP_INLINE void
|
|
pmap_unlock(pmap)
|
|
pmap_t pmap;
|
|
{
|
|
int s;
|
|
if (pmap == kernel_pmap)
|
|
return;
|
|
s = splhigh();
|
|
pmap->pm_flags &= ~PM_FLAG_LOCKED;
|
|
if (pmap->pm_flags & PM_FLAG_WANTED) {
|
|
pmap->pm_flags &= ~PM_FLAG_WANTED;
|
|
wakeup(pmap);
|
|
}
|
|
}
|
|
|
|
static void
|
|
pmap_lock2(pmap1, pmap2)
|
|
pmap_t pmap1, pmap2;
|
|
{
|
|
int s;
|
|
if (pmap1 == kernel_pmap || pmap2 == kernel_pmap)
|
|
return;
|
|
s = splhigh();
|
|
while ((pmap1->pm_flags | pmap2->pm_flags) & PM_FLAG_LOCKED) {
|
|
while (pmap1->pm_flags & PM_FLAG_LOCKED) {
|
|
pmap1->pm_flags |= PM_FLAG_WANTED;
|
|
tsleep(pmap1, PVM - 1, "pmapl1", 0);
|
|
}
|
|
while (pmap2->pm_flags & PM_FLAG_LOCKED) {
|
|
pmap2->pm_flags |= PM_FLAG_WANTED;
|
|
tsleep(pmap2, PVM - 1, "pmapl2", 0);
|
|
}
|
|
}
|
|
splx(s);
|
|
}
|
|
|
|
static unsigned *
|
|
get_ptbase(pmap)
|
|
pmap_t pmap;
|
|
{
|
|
unsigned frame = (unsigned) pmap->pm_pdir[PTDPTDI] & PG_FRAME;
|
|
|
|
/* are we current address space or kernel? */
|
|
if (pmap == kernel_pmap || frame == (((unsigned) PTDpde) & PG_FRAME)) {
|
|
return (unsigned *) PTmap;
|
|
}
|
|
/* otherwise, we are alternate address space */
|
|
if (frame != (((unsigned) APTDpde) & PG_FRAME)) {
|
|
APTDpde = (pd_entry_t) (frame | PG_RW | PG_V);
|
|
invltlb();
|
|
}
|
|
return (unsigned *) APTmap;
|
|
}
|
|
|
|
/*
|
|
* Routine: pmap_pte
|
|
* Function:
|
|
* Extract the page table entry associated
|
|
* with the given map/virtual_address pair.
|
|
*/
|
|
|
|
PMAP_INLINE unsigned *
|
|
pmap_pte(pmap, va)
|
|
register pmap_t pmap;
|
|
vm_offset_t va;
|
|
{
|
|
if (pmap && *pmap_pde(pmap, va)) {
|
|
return get_ptbase(pmap) + i386_btop(va);
|
|
}
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Super fast pmap_pte routine best used when scanning
|
|
* the pv lists. This eliminates many coarse-grained
|
|
* invltlb calls. Note that many of the pv list
|
|
* scans are across different pmaps. It is very wasteful
|
|
* to do an entire invltlb for checking a single mapping.
|
|
*/
|
|
|
|
unsigned *
|
|
pmap_pte_quick(pmap, va)
|
|
register pmap_t pmap;
|
|
vm_offset_t va;
|
|
{
|
|
unsigned pde, newpf;
|
|
if (pde = (unsigned) pmap->pm_pdir[va >> PDRSHIFT]) {
|
|
unsigned frame = (unsigned) pmap->pm_pdir[PTDPTDI] & PG_FRAME;
|
|
unsigned index = i386_btop(va);
|
|
/* are we current address space or kernel? */
|
|
if ((pmap == kernel_pmap) ||
|
|
(frame == (((unsigned) PTDpde) & PG_FRAME))) {
|
|
return (unsigned *) PTmap + index;
|
|
}
|
|
newpf = pde & PG_FRAME;
|
|
if ( ((* (unsigned *) PMAP1) & PG_FRAME) != newpf) {
|
|
* (unsigned *) PMAP1 = newpf | PG_RW | PG_V;
|
|
invltlb_1pg((vm_offset_t) PADDR1);
|
|
}
|
|
return PADDR1 + ((unsigned) index & (NPTEPG - 1));
|
|
}
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Routine: pmap_extract
|
|
* Function:
|
|
* Extract the physical page address associated
|
|
* with the given map/virtual_address pair.
|
|
*/
|
|
vm_offset_t
|
|
pmap_extract(pmap, va)
|
|
register pmap_t pmap;
|
|
vm_offset_t va;
|
|
{
|
|
vm_offset_t rtval;
|
|
pmap_lock(pmap);
|
|
if (pmap && *pmap_pde(pmap, va)) {
|
|
unsigned *pte;
|
|
pte = get_ptbase(pmap) + i386_btop(va);
|
|
rtval = ((*pte & PG_FRAME) | (va & PAGE_MASK));
|
|
pmap_unlock(pmap);
|
|
return rtval;
|
|
}
|
|
pmap_unlock(pmap);
|
|
return 0;
|
|
|
|
}
|
|
|
|
/*
|
|
* determine if a page is managed (memory vs. device)
|
|
*/
|
|
static PMAP_INLINE int
|
|
pmap_is_managed(pa)
|
|
vm_offset_t pa;
|
|
{
|
|
int i;
|
|
|
|
if (!pmap_initialized)
|
|
return 0;
|
|
|
|
for (i = 0; phys_avail[i + 1]; i += 2) {
|
|
if (pa < phys_avail[i + 1] && pa >= phys_avail[i])
|
|
return 1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
|
|
/***************************************************
|
|
* Low level mapping routines.....
|
|
***************************************************/
|
|
|
|
/*
|
|
* Add a list of wired pages to the kva
|
|
* this routine is only used for temporary
|
|
* kernel mappings that do not need to have
|
|
* page modification or references recorded.
|
|
* Note that old mappings are simply written
|
|
* over. The page *must* be wired.
|
|
*/
|
|
void
|
|
pmap_qenter(va, m, count)
|
|
vm_offset_t va;
|
|
vm_page_t *m;
|
|
int count;
|
|
{
|
|
int i;
|
|
register unsigned *pte;
|
|
|
|
for (i = 0; i < count; i++) {
|
|
vm_offset_t tva = va + i * PAGE_SIZE;
|
|
unsigned npte = VM_PAGE_TO_PHYS(m[i]) | PG_RW | PG_V;
|
|
unsigned opte;
|
|
pte = (unsigned *)vtopte(tva);
|
|
opte = *pte;
|
|
*pte = npte;
|
|
if (opte)
|
|
invltlb_1pg(tva);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* this routine jerks page mappings from the
|
|
* kernel -- it is meant only for temporary mappings.
|
|
*/
|
|
void
|
|
pmap_qremove(va, count)
|
|
vm_offset_t va;
|
|
int count;
|
|
{
|
|
int i;
|
|
register unsigned *pte;
|
|
|
|
for (i = 0; i < count; i++) {
|
|
pte = (unsigned *)vtopte(va);
|
|
*pte = 0;
|
|
invltlb_1pg(va);
|
|
va += PAGE_SIZE;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* add a wired page to the kva
|
|
* note that in order for the mapping to take effect -- you
|
|
* should do a invltlb after doing the pmap_kenter...
|
|
*/
|
|
PMAP_INLINE void
|
|
pmap_kenter(va, pa)
|
|
vm_offset_t va;
|
|
register vm_offset_t pa;
|
|
{
|
|
register unsigned *pte;
|
|
unsigned npte, opte;
|
|
|
|
npte = pa | PG_RW | PG_V;
|
|
pte = (unsigned *)vtopte(va);
|
|
opte = *pte;
|
|
*pte = npte;
|
|
if (opte)
|
|
invltlb_1pg(va);
|
|
}
|
|
|
|
/*
|
|
* remove a page from the kernel pagetables
|
|
*/
|
|
PMAP_INLINE void
|
|
pmap_kremove(va)
|
|
vm_offset_t va;
|
|
{
|
|
register unsigned *pte;
|
|
|
|
pte = (unsigned *)vtopte(va);
|
|
*pte = 0;
|
|
invltlb_1pg(va);
|
|
}
|
|
|
|
static vm_page_t
|
|
pmap_page_alloc(object, pindex)
|
|
vm_object_t object;
|
|
vm_pindex_t pindex;
|
|
{
|
|
vm_page_t m;
|
|
m = vm_page_alloc(object, pindex, VM_ALLOC_ZERO);
|
|
if (m == NULL) {
|
|
VM_WAIT;
|
|
}
|
|
return m;
|
|
}
|
|
|
|
vm_page_t
|
|
pmap_page_lookup(object, pindex)
|
|
vm_object_t object;
|
|
vm_pindex_t pindex;
|
|
{
|
|
vm_page_t m;
|
|
retry:
|
|
m = vm_page_lookup(object, pindex);
|
|
if (m) {
|
|
if (m->flags & PG_BUSY) {
|
|
m->flags |= PG_WANTED;
|
|
tsleep(m, PVM, "pplookp", 0);
|
|
goto retry;
|
|
}
|
|
}
|
|
|
|
return m;
|
|
}
|
|
|
|
|
|
|
|
|
|
/***************************************************
|
|
* Page table page management routines.....
|
|
***************************************************/
|
|
|
|
/*
|
|
* This routine unholds page table pages, and if the hold count
|
|
* drops to zero, then it decrements the wire count.
|
|
*/
|
|
static int
|
|
pmap_unwire_pte_hold(pmap_t pmap, vm_page_t m) {
|
|
int s;
|
|
|
|
vm_page_unhold(m);
|
|
|
|
s = splvm();
|
|
while (m->flags & PG_BUSY) {
|
|
m->flags |= PG_WANTED;
|
|
tsleep(m, PVM, "pmuwpt", 0);
|
|
}
|
|
splx(s);
|
|
|
|
if (m->hold_count == 0) {
|
|
vm_offset_t pteva;
|
|
/*
|
|
* unmap the page table page
|
|
*/
|
|
pmap->pm_pdir[m->pindex] = 0;
|
|
--pmap->pm_stats.resident_count;
|
|
if ((((unsigned)pmap->pm_pdir[PTDPTDI]) & PG_FRAME) ==
|
|
(((unsigned) PTDpde) & PG_FRAME)) {
|
|
/*
|
|
* Do a invltlb to make the invalidated mapping
|
|
* take effect immediately.
|
|
*/
|
|
pteva = UPT_MIN_ADDRESS + i386_ptob(m->pindex);
|
|
invltlb_1pg(pteva);
|
|
}
|
|
|
|
#if defined(PTPHINT)
|
|
if (pmap->pm_ptphint == m)
|
|
pmap->pm_ptphint = NULL;
|
|
#endif
|
|
|
|
/*
|
|
* If the page is finally unwired, simply free it.
|
|
*/
|
|
--m->wire_count;
|
|
if (m->wire_count == 0) {
|
|
|
|
if (m->flags & PG_WANTED) {
|
|
m->flags &= ~PG_WANTED;
|
|
wakeup(m);
|
|
}
|
|
|
|
vm_page_free_zero(m);
|
|
--cnt.v_wire_count;
|
|
}
|
|
return 1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* After removing a page table entry, this routine is used to
|
|
* conditionally free the page, and manage the hold/wire counts.
|
|
*/
|
|
int
|
|
pmap_unuse_pt(pmap, va, mpte)
|
|
pmap_t pmap;
|
|
vm_offset_t va;
|
|
vm_page_t mpte;
|
|
{
|
|
unsigned ptepindex;
|
|
if (va >= UPT_MIN_ADDRESS)
|
|
return 0;
|
|
|
|
if (mpte == NULL) {
|
|
ptepindex = (va >> PDRSHIFT);
|
|
#if defined(PTPHINT)
|
|
if (pmap->pm_ptphint &&
|
|
(pmap->pm_ptphint->pindex == ptepindex)) {
|
|
mpte = pmap->pm_ptphint;
|
|
} else {
|
|
mpte = pmap_page_lookup( pmap->pm_pteobj, ptepindex);
|
|
pmap->pm_ptphint = mpte;
|
|
}
|
|
#else
|
|
mpte = pmap_page_lookup( pmap->pm_pteobj, ptepindex);
|
|
#endif
|
|
}
|
|
|
|
return pmap_unwire_pte_hold(pmap, mpte);
|
|
}
|
|
|
|
/*
|
|
* Initialize a preallocated and zeroed pmap structure,
|
|
* such as one in a vmspace structure.
|
|
*/
|
|
void
|
|
pmap_pinit(pmap)
|
|
register struct pmap *pmap;
|
|
{
|
|
vm_page_t ptdpg;
|
|
/*
|
|
* No need to allocate page table space yet but we do need a valid
|
|
* page directory table.
|
|
*/
|
|
|
|
if (pdstackptr > 0) {
|
|
--pdstackptr;
|
|
pmap->pm_pdir = (pd_entry_t *)pdstack[pdstackptr];
|
|
} else {
|
|
pmap->pm_pdir =
|
|
(pd_entry_t *)kmem_alloc_pageable(kernel_map, PAGE_SIZE);
|
|
}
|
|
|
|
/*
|
|
* allocate object for the ptes
|
|
*/
|
|
pmap->pm_pteobj = vm_object_allocate( OBJT_DEFAULT, PTDPTDI + 1);
|
|
|
|
/*
|
|
* allocate the page directory page
|
|
*/
|
|
retry:
|
|
ptdpg = pmap_page_alloc( pmap->pm_pteobj, PTDPTDI);
|
|
if (ptdpg == NULL)
|
|
goto retry;
|
|
|
|
ptdpg->wire_count = 1;
|
|
++cnt.v_wire_count;
|
|
|
|
ptdpg->flags &= ~(PG_MAPPED|PG_BUSY); /* not mapped normally */
|
|
ptdpg->valid = VM_PAGE_BITS_ALL;
|
|
|
|
pmap_kenter((vm_offset_t) pmap->pm_pdir, VM_PAGE_TO_PHYS(ptdpg));
|
|
if ((ptdpg->flags & PG_ZERO) == 0)
|
|
bzero(pmap->pm_pdir, PAGE_SIZE);
|
|
|
|
/* wire in kernel global address entries */
|
|
bcopy(PTD + KPTDI, pmap->pm_pdir + KPTDI, nkpt * PTESIZE);
|
|
|
|
/* install self-referential address mapping entry */
|
|
*(unsigned *) (pmap->pm_pdir + PTDPTDI) =
|
|
VM_PAGE_TO_PHYS(ptdpg) | PG_V | PG_RW;
|
|
|
|
pmap->pm_flags = 0;
|
|
pmap->pm_count = 1;
|
|
pmap->pm_ptphint = NULL;
|
|
TAILQ_INIT(&pmap->pm_pvlist);
|
|
}
|
|
|
|
static int
|
|
pmap_release_free_page(pmap, p)
|
|
struct pmap *pmap;
|
|
vm_page_t p;
|
|
{
|
|
int s;
|
|
unsigned *pde = (unsigned *) pmap->pm_pdir;
|
|
/*
|
|
* This code optimizes the case of freeing non-busy
|
|
* page-table pages. Those pages are zero now, and
|
|
* might as well be placed directly into the zero queue.
|
|
*/
|
|
s = splvm();
|
|
if (p->flags & PG_BUSY) {
|
|
p->flags |= PG_WANTED;
|
|
tsleep(p, PVM, "pmaprl", 0);
|
|
splx(s);
|
|
return 0;
|
|
}
|
|
|
|
if (p->flags & PG_WANTED) {
|
|
p->flags &= ~PG_WANTED;
|
|
wakeup(p);
|
|
}
|
|
|
|
/*
|
|
* Remove the page table page from the processes address space.
|
|
*/
|
|
pde[p->pindex] = 0;
|
|
--pmap->pm_stats.resident_count;
|
|
|
|
if (p->hold_count) {
|
|
panic("pmap_release: freeing held page table page");
|
|
}
|
|
/*
|
|
* Page directory pages need to have the kernel
|
|
* stuff cleared, so they can go into the zero queue also.
|
|
*/
|
|
if (p->pindex == PTDPTDI) {
|
|
bzero(pde + KPTDI, nkpt * PTESIZE);
|
|
pde[APTDPTDI] = 0;
|
|
pmap_kremove((vm_offset_t) pmap->pm_pdir);
|
|
}
|
|
|
|
#if defined(PTPHINT)
|
|
if (pmap->pm_ptphint &&
|
|
(pmap->pm_ptphint->pindex == p->pindex))
|
|
pmap->pm_ptphint = NULL;
|
|
#endif
|
|
|
|
vm_page_free_zero(p);
|
|
splx(s);
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
* this routine is called if the page table page is not
|
|
* mapped correctly.
|
|
*/
|
|
static vm_page_t
|
|
_pmap_allocpte(pmap, ptepindex)
|
|
pmap_t pmap;
|
|
unsigned ptepindex;
|
|
{
|
|
vm_offset_t pteva, ptepa;
|
|
vm_page_t m;
|
|
int needszero = 0;
|
|
|
|
/*
|
|
* Find or fabricate a new pagetable page
|
|
*/
|
|
retry:
|
|
m = vm_page_lookup(pmap->pm_pteobj, ptepindex);
|
|
if (m == NULL) {
|
|
m = pmap_page_alloc(pmap->pm_pteobj, ptepindex);
|
|
if (m == NULL)
|
|
goto retry;
|
|
if ((m->flags & PG_ZERO) == 0)
|
|
needszero = 1;
|
|
m->flags &= ~(PG_ZERO|PG_BUSY);
|
|
m->valid = VM_PAGE_BITS_ALL;
|
|
} else {
|
|
if ((m->flags & PG_BUSY) || m->busy) {
|
|
m->flags |= PG_WANTED;
|
|
tsleep(m, PVM, "ptewai", 0);
|
|
goto retry;
|
|
}
|
|
}
|
|
|
|
if (m->queue != PQ_NONE) {
|
|
int s = splvm();
|
|
vm_page_unqueue(m);
|
|
splx(s);
|
|
}
|
|
|
|
if (m->wire_count == 0)
|
|
++cnt.v_wire_count;
|
|
++m->wire_count;
|
|
|
|
/*
|
|
* Increment the hold count for the page table page
|
|
* (denoting a new mapping.)
|
|
*/
|
|
++m->hold_count;
|
|
|
|
/*
|
|
* Map the pagetable page into the process address space, if
|
|
* it isn't already there.
|
|
*/
|
|
|
|
pmap->pm_stats.resident_count++;
|
|
|
|
ptepa = VM_PAGE_TO_PHYS(m);
|
|
pmap->pm_pdir[ptepindex] = (pd_entry_t) (ptepa | PG_U | PG_RW | PG_V);
|
|
|
|
#if defined(PTPHINT)
|
|
/*
|
|
* Set the page table hint
|
|
*/
|
|
pmap->pm_ptphint = m;
|
|
#endif
|
|
|
|
/*
|
|
* Try to use the new mapping, but if we cannot, then
|
|
* do it with the routine that maps the page explicitly.
|
|
*/
|
|
if (needszero) {
|
|
if ((((unsigned)pmap->pm_pdir[PTDPTDI]) & PG_FRAME) ==
|
|
(((unsigned) PTDpde) & PG_FRAME)) {
|
|
pteva = UPT_MIN_ADDRESS + i386_ptob(ptepindex);
|
|
bzero((caddr_t) pteva, PAGE_SIZE);
|
|
} else {
|
|
pmap_zero_page(ptepa);
|
|
}
|
|
}
|
|
|
|
m->valid = VM_PAGE_BITS_ALL;
|
|
m->flags |= PG_MAPPED;
|
|
|
|
return m;
|
|
}
|
|
|
|
static vm_page_t
|
|
pmap_allocpte(pmap, va)
|
|
pmap_t pmap;
|
|
vm_offset_t va;
|
|
{
|
|
unsigned ptepindex;
|
|
vm_offset_t ptepa;
|
|
vm_page_t m;
|
|
|
|
/*
|
|
* Calculate pagetable page index
|
|
*/
|
|
ptepindex = va >> PDRSHIFT;
|
|
|
|
/*
|
|
* Get the page directory entry
|
|
*/
|
|
ptepa = (vm_offset_t) pmap->pm_pdir[ptepindex];
|
|
|
|
/*
|
|
* If the page table page is mapped, we just increment the
|
|
* hold count, and activate it.
|
|
*/
|
|
if (ptepa) {
|
|
#if defined(PTPHINT)
|
|
/*
|
|
* In order to get the page table page, try the
|
|
* hint first.
|
|
*/
|
|
if (pmap->pm_ptphint &&
|
|
(pmap->pm_ptphint->pindex == ptepindex)) {
|
|
m = pmap->pm_ptphint;
|
|
} else {
|
|
m = pmap_page_lookup( pmap->pm_pteobj, ptepindex);
|
|
pmap->pm_ptphint = m;
|
|
}
|
|
#else
|
|
m = pmap_page_lookup( pmap->pm_pteobj, ptepindex);
|
|
#endif
|
|
++m->hold_count;
|
|
return m;
|
|
}
|
|
/*
|
|
* Here if the pte page isn't mapped, or if it has been deallocated.
|
|
*/
|
|
return _pmap_allocpte(pmap, ptepindex);
|
|
}
|
|
|
|
|
|
/***************************************************
|
|
* Pmap allocation/deallocation routines.
|
|
***************************************************/
|
|
|
|
/*
|
|
* Release any resources held by the given physical map.
|
|
* Called when a pmap initialized by pmap_pinit is being released.
|
|
* Should only be called if the map contains no valid mappings.
|
|
*/
|
|
void
|
|
pmap_release(pmap)
|
|
register struct pmap *pmap;
|
|
{
|
|
vm_page_t p,n,ptdpg;
|
|
vm_object_t object = pmap->pm_pteobj;
|
|
|
|
if (object->ref_count != 1)
|
|
panic("pmap_release: pteobj reference count != 1");
|
|
|
|
pmap_lock(pmap);
|
|
ptdpg = NULL;
|
|
retry:
|
|
for (p = TAILQ_FIRST(&object->memq); p != NULL; p = n) {
|
|
n = TAILQ_NEXT(p, listq);
|
|
if (p->pindex == PTDPTDI) {
|
|
ptdpg = p;
|
|
continue;
|
|
}
|
|
if (!pmap_release_free_page(pmap, p))
|
|
goto retry;
|
|
}
|
|
|
|
if (ptdpg && !pmap_release_free_page(pmap, ptdpg))
|
|
goto retry;
|
|
|
|
vm_object_deallocate(object);
|
|
if (pdstackptr < PDSTACKMAX) {
|
|
pdstack[pdstackptr] = (vm_offset_t) pmap->pm_pdir;
|
|
++pdstackptr;
|
|
} else {
|
|
kmem_free(kernel_map, (vm_offset_t) pmap->pm_pdir, PAGE_SIZE);
|
|
}
|
|
pmap->pm_pdir = 0;
|
|
}
|
|
|
|
/*
|
|
* grow the number of kernel page table entries, if needed
|
|
*/
|
|
void
|
|
pmap_growkernel(vm_offset_t addr)
|
|
{
|
|
struct proc *p;
|
|
struct pmap *pmap;
|
|
int s;
|
|
|
|
s = splhigh();
|
|
if (kernel_vm_end == 0) {
|
|
kernel_vm_end = KERNBASE;
|
|
nkpt = 0;
|
|
while (pdir_pde(PTD, kernel_vm_end)) {
|
|
kernel_vm_end = (kernel_vm_end + PAGE_SIZE * NPTEPG) & ~(PAGE_SIZE * NPTEPG - 1);
|
|
++nkpt;
|
|
}
|
|
}
|
|
addr = (addr + PAGE_SIZE * NPTEPG) & ~(PAGE_SIZE * NPTEPG - 1);
|
|
while (kernel_vm_end < addr) {
|
|
if (pdir_pde(PTD, kernel_vm_end)) {
|
|
kernel_vm_end = (kernel_vm_end + PAGE_SIZE * NPTEPG) & ~(PAGE_SIZE * NPTEPG - 1);
|
|
continue;
|
|
}
|
|
++nkpt;
|
|
if (!nkpg) {
|
|
vm_offset_t ptpkva = (vm_offset_t) vtopte(addr);
|
|
/*
|
|
* This index is bogus, but out of the way
|
|
*/
|
|
vm_pindex_t ptpidx = (ptpkva >> PAGE_SHIFT);
|
|
nkpg = vm_page_alloc(kernel_object,
|
|
ptpidx, VM_ALLOC_SYSTEM);
|
|
if (!nkpg)
|
|
panic("pmap_growkernel: no memory to grow kernel");
|
|
vm_page_wire(nkpg);
|
|
vm_page_remove(nkpg);
|
|
pmap_zero_page(VM_PAGE_TO_PHYS(nkpg));
|
|
}
|
|
pdir_pde(PTD, kernel_vm_end) = (pd_entry_t) (VM_PAGE_TO_PHYS(nkpg) | PG_V | PG_RW);
|
|
nkpg = NULL;
|
|
|
|
for (p = allproc.lh_first; p != 0; p = p->p_list.le_next) {
|
|
if (p->p_vmspace) {
|
|
pmap = &p->p_vmspace->vm_pmap;
|
|
*pmap_pde(pmap, kernel_vm_end) = pdir_pde(PTD, kernel_vm_end);
|
|
}
|
|
}
|
|
*pmap_pde(kernel_pmap, kernel_vm_end) = pdir_pde(PTD, kernel_vm_end);
|
|
kernel_vm_end = (kernel_vm_end + PAGE_SIZE * NPTEPG) & ~(PAGE_SIZE * NPTEPG - 1);
|
|
}
|
|
splx(s);
|
|
}
|
|
|
|
/*
|
|
* Retire the given physical map from service.
|
|
* Should only be called if the map contains
|
|
* no valid mappings.
|
|
*/
|
|
void
|
|
pmap_destroy(pmap)
|
|
register pmap_t pmap;
|
|
{
|
|
int count;
|
|
|
|
if (pmap == NULL)
|
|
return;
|
|
|
|
count = --pmap->pm_count;
|
|
if (count == 0) {
|
|
pmap_release(pmap);
|
|
free((caddr_t) pmap, M_VMPMAP);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Add a reference to the specified pmap.
|
|
*/
|
|
void
|
|
pmap_reference(pmap)
|
|
pmap_t pmap;
|
|
{
|
|
if (pmap != NULL) {
|
|
pmap->pm_count++;
|
|
}
|
|
}
|
|
|
|
/***************************************************
|
|
* page management routines.
|
|
***************************************************/
|
|
|
|
/*
|
|
* free the pv_entry back to the free list
|
|
*/
|
|
static PMAP_INLINE void
|
|
free_pv_entry(pv)
|
|
pv_entry_t pv;
|
|
{
|
|
++pv_freelistcnt;
|
|
TAILQ_INSERT_HEAD(&pv_freelist, pv, pv_list);
|
|
}
|
|
|
|
/*
|
|
* get a new pv_entry, allocating a block from the system
|
|
* when needed.
|
|
* the memory allocation is performed bypassing the malloc code
|
|
* because of the possibility of allocations at interrupt time.
|
|
*/
|
|
static pv_entry_t
|
|
get_pv_entry()
|
|
{
|
|
pv_entry_t tmp;
|
|
|
|
/*
|
|
* get more pv_entry pages if needed
|
|
*/
|
|
if (pv_freelistcnt < PV_FREELIST_MIN || !TAILQ_FIRST(&pv_freelist)) {
|
|
pmap_alloc_pv_entry();
|
|
}
|
|
/*
|
|
* get a pv_entry off of the free list
|
|
*/
|
|
--pv_freelistcnt;
|
|
tmp = TAILQ_FIRST(&pv_freelist);
|
|
TAILQ_REMOVE(&pv_freelist, tmp, pv_list);
|
|
return tmp;
|
|
}
|
|
|
|
/*
|
|
* This *strange* allocation routine eliminates the possibility of a malloc
|
|
* failure (*FATAL*) for a pv_entry_t data structure.
|
|
* also -- this code is MUCH MUCH faster than the malloc equiv...
|
|
* We really need to do the slab allocator thingie here.
|
|
*/
|
|
static void
|
|
pmap_alloc_pv_entry()
|
|
{
|
|
/*
|
|
* do we have any pre-allocated map-pages left?
|
|
*/
|
|
if (npvvapg) {
|
|
vm_page_t m;
|
|
|
|
/*
|
|
* allocate a physical page out of the vm system
|
|
*/
|
|
m = vm_page_alloc(kernel_object,
|
|
OFF_TO_IDX(pvva - vm_map_min(kernel_map)),
|
|
VM_ALLOC_INTERRUPT);
|
|
if (m) {
|
|
int newentries;
|
|
int i;
|
|
pv_entry_t entry;
|
|
|
|
newentries = (PAGE_SIZE / sizeof(struct pv_entry));
|
|
/*
|
|
* wire the page
|
|
*/
|
|
vm_page_wire(m);
|
|
m->flags &= ~PG_BUSY;
|
|
/*
|
|
* let the kernel see it
|
|
*/
|
|
pmap_kenter(pvva, VM_PAGE_TO_PHYS(m));
|
|
|
|
entry = (pv_entry_t) pvva;
|
|
/*
|
|
* update the allocation pointers
|
|
*/
|
|
pvva += PAGE_SIZE;
|
|
--npvvapg;
|
|
|
|
/*
|
|
* free the entries into the free list
|
|
*/
|
|
for (i = 0; i < newentries; i++) {
|
|
free_pv_entry(entry);
|
|
entry++;
|
|
}
|
|
}
|
|
}
|
|
if (!TAILQ_FIRST(&pv_freelist))
|
|
panic("get_pv_entry: cannot get a pv_entry_t");
|
|
}
|
|
|
|
/*
|
|
* init the pv_entry allocation system
|
|
*/
|
|
#define PVSPERPAGE 64
|
|
void
|
|
init_pv_entries(npg)
|
|
int npg;
|
|
{
|
|
/*
|
|
* allocate enough kvm space for PVSPERPAGE entries per page (lots)
|
|
* kvm space is fairly cheap, be generous!!! (the system can panic if
|
|
* this is too small.)
|
|
*/
|
|
npvvapg = ((npg * PVSPERPAGE) * sizeof(struct pv_entry)
|
|
+ PAGE_SIZE - 1) / PAGE_SIZE;
|
|
pvva = kmem_alloc_pageable(kernel_map, npvvapg * PAGE_SIZE);
|
|
/*
|
|
* get the first batch of entries
|
|
*/
|
|
pmap_alloc_pv_entry();
|
|
}
|
|
|
|
/*
|
|
* If it is the first entry on the list, it is actually
|
|
* in the header and we must copy the following entry up
|
|
* to the header. Otherwise we must search the list for
|
|
* the entry. In either case we free the now unused entry.
|
|
*/
|
|
|
|
static int
|
|
pmap_remove_entry(pmap, ppv, va)
|
|
struct pmap *pmap;
|
|
pv_table_t *ppv;
|
|
vm_offset_t va;
|
|
{
|
|
pv_entry_t pv;
|
|
int rtval;
|
|
int s;
|
|
|
|
s = splvm();
|
|
if (ppv->pv_list_count < pmap->pm_stats.resident_count) {
|
|
for (pv = TAILQ_FIRST(&ppv->pv_list);
|
|
pv;
|
|
pv = TAILQ_NEXT(pv, pv_list)) {
|
|
if (pmap == pv->pv_pmap && va == pv->pv_va)
|
|
break;
|
|
}
|
|
} else {
|
|
for (pv = TAILQ_FIRST(&pmap->pm_pvlist);
|
|
pv;
|
|
pv = TAILQ_NEXT(pv, pv_plist)) {
|
|
if (va == pv->pv_va)
|
|
break;
|
|
}
|
|
}
|
|
|
|
rtval = 0;
|
|
if (pv) {
|
|
rtval = pmap_unuse_pt(pmap, va, pv->pv_ptem);
|
|
TAILQ_REMOVE(&ppv->pv_list, pv, pv_list);
|
|
--ppv->pv_list_count;
|
|
TAILQ_REMOVE(&pmap->pm_pvlist, pv, pv_plist);
|
|
free_pv_entry(pv);
|
|
}
|
|
|
|
splx(s);
|
|
return rtval;
|
|
}
|
|
|
|
/*
|
|
* Create a pv entry for page at pa for
|
|
* (pmap, va).
|
|
*/
|
|
static void
|
|
pmap_insert_entry(pmap, va, mpte, pa)
|
|
pmap_t pmap;
|
|
vm_offset_t va;
|
|
vm_page_t mpte;
|
|
vm_offset_t pa;
|
|
{
|
|
|
|
int s;
|
|
pv_entry_t pv;
|
|
pv_table_t *ppv;
|
|
|
|
s = splvm();
|
|
pv = get_pv_entry();
|
|
pv->pv_va = va;
|
|
pv->pv_pmap = pmap;
|
|
pv->pv_ptem = mpte;
|
|
|
|
TAILQ_INSERT_TAIL(&pmap->pm_pvlist, pv, pv_plist);
|
|
|
|
ppv = pa_to_pvh(pa);
|
|
TAILQ_INSERT_TAIL(&ppv->pv_list, pv, pv_list);
|
|
++ppv->pv_list_count;
|
|
|
|
splx(s);
|
|
}
|
|
|
|
/*
|
|
* pmap_remove_pte: do the things to unmap a page in a process
|
|
*/
|
|
static int
|
|
pmap_remove_pte(pmap, ptq, va)
|
|
struct pmap *pmap;
|
|
unsigned *ptq;
|
|
vm_offset_t va;
|
|
{
|
|
unsigned oldpte;
|
|
pv_table_t *ppv;
|
|
|
|
oldpte = *ptq;
|
|
*ptq = 0;
|
|
if (oldpte & PG_W)
|
|
pmap->pm_stats.wired_count -= 1;
|
|
pmap->pm_stats.resident_count -= 1;
|
|
if (oldpte & PG_MANAGED) {
|
|
ppv = pa_to_pvh(oldpte);
|
|
if (oldpte & PG_M) {
|
|
#if defined(PMAP_DIAGNOSTIC)
|
|
if (pmap_nw_modified((pt_entry_t) oldpte)) {
|
|
printf("pmap_remove: modified page not writable: va: 0x%lx, pte: 0x%lx\n", va, (int) oldpte);
|
|
}
|
|
#endif
|
|
if (pmap_track_modified(va))
|
|
ppv->pv_vm_page->dirty = VM_PAGE_BITS_ALL;
|
|
}
|
|
return pmap_remove_entry(pmap, ppv, va);
|
|
} else {
|
|
return pmap_unuse_pt(pmap, va, NULL);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Remove a single page from a process address space
|
|
*/
|
|
static void
|
|
pmap_remove_page(pmap, va)
|
|
struct pmap *pmap;
|
|
register vm_offset_t va;
|
|
{
|
|
register unsigned *ptq;
|
|
|
|
/*
|
|
* if there is no pte for this address, just skip it!!!
|
|
*/
|
|
if (*pmap_pde(pmap, va) == 0) {
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* get a local va for mappings for this pmap.
|
|
*/
|
|
ptq = get_ptbase(pmap) + i386_btop(va);
|
|
if (*ptq) {
|
|
(void) pmap_remove_pte(pmap, ptq, va);
|
|
invltlb_1pg(va);
|
|
}
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* Remove the given range of addresses from the specified map.
|
|
*
|
|
* It is assumed that the start and end are properly
|
|
* rounded to the page size.
|
|
*/
|
|
void
|
|
pmap_remove(pmap, sva, eva)
|
|
struct pmap *pmap;
|
|
register vm_offset_t sva;
|
|
register vm_offset_t eva;
|
|
{
|
|
register unsigned *ptbase;
|
|
vm_offset_t pdnxt;
|
|
vm_offset_t ptpaddr;
|
|
vm_offset_t sindex, eindex;
|
|
int anyvalid;
|
|
|
|
if (pmap == NULL)
|
|
return;
|
|
|
|
pmap_lock(pmap);
|
|
/*
|
|
* special handling of removing one page. a very
|
|
* common operation and easy to short circuit some
|
|
* code.
|
|
*/
|
|
if ((sva + PAGE_SIZE) == eva) {
|
|
pmap_remove_page(pmap, sva);
|
|
pmap_unlock(pmap);
|
|
return;
|
|
}
|
|
|
|
anyvalid = 0;
|
|
|
|
/*
|
|
* Get a local virtual address for the mappings that are being
|
|
* worked with.
|
|
*/
|
|
ptbase = get_ptbase(pmap);
|
|
|
|
sindex = i386_btop(sva);
|
|
eindex = i386_btop(eva);
|
|
|
|
for (; sindex < eindex; sindex = pdnxt) {
|
|
|
|
/*
|
|
* Calculate index for next page table.
|
|
*/
|
|
pdnxt = ((sindex + NPTEPG) & ~(NPTEPG - 1));
|
|
ptpaddr = (vm_offset_t) *pmap_pde(pmap, i386_ptob(sindex));
|
|
|
|
/*
|
|
* Weed out invalid mappings. Note: we assume that the page
|
|
* directory table is always allocated, and in kernel virtual.
|
|
*/
|
|
if (ptpaddr == 0)
|
|
continue;
|
|
|
|
/*
|
|
* Limit our scan to either the end of the va represented
|
|
* by the current page table page, or to the end of the
|
|
* range being removed.
|
|
*/
|
|
if (pdnxt > eindex) {
|
|
pdnxt = eindex;
|
|
}
|
|
|
|
for ( ;sindex != pdnxt; sindex++) {
|
|
vm_offset_t va;
|
|
if (ptbase[sindex] == 0) {
|
|
continue;
|
|
}
|
|
va = i386_ptob(sindex);
|
|
|
|
anyvalid++;
|
|
if (pmap_remove_pte(pmap,
|
|
ptbase + sindex, va))
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (anyvalid) {
|
|
invltlb();
|
|
}
|
|
pmap_unlock(pmap);
|
|
}
|
|
|
|
/*
|
|
* Routine: pmap_remove_all
|
|
* Function:
|
|
* Removes this physical page from
|
|
* all physical maps in which it resides.
|
|
* Reflects back modify bits to the pager.
|
|
*
|
|
* Notes:
|
|
* Original versions of this routine were very
|
|
* inefficient because they iteratively called
|
|
* pmap_remove (slow...)
|
|
*/
|
|
|
|
static void
|
|
pmap_remove_all(pa)
|
|
vm_offset_t pa;
|
|
{
|
|
register pv_entry_t pv;
|
|
pv_table_t *ppv;
|
|
register unsigned *pte, tpte;
|
|
int nmodify;
|
|
int update_needed;
|
|
int s;
|
|
|
|
nmodify = 0;
|
|
update_needed = 0;
|
|
#if defined(PMAP_DIAGNOSTIC)
|
|
/*
|
|
* XXX this makes pmap_page_protect(NONE) illegal for non-managed
|
|
* pages!
|
|
*/
|
|
if (!pmap_is_managed(pa)) {
|
|
panic("pmap_page_protect: illegal for unmanaged page, va: 0x%lx", pa);
|
|
}
|
|
#endif
|
|
|
|
s = splvm();
|
|
ppv = pa_to_pvh(pa);
|
|
while ((pv = TAILQ_FIRST(&ppv->pv_list)) != NULL) {
|
|
pmap_lock(pv->pv_pmap);
|
|
pte = pmap_pte_quick(pv->pv_pmap, pv->pv_va);
|
|
|
|
pv->pv_pmap->pm_stats.resident_count--;
|
|
|
|
tpte = *pte;
|
|
*pte = 0;
|
|
if (tpte & PG_W)
|
|
pv->pv_pmap->pm_stats.wired_count--;
|
|
/*
|
|
* Update the vm_page_t clean and reference bits.
|
|
*/
|
|
if (tpte & PG_M) {
|
|
#if defined(PMAP_DIAGNOSTIC)
|
|
if (pmap_nw_modified((pt_entry_t) tpte)) {
|
|
printf("pmap_remove_all: modified page not writable: va: 0x%lx, pte: 0x%lx\n", pv->pv_va, tpte);
|
|
}
|
|
#endif
|
|
if (pmap_track_modified(pv->pv_va))
|
|
ppv->pv_vm_page->dirty = VM_PAGE_BITS_ALL;
|
|
}
|
|
if (!update_needed &&
|
|
((!curproc || (&curproc->p_vmspace->vm_pmap == pv->pv_pmap)) ||
|
|
(pv->pv_pmap == kernel_pmap))) {
|
|
update_needed = 1;
|
|
}
|
|
|
|
TAILQ_REMOVE(&pv->pv_pmap->pm_pvlist, pv, pv_plist);
|
|
TAILQ_REMOVE(&ppv->pv_list, pv, pv_list);
|
|
--ppv->pv_list_count;
|
|
pmap_unuse_pt(pv->pv_pmap, pv->pv_va, pv->pv_ptem);
|
|
pmap_unlock(pv->pv_pmap);
|
|
free_pv_entry(pv);
|
|
}
|
|
|
|
if (update_needed)
|
|
invltlb();
|
|
splx(s);
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* Set the physical protection on the
|
|
* specified range of this map as requested.
|
|
*/
|
|
void
|
|
pmap_protect(pmap, sva, eva, prot)
|
|
register pmap_t pmap;
|
|
vm_offset_t sva, eva;
|
|
vm_prot_t prot;
|
|
{
|
|
register unsigned *ptbase;
|
|
vm_offset_t pdnxt;
|
|
vm_offset_t ptpaddr;
|
|
vm_offset_t sindex, eindex;
|
|
int anychanged;
|
|
|
|
|
|
if (pmap == NULL)
|
|
return;
|
|
|
|
if ((prot & VM_PROT_READ) == VM_PROT_NONE) {
|
|
pmap_remove(pmap, sva, eva);
|
|
return;
|
|
}
|
|
if (prot & VM_PROT_WRITE) {
|
|
return;
|
|
}
|
|
|
|
pmap_lock(pmap);
|
|
anychanged = 0;
|
|
|
|
ptbase = get_ptbase(pmap);
|
|
|
|
sindex = i386_btop(sva);
|
|
eindex = i386_btop(eva);
|
|
|
|
for (; sindex < eindex; sindex = pdnxt) {
|
|
|
|
pdnxt = ((sindex + NPTEPG) & ~(NPTEPG - 1));
|
|
ptpaddr = (vm_offset_t) *pmap_pde(pmap, i386_ptob(sindex));
|
|
|
|
/*
|
|
* Weed out invalid mappings. Note: we assume that the page
|
|
* directory table is always allocated, and in kernel virtual.
|
|
*/
|
|
if (ptpaddr == 0)
|
|
continue;
|
|
|
|
if (pdnxt > eindex) {
|
|
pdnxt = eindex;
|
|
}
|
|
|
|
for (; sindex != pdnxt; sindex++) {
|
|
|
|
unsigned pbits = ptbase[sindex];
|
|
|
|
if (pbits & PG_RW) {
|
|
if (pbits & PG_M) {
|
|
vm_offset_t sva = i386_ptob(sindex);
|
|
if (pmap_track_modified(sva)) {
|
|
vm_page_t m = PHYS_TO_VM_PAGE(pbits);
|
|
m->dirty = VM_PAGE_BITS_ALL;
|
|
}
|
|
}
|
|
ptbase[sindex] = pbits & ~(PG_M|PG_RW);
|
|
anychanged = 1;
|
|
}
|
|
}
|
|
}
|
|
pmap_unlock(pmap);
|
|
if (anychanged)
|
|
invltlb();
|
|
}
|
|
|
|
/*
|
|
* Insert the given physical page (p) at
|
|
* the specified virtual address (v) in the
|
|
* target physical map with the protection requested.
|
|
*
|
|
* If specified, the page will be wired down, meaning
|
|
* that the related pte can not be reclaimed.
|
|
*
|
|
* NB: This is the only routine which MAY NOT lazy-evaluate
|
|
* or lose information. That is, this routine must actually
|
|
* insert this page into the given map NOW.
|
|
*/
|
|
void
|
|
pmap_enter(pmap, va, pa, prot, wired)
|
|
register pmap_t pmap;
|
|
vm_offset_t va;
|
|
register vm_offset_t pa;
|
|
vm_prot_t prot;
|
|
boolean_t wired;
|
|
{
|
|
register unsigned *pte;
|
|
vm_offset_t opa;
|
|
vm_offset_t origpte, newpte;
|
|
vm_page_t mpte;
|
|
|
|
if (pmap == NULL)
|
|
return;
|
|
|
|
pmap_lock(pmap);
|
|
va &= PG_FRAME;
|
|
#ifdef PMAP_DIAGNOSTIC
|
|
if (va > VM_MAX_KERNEL_ADDRESS)
|
|
panic("pmap_enter: toobig");
|
|
if ((va >= UPT_MIN_ADDRESS) && (va < UPT_MAX_ADDRESS))
|
|
panic("pmap_enter: invalid to pmap_enter page table pages (va: 0x%x)", va);
|
|
#endif
|
|
|
|
mpte = NULL;
|
|
/*
|
|
* In the case that a page table page is not
|
|
* resident, we are creating it here.
|
|
*/
|
|
if (va < UPT_MIN_ADDRESS)
|
|
mpte = pmap_allocpte(pmap, va);
|
|
|
|
pte = pmap_pte(pmap, va);
|
|
/*
|
|
* Page Directory table entry not valid, we need a new PT page
|
|
*/
|
|
if (pte == NULL) {
|
|
panic("pmap_enter: invalid page directory, pdir=%p, va=0x%lx\n",
|
|
pmap->pm_pdir[PTDPTDI], va);
|
|
}
|
|
|
|
origpte = *(vm_offset_t *)pte;
|
|
pa &= PG_FRAME;
|
|
opa = origpte & PG_FRAME;
|
|
|
|
/*
|
|
* Mapping has not changed, must be protection or wiring change.
|
|
*/
|
|
if (origpte && (opa == pa)) {
|
|
/*
|
|
* Wiring change, just update stats. We don't worry about
|
|
* wiring PT pages as they remain resident as long as there
|
|
* are valid mappings in them. Hence, if a user page is wired,
|
|
* the PT page will be also.
|
|
*/
|
|
if (wired && ((origpte & PG_W) == 0))
|
|
pmap->pm_stats.wired_count++;
|
|
else if (!wired && (origpte & PG_W))
|
|
pmap->pm_stats.wired_count--;
|
|
|
|
#if defined(PMAP_DIAGNOSTIC)
|
|
if (pmap_nw_modified((pt_entry_t) origpte)) {
|
|
printf("pmap_enter: modified page not writable: va: 0x%lx, pte: 0x%lx\n", va, origpte);
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* We might be turning off write access to the page,
|
|
* so we go ahead and sense modify status.
|
|
*/
|
|
if (origpte & PG_MANAGED) {
|
|
vm_page_t m;
|
|
if (origpte & PG_M) {
|
|
if (pmap_track_modified(va)) {
|
|
m = PHYS_TO_VM_PAGE(pa);
|
|
m->dirty = VM_PAGE_BITS_ALL;
|
|
}
|
|
}
|
|
pa |= PG_MANAGED;
|
|
}
|
|
|
|
if (mpte)
|
|
--mpte->hold_count;
|
|
|
|
goto validate;
|
|
}
|
|
/*
|
|
* Mapping has changed, invalidate old range and fall through to
|
|
* handle validating new mapping.
|
|
*/
|
|
if (opa) {
|
|
int err;
|
|
err = pmap_remove_pte(pmap, pte, va);
|
|
if (err)
|
|
panic("pmap_enter: pte vanished, va: 0x%x", va);
|
|
}
|
|
|
|
/*
|
|
* Enter on the PV list if part of our managed memory Note that we
|
|
* raise IPL while manipulating pv_table since pmap_enter can be
|
|
* called at interrupt time.
|
|
*/
|
|
if (pmap_is_managed(pa)) {
|
|
pmap_insert_entry(pmap, va, mpte, pa);
|
|
pa |= PG_MANAGED;
|
|
}
|
|
|
|
/*
|
|
* Increment counters
|
|
*/
|
|
pmap->pm_stats.resident_count++;
|
|
if (wired)
|
|
pmap->pm_stats.wired_count++;
|
|
|
|
validate:
|
|
/*
|
|
* Now validate mapping with desired protection/wiring.
|
|
*/
|
|
newpte = (vm_offset_t) (pa | pte_prot(pmap, prot) | PG_V);
|
|
|
|
if (wired)
|
|
newpte |= PG_W;
|
|
if (va < UPT_MIN_ADDRESS)
|
|
newpte |= PG_U;
|
|
|
|
/*
|
|
* if the mapping or permission bits are different, we need
|
|
* to update the pte.
|
|
*/
|
|
if ((origpte & ~(PG_M|PG_A)) != newpte) {
|
|
*pte = newpte;
|
|
if (origpte)
|
|
invltlb_1pg(va);
|
|
}
|
|
pmap_unlock(pmap);
|
|
}
|
|
|
|
/*
|
|
* this code makes some *MAJOR* assumptions:
|
|
* 1. Current pmap & pmap exists.
|
|
* 2. Not wired.
|
|
* 3. Read access.
|
|
* 4. No page table pages.
|
|
* 5. Tlbflush is deferred to calling procedure.
|
|
* 6. Page IS managed.
|
|
* but is *MUCH* faster than pmap_enter...
|
|
*/
|
|
|
|
static vm_page_t
|
|
pmap_enter_quick(pmap, va, pa, mpte)
|
|
register pmap_t pmap;
|
|
vm_offset_t va;
|
|
register vm_offset_t pa;
|
|
vm_page_t mpte;
|
|
{
|
|
register unsigned *pte;
|
|
|
|
/*
|
|
* In the case that a page table page is not
|
|
* resident, we are creating it here.
|
|
*/
|
|
if (va < UPT_MIN_ADDRESS) {
|
|
unsigned ptepindex;
|
|
vm_offset_t ptepa;
|
|
|
|
/*
|
|
* Calculate pagetable page index
|
|
*/
|
|
ptepindex = va >> PDRSHIFT;
|
|
if (mpte && (mpte->pindex == ptepindex)) {
|
|
++mpte->hold_count;
|
|
} else {
|
|
retry:
|
|
/*
|
|
* Get the page directory entry
|
|
*/
|
|
ptepa = (vm_offset_t) pmap->pm_pdir[ptepindex];
|
|
|
|
/*
|
|
* If the page table page is mapped, we just increment
|
|
* the hold count, and activate it.
|
|
*/
|
|
if (ptepa) {
|
|
#if defined(PTPHINT)
|
|
if (pmap->pm_ptphint &&
|
|
(pmap->pm_ptphint->pindex == ptepindex)) {
|
|
mpte = pmap->pm_ptphint;
|
|
} else {
|
|
mpte = pmap_page_lookup( pmap->pm_pteobj, ptepindex);
|
|
pmap->pm_ptphint = mpte;
|
|
}
|
|
#else
|
|
mpte = pmap_page_lookup( pmap->pm_pteobj, ptepindex);
|
|
#endif
|
|
if (mpte == NULL)
|
|
goto retry;
|
|
++mpte->hold_count;
|
|
} else {
|
|
mpte = _pmap_allocpte(pmap, ptepindex);
|
|
}
|
|
}
|
|
} else {
|
|
mpte = NULL;
|
|
}
|
|
|
|
/*
|
|
* This call to vtopte makes the assumption that we are
|
|
* entering the page into the current pmap. In order to support
|
|
* quick entry into any pmap, one would likely use pmap_pte_quick.
|
|
* But that isn't as quick as vtopte.
|
|
*/
|
|
pte = (unsigned *)vtopte(va);
|
|
if (*pte) {
|
|
if (mpte)
|
|
pmap_unwire_pte_hold(pmap, mpte);
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Enter on the PV list if part of our managed memory Note that we
|
|
* raise IPL while manipulating pv_table since pmap_enter can be
|
|
* called at interrupt time.
|
|
*/
|
|
pmap_insert_entry(pmap, va, mpte, pa);
|
|
|
|
/*
|
|
* Increment counters
|
|
*/
|
|
pmap->pm_stats.resident_count++;
|
|
|
|
/*
|
|
* Now validate mapping with RO protection
|
|
*/
|
|
*pte = pa | PG_V | PG_U | PG_MANAGED;
|
|
|
|
return mpte;
|
|
}
|
|
|
|
#define MAX_INIT_PT (96)
|
|
/*
|
|
* pmap_object_init_pt preloads the ptes for a given object
|
|
* into the specified pmap. This eliminates the blast of soft
|
|
* faults on process startup and immediately after an mmap.
|
|
*/
|
|
void
|
|
pmap_object_init_pt(pmap, addr, object, pindex, size, limit)
|
|
pmap_t pmap;
|
|
vm_offset_t addr;
|
|
vm_object_t object;
|
|
vm_pindex_t pindex;
|
|
vm_size_t size;
|
|
int limit;
|
|
{
|
|
vm_offset_t tmpidx;
|
|
int psize;
|
|
vm_page_t p, mpte;
|
|
int objpgs;
|
|
|
|
psize = i386_btop(size);
|
|
|
|
if (!pmap || (object->type != OBJT_VNODE) ||
|
|
(limit && (psize > MAX_INIT_PT) &&
|
|
(object->resident_page_count > MAX_INIT_PT))) {
|
|
return;
|
|
}
|
|
|
|
pmap_lock(pmap);
|
|
if (psize + pindex > object->size)
|
|
psize = object->size - pindex;
|
|
|
|
mpte = NULL;
|
|
/*
|
|
* if we are processing a major portion of the object, then scan the
|
|
* entire thing.
|
|
*/
|
|
if (psize > (object->size >> 2)) {
|
|
objpgs = psize;
|
|
|
|
for (p = TAILQ_FIRST(&object->memq);
|
|
((objpgs > 0) && (p != NULL));
|
|
p = TAILQ_NEXT(p, listq)) {
|
|
|
|
tmpidx = p->pindex;
|
|
if (tmpidx < pindex) {
|
|
continue;
|
|
}
|
|
tmpidx -= pindex;
|
|
if (tmpidx >= psize) {
|
|
continue;
|
|
}
|
|
if (((p->valid & VM_PAGE_BITS_ALL) == VM_PAGE_BITS_ALL) &&
|
|
(p->busy == 0) &&
|
|
(p->flags & (PG_BUSY | PG_FICTITIOUS)) == 0) {
|
|
if ((p->queue - p->pc) == PQ_CACHE)
|
|
vm_page_deactivate(p);
|
|
p->flags |= PG_BUSY;
|
|
mpte = pmap_enter_quick(pmap,
|
|
addr + i386_ptob(tmpidx),
|
|
VM_PAGE_TO_PHYS(p), mpte);
|
|
p->flags |= PG_MAPPED;
|
|
PAGE_WAKEUP(p);
|
|
}
|
|
objpgs -= 1;
|
|
}
|
|
} else {
|
|
/*
|
|
* else lookup the pages one-by-one.
|
|
*/
|
|
for (tmpidx = 0; tmpidx < psize; tmpidx += 1) {
|
|
p = vm_page_lookup(object, tmpidx + pindex);
|
|
if (p &&
|
|
((p->valid & VM_PAGE_BITS_ALL) == VM_PAGE_BITS_ALL) &&
|
|
(p->busy == 0) &&
|
|
(p->flags & (PG_BUSY | PG_FICTITIOUS)) == 0) {
|
|
if ((p->queue - p->pc) == PQ_CACHE)
|
|
vm_page_deactivate(p);
|
|
p->flags |= PG_BUSY;
|
|
mpte = pmap_enter_quick(pmap,
|
|
addr + i386_ptob(tmpidx),
|
|
VM_PAGE_TO_PHYS(p), mpte);
|
|
p->flags |= PG_MAPPED;
|
|
PAGE_WAKEUP(p);
|
|
}
|
|
}
|
|
}
|
|
pmap_unlock(pmap);
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* pmap_prefault provides a quick way of clustering
|
|
* pagefaults into a processes address space. It is a "cousin"
|
|
* of pmap_object_init_pt, except it runs at page fault time instead
|
|
* of mmap time.
|
|
*/
|
|
#define PFBAK 2
|
|
#define PFFOR 2
|
|
#define PAGEORDER_SIZE (PFBAK+PFFOR)
|
|
|
|
static int pmap_prefault_pageorder[] = {
|
|
-PAGE_SIZE, PAGE_SIZE, -2 * PAGE_SIZE, 2 * PAGE_SIZE
|
|
};
|
|
|
|
void
|
|
pmap_prefault(pmap, addra, entry, object)
|
|
pmap_t pmap;
|
|
vm_offset_t addra;
|
|
vm_map_entry_t entry;
|
|
vm_object_t object;
|
|
{
|
|
int i;
|
|
vm_offset_t starta;
|
|
vm_offset_t addr;
|
|
vm_pindex_t pindex;
|
|
vm_page_t m, mpte;
|
|
|
|
if (entry->object.vm_object != object)
|
|
return;
|
|
|
|
if (!curproc || (pmap != &curproc->p_vmspace->vm_pmap))
|
|
return;
|
|
|
|
pmap_lock(pmap);
|
|
starta = addra - PFBAK * PAGE_SIZE;
|
|
if (starta < entry->start) {
|
|
starta = entry->start;
|
|
} else if (starta > addra) {
|
|
starta = 0;
|
|
}
|
|
|
|
mpte = NULL;
|
|
for (i = 0; i < PAGEORDER_SIZE; i++) {
|
|
vm_object_t lobject;
|
|
unsigned *pte;
|
|
|
|
addr = addra + pmap_prefault_pageorder[i];
|
|
if (addr < starta || addr >= entry->end)
|
|
continue;
|
|
|
|
if ((*pmap_pde(pmap, addr)) == NULL)
|
|
continue;
|
|
|
|
pte = (unsigned *) vtopte(addr);
|
|
if (*pte)
|
|
continue;
|
|
|
|
pindex = ((addr - entry->start) + entry->offset) >> PAGE_SHIFT;
|
|
lobject = object;
|
|
for (m = vm_page_lookup(lobject, pindex);
|
|
(!m && (lobject->type == OBJT_DEFAULT) && (lobject->backing_object));
|
|
lobject = lobject->backing_object) {
|
|
if (lobject->backing_object_offset & PAGE_MASK)
|
|
break;
|
|
pindex += (lobject->backing_object_offset >> PAGE_SHIFT);
|
|
m = vm_page_lookup(lobject->backing_object, pindex);
|
|
}
|
|
|
|
/*
|
|
* give-up when a page is not in memory
|
|
*/
|
|
if (m == NULL)
|
|
break;
|
|
|
|
if (((m->valid & VM_PAGE_BITS_ALL) == VM_PAGE_BITS_ALL) &&
|
|
(m->busy == 0) &&
|
|
(m->flags & (PG_BUSY | PG_FICTITIOUS)) == 0) {
|
|
|
|
if ((m->queue - m->pc) == PQ_CACHE) {
|
|
vm_page_deactivate(m);
|
|
}
|
|
m->flags |= PG_BUSY;
|
|
mpte = pmap_enter_quick(pmap, addr,
|
|
VM_PAGE_TO_PHYS(m), mpte);
|
|
m->flags |= PG_MAPPED;
|
|
PAGE_WAKEUP(m);
|
|
}
|
|
}
|
|
pmap_unlock(pmap);
|
|
}
|
|
|
|
/*
|
|
* Routine: pmap_change_wiring
|
|
* Function: Change the wiring attribute for a map/virtual-address
|
|
* pair.
|
|
* In/out conditions:
|
|
* The mapping must already exist in the pmap.
|
|
*/
|
|
void
|
|
pmap_change_wiring(pmap, va, wired)
|
|
register pmap_t pmap;
|
|
vm_offset_t va;
|
|
boolean_t wired;
|
|
{
|
|
register unsigned *pte;
|
|
|
|
if (pmap == NULL)
|
|
return;
|
|
|
|
pmap_lock(pmap);
|
|
pte = pmap_pte(pmap, va);
|
|
|
|
if (wired && !pmap_pte_w(pte))
|
|
pmap->pm_stats.wired_count++;
|
|
else if (!wired && pmap_pte_w(pte))
|
|
pmap->pm_stats.wired_count--;
|
|
|
|
/*
|
|
* Wiring is not a hardware characteristic so there is no need to
|
|
* invalidate TLB.
|
|
*/
|
|
pmap_pte_set_w(pte, wired);
|
|
pmap_unlock(pmap);
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
* Copy the range specified by src_addr/len
|
|
* from the source map to the range dst_addr/len
|
|
* in the destination map.
|
|
*
|
|
* This routine is only advisory and need not do anything.
|
|
*/
|
|
|
|
void
|
|
pmap_copy(dst_pmap, src_pmap, dst_addr, len, src_addr)
|
|
pmap_t dst_pmap, src_pmap;
|
|
vm_offset_t dst_addr;
|
|
vm_size_t len;
|
|
vm_offset_t src_addr;
|
|
{
|
|
vm_offset_t addr;
|
|
vm_offset_t end_addr = src_addr + len;
|
|
vm_offset_t pdnxt;
|
|
unsigned src_frame, dst_frame;
|
|
|
|
if (dst_addr != src_addr)
|
|
return;
|
|
|
|
pmap_lock2(src_pmap, dst_pmap);
|
|
src_frame = ((unsigned) src_pmap->pm_pdir[PTDPTDI]) & PG_FRAME;
|
|
if (src_frame != (((unsigned) PTDpde) & PG_FRAME)) {
|
|
pmap_unlock(src_pmap);
|
|
pmap_unlock(dst_pmap);
|
|
return;
|
|
}
|
|
|
|
dst_frame = ((unsigned) dst_pmap->pm_pdir[PTDPTDI]) & PG_FRAME;
|
|
if (dst_frame != (((unsigned) APTDpde) & PG_FRAME)) {
|
|
APTDpde = (pd_entry_t) (dst_frame | PG_RW | PG_V);
|
|
invltlb();
|
|
}
|
|
|
|
for(addr = src_addr; addr < end_addr; addr = pdnxt) {
|
|
unsigned *src_pte, *dst_pte;
|
|
vm_page_t dstmpte, srcmpte;
|
|
vm_offset_t srcptepaddr;
|
|
unsigned ptepindex;
|
|
|
|
if (addr >= UPT_MIN_ADDRESS)
|
|
panic("pmap_copy: invalid to pmap_copy page tables\n");
|
|
|
|
pdnxt = ((addr + PAGE_SIZE*NPTEPG) & ~(PAGE_SIZE*NPTEPG - 1));
|
|
ptepindex = addr >> PDRSHIFT;
|
|
|
|
srcptepaddr = (vm_offset_t) src_pmap->pm_pdir[ptepindex];
|
|
if (srcptepaddr == 0)
|
|
continue;
|
|
|
|
srcmpte = vm_page_lookup(src_pmap->pm_pteobj, ptepindex);
|
|
if ((srcmpte->hold_count == 0) || (srcmpte->flags & PG_BUSY))
|
|
continue;
|
|
|
|
if (pdnxt > end_addr)
|
|
pdnxt = end_addr;
|
|
|
|
src_pte = (unsigned *) vtopte(addr);
|
|
dst_pte = (unsigned *) avtopte(addr);
|
|
while (addr < pdnxt) {
|
|
unsigned ptetemp;
|
|
ptetemp = *src_pte;
|
|
/*
|
|
* we only virtual copy managed pages
|
|
*/
|
|
if ((ptetemp & PG_MANAGED) != 0) {
|
|
/*
|
|
* We have to check after allocpte for the
|
|
* pte still being around... allocpte can
|
|
* block.
|
|
*/
|
|
dstmpte = pmap_allocpte(dst_pmap, addr);
|
|
if ((*dst_pte == 0) && (ptetemp = *src_pte)) {
|
|
/*
|
|
* Clear the modified and
|
|
* accessed (referenced) bits
|
|
* during the copy.
|
|
*/
|
|
*dst_pte = ptetemp & ~(PG_M|PG_A);
|
|
dst_pmap->pm_stats.resident_count++;
|
|
pmap_insert_entry(dst_pmap, addr,
|
|
dstmpte,
|
|
(ptetemp & PG_FRAME));
|
|
} else {
|
|
pmap_unwire_pte_hold(dst_pmap, dstmpte);
|
|
}
|
|
if (dstmpte->hold_count >= srcmpte->hold_count)
|
|
break;
|
|
}
|
|
addr += PAGE_SIZE;
|
|
++src_pte;
|
|
++dst_pte;
|
|
}
|
|
}
|
|
pmap_unlock(src_pmap);
|
|
pmap_unlock(dst_pmap);
|
|
}
|
|
|
|
/*
|
|
* Routine: pmap_kernel
|
|
* Function:
|
|
* Returns the physical map handle for the kernel.
|
|
*/
|
|
pmap_t
|
|
pmap_kernel()
|
|
{
|
|
return (kernel_pmap);
|
|
}
|
|
|
|
/*
|
|
* pmap_zero_page zeros the specified (machine independent)
|
|
* page by mapping the page into virtual memory and using
|
|
* bzero to clear its contents, one machine dependent page
|
|
* at a time.
|
|
*/
|
|
void
|
|
pmap_zero_page(phys)
|
|
vm_offset_t phys;
|
|
{
|
|
if (*(int *) CMAP2)
|
|
panic("pmap_zero_page: CMAP busy");
|
|
|
|
*(int *) CMAP2 = PG_V | PG_RW | (phys & PG_FRAME);
|
|
bzero(CADDR2, PAGE_SIZE);
|
|
*(int *) CMAP2 = 0;
|
|
invltlb_1pg((vm_offset_t) CADDR2);
|
|
}
|
|
|
|
/*
|
|
* pmap_copy_page copies the specified (machine independent)
|
|
* page by mapping the page into virtual memory and using
|
|
* bcopy to copy the page, one machine dependent page at a
|
|
* time.
|
|
*/
|
|
void
|
|
pmap_copy_page(src, dst)
|
|
vm_offset_t src;
|
|
vm_offset_t dst;
|
|
{
|
|
if (*(int *) CMAP1 || *(int *) CMAP2)
|
|
panic("pmap_copy_page: CMAP busy");
|
|
|
|
*(int *) CMAP1 = PG_V | PG_RW | (src & PG_FRAME);
|
|
*(int *) CMAP2 = PG_V | PG_RW | (dst & PG_FRAME);
|
|
|
|
bcopy(CADDR1, CADDR2, PAGE_SIZE);
|
|
|
|
*(int *) CMAP1 = 0;
|
|
*(int *) CMAP2 = 0;
|
|
invltlb_2pg( (vm_offset_t) CADDR1, (vm_offset_t) CADDR2);
|
|
}
|
|
|
|
|
|
/*
|
|
* Routine: pmap_pageable
|
|
* Function:
|
|
* Make the specified pages (by pmap, offset)
|
|
* pageable (or not) as requested.
|
|
*
|
|
* A page which is not pageable may not take
|
|
* a fault; therefore, its page table entry
|
|
* must remain valid for the duration.
|
|
*
|
|
* This routine is merely advisory; pmap_enter
|
|
* will specify that these pages are to be wired
|
|
* down (or not) as appropriate.
|
|
*/
|
|
void
|
|
pmap_pageable(pmap, sva, eva, pageable)
|
|
pmap_t pmap;
|
|
vm_offset_t sva, eva;
|
|
boolean_t pageable;
|
|
{
|
|
}
|
|
|
|
/*
|
|
* this routine returns true if a physical page resides
|
|
* in the given pmap.
|
|
*/
|
|
boolean_t
|
|
pmap_page_exists(pmap, pa)
|
|
pmap_t pmap;
|
|
vm_offset_t pa;
|
|
{
|
|
register pv_entry_t pv;
|
|
pv_table_t *ppv;
|
|
int s;
|
|
|
|
if (!pmap_is_managed(pa))
|
|
return FALSE;
|
|
|
|
s = splvm();
|
|
|
|
ppv = pa_to_pvh(pa);
|
|
/*
|
|
* Not found, check current mappings returning immediately if found.
|
|
*/
|
|
for (pv = TAILQ_FIRST(&ppv->pv_list);
|
|
pv;
|
|
pv = TAILQ_NEXT(pv, pv_list)) {
|
|
if (pv->pv_pmap == pmap) {
|
|
splx(s);
|
|
return TRUE;
|
|
}
|
|
}
|
|
splx(s);
|
|
return (FALSE);
|
|
}
|
|
|
|
#define PMAP_REMOVE_PAGES_CURPROC_ONLY
|
|
/*
|
|
* Remove all pages from specified address space
|
|
* this aids process exit speeds. Also, this code
|
|
* is special cased for current process only, but
|
|
* can have the more generic (and slightly slower)
|
|
* mode enabled. This is much faster than pmap_remove
|
|
* in the case of running down an entire address space.
|
|
*/
|
|
void
|
|
pmap_remove_pages(pmap, sva, eva)
|
|
pmap_t pmap;
|
|
vm_offset_t sva, eva;
|
|
{
|
|
unsigned *pte, tpte;
|
|
pv_table_t *ppv;
|
|
pv_entry_t pv, npv;
|
|
int s;
|
|
|
|
#ifdef PMAP_REMOVE_PAGES_CURPROC_ONLY
|
|
if (!curproc || (pmap != &curproc->p_vmspace->vm_pmap)) {
|
|
printf("warning: pmap_remove_pages called with non-current pmap\n");
|
|
return;
|
|
}
|
|
#endif
|
|
|
|
pmap_lock(pmap);
|
|
s = splhigh();
|
|
|
|
for(pv = TAILQ_FIRST(&pmap->pm_pvlist);
|
|
pv;
|
|
pv = npv) {
|
|
|
|
if (pv->pv_va >= eva || pv->pv_va < sva) {
|
|
npv = TAILQ_NEXT(pv, pv_plist);
|
|
continue;
|
|
}
|
|
|
|
#ifdef PMAP_REMOVE_PAGES_CURPROC_ONLY
|
|
pte = (unsigned *)vtopte(pv->pv_va);
|
|
#else
|
|
pte = pmap_pte_quick(pv->pv_pmap, pv->pv_va);
|
|
#endif
|
|
tpte = *pte;
|
|
*pte = 0;
|
|
|
|
ppv = pa_to_pvh(tpte);
|
|
|
|
if (tpte) {
|
|
pv->pv_pmap->pm_stats.resident_count--;
|
|
if (tpte & PG_W)
|
|
pv->pv_pmap->pm_stats.wired_count--;
|
|
/*
|
|
* Update the vm_page_t clean and reference bits.
|
|
*/
|
|
if (tpte & PG_M) {
|
|
ppv->pv_vm_page->dirty = VM_PAGE_BITS_ALL;
|
|
}
|
|
}
|
|
|
|
npv = TAILQ_NEXT(pv, pv_plist);
|
|
TAILQ_REMOVE(&pv->pv_pmap->pm_pvlist, pv, pv_plist);
|
|
|
|
--ppv->pv_list_count;
|
|
TAILQ_REMOVE(&ppv->pv_list, pv, pv_list);
|
|
|
|
pmap_unuse_pt(pv->pv_pmap, pv->pv_va, pv->pv_ptem);
|
|
free_pv_entry(pv);
|
|
}
|
|
splx(s);
|
|
invltlb();
|
|
pmap_unlock(pmap);
|
|
}
|
|
|
|
/*
|
|
* pmap_testbit tests bits in pte's
|
|
* note that the testbit/changebit routines are inline,
|
|
* and a lot of things compile-time evaluate.
|
|
*/
|
|
static boolean_t
|
|
pmap_testbit(pa, bit)
|
|
register vm_offset_t pa;
|
|
int bit;
|
|
{
|
|
register pv_entry_t pv;
|
|
pv_table_t *ppv;
|
|
unsigned *pte;
|
|
int s;
|
|
|
|
if (!pmap_is_managed(pa))
|
|
return FALSE;
|
|
|
|
ppv = pa_to_pvh(pa);
|
|
if (TAILQ_FIRST(&ppv->pv_list) == NULL)
|
|
return FALSE;
|
|
|
|
s = splvm();
|
|
|
|
for (pv = TAILQ_FIRST(&ppv->pv_list);
|
|
pv;
|
|
pv = TAILQ_NEXT(pv, pv_list)) {
|
|
|
|
/*
|
|
* if the bit being tested is the modified bit, then
|
|
* mark clean_map and ptes as never
|
|
* modified.
|
|
*/
|
|
if (bit & (PG_A|PG_M)) {
|
|
if (!pmap_track_modified(pv->pv_va))
|
|
continue;
|
|
}
|
|
|
|
#if defined(PMAP_DIAGNOSTIC)
|
|
if (!pv->pv_pmap) {
|
|
printf("Null pmap (tb) at va: 0x%lx\n", pv->pv_va);
|
|
continue;
|
|
}
|
|
#endif
|
|
pmap_lock(pv->pv_pmap);
|
|
pte = pmap_pte_quick(pv->pv_pmap, pv->pv_va);
|
|
if (pte == NULL) {
|
|
pmap_unlock(pv->pv_pmap);
|
|
continue;
|
|
}
|
|
if (*pte & bit) {
|
|
pmap_unlock(pv->pv_pmap);
|
|
splx(s);
|
|
return TRUE;
|
|
}
|
|
pmap_unlock(pv->pv_pmap);
|
|
}
|
|
splx(s);
|
|
return (FALSE);
|
|
}
|
|
|
|
/*
|
|
* this routine is used to modify bits in ptes
|
|
*/
|
|
static void
|
|
pmap_changebit(pa, bit, setem)
|
|
vm_offset_t pa;
|
|
int bit;
|
|
boolean_t setem;
|
|
{
|
|
register pv_entry_t pv;
|
|
pv_table_t *ppv;
|
|
register unsigned *pte;
|
|
int changed;
|
|
int s;
|
|
|
|
if (!pmap_is_managed(pa))
|
|
return;
|
|
|
|
s = splvm();
|
|
changed = 0;
|
|
ppv = pa_to_pvh(pa);
|
|
|
|
/*
|
|
* Loop over all current mappings setting/clearing as appropos If
|
|
* setting RO do we need to clear the VAC?
|
|
*/
|
|
for (pv = TAILQ_FIRST(&ppv->pv_list);
|
|
pv;
|
|
pv = TAILQ_NEXT(pv, pv_list)) {
|
|
|
|
/*
|
|
* don't write protect pager mappings
|
|
*/
|
|
if (!setem && (bit == PG_RW)) {
|
|
if (!pmap_track_modified(pv->pv_va))
|
|
continue;
|
|
}
|
|
|
|
#if defined(PMAP_DIAGNOSTIC)
|
|
if (!pv->pv_pmap) {
|
|
printf("Null pmap (cb) at va: 0x%lx\n", pv->pv_va);
|
|
continue;
|
|
}
|
|
#endif
|
|
|
|
pmap_lock(pv->pv_pmap);
|
|
pte = pmap_pte_quick(pv->pv_pmap, pv->pv_va);
|
|
if (pte == NULL) {
|
|
pmap_unlock(pv->pv_pmap);
|
|
continue;
|
|
}
|
|
if (setem) {
|
|
*(int *)pte |= bit;
|
|
changed = 1;
|
|
} else {
|
|
vm_offset_t pbits = *(vm_offset_t *)pte;
|
|
if (pbits & bit) {
|
|
changed = 1;
|
|
if (bit == PG_RW) {
|
|
if (pbits & PG_M) {
|
|
ppv->pv_vm_page->dirty = VM_PAGE_BITS_ALL;
|
|
}
|
|
*(int *)pte = pbits & ~(PG_M|PG_RW);
|
|
} else {
|
|
*(int *)pte = pbits & ~bit;
|
|
}
|
|
}
|
|
}
|
|
pmap_unlock(pv->pv_pmap);
|
|
}
|
|
splx(s);
|
|
if (changed)
|
|
invltlb();
|
|
}
|
|
|
|
/*
|
|
* pmap_page_protect:
|
|
*
|
|
* Lower the permission for all mappings to a given page.
|
|
*/
|
|
void
|
|
pmap_page_protect(phys, prot)
|
|
vm_offset_t phys;
|
|
vm_prot_t prot;
|
|
{
|
|
if ((prot & VM_PROT_WRITE) == 0) {
|
|
if (prot & (VM_PROT_READ | VM_PROT_EXECUTE)) {
|
|
pmap_changebit(phys, PG_RW, FALSE);
|
|
} else {
|
|
pmap_remove_all(phys);
|
|
}
|
|
}
|
|
}
|
|
|
|
vm_offset_t
|
|
pmap_phys_address(ppn)
|
|
int ppn;
|
|
{
|
|
return (i386_ptob(ppn));
|
|
}
|
|
|
|
/*
|
|
* pmap_is_referenced:
|
|
*
|
|
* Return whether or not the specified physical page was referenced
|
|
* by any physical maps.
|
|
*/
|
|
boolean_t
|
|
pmap_is_referenced(vm_offset_t pa)
|
|
{
|
|
register pv_entry_t pv;
|
|
pv_table_t *ppv;
|
|
unsigned *pte;
|
|
int s;
|
|
|
|
if (!pmap_is_managed(pa))
|
|
return FALSE;
|
|
|
|
ppv = pa_to_pvh(pa);
|
|
|
|
s = splvm();
|
|
/*
|
|
* Not found, check current mappings returning immediately if found.
|
|
*/
|
|
for (pv = TAILQ_FIRST(&ppv->pv_list);
|
|
pv;
|
|
pv = TAILQ_NEXT(pv, pv_list)) {
|
|
|
|
/*
|
|
* if the bit being tested is the modified bit, then
|
|
* mark clean_map and ptes as never
|
|
* modified.
|
|
*/
|
|
if (!pmap_track_modified(pv->pv_va))
|
|
continue;
|
|
|
|
pmap_lock(pv->pv_pmap);
|
|
pte = pmap_pte_quick(pv->pv_pmap, pv->pv_va);
|
|
if (pte == NULL) {
|
|
pmap_unlock(pv->pv_pmap);
|
|
continue;
|
|
}
|
|
if ((int) *pte & PG_A) {
|
|
pmap_unlock(pv->pv_pmap);
|
|
splx(s);
|
|
return TRUE;
|
|
}
|
|
pmap_unlock(pv->pv_pmap);
|
|
}
|
|
splx(s);
|
|
return (FALSE);
|
|
}
|
|
|
|
/*
|
|
* pmap_ts_referenced:
|
|
*
|
|
* Return the count of reference bits for a page, clearing all of them.
|
|
*
|
|
*/
|
|
int
|
|
pmap_ts_referenced(vm_offset_t pa)
|
|
{
|
|
register pv_entry_t pv;
|
|
pv_table_t *ppv;
|
|
unsigned *pte;
|
|
int s;
|
|
int rtval = 0;
|
|
|
|
if (!pmap_is_managed(pa))
|
|
return FALSE;
|
|
|
|
s = splvm();
|
|
|
|
ppv = pa_to_pvh(pa);
|
|
|
|
if (TAILQ_FIRST(&ppv->pv_list) == NULL) {
|
|
splx(s);
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Not found, check current mappings returning immediately if found.
|
|
*/
|
|
for (pv = TAILQ_FIRST(&ppv->pv_list);
|
|
pv;
|
|
pv = TAILQ_NEXT(pv, pv_list)) {
|
|
/*
|
|
* if the bit being tested is the modified bit, then
|
|
* mark clean_map and ptes as never
|
|
* modified.
|
|
*/
|
|
if (!pmap_track_modified(pv->pv_va))
|
|
continue;
|
|
|
|
pmap_lock(pv->pv_pmap);
|
|
pte = pmap_pte_quick(pv->pv_pmap, pv->pv_va);
|
|
if (pte == NULL) {
|
|
pmap_unlock(pv->pv_pmap);
|
|
continue;
|
|
}
|
|
if (*pte & PG_A) {
|
|
rtval++;
|
|
*pte &= ~PG_A;
|
|
}
|
|
pmap_unlock(pv->pv_pmap);
|
|
}
|
|
splx(s);
|
|
if (rtval) {
|
|
invltlb();
|
|
}
|
|
return (rtval);
|
|
}
|
|
|
|
/*
|
|
* pmap_is_modified:
|
|
*
|
|
* Return whether or not the specified physical page was modified
|
|
* in any physical maps.
|
|
*/
|
|
boolean_t
|
|
pmap_is_modified(vm_offset_t pa)
|
|
{
|
|
return pmap_testbit((pa), PG_M);
|
|
}
|
|
|
|
/*
|
|
* Clear the modify bits on the specified physical page.
|
|
*/
|
|
void
|
|
pmap_clear_modify(vm_offset_t pa)
|
|
{
|
|
pmap_changebit((pa), PG_M, FALSE);
|
|
}
|
|
|
|
/*
|
|
* pmap_clear_reference:
|
|
*
|
|
* Clear the reference bit on the specified physical page.
|
|
*/
|
|
void
|
|
pmap_clear_reference(vm_offset_t pa)
|
|
{
|
|
pmap_changebit((pa), PG_A, FALSE);
|
|
}
|
|
|
|
/*
|
|
* Miscellaneous support routines follow
|
|
*/
|
|
|
|
static void
|
|
i386_protection_init()
|
|
{
|
|
register int *kp, prot;
|
|
|
|
kp = protection_codes;
|
|
for (prot = 0; prot < 8; prot++) {
|
|
switch (prot) {
|
|
case VM_PROT_NONE | VM_PROT_NONE | VM_PROT_NONE:
|
|
/*
|
|
* Read access is also 0. There isn't any execute bit,
|
|
* so just make it readable.
|
|
*/
|
|
case VM_PROT_READ | VM_PROT_NONE | VM_PROT_NONE:
|
|
case VM_PROT_READ | VM_PROT_NONE | VM_PROT_EXECUTE:
|
|
case VM_PROT_NONE | VM_PROT_NONE | VM_PROT_EXECUTE:
|
|
*kp++ = 0;
|
|
break;
|
|
case VM_PROT_NONE | VM_PROT_WRITE | VM_PROT_NONE:
|
|
case VM_PROT_NONE | VM_PROT_WRITE | VM_PROT_EXECUTE:
|
|
case VM_PROT_READ | VM_PROT_WRITE | VM_PROT_NONE:
|
|
case VM_PROT_READ | VM_PROT_WRITE | VM_PROT_EXECUTE:
|
|
*kp++ = PG_RW;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Map a set of physical memory pages into the kernel virtual
|
|
* address space. Return a pointer to where it is mapped. This
|
|
* routine is intended to be used for mapping device memory,
|
|
* NOT real memory. The non-cacheable bits are set on each
|
|
* mapped page.
|
|
*/
|
|
void *
|
|
pmap_mapdev(pa, size)
|
|
vm_offset_t pa;
|
|
vm_size_t size;
|
|
{
|
|
vm_offset_t va, tmpva;
|
|
unsigned *pte;
|
|
|
|
size = roundup(size, PAGE_SIZE);
|
|
|
|
va = kmem_alloc_pageable(kernel_map, size);
|
|
if (!va)
|
|
panic("pmap_mapdev: Couldn't alloc kernel virtual memory");
|
|
|
|
pa = pa & PG_FRAME;
|
|
for (tmpva = va; size > 0;) {
|
|
pte = (unsigned *)vtopte(tmpva);
|
|
*pte = pa | PG_RW | PG_V | PG_N;
|
|
size -= PAGE_SIZE;
|
|
tmpva += PAGE_SIZE;
|
|
pa += PAGE_SIZE;
|
|
}
|
|
invltlb();
|
|
|
|
return ((void *) va);
|
|
}
|
|
|
|
/*
|
|
* perform the pmap work for mincore
|
|
*/
|
|
int
|
|
pmap_mincore(pmap, addr)
|
|
pmap_t pmap;
|
|
vm_offset_t addr;
|
|
{
|
|
|
|
unsigned *ptep, pte;
|
|
int val = 0;
|
|
|
|
pmap_lock(pmap);
|
|
ptep = pmap_pte(pmap, addr);
|
|
if (ptep == 0) {
|
|
pmap_unlock(pmap);
|
|
return 0;
|
|
}
|
|
|
|
if (pte = *ptep) {
|
|
vm_offset_t pa;
|
|
val = MINCORE_INCORE;
|
|
pa = pte & PG_FRAME;
|
|
|
|
/*
|
|
* Modified by us
|
|
*/
|
|
if (pte & PG_M)
|
|
val |= MINCORE_MODIFIED|MINCORE_MODIFIED_OTHER;
|
|
/*
|
|
* Modified by someone
|
|
*/
|
|
else if (PHYS_TO_VM_PAGE(pa)->dirty ||
|
|
pmap_is_modified(pa))
|
|
val |= MINCORE_MODIFIED_OTHER;
|
|
/*
|
|
* Referenced by us
|
|
*/
|
|
if (pte & PG_U)
|
|
val |= MINCORE_REFERENCED|MINCORE_REFERENCED_OTHER;
|
|
|
|
/*
|
|
* Referenced by someone
|
|
*/
|
|
else if ((PHYS_TO_VM_PAGE(pa)->flags & PG_REFERENCED) ||
|
|
pmap_is_referenced(pa))
|
|
val |= MINCORE_REFERENCED_OTHER;
|
|
}
|
|
pmap_unlock(pmap);
|
|
return val;
|
|
}
|
|
|
|
#if defined(PMAP_DEBUG)
|
|
pmap_pid_dump(int pid) {
|
|
pmap_t pmap;
|
|
struct proc *p;
|
|
int npte = 0;
|
|
int index;
|
|
for (p = allproc.lh_first; p != NULL; p = p->p_list.le_next) {
|
|
if (p->p_pid != pid)
|
|
continue;
|
|
|
|
if (p->p_vmspace) {
|
|
int i,j;
|
|
index = 0;
|
|
pmap = &p->p_vmspace->vm_pmap;
|
|
for(i=0;i<1024;i++) {
|
|
pd_entry_t *pde;
|
|
unsigned *pte;
|
|
unsigned base = i << PDRSHIFT;
|
|
|
|
pde = &pmap->pm_pdir[i];
|
|
if (pde && pmap_pde_v(pde)) {
|
|
for(j=0;j<1024;j++) {
|
|
unsigned va = base + (j << PAGE_SHIFT);
|
|
if (va >= (vm_offset_t) VM_MIN_KERNEL_ADDRESS) {
|
|
if (index) {
|
|
index = 0;
|
|
printf("\n");
|
|
}
|
|
return npte;
|
|
}
|
|
pte = pmap_pte_quick( pmap, va);
|
|
if (pte && pmap_pte_v(pte)) {
|
|
vm_offset_t pa;
|
|
vm_page_t m;
|
|
pa = *(int *)pte;
|
|
m = PHYS_TO_VM_PAGE((pa & PG_FRAME));
|
|
printf("va: 0x%x, pt: 0x%x, h: %d, w: %d, f: 0x%x",
|
|
va, pa, m->hold_count, m->wire_count, m->flags);
|
|
npte++;
|
|
index++;
|
|
if (index >= 2) {
|
|
index = 0;
|
|
printf("\n");
|
|
} else {
|
|
printf(" ");
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
return npte;
|
|
}
|
|
#endif
|
|
|
|
#if defined(DEBUG)
|
|
|
|
static void pads __P((pmap_t pm));
|
|
static void pmap_pvdump __P((vm_offset_t pa));
|
|
|
|
/* print address space of pmap*/
|
|
static void
|
|
pads(pm)
|
|
pmap_t pm;
|
|
{
|
|
unsigned va, i, j;
|
|
unsigned *ptep;
|
|
|
|
if (pm == kernel_pmap)
|
|
return;
|
|
for (i = 0; i < 1024; i++)
|
|
if (pm->pm_pdir[i])
|
|
for (j = 0; j < 1024; j++) {
|
|
va = (i << PDRSHIFT) + (j << PAGE_SHIFT);
|
|
if (pm == kernel_pmap && va < KERNBASE)
|
|
continue;
|
|
if (pm != kernel_pmap && va > UPT_MAX_ADDRESS)
|
|
continue;
|
|
ptep = pmap_pte_quick(pm, va);
|
|
if (pmap_pte_v(ptep))
|
|
printf("%x:%x ", va, *(int *) ptep);
|
|
};
|
|
|
|
}
|
|
|
|
static void
|
|
pmap_pvdump(pa)
|
|
vm_offset_t pa;
|
|
{
|
|
pv_table_t *ppv;
|
|
register pv_entry_t pv;
|
|
|
|
printf("pa %x", pa);
|
|
ppv = pa_to_pvh(pa);
|
|
for (pv = TAILQ_FIRST(&ppv->pv_list);
|
|
pv;
|
|
pv = TAILQ_NEXT(pv, pv_list)) {
|
|
#ifdef used_to_be
|
|
printf(" -> pmap %x, va %x, flags %x",
|
|
pv->pv_pmap, pv->pv_va, pv->pv_flags);
|
|
#endif
|
|
printf(" -> pmap %x, va %x",
|
|
pv->pv_pmap, pv->pv_va);
|
|
pads(pv->pv_pmap);
|
|
}
|
|
printf(" ");
|
|
}
|
|
#endif
|